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In [4], G. Takeuti cor1jectured that the cut-elimination theorem would hold
in his system GLC as well as in LK. Many attempts to prove it constructively
have not yet succeeded. On the other hand, W. Tait [3] proved the cut-
elimination theorem for the second order predicate logic by a non-constructive
method. In this paper, we shall prove the cut-elimination theorem in simple
type-theory also by a non-constructive method. Our proof will be formalizable
in Zermelo’s set theory, which contains neither the axiom of replacement
nor the axiom of choice1). The author wishes to express his thanks to Pro-
fessor T. Nishimura, Mr. K. Namba and Mr. T. Uesu for their kind advice
and assistance.

\S 1. Complexes

The system of simple type-theory we shall use is Sch\"utte’s system in $[2]^{2)}$ .
We shall use the notations in [2].

Let $V$ be a semi-valuation3). We shall define V-complexes of type $\tau$ by
induction on types.

1.1. A V-complex of type $0$ is a pair $[e^{0},0]$ , where $e^{0}$ is an expression of
type $0$ .

1.2. A V-complex of type 1 is a pair $[A, p]$ , where $A$ is a well-formed
formula and $p$ is $t$ or $f$ satisfying the following conditions.

1.2.1. If $A$ is $t$ in the semi-valuation $V$ , then $p=t$ .
1.2.2. If $A$ is $f$ in $V$, then $p=f$.
1.3. Suppose that the V-complexes of type $\tau_{1},$

$\cdots$ , $\tau_{n-1}$ and $\tau_{n}$ are already
defined. Let $\mathfrak{E}\tau_{1},$ $\cdots$ , $\mathfrak{E}\tau_{n}$ be the sets of all the V-complexes of type $\tau_{1},$

$\cdots$ , $\tau_{n}$

1) Cf. Appendix 2.
2) For the sake of brevity, constants (except function constants) are omitted,

since they can be identified with free variables.
3) Our proof remains valid, if the term “ semi-valuation “ is replaced by “ partial

valuation” throughout this paper. But we use only the conditions 6.1.1.-6.1.7. in [2]
but do not use 6.2.1.-6.2.7. in [2].
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respectively. Then a V-complex of type $\tau=$ $(\tau_{1}, \cdots , \tau_{n})$ is a pair $[e^{\tau}, p]$ , where
$e^{\tau}$ is an expression of type $\tau$ and $p$ is a subset of $\mathfrak{E}\tau_{1}\times\cdots\times \mathfrak{E}\tau_{n}$ satisfying
the following conditions. For any V-complexes $C_{1}=[e_{1}^{\tau_{1}}, p_{1}],$ $\cdots$ , $C_{n}=[e_{n}^{\tau_{n}}, p_{n}]$

of type $\tau_{1},$
$\cdots$ , $\tau_{n}$ respectively,

1.3.1. if the wff $(e_{1}^{\tau_{1}}, \cdots , e_{n}^{\tau_{n}}\in e^{\tau})$ is $t$ in $V$ , then $\langle C_{1}, \cdots , C_{n}\rangle\in p$ , and
1.3.2. if the wff $(e_{1}^{\tau_{1}}, \cdots, e_{n}^{\tau_{n}}\in e^{\Gamma})$ is $f$ in $V$, then $\langle C_{1}, \cdots , C_{n}\rangle\not\in p$ .
1.4. In a V-complex $[e^{\tau}, p],$ $e^{\tau}$ is called the first part of this complex and

$p$ is called the second part of it.
1.5. For any expression $e^{\tau}$ of type $\tau$ , there exists a $p$ such that $[e^{\tau}, p]$ is

a V-complex of type $\tau$ . For if $\tau=0$ , we may $setp=0$, if $\tau=1$ , we may take
$t$ or $f$ as $p$ according as the wff $e^{1}$ is $t$ in $V$ or not, and if $\tau=$ $(\tau_{1}, \cdots , \tau_{n})$ , we
may set $p=\{\langle C_{1}^{\tau_{1}}$ , $\cdot$ .. , $C_{n}^{\tau_{n}}\rangle|$ the wff $(e_{1}^{\tau_{1}}, \cdot.., e_{n}^{\tau_{n}}\in e^{\tau})$ is $t$ in $V$, where $e_{i}^{\tau_{i}}$ is
the first part of $C_{i}^{\tau_{i}}(i=1, \cdots , n)$ }.

\S 2. Correspondences

2.1. By a V-correspondence we mean a function which maps each free
variable $a^{\tau}$ to a V-complex of type $\tau$ . In this and next paragraphs we simply
say ” complex ” or ” correspondence ” instead of “ $V$-complex or ” V-corre-
spondence ” respectively, since a semi-valuation $V$ is fixed in these paragraphs.
Henceforth $\Phi,$ $\Psi,$ $\Phi^{r},$ $\Psi^{\prime}$ etc. denote correspondences. $\Phi_{1}(a\gamma, \Phi_{2}(a^{\tau})$ denote the
first or the second part of $\Phi(a^{\tau})$ respectively.

2.2.1. If $\Phi(b)=\Psi(b)$ for all free variables $b$ except $a$ , we write $\Phi\sim\Psi a$

2.2.2. Let $a_{1}^{\tau_{1}},$ $\cdots$ , $a_{n}^{\tau_{n}}$ be distinct free variables and $C_{1}^{\tau_{1}},$ $\cdots$ , $C_{n}^{\tau_{n}}$ be com-
plexes of type $\tau_{1},$

$\cdots$ , $\tau_{n}$ respectively.

$\Phi\left(\begin{array}{lll}C_{1}^{r_{1}} & \cdots & C_{n^{\tau_{n}}}\\a_{1}^{r_{1}} & \cdots & a_{n}^{\tau_{n}}\end{array}\right)$

denotes the correspondence $\Psi$ defined by

$\Psi(a_{i}^{\tau_{i}})=C_{i}^{\tau_{i}}$ $(i=1, n)$

$\Psi(b^{\tau})=\Phi(b^{\tau})$ $(b^{\tau}\neq a_{1}^{\tau_{1}}, \cdots, a_{n}^{\tau_{l}})$ .
2.3. We shall extend a correspondence $\Phi$ to $\tilde{\Phi}$ which maps each expres-

sion $e^{\tau}$ to a complex of type $\tau$ .
2.3.1. First we define the first part $\tilde{\Phi}_{1}(e)$ of $\tilde{\Phi}(e)$ . Let $a_{1},$ $\cdots$ , $a_{n}$ be all the

free variables contained in an expression $e=e(a_{1}, \cdots , a_{n})$ and let $\Phi_{1}(a_{i})=e_{i}$

$(i=1, \cdots , n)$ . Then we set
$\tilde{\Phi}_{1}(e)=e(e_{1}, \cdots, e_{n})$ .

2.3.2. Thus, $\tilde{\Phi}(e)$ will be defined when the second part $\tilde{\Phi}_{2}(e)$ is well-defined
so that $\tilde{\Phi}(e)=[\tilde{\Phi}_{1}(e),\tilde{\Phi}_{2}(e)]$ is indeed a complex. The definition proceeds by
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the induction on the number of stages to construct $e$ . Suppose that $\tilde{\Phi}_{2}(d)$ and
therefore $\tilde{\Phi}(d)$ be well-defined for any expression $d$ which was constructed in
an earlier stage than that of $e$ . Then we define $\tilde{\Phi}_{2}(e)$ by cases and prove that
$[\tilde{\Phi}_{1}(e),\tilde{\Phi}_{2}(e)]$ is a complex.

Case 1. $e$ is a free variable $a$ .
Then we set $\tilde{\Phi}_{2}(e)=\Phi_{2}(a)$ .
Case 2. $e$ is of th $e$ form $\varphi(d_{1}, \cdots , d_{n})$ , where $\varphi$ is a function constant.

We set $\tilde{\Phi}_{2}(e)=0$ .
Case 3. $e$ is of the form $(d_{1}, \cdots , d_{n}\in d)$ .

$\Phi_{2}\sim^{def}(e)=\left\{\begin{array}{l}t,if\langle\tilde{\Phi}(\text{{\it \’{a}}}_{1}),\cdots.\Phi(d_{n})\rangle\in\tilde{\Phi}_{2}(d),\\f,otherwise.\end{array}\right.$

Case 4. $e$ is of the form $7A$ .

$\tilde{\Phi}_{2}(e)^{def}=|ft,$ $if\tilde{\Phi}_{2}(A)=fotherwise$

.

Case 5. $e$ is of the form $A\vee B$ .

$\tilde{\Phi}_{2}(e)^{def}=|ft,$ $if\tilde{\Phi}_{2}(A)=totherwise$

.

or $\tilde{\Phi}_{2}(B)=t$ ,

Case 6. $e$ is of the form $\exists x^{\tau}A(x^{\tau})$ .

$\tilde{\Phi}_{2}(e)^{def}=\left\{\begin{array}{l}t,ifthereexistsasuchthat\Psi\sim\Phi and\tilde{\Psi}_{2}(A(a))=tcorresponde_{r}nce\Psi.\\a^{\mathcal{T}}\\f,otherwise,\end{array}\right.$

where $a^{\tau}$ is the first free variable of type $\tau$ (in a fixed enumeration) which
does not occur in $e$ .

Case 7. $e$ is of the form $\lambda x_{1}^{\tau_{1}}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}, \cdots , x_{n}^{\tau_{n}})$ .

$\tilde{\Phi}_{2}(e)^{def}=\{\langle C_{1}^{\tau_{1}}, \cdots , C_{n^{\tau_{n}}}\rangle|C_{i^{\tau_{i}}}\in \mathfrak{E}_{\tau_{i}}$ and

$\Phi\left(\begin{array}{llll}C_{1}^{r_{1}} & \cdots & C_{n} & \tau_{n}\\a_{1}^{r_{1}} & \cdots & a_{n}^{\tau_{n}} & \end{array}\right)(A(a_{1}^{\tau_{1}}-, a_{n}^{\tau_{n}}))=t\}$ ,

where $a_{i}^{\tau_{i}}$ is the first free variable of type $\tau_{i}$ (in a fixed enumeration) which
does not occur in $e$ and differs from $a_{1}^{\tau_{1}}$ , $\cdot$ .. , $a_{i-1}^{\tau_{i-1}}$ $(i=1, -- , n)$ .

2.3.3. Next we prove that $\tilde{\Phi}(e)=[\tilde{\Phi}_{1}(e),\tilde{\Phi}_{2}(e)]$ defined above is a complex.
Similarly to 2.3.2 the proof proceeds by the induction on the number of stages
to construct $e$ .

Case 1. $e$ is a free variable $a$ .
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$\tilde{\Phi}(e)=[\tilde{\Phi}_{1}(a), \Phi_{2}(a)]=[\Phi_{1}(a), \Phi_{2}(a)]=\Phi(a)$ .
Hence $\tilde{\Phi}(e)$ is a complex.

Case 2. $e$ is of the form $\varphi(4_{1}$ , $\cdot$ .. , $d)$ , where $\wp$ is a function constant.
It is clear that $\tilde{\Phi}(e)$ is a complex, since $e$ is of type $0$ .
Case 3. $e$ is of the form ( $J_{1}$ , $\cdot$ $d_{n}\sim=\iota?$ .
Let $\tilde{\Phi}(d_{i})=C_{i}=[d_{i}^{J}, p_{i}](i- 1, \cdot , )$ and $\tilde{\Phi}(d)=C--[d^{J}, p]$ .
Then $\tilde{\Phi}_{1}(e)$ is $(d_{1}^{\prime}, \cdots , d_{n}^{\prime}\in d^{\prime})$ .
Suppose that $\tilde{\Phi}_{1}(e)$ is $t$ in $V$ . Since $\tilde{\Phi}(d)=[d^{\prime}, p]$ is a complex by the

induction hypothesis,
$\langle C_{1}, \cdots, C_{n}\rangle\simeq p$ ,

by 1.3.1. I. $e$ .
$\langle\tilde{\Phi}(d_{1}), \cdots,\tilde{\Phi}(d_{n})\rangle\in\tilde{\Phi}_{2}(d)$ .

Hence by the definition, $\tilde{\Phi}_{2}^{\prime}(e)=t$ . Similarly if $\tilde{\Phi}_{1}(e)$ is $f$ in $V$ , then $\tilde{\Phi}_{2}(e)=f$.
So $\tilde{\Phi}(e)$ is a complex by 1.2.1 and 1.2.2.

Case 4. $e$ is of the form $7A$ .
Let $\tilde{\Phi}_{1}(A)=B$ . Then $\tilde{\Phi}_{1}(e)=- 7B$ .
Therefore if $\tilde{\Phi}_{1}(e)$ is $t$ in $V,$ $B$ is $f$ in $V$ by 6.1.1 in [2]. So $\tilde{\Phi}_{2}^{\prime}(A)=f$ by

the induction hypothesis and 1.2.2, and hence $\tilde{\Phi}_{2}(e)=t$ by the definition.
Similarly if $\tilde{\Phi}_{1}(e)$ is $f$ in $V$ , then $\tilde{\Phi}_{2}(e)=f$. Thus $\tilde{\Phi}(e)$ is a complex.
Case 5. $e$ is of the form $A\backslash /B$ .
Similar to the case 4.
Case 6. $e$ is of the form $\exists x^{\tau}A(x^{\tau}, a_{1}, \cdot.. , a_{n})$ , where $a_{1}$ , $\cdot$ .. , $a_{n}$ are all the

free variables occurring in $e$ .
Let $\Phi(a_{i})=[d_{i}, p_{i}](i=1, \cdots , n)$ . Then $\tilde{\Phi}_{1}(e)$ is $\exists x^{\tau}A(x^{\tau}, d_{1}, \cdots , d_{n})$ . Suppose

that $\tilde{\Phi}_{1}(e)$ is $t$ in $V$ . Then by 6.1.5 in [2] there exists an expression $d^{\tau}$ such
that $A(d^{\tau}, d_{1}, \cdots , d_{n})$ is $t$ in $V$ . By 1.5 there exists a $p$ such that $C^{\tau}=[d‘, p]$

is a complex. We set $\Psi=\Phi\left(\begin{array}{l}C^{\tau}\\a^{r}\end{array}\right)$ , where $a^{\tau}$ is the free variable mentioned in

2.3.2 case 6. Then by the induction hypothesis,

$[\tilde{\Psi}_{1}(A(a^{\tau}, a_{1}, \cdots , a_{n})),\tilde{\Psi}_{2}(A(a^{\tau}, a_{1}, \cdots , a_{n}))]$

is a complex. But $\tilde{\Psi}_{1}(A(a^{\tau}, a_{1}, \cdots , a_{n}))$ is $A(d^{\tau}, d_{1}, \cdots , d_{n})$ . Since it is $t$ in $V$,

$\tilde{\Psi}_{2}(A(a, a_{1}, \cdot., , a_{n}))=t$ . Therefore $\tilde{\Phi}_{2}(\exists x^{\tau}A(x^{\tau}, a_{1}, \cdot., , a_{n}))=t$ by $\Psi\sim_{\tau}\Phi a$ Next
suppose that $\tilde{\Phi}_{1}(e)$ is $f$ in $V$ . Let $\Psi$ be an arbitrary correspondence such that
$\Psi\sim_{\tau}\Phi a$ and let $\Psi(a^{\tau})=[d^{\tau}, p]$ . Since $\exists x^{\tau}A(x^{\tau}, d_{1}, \cdots , d_{n})$ is $f$ in $V,$ $A(d^{\tau},$ $d_{1},$ $ d_{n}\rangle$

is also $f$ in $V$ by 6.1.6 in [2]. But $A(d^{\tau}, d_{1}, \cdots , d_{n})$ is $\tilde{\Psi}_{1}(A(a^{\tau}, a_{1}, \cdots , a_{n}))$ .
Therefore by the induction hypothesis ZP 2

$(A(a^{\tau}, a_{1}, \cdots , a_{n}))=f$. So there is no
$\Psi$ such that $\Psi\sim_{\tau}\Phi a$ and $\Phi_{2}$ $(A (a^{\tau}, a_{1}, \cdots , a_{n}))=t$ . Hence $\tilde{\Phi}_{2}(\exists x^{\tau}A(x^{\tau}, a_{1}, \cdots , a_{n})\rangle$

$=f$. Thus $\tilde{\Phi}(e)$ is a complex by 1.2.1 and 1.2.2.
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Case 7. $e$ is of the form $\lambda x_{1}^{\tau_{1}}\cdots x_{n^{-}}^{n}A(x_{1}^{\tau_{1}}, \cdots , x_{n}^{\tau_{n}}, b_{1}, \cdots , b_{m})$ , where
$b_{1},$ $\cdots$ , $b_{m}$ are all the free variables occurring in $e$ . Let $\Phi(b_{j})=[d_{j}, p_{j}](j=1$ ,

... , m) and let $C_{i^{\tau_{i}}}=[c_{i^{\tau}}{}^{t}q_{i}]$ be an arbitrary complex of type $\tau_{i}(i=1, , n)$ .
Then $\tilde{\Phi}_{1}(e)$ is $\lambda x_{1}^{\tau_{1}}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}$ , $\cdot$ .. , $x_{n}^{\tau_{n}},$ $d_{1}$ , $\cdot$

., , $d_{m})$ . Now suppose that the wff
$(c_{1}^{\tau_{1}}, \cdots , c_{n}^{\tau_{n}}\in\lambda x_{1}^{\tau_{1}}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}, \cdots , x_{n}^{\tau_{n}}, d_{1}, \cdots , d_{m}))$ is $t$ in $V$ . Then the wff
$A(c_{1}^{\tau_{1}}, \cdots , c_{n}^{\tau_{n}}, d_{1}, \cdots , d_{m})$ is also $t$ in $V$ by 6.1.7 in [2]. Let $a_{i}^{\tau_{i}}(i=1, \cdots. n)$

be as in 2.3.2 case 7, and let

$\Psi=\Phi\left(\begin{array}{llll}C_{1}^{\tau_{1}} & \cdots & C_{n} & \tau_{n}\\a_{1}^{\tau_{1}} & \cdots & a_{n} & \tau_{n}\end{array}\right)$ .

Then $\tilde{\Psi}_{1}(A(a_{1}^{\tau_{1}}, \cdots , a_{n}^{\tau_{n}}, b_{1}, \cdots , b_{m}))$ is $A(c_{1}^{\tau_{1}}, \cdots , c_{n}^{\tau_{n}}, d_{1}, \cdots , d_{m})$ .
So by the induction hypothesis,

$\tilde{\Psi}_{2}(A(a_{1}^{\tau_{1}}, \cdots , a_{n}^{\tau_{n}}, b_{1}, \cdots , b_{m}))=t$ .
Hence $\langle C_{1}^{r_{1}}, \cdots , C_{n^{\tau_{n}}}\rangle\in\tilde{\Phi}_{2}(e)$ by definition. Next suppose that the wff

$(c_{1}^{\tau_{1}}, c_{n}^{\tau_{n}}\in\lambda x_{1}^{\tau_{1}}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}, x_{n}^{\tau_{n}}, d_{1}, \cdots, d_{m}))$

is $f$ in $V$ . Then $A(c_{1}^{\tau_{1}}, \cdots , c_{n}^{\tau_{n}}, d_{1}, \cdot.., d_{m})$ is also $f$ in $V$ . So by the induction
hypothesis

$\tilde{\Psi}_{2}(A(a_{1}^{\tau_{1}}, \cdots a_{n}^{\tau_{n}}, b_{1}, b_{m}))=f$ .
Hence $\langle C_{1}^{\tau_{1}}, \cdots , C_{n}^{\tau_{n}}\rangle$ ei $\tilde{\Phi}_{2}(e)$ by the definition. Accordingly $[\tilde{\Phi}_{1}(e),\tilde{\Phi}_{2}(e)]$ is a
complex by 1.3.1 and 1.3.2.

\S 3. Preliminary results

The following 3.1 (lemma) is easily seen by the induction on the number
of stages to construct $e$ .

3.1. LEMMA. Let $e(a_{1}^{\tau_{1}}, \cdots , a_{n^{n}}^{-})$ be an expression which does not contain
free variabXes other than $a_{1}^{\tau_{1}},$ $\cdots$ , $a_{n}^{\tau_{n}}$ , and let $b_{1}^{\tau_{1}},$ $\cdots$ , $b_{n}^{\tau_{n}}$ be distinct free vari-
ables. If $\Phi,$ $\Psi$ are correspondences such that $\Phi(a_{i^{\tau_{i}}})=\Psi(b_{i^{\tau_{i}}})(i=1, \cdots , n)$ , then
$\tilde{\Phi}(e(a_{1}^{\tau_{1}}, a_{n}^{\tau_{n}}))=\tilde{\Psi}(e(b_{1}^{\tau_{1}}, b_{n^{n}}^{\prime}))$ .

3.2. COROLLARY. The value $\tilde{\Phi}(e)$ depends only on the values of $\Phi$ for the
free variables occurring in $e;i$ . $e$ . if $\Phi(a)=\Psi(a)$ for every free variable $a$ occur-
ring in $e$ , then $\tilde{\Phi}(e)=?\tilde{I^{\int}}(e)$ .

3.3. $CoROLLARY$ .
3.3.1.

$\tilde{\Phi}_{2}(\exists x^{\tau}A(x^{\tau}))=\{t,$

if there exists acorrespondence $\Psi$

such that $\Psi\sim\Phi a^{\prime}$ and $\tilde{\Psi}_{2}(A(a^{\tau}))=t$ ,

$f$, otherwise,

where $a^{\tau}$ is an arbitrary free variable of type $\tau$ which does not occur in $\exists x^{\tau}A(x^{\tau})$ .
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3.3.2.
$\tilde{\Phi}_{2}(\lambda x_{1}^{\tau_{1}}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}, x_{n}^{\tau_{n}}))$

$=\{\langle C_{1}^{\tau_{1}}, \cdots , C_{n^{\tau_{n}}}\rangle|C_{i}^{\tau_{i}}\in \mathfrak{E}_{\tau_{i}}$ and $\Phi(C_{1}\overline{\cdot.\cdot.\cdot.C}_{n_{\tau_{n}}}^{\tau_{n}})(A(a_{1}^{\tau_{1}}, a_{n}^{\tau_{n}}))=t\}$ ,

where $a_{1}^{\tau_{1}},$ $\cdots$ , $a_{n}^{\tau_{n}}$ are arbitrary distinct free variables which do not occur in
$\lambda x_{1}^{\tau_{1}}\cdots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}} , x_{n}^{\tau_{n}})$ .

3.4. LEMMA. Let $e(a_{1}, \cdots , a_{m})$ be an $expression^{4)}$ , let $e_{i}$($i=1,$ $\cdots$ , m) be an
expression with the same type as $a_{i}$ , let $\Phi$ be a correspondence and let

$\Psi=\Phi\left(\begin{array}{lll}\Phi(e_{1}), & \cdots & \Phi(e_{m})\\a & ’ & a\end{array}\right)\sim 1$

’

.

Then $\tilde{\Phi}(e(e_{1}, \cdots , e_{m}))=\tilde{\Psi}(e(a_{1}, \cdots , a_{m}))$ .
PROOF. It is clear that

$\tilde{\Phi}_{1}(e(e_{J}, \cdots , e_{m}))=\tilde{\Psi}_{1}(e(a_{1}, \cdots , a_{m}))$ .
We prove

$\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{m}))=\tilde{\Psi}_{2}(e(a_{1}, a_{m}))$ ,

by the induction on the number of stages to construct $e(a_{1}, \cdots , a_{m})$ .
Case 1 (i). $e(a_{1}, a_{m})$ is $a_{i}$ .
Then $e(e_{1}, \cdots , e_{m})$ is $e_{i}$ .
Hence $\tilde{\Phi}(e(e_{1}, \ldots , e_{m}))=\tilde{\Phi}(e_{i})=\Psi(a_{i})=\tilde{\Psi}(e(a_{1}, \cdots , a_{m}))$ .
Case 1 (ii). $e(a_{1}, \cdots , a_{m})$ is $b(b\neq a_{1}. \cdots , a_{m})$ .
Then $e(e_{1}, \cdots , e_{m})$ is $b$ .
Hence $\tilde{\Phi}(e(e_{1}, \cdots , e_{m}))=\Phi(b)=\Psi(b)=\tilde{\Psi}(e(a_{1}, \cdots , a_{m}))$ .
Case 2. $e(a_{1}$ , $\cdot$ .. , $a_{m})$ is of the form $\varphi(d_{1}$ , $\cdot$ .. , $d_{k})$ , where $\varphi$ is a function

constant.
In this case, both $e(a_{1}, \cdots , a_{m})$ and $e(e_{1}, \cdots , e_{m})$ are of type $0$ .
Hence $\Phi_{2}(e(e_{1}, e_{m}))=\tilde{\Psi}_{2}(e(a_{1}, \cdots , a_{m}))=0$ .
Case 3. $e(a_{1}, \cdots , a_{m})$ is of the form

$(d_{1}(a_{1}, \cdots , a_{m}), \cdots , d_{k}(a_{1}, \cdots , a_{m})\in d(a_{1}, \cdots , a_{m}))$ .
Then $e(e_{1}, \cdots , e_{m})$ is

$(d_{1}(e_{1}, \cdots , e_{m}), \cdots , d_{k}(e_{1}, \cdots , e_{m})\in d(e_{1}, \cdots , e_{m}))$ .
Suppose that $\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{m}))=t$ . Then by the definition,

$\langle\tilde{\Phi}(d_{1}(e_{1}, \cdots, e_{m})), \cdots \tilde{\Phi}(d_{k}(e_{1}, \cdots, e_{m}))\rangle\in\tilde{\Phi}_{2}(d(e_{1}, e_{m}))$ .
But $\tilde{\Phi}(d_{i}(e_{1}, \cdots , e_{m}))=\tilde{\Psi}(d_{i}(a_{1}, \cdots , a_{m}))$ , ($i=1,$ $\cdots$ , k) and $\tilde{\Phi}_{2}(d(e_{1}, \cdots , e_{\tau}.))$

$=\tilde{\Psi}_{2}(d(a_{1}, a_{m}))$ , by the induction hypothesis.

4) $e$ may contain free variables other than $a_{1},$ $\cdots$ , $a_{m}$ .
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Hence
$\langle\tilde{\Psi}(d_{1}(a_{1}, a_{m})), \cdots,\tilde{\Psi}(d_{k}(a_{1}, \cdots, a_{m}))\rangle\in\tilde{\Psi}_{2}(d(a_{1}, \cdots, a_{m}))$ .

Accordingly $\tilde{\Psi}_{2}(e(a_{1}, a_{m}))=t$ . Similarly if $\tilde{\Phi}_{2}(e(e_{1}, \cdots. e_{m}))=f$, then
$\tilde{\Psi}_{2}(e(a_{1}, \prime a_{m}))=f$.

Thus $\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{m}))=\tilde{\Psi}_{2}(e(a_{1}, \cdots , a_{m}))$ .
Case 4, 5. $e(a_{1}, \cdots , a_{m})$ is of the form $7A$ or $A\vee B$ .
The proposition is clear by the definition and the induction hypothesis.
Case 6. $e(a_{1}, \cdots , a_{m})$ is of the form $\exists x^{\tau}A(x^{\tau}, a_{1}, \cdots , a_{m})$ .
Then $e(e_{1}, \cdots , e_{m})$ is $\exists x^{\tau}A(x^{\tau}, e_{1}, \cdots , e_{m})$ . Let $a^{\tau}$ be a free variable of type

$\tau$ , which is different from $a_{1},$ $\cdots$ , $a_{m}$ and contained neither in $e(a_{1}, \cdots , a_{m})$ nor
in $e_{1},$ $\cdots$ , $e_{m}$ . Now suppose that $\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{m}))=t$ .

Then there exists a correspondence $\Phi^{\gamma}$ such that

$\Phi^{\prime}\sim_{\tau}\Phi a$ and $\tilde{\Phi}_{2}^{\prime}$

$(A (a^{\tau}, e_{1}, \cdots , e_{m}))=t^{5)}$ .
Since $e_{i}$ does not contain $a^{\tau},\tilde{\Phi}^{\prime}(e_{i})=\tilde{\Phi}(e_{i})$ by 3.2.

Let $\Psi^{\prime}$ be $\Psi(a\Phi_{\tau^{\prime}}(a^{\tau}))$ .
Then

$\Psi^{\prime}=\Phi(_{a}^{\tilde{\Phi_{1}}(e_{1})}’$ $a_{m},a\tilde{\Phi}(e_{m})_{\tau}$

,
$\tilde{\Phi}^{\prime}(a^{\tau}))$

$=\Phi^{\prime}\left(\begin{array}{lll}\Phi(e_{1}), & \cdots & \Phi(e_{m})\\a & ’ & a\end{array}\right)\sim 1$

’

$=\Phi^{\prime}(\tilde{\Phi}_{1^{\prime}}(e_{1}),$$.\cdot.\cdot.\cdot,\tilde{\Phi}_{m^{\prime}}(e_{m}))a,,a$

So by the induction hypothesis

$\tilde{\Psi}_{2}^{\prime}(A(a^{\tau}, a_{1}, \cdots, a_{m}))=t$ .
Since $\Psi^{\prime}\sim\Psi,\tilde{\Psi}_{2}(\exists x^{\tau}A(x^{\tau}, a_{1}, \cdots. a_{m}))=t^{6)}$ .

$a^{T}$

Conversely, if $\tilde{\Psi}_{2}(e(a_{1}, \cdots , a_{m}))=t$ , then
$\tilde{\Phi}_{2}(e(e_{1}, \cdots, e_{m}))=t$ .

Hence $\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{m})=\tilde{\Psi}_{2}(e(a_{1}, \cdots , a_{m}))$ .
Case 7. $e(a_{1}, \cdots , a_{m})$ is of the form

$\lambda x_{1}^{-\tau}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}, \cdots, x_{n}^{r_{n}}, a_{1}, \cdots a_{m})$ .
Let $b_{1}^{\tau_{1}},$ $\cdots$ , $b_{n^{\tau_{n}}}$ be new variables which are different from each other and

from $a_{1},$ $\cdots$ , $a_{m}$ and contained neither in $e(a_{1}, \cdots , a_{m})$ nor in $e_{i}(i=1, \cdot.. , m)$ .
Now suppose that $\langle C_{1}^{\tau_{1}}, \cdots , C_{n^{r}}^{n}\rangle\in\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{m}))$ .

5) Cf. 3.3.1.
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We set $\Phi^{\gamma}=\Phi\left(\begin{array}{llll}C_{1}^{\tau_{1}} & \cdots & C_{n} & r_{n}\\b_{1}^{r_{J}} & \cdots & b_{n^{\tau n}} & \end{array}\right)$ and $\Psi^{\prime}=\Psi(b_{1}^{\tau_{1^{1}}^{\tau}}C_{1}$ $C_{n_{\tau_{n}^{n}})}^{\tau}b_{n}$

Then
$\tilde{\Phi}_{2}^{\prime}(A(b_{1}^{\tau_{1}}, \cdots , b_{n^{\tau_{n}}}, e_{1}, \cdots , e_{m}))=t^{6)}$ .

And $\tilde{\Phi}^{\prime}(e_{i})=\tilde{\Phi}(e_{i})(i=1, \cdots , m)$ , since $e_{i}$ does not contain $b_{1},$ $\cdots$ , $b_{n}$.
Accordingly,

$\Psi^{r}=\Phi^{\prime}(\tilde{\Phi}(e_{1}),$ $\cdots,\tilde{\Phi}(e_{m}))$

$a_{1},$ $\cdots,$ $a_{m}$

$=\Phi^{\prime}()\tilde{\Phi}^{\prime}(e_{1}),$

$\cdots,\tilde{\Phi}^{\prime}(e_{m})$

.
$a_{1},$ $\cdots,$ $a_{m}$

Hence by the induction hypothesis

$\tilde{\Psi}_{2}^{\prime}(A(b_{1}^{\tau_{1}}, \cdots , b_{n}^{\tau_{n}}, a_{1}, \cdots , a_{m}))=t$ .
and hence

$\langle C_{1}^{\tau_{1}}, \cdots, C_{n}^{\tau_{n}}\rangle\in\tilde{\Psi}_{2}(\lambda x_{1}^{\tau_{1}}\ldots x_{n}^{\tau_{n}}A(x_{1}^{\tau_{1}}, x_{n}^{\tau_{n}}, a_{1}, a_{m}))$

$=\tilde{\Psi}_{2}(e(a_{1}, a_{m}))$ .

Conversely if $\langle C_{1}^{\tau_{1}}, \cdots, C_{n^{\tau_{n}}}\rangle\in\tilde{\Psi}_{2}(e(a_{1}, \cdots a_{m}))$ , then $\langle C_{1}^{\tau}, \cdots , C_{n^{\tau_{n}}}\rangle$

$\in\tilde{\Phi}_{2}(e(e_{1}, e_{m}))$ .
Thus $\tilde{\Phi}_{2}(e(e_{1}, \cdots , e_{rn}))=\tilde{\Psi}_{2}(e(a_{1}, a_{m}))$ .
The proof of 3.4 is now completed.
3.5. $CoROLLARY$ .
3.5.1. If $\tilde{\Phi}_{2}(A(e))=t$ , then $\Phi_{2}(\exists xA(x))=t$ .
3.5.2. $\tilde{\Phi}_{2}((e_{1}, \cdots e_{n}\in\lambda x_{1}\cdots x_{n}A(x, \cdots, x_{n})))=\Phi_{2}(A(e_{1}, \cdots, e_{n}))$ .
PROOF. Suppose that $\tilde{\Phi}_{2}(A(e))=t$ .
Let $\Psi$ be $\Phi(\tilde{\Phi}_{a}(e))$ , where $a$ is not contained in $\exists xA(x)$ . Then by the

lemma 3.4 $\tilde{\Psi}_{2}(A(a))=t$ . Since $\Psi\sim\Phi a\tilde{\Phi}_{f}(\exists xA(x))=t$ by the definition.

Next suppose that $\Phi_{2}((e_{1}, \cdot.. , e_{n}\in\lambda x_{1}\cdots x_{n}A(x_{1}, -- , x_{n})))=t$ . Let $p$ be

$\tilde{\Phi}_{2}(\lambda x_{1}\ldots x_{n}A(x_{1}, x_{n}))$

$=\{\langle C_{1}, C_{n}\rangle|\Phi\left(\begin{array}{lll}C_{1} & \cdots & C_{n}\\a & & a\end{array}\right)(A(a_{1}, \cdots. a_{n}))=t\}-1$

where $a_{1},$ $\cdots,$ $a_{n}$ are not contained in $\lambda x_{1}\cdots x_{n}A(x_{1}, \cdots , x_{n})$ . Then $\langle\tilde{\Phi}(e_{1}), \cdots , \tilde{\Phi}(e_{n})\rangle$

$\in p$. That is,

$\Phi()_{2}(A(a_{1}, \cdots, a_{n}))=t\tilde{\Phi}(e_{1}),$

$\cdot\cdot-\Phi(e_{n})$

.
$a_{1},$ $\cdots$ $a_{n}$

6) Cf. 3.3.2.
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Hence by the lemma 3.4, $\tilde{\Phi}_{2}(A(e_{1}, \cdots , e_{n}))=t$ .
Similarly if $\tilde{\Phi}_{2}((e_{1}, \cdots , e_{n}\in\lambda x_{1}\cdots x_{n}A(x_{1}, x_{n})))=f$, then $\Phi_{2}(A(e_{1}, \cdots , e_{n}))=f$.
3.6.1. Let $F$ be a wff. Positive parts $(p. p. s)$ and negative parts $(n. p. s)$

of $F$ are called explicit parts $(e. p. s)$ of $F$.
3.6.2. Let $F[A]$ be a wff with an $e$ . $p.$ $A$ in just one indicated place.

Moreover let $B$ be an e. p. of $F$. If $A$ is a subexpression of $B$ in $F$ (i.e. all
the symbols in $A$ are those of $B$), we say $B$ includes $A$ in $F$. If $A,$ $B$ have
no symbol in common in $F$, we say $A,$ $B$ are disjoint in $F$ .

3.7. LEMMA. Let $F$ be a wff. If $\tilde{\Phi}_{2}(F)=f$, then $\tilde{\Phi}_{2}(A)=f$ for all $p$. $p.A$
of $F$ and $\tilde{\Phi}_{2}(A)=t$ for all $n.p.$ $A$ of $F$.

PROOF. If $A$ is $F$ itself, the proposition is clear. If $7B$ is a $p$ . $p$ . of $F$

and $\tilde{\Phi}_{2}(7B)=f$, then $B$ is a $n$ . $p$ . of $F$ and $\tilde{\Phi}_{2}(B)=t$ . If $7B$ is a $n$ . $p$ . of $F$

and $\tilde{\Phi}_{2}(7B)=r$ , then $B$ is a $p$ . $p$ . of $F$ and $\tilde{\Phi}_{2}(B)=f$. If $B\vee C$ is a $p.p$ . of $F$

and $\tilde{\Phi}_{2}(B\vee C)=f$, then both $B$ and $C$ are $p$ . $p$ . $s$ of $F$ and $\tilde{\Phi}_{2}(B)=\tilde{\Phi}_{2}^{\prime}(C)=f$.
So by the definition of $p$ . $p$ . $s$ and $n$ . $p$ . $s$, the proof is complete.

3.8. LEMMA. Let $F[A]$ be a wff with an $e.p.$ $A$ in just one indicated place
and let $\tilde{\Phi}_{2}(F[A])=t$ , Moreover suppose that for each $e.p.B$ of $F[A]$ which is
disjoint with $A$ , the following conditions are satisfied.

3.8.1. If $B$ is a $p.p$. of $F[A]$ , then $\tilde{\Phi}_{2}(B)=f$, and
3.8.2. if $B$ is a $n.p$. of $F[A]$ , then $\tilde{\Phi}_{2}(B)=t$ .
Then for each $e.p$ . $C$ of $F[A]$ which includes $A$ , the following conditions

are satisfied.
3.8.3. If $C$ is a $p$ . $p$ . of $F[A]$ , then $\Phi_{2}(C)=t$ , and
3.8.4. if $C$ is a $n.p$ . of $F[A]$ , then $\tilde{\Phi}_{2}(C)=f$.
PROOF. If $C$ is $F[A]$ itself, the proposition is clear. If $7C$ is a $p$ . $p$ . of

$F[A]$ and $\tilde{\Phi}_{2}(7C)=t$ and $C$ includes $A$ , then $C$ is a $n$ . $p$ . and $\tilde{\Phi}_{2}(C)=f$ If
$7C$ is a $n$ . $p$ . of $F[A]$ and $\tilde{\Phi}_{2}(7C)=f$ and $C$ includes $A$ , then $C$ is a $p$ . $p$ . and
$\tilde{\Phi}_{2}(C)=t$ . Next suppose that $C\vee D$ is a p. p. of $F[A]$ and $\tilde{\Phi}_{2}(C\vee D)=t$ and
$C$ includes $A$ . Then $C,$ $D$ are $p$ . $p$ . $s$ of $F[A]$ and $D$ is disjoint with $A$ . Hence
by 3.8.1 $\tilde{\Phi}_{2}(D)=f$. Therefore $\tilde{\Phi}_{2}(C)$ must be $t$ since $\tilde{\Phi}_{2}(C\vee D)=t$ . Similarly
if $D\vee C$ is a $p$ . $p$ . of $F[A]$ and $\tilde{\Phi}_{2}(D\vee C)=t$ and $C$ includes $A$ , then $C$ is a
$p$ . $p$ . and $\tilde{\Phi}_{2}(C)=t$ . It completes the proof of 3.8.

\S 4. Cut-elimination theorem

4.1. LEMMA. If $F$ is derivable, then $\Phi_{2}(F)=t$ for any V-correspondence
$\Phi$ . (V is an arbitrary semi-valuation.)

PROOF. We shall prove this proposition by the induction of the deriva-
bility order of F. (See 4.1 in [2]).

Case 1. $F$ is an axiom, $i$ . $e$ . $F$ is $F[P_{+}, P_{-}]$ , where $P$ is a prime wff.
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Suppose that $\tilde{\Phi}_{2}(F)=f$. Then by the lemma 3.7, $\tilde{\Phi}_{2}(P_{+})=J$ and $\tilde{\Phi}_{2}(P_{-})=t$ .
This is a contradiction, since $P_{+}$ and $P_{-}$ are the same wff. $Henc\{\tilde{\Phi}_{2}(F[P_{+}, P_{-}])$

$=t$ .
Case 2. (S1.) $F[A_{-}],$ $F[B_{-}]\rightarrow F[A\vee B_{-}]$ . Suppose that $\tilde{\Phi}_{2}(F[A_{-}])=t$ ,

$\tilde{\Phi}_{2}(F[B_{-}])=t$ and $\tilde{\Phi}_{2}(F[A\vee B_{-}])=f$ and we shall lead a contradiction. From
$\Phi_{2}(F[A\vee B_{-}])=f$ we have $\tilde{\Phi}_{2}(A\vee B)=t$ by the lemma 3.7. Hence $\tilde{\Phi}_{2}(A)=t$

or $\tilde{\Phi}_{2}(B)=t$ .
Subcase (i). $\tilde{\Phi}_{2}(A)=t$ .
Consider any $e$ . $p$ . $C$ of $F[A_{-}]$ which is disjoint with $A$ . The $C$ in $F[A\vee B_{-}]$

which is in the corresponding place is an $e$ . $p$ . of $F[A\vee B_{-}]$ . Hence $\tilde{\Phi}_{2}(C)=f$

or $t$ according as $C$ is a $p$ . $p$ . or n. p. of $F[A\vee B_{-}]$ by the lemma 3.7. Accord-
ingly the conditions of the lemma 3.8 are fulfilled. Therefore $\tilde{\Phi}_{2}(A)=f$ since
$A$ is a $n$ . $p$ . of $F[A_{-}]$ and includes $A$ . This contradicts the hypothesis.

Subcase (ii). $\tilde{\Phi}_{2}(B)=t$ .
Similar to the subcase (i).
Case 3. (S2.) $F[A(a^{\tau})_{-}]\rightarrow F[\exists x^{\tau}A(x^{\tau})_{-}]$ , where $a^{\tau}$ does not occur in the

conclusion. $Suppos\circ$ that $\tilde{\Phi}_{2}(F[\exists x^{\tau}A(x^{\tau})_{-}])=f$. Then by the lemma 3.7
$\tilde{\Phi}_{2}(\exists x^{\tau}A(x^{\tau}))=t$ . Hence there exists a V-correspondence $\Psi$ such that $\Psi\sim\Phi$

$a^{\tau}$

and $\Psi(A(a^{\tau}))=t$ (cf. 3.3.1). But by the induction hypothesis $\Psi_{2}(F[A(a^{\tau})_{-}])=t$ .
Moreover if $C$ is an $e$ . $p$ . of $F[A(a^{\tau})_{-}]$ which is disjoint with $A(a^{\tau})_{-}$ , then by
the assumption and the lemma 3.7, $\tilde{\Psi}_{2}(C)=\tilde{\Phi}_{2}(C)=f$ or $t$ according as $C$ is a
$p$ . $p$ . or $n$ . $p.$ , for $C$ does not contain $a^{\tau}$ and $\Psi\sim_{\tau}\Phi a$ Therefore by the lemma

3.8, $\Psi(A(a^{\tau}))=f$. This is a contradiction. Accordingly $\tilde{\Phi}_{2}(F[\exists x^{\tau}A(x^{\tau})_{-}])=t$ .
Case 4. (S3.) $F[\exists x^{\tau}A(x^{\tau})_{+}]\vee A(e^{\tau})\rightarrow F[\exists x^{\tau}A(x^{\tau})_{+}]$ . Suppose that

$\tilde{\Phi}_{2}(F[\exists x^{\tau}A(x^{\tau})_{+}]\vee A(e^{r}))=t$ and $\tilde{\Phi}_{2}(F[\exists x^{\tau}A(x^{\tau})_{+}])=f$. Thei, $\tilde{\Phi}_{2}(A(e^{\tau}))$ must be
$t$ . Accordingly by 3.5.1 $\tilde{\Phi}_{2}(\exists x^{\tau}A(x^{\tau}))=t$ . But $\tilde{\Phi}_{2}(F[\exists x^{\tau}A(x^{\tau})_{+}])=f$. Therefore
$\tilde{\Phi}_{2}(\exists x^{\tau}A(x^{\tau}))=f$ by the lemma 3.7. This is a contradiction. Hence $\tilde{\Phi}_{2}(F[\exists x^{\tau}$

$A(x^{\tau})_{+}])=t$ .
Case 5. (S4 a $,$

$b.$) $F[A(e_{1}, \cdots , e_{n})_{\pm}]\rightarrow F[(e_{1}, \cdots , e_{n}\in\lambda x_{1}\cdots x_{n}A(x_{1}, \cdots , x_{n}))_{\pm}]$ .
Suppose that $\Phi_{2}(F[A(e_{1}, \cdots , e_{n})_{\pm}])=t$ . Then we have $\tilde{\Phi}_{2}(F[(e_{1},$ $\cdots$ , $e_{n}\in\lambda x_{1}\cdots x_{n}$

$A(x_{1}$ , $\cdot$ .. , $x_{n}))_{\pm}$ ]) by a similar argument as in Case 2, using 3.5.2, 3.7 and 3.8.
Case 6. (S5.) $F\vee\exists x^{1}7(x^{1}\vee 7x^{1})\rightarrow F$ . Suppose that $\tilde{\Phi}_{2}(F\vee\exists x^{1}7(x^{1}7x^{1}))$

$=t$ . Clearly $\tilde{\Phi}_{2}(\exists x^{1}7(x^{1}\vee 7x^{1}))=f$. Hence $\tilde{\Phi}_{2}(F)$ must be $t$ . This completes
the proof of 4.1.

4.2. THEOREM. If $F$ is derivable, then it is strictly derivable.
PROOF. If $F$ is not strictly derivable, by 6.7 in [2] there exists a semi-

valuation $V$ in which $F$ is $f$. Let $\Phi$ be a V-correspondence such that $\Phi(a)$ is
of the form $[a, p_{a}]$ for each free variable $a^{7)}$ . Then for every expression $e$ ,

7) Such a correspondence exists by 1.5.
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$\tilde{\Phi}^{\prime}(e)$ is of the form $[e, q_{e}]$ . In particular, $\tilde{\Phi}(F)$ is of the form $[F, q_{F}]$ . Since
$F$ is $f$ in $V,$ $q_{F}$ must be $f$. (c.f. 1.2.2.) That is, $\Phi_{2}(F)=f$. Therefore $F$ cannot
be derivable by the lemma 4.1. q.e. $d$ .

Appendix 1.

Our method can be directly applied to GLC or other modified systems of
simple type theory.

Appendix 2.

Every expressions, types, semi-valuations, V-complexes, the set of all the
Vcomplexes of type $\tau,$

$\backslash ^{\backslash tc}\cdot$ are regarded as sets in Zermelo’s set theory $Z$ by
a certain formalization, while a V-correspondence $\Phi$ cannot be regarded as a
set in $Z$. But for a given expression $e$ , the value $\Phi(e)$ depends on only a finite
number of the values of $\Phi$ by 3.2. So our proof goes also when definition of
V-correspondence is changed so that the domains of them are finite sets of
free variables. After this modification, a V-correspondence can be regarded
as a set in $Z$, and hence the formalization of our proof in $Z$ can be easily
established. I think that the fact is very important by the following reason.

We denote the axiom system of natural number theory with or without
the induction by $\tilde{\Gamma}_{a}$ or $\Gamma_{a}$ respectively. The proof of cut-elimination theorem
in GLC is not formalizable in the system $\tilde{\Gamma}_{a}$ in GLC. (It is known that this
system is weaker than $[Z]^{8)}$).

In fact, it is that the following sequents are provable in GLC;

$\tilde{\Gamma}_{a}\rightarrow Cons_{LK}(\Gamma_{a})$

$\overline{\Gamma}_{a}\rightarrow Cons_{LK}(\Gamma_{a})\wedge CE\supset Cons_{GLC}(\Gamma_{a})$

$\tilde{\Gamma}_{a}\rightarrow Cons_{GLC}(\Gamma_{a})\supset Cons_{GLC}(\tilde{\Gamma}_{a})^{9)}$ .
where $Cons_{LK}(\Gamma_{a})$ etc. denote the arithmetical statement which asserts that
$\Gamma_{a}$ is consistent in LK etc. and $CE$ denotes the statement which asserts the
cut-elimination theorem in GLC. Hence if

$\tilde{\Gamma}_{a}\rightarrow CE$

were provable in GLC, we would have
$\tilde{\Gamma}_{a}\rightarrow Cons_{GLC}(\tilde{\Gamma}_{\alpha})$

in GLC, which is impossible by G\"odel’s theorem. From this argument it seems

8) Cf. [7].
9) Cf. [4] 9.28.
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likely that the proof of cut-elimination theorem cannot be essentially reduced
to one which is based on a weaker standpoint (in particular, the finite stax d-
point) than $Z$.
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