
J. Math. Soc. Japan
Vol. 20, Nos. 1-2, 1968

On the Davenport-Hasse curves
Dedicated to Professor Iyanaga on his 60th birthday

By Toshihiko YAMADA

(Received July 31, 1967)

Let $p$ be any prime number, and consider the Davenport-Hasse curves $C_{a}$

defined by the equations

$y^{p}-y=x^{p^{a-1}}$ $(a=1,2,3, )$

over the prime field $GF(p)$ . If we denote by $\theta$ a primitive $(p^{a}-1)(p-1)$ -th
root of unity in the algebraic closure of $GF(p)$ , the map

(1) $\sigma;(x, y)\rightarrow(\theta x, \theta^{p^{a_{-1}}}y)$

defines an automorphism of $C_{a}$ , which generates a cyclic group $G$ of order
$(p^{a}-1)(p-1)$ . In this note we shall investigate the Davenport-Hasse curves,
on the basis of the automorphism groups $G$ .

In \S 1, we will determine the l-adic representation of $G$ (Theorem 1).

In \S 2, we shall investigate simple factors of the jacobian variety $J_{a}$ of $C_{a}$ .
Let $\chi$ be a character of order $p^{\alpha}-1$ of $GF(p^{a})^{*}$ . Then owing to Davenport-
Hasse [1], the characteristic roots of p’-th power endomorphism of $J_{a}$ are

(2) $\tau_{j}(\chi^{t})=-\sum_{u^{\leftarrow}GF(p^{a})^{*}}\chi^{t}(u)\exp[\frac{2\pi ij}{p}$ tr $(u)]$ $\left(\begin{array}{llll}t=1, & \cdots & \cdots & p^{a}-2\\j & =1, & ’ & p-l\end{array}\right)$ .
Let $J_{a}$ be isogenous to a product:

(3) $J_{a}\sim A_{1}\times A_{2}\times\cdots\times A_{h},$ $A_{i}=B_{i}\times\cdots\times B_{i}$ $(i=1, \cdots , h)$ ,

where the $B_{i}$ are simple abelian varieties not isogenous to each other. Then
the $A_{i}$ are in one-to-one correspondence to the conjugate classes of the $\tau_{j}(\chi^{t})$

as algebraic numbers (Tate [2]). Let $A=A_{1}$ correspond to the conjugate class
of $\tau(\chi)=\tau_{1}(\chi)$ , and call it the main component of $J_{a}$ . Then we see that $A$ is
a simple abelian variety (Theorem 2). For $a=1$ , we describe completely the
decomposition of the jacobian variety into simple factors (Theorem 3). The
results are obtained from the prime ideal decomposition of the $\tau_{j}(\chi^{t})$ and from
determining the fields which are generated by the $\tau_{j}(\chi^{t})$ over $Q$, combined
with the recent work of Tate [2].

In \S 3, using results of \S 1, the l-adic representation of the automorphism
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group $G$ on the main component $A$ is determined: the ‘ main ’ representatiom
of $G$ is realized on the main component $A$ $ofJ_{a}$ (Theorem 4). From this fact.
we see that the endomorphism algebra $d_{0}(A)$ of $A$ is generated by the p-th
power endomorphism and the endomorphism $\xi_{\sigma}$ , which is induced by the auto-
morphism $\sigma$ defined by (1) (Theorem 5).

The author thanks to Professor H. Morikawa for his kind encouragement.
A short summary of this paper has been announced in [4].

\S 1. If we put $z=y^{p-1}$ , the curve $C_{a}$ is birationally equivalent to the
curve defined by the equation

(4) $x^{(p^{a}-1)(p-1)}=z(z-1)^{p-1}$ .
The previous automorphism $\sigma$ is given in this case by

(1) $\sigma:(z, x)\rightarrow(z, \theta x)$ .

LEMMA 1. The smallest natural number $f$ such that $p^{f}\equiv 1mod$ . $(p^{a}-1)$

$(p-1)$ is equal to $a(p-1)$ .
PROOF. For any non-negative integers $\nu,$ $\mu$ , we have

$ p^{a\nu+\mu}\equiv\nu p^{\alpha}+p^{\prime J}-\nu$ $mod$ . $(p^{\alpha}-1)(p-1)$ .
Therefore, $p^{a\nu+u}\equiv 1mod$ . $(p^{\alpha}-1)(p-1)(0\leqq\mu<a)$ , if and only if $1$) $\equiv 0mod.p-L$

and $\mu=0$ . $q$ . $e$ . $d$ .
By this lemma, $\theta$ is in the field $k=GF(p^{a(p-1)})$ . So the algebraic function

field $k(z, x)$ defined by the equation (4) is a Kummer extension over $k(z)$ of
degree $(p^{a}-1)(p-1)$ , whose Galois group $G$ is generated by $\sigma$ . We denote by
$\mathfrak{p}_{0},$ $\mathfrak{p}_{1}$ , the prime divisors of $k(z)$ which are the numerators of principal divisors
$(z),$ $(z-1)$ respectively, and by $\mathfrak{p}_{\infty}$ the denominator of $(z)$ . It is easy to see
that $\mathfrak{p}_{0}$ and $\mathfrak{p}_{\infty}$ are totally ramified, and $\mathfrak{p}_{1}$ is ramified by exponent $p^{a}-1$ , in
$k(z, x)$ . If we put $x^{p^{a_{-1}}}(z-1)^{-1}=w$ , the inertia field of $\mathfrak{p}_{1}$ in $k(z, x)$ is $k(z, w)$ ,

of defining equation $w^{p- 1}=z$ . So $\mathfrak{p}_{1}$ decomposes in $k(z, w)$ into $p-1$ prime
divisors. Summarizing, we have

(5) $\mathfrak{p}_{0}=\mathfrak{P}_{0^{(p^{\alpha}-1)(p-1)}}$ , $\mathfrak{p}_{1}=(\mathfrak{P}_{1,1}\ldots \mathfrak{P}_{1,p-1})^{p^{a-1}}$ , $\mathfrak{p}_{\infty}=\mathfrak{P}_{\infty}^{(p^{\alpha}-1)(p-1)}$

in $k(z, x)$ . Since the prime divisors $\mathfrak{P}_{0}\mathfrak{P}_{1,i}(1\leqq i\leqq p-1),$ $\mathfrak{P}\infty$ are of degree
one, they correspond respectively to the points $P_{0},$ $P_{1,i}(1\leqq i\leqq p-1),$ $P_{\infty}$ of the
complete non-singular model $C_{a}$ of the function field $k(z, x)$ .

We denote by $\xi_{\alpha}$ , the correspondence of the curve $C_{a}$ defined by an ele-
ment $\alpha$ of the Galois group $G$ . Let $P$ be a point of $C_{a}$ , and $n$ a positive
integer, and $\Delta$ the diagonal of $C_{a}\times C_{a}$ . We denote by $V.(P)$ the subgroup of
$G$ composed of the identity element $\epsilon$ of $G$ and of all the elements $\alpha$ of $G$ ,

other than $\epsilon$ , such that $P\times P$ has in the intersection $\xi_{\alpha}\cdot\Delta$ a coefficient which
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is at least equal to $n$ . Then on account of (5), we have

$V_{1}(P_{0})=V_{1}(P_{\infty})=G$ ,
(6)

$V_{1}(P_{1,i})=\{\sigma^{\mu} ; \nu\equiv 0mod.p-1\}$ $(1 \leqq i\leqq p-1)$ .
Since the ramification exponents are all prime to $p$ , we have

(7) $V_{2}(P_{0})=V_{2}(P_{\infty})=V_{2}(P_{1,i})=\{\epsilon\}$ .
We denote by $M_{\iota}(\xi_{\alpha})$ (a $\in G$) the representation of $G$ on the Tate group $ T_{\iota}(J_{a}\rangle$

of the jacobian variety $J_{a}$ of $C_{a}$ , where 1 is a prime number different from
characteristic $p$ , and denote by $a_{P}(\alpha)$ for $\alpha\neq\epsilon$ , the multiplicity of $P\times P$ in
the intersection $\Delta\cdot\xi_{\alpha}$ . We shall quote the result of Weil [3].

LEMMA 2. The trace of the representation $M_{t}(\xi_{a})$ is given by the formula:
tr $M_{\iota}(\xi_{\alpha})=2-\sum_{P}a_{P}(\alpha)$

$(\alpha\neq\epsilon)$

(8)
tr $M_{\iota}(\xi_{e})=2g$

where $g$ is the genus of $C_{a}$ and is equal to $(p^{a}-2)(p-1)/2$ .
From this lemma combined with (6) and (7), we calculate readily:

(9) tr $M_{\iota}(\xi_{\sigma^{\nu}})=\left\{\begin{array}{l}-(p-1) \nu\equiv 0mod.p-1\\0 \nu\not\equiv 0mod.p-1.\end{array}\right.$

$(\sigma^{\nu}\neq\epsilon)$

As $G$ is a cyclic group of order $(p^{a}-1)(p-1)$ , its character group $G^{*}$ is gen-
erated by $\psi$ such that

(10) $\psi(\sigma^{\nu})=\exp\frac{2\pi i\nu}{(p^{a}-1)(p-1)}$ .
Then we have

tr $M_{\iota}(\xi_{\alpha})=\sum_{\mu=1}^{(p^{a}-1)(p-1)}c_{\mu}\psi^{\prime 1}(\alpha)$ ,

where the coefficients $c_{t}$ are calculated by the relations of orthogonality of
characters:

$C_{J}=\frac{1}{(p^{a}-1)(p-1)}\sum_{\alpha\in G}\psi^{\prime 1}(\alpha^{-1})trM_{\iota}(\xi_{\alpha})$ .
If we substitute the terms in the summation by (8), (9) and (10), we get

$c_{1}=\frac{1}{(p^{\alpha}-1)(p-1)}[2g-\sum_{\nu=1}^{p^{a-2}}\psi^{\prime 1}(\sigma^{-(p-1)\nu})\cdot(p-1)]$

$=\frac{1}{p^{a}-1}[(p^{\alpha}-2)-\sum_{\nu=1}^{p^{a}-2}\exp\frac{-2\pi i}{p^{a}-1}\mu\nu]$

$=\left\{\begin{array}{l}l \mu\not\equiv 0\\0 \mu\equiv 0\end{array}\right.$ $mod.p-1mod.p_{a}^{a}-1$

.



406 $\Gamma l’$ . YAMADA

Thus we have proved

tr $M_{\iota}(\xi_{\alpha})=_{\nu\not\equiv 0}\sum_{mod p^{a}-1}.\psi^{\nu}(\alpha)$ .

THEOREM 1. The l-adic representation $M_{\iota}(\xi_{\alpha})$ of the automorphism group
$G$ is the direct sum of the irreducible representations $\psi^{\nu}$ of multiplicity one,
where $\nu$ runs from 1 to $(p^{a}-1)(p-1)$ except $\nu\equiv 0mod.p^{a}-1$ .

\S 2. In the first place we shall summarize the facts about the prime ideal
decomposition of the characteristic roots $\tau_{j}(\chi^{t})$ of p’-th power endomorphism
(Davenport-Hasse [1]). After this we put $p^{a}=q$ , and denote by $K_{n}$ the field
of the n-th roots of unity over the field $Q$ of rational numbers. Then the
$\tau_{j}(\chi^{\iota})$ are in $K_{p^{(q-1)}}$ . We write simply $\tau(\chi^{t})$ in place of $\tau_{1}(\chi^{t})$ . From the expres-
sion (2) of $\tau_{j}(\chi^{t})$ it follows that

(11) $\tau(\chi^{t})\rightarrow\chi^{-t}(j)\tau(\chi^{t})=\tau_{j}(\chi^{t})$ $(1\leqq j\leqq p-1)$

by the automorphisms $\exp\frac{2\pi i}{p}\rightarrow\exp\frac{2\pi i}{p}$] of $K_{p^{(q-1)}}$ over $K_{q-1}$ , and

(12) $\tau(\chi^{t})\rightarrow\tau(\chi^{t\gamma})$ $((\gamma, q-1)=1)$

by the automorphisms $\exp\frac{2\pi i}{q-1}\rightarrow\exp\frac{2\pi i}{q-\perp}\gamma$ of $K_{p^{(q-1)}}$ over $K_{p}$ . The Galois

group of $K_{q-1}$ over $Q$ is isomorphic to the group $R$ of prime residue-classes
$mod$ . $q-1$ . Denote by $P$ the subgroup of $R$ which is generated by $pmod$ . $q-1$ ,
and let $\rho$ run through representatives of the factor group $R/P:R=\sum_{\rho}\rho P$.
Then the prime ideal decomposition of $p$ is as follows:

$(p)=\prod_{\rho}\mathfrak{p}_{p}$
in $K_{q- 1},$ $\mathfrak{p}_{\rho}=\mathfrak{P}_{\beta}^{p-1}(e^{\frac{2\pi t}{p}}-1)=-\prod_{\rho}\mathfrak{P}_{\beta}$

$(p)=\prod_{\rho}\mathfrak{P}^{p-1}\rho$ in $K_{p(q-1)}$ .

For a rational integer $\alpha$ , we denote by $\lambda(\alpha)=\alpha_{0}+\alpha_{1}p+\cdots+\alpha_{a-1}p^{a-1}(0\leqq\alpha_{i}$

$\leqq p-1$ , not all $\alpha_{i}=p-1$) the smallest non-negative residue of $\alpha mod$ . $q-1$ ,
and put $\sigma(\alpha)=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{a-1}$ . The prime ideal decomposition of $\tau(\chi^{t})$ in
$K_{p^{(q-1)}}$ is

(13) $(\tau(\chi^{t}))=\prod_{\rho}\mathfrak{P}^{\sigma(t\rho)}\rho$

For the $(p-1)$ -th power of $\tau(\chi^{t})$ which belongs to $K_{q-1}$ by (11), the prime ideal
decomposition in $K_{q-1}$ is

(14)
$(\tau(\chi^{t})^{p-1})=\prod_{\rho}\mathfrak{p}_{\rho}^{\sigma(t\rho)}$

It is said that $\tau_{j}(\chi^{t})$ and $\tau_{i}(\chi^{s})$ are equivalent when there exist natural
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numbers $n,$ $m$ such that $\tau_{j}(\chi^{t})^{n}$ and $\tau_{i}(\chi^{s})^{m}$ are conjugate algebraic numbers.
Clearly this is an equivalence relation. If the jacobian variety $J_{a}$ is isogenous
over the algebraic closure of $GF(p)$ to a product in the same notation as (3):

(3) $J_{a}\sim A_{1}\times A_{2}\times\cdots\times A_{h},$ $A_{i}=B_{i}\times\cdots\times B_{i}$ ,

then the $A$
, are in one-to-one correspondence to the equivalence classes of the

$\tau_{j}(\chi^{t})$ (Tate [2]).
The following lemma is easily proved.
LEMMA 3. For $0<\alpha<p^{a}-1$ we have
i) $1\leqq\sigma(\alpha)\leqq a(p-1)-1_{f}$

ii) $\sigma(\alpha)=1$ if and only if $\alpha=p^{i}(0\leqq i\leqq a-1)$ ,
iii) $\sigma(\alpha)=a(p-1)-1$ if and only if $\alpha=p^{a}-1-p^{i}(0\leqq i\leqq a-1)$ .
PROPOSITION 1. If $t$ satisfies $(t, p^{a}-1)>1$ , then $\tau(\chi)$ and $\tau(\chi^{t})$ are not

equivalent.
PROOF. Suppose that $t$ satisfies $(t, p^{\alpha}-1)=d>1$ , then $(\lambda(\rho t), p^{\alpha}-1)=d$ ,

and by Lemma 3, $\sigma(\rho t)$ cannot take the value 1 nor the value $a(p-1)-1$ for
any $\rho$ . If we assume that there exist natural numbers $n$ and $m$ such that
$\tau(\chi)^{n}$ and $\tau(\chi^{t})^{m}$ are conjugate algebraic numbers, the prime ideal decomposi-
tion (13) shows that the sets $\{n\cdot\sigma(\rho);\rho\}$ and $\{m\cdot\sigma(t\rho);\rho\}$ are the same. But
this contradicts the above mentioned fact.

$CoROLLARY$ . The set $\{\tau_{j}(\chi^{\mu});(\mu, p^{a}-1)=1,1\leqq\mu<p^{\alpha}-1,1\leqq j\leqq p-1\}$ fills
up just an equivalence class of the $\tau_{j}(\chi^{t})$ .

The decomposition fields of $p$ in $K_{q-1}$ and in $K_{p^{(}q-1)}$ are the same, which
we denote by $K$. For any natural number $\mu$ the prime ideal decomposition of
$\tau(\chi)^{!}$

’ in $K_{p^{(q-1)}}$ is $(\tau(\chi)^{\prime J})=\prod_{\rho}\mathfrak{P}^{\sigma(p)}\rho u$ Among the numbers $\sigma(\rho)\mu$ , the number $\mu$

appears only once because of Lemma 3. Therefore $Q(\tau(\chi)^{\mu})$ contains $K$.
LEMMA 4. $\tau(\chi)$ is invariant under the automorphisms $\exp\frac{2\pi i}{q-1}\rightarrow\exp\frac{2\pi i}{q-1}p^{j}$

($j=1,2,$ $\cdots$ , a) of $K_{p(q-1)}$ over $K_{p}$ , $i$ . $e.,$ $\tau(\chi)=\tau(\chi^{p})=\ldots=\tau(\chi^{p^{a- 1}})$ .
PROOF. From the expression of $\tau(\chi)$ as a generalized Gaussian sum, it

follows that

$\tau(\chi^{p^{f}})=-\sum_{u\neq 0}\chi^{p^{j}}(u)\exp[\frac{2\pi i}{p}tr(u)]$

$=-\sum_{u\neq 0}\chi(u^{p^{j}})\exp[\frac{2\pi i}{p}tr(u^{pj})]$

$=\tau(\chi)$ ,

which proves the assertion.
As $\tau(\chi)\rightarrow\chi^{-1}(j)\tau(\chi)(1\leqq j\leqq p-1)$ by the automorphisms $\exp\frac{2\pi i}{p}\rightarrow\exp(\frac{2\pi i}{p}j)$

of $K_{p^{(q- 1)}}$ over $K_{q- 1},$ $Q(\tau(\chi)^{p- 1})$ is contained in $K_{q- 1}$ . Further, by Lemma 4,
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$\tau(\chi)^{p- 1}$ is invariant under the automorphisms of the decomposition group of $p$

in $K_{q-1}$ . Hence $Q(\tau(\chi)^{p- 1})$ is contained in $K$. When we put $Q_{r(\chi)}=\bigcap_{\mu=1}^{\infty}Q(\tau(\chi)^{\beta})$ ,

from what has been stated, we get

$Q_{r(\chi)}=Q(\tau(\chi)^{p-1})=K$ .
Now for any $\rho$ , prime ideal $\mathfrak{p}_{\rho}$ of $K_{q-1}$ is regarded as prime ideal of $K$,

which is also denoted by $\mathfrak{p}_{\rho}$ . Let 1 $\tau(\chi)^{p-1}\Vert_{\mathfrak{p}_{\rho}}$ denote the normal absolute value
of $\tau(\chi)^{p- 1}$ at the prime $\mathfrak{p}_{p}$ of $K$. From (14) we have $\Vert\tau(\chi)^{p- 1}\Vert_{\mathfrak{p}_{\rho}}=p^{-\sigma_{(p)}}$ . Recall
that $\tau(\chi)^{p-1}$ is a characteristic root of $p^{a(p-1)}$-th power endomorphism. Putting
$p^{a(p- 1)}=q_{0}$ , we have

$\Vert\tau(\chi)^{p- 1}\Vert_{\mathfrak{p}_{\rho}}=q_{0^{-\sigma(\underline{p}_{\frac{)}{1)}}}}^{\overline{a}(p-}$

In the expression (3) of $J_{a}$ , let $A_{1}$ correspond to the equivalence class, to which
$\tau(\chi)$ belongs (Prop. 1, Coroll.). Hereafter we put $A_{1}=A$ . Let $A(A)$ denote
the endomorphism ring of the abelian variety $A$ , and put $d_{0}(A)=d(A)\otimes Q$ .
We have prepared all things to apply Tate’s results [2] to our case.

PROPOSITION 2. i) $\mathcal{A}_{0}(A)$ is a central simple algebra over $K$, which splits
at all finite primes $\mathfrak{p}$ of $K$ not dividing $p$ .

ii) The local invariants of the algebra $\sim A_{0}(A)$ at the primes $\mathfrak{p}_{\rho}$ are given by

inv $\mathfrak{p}_{\rho}[d_{0}(A)]\equiv\frac{\sigma(\rho)}{a(p-1)}mod.Z$ .

iii) The dimension of the simple constituent $B_{1}$ of $A$ is

$\dim B_{1}=\frac{1}{2}a(p-1)\cdot\deg\tau(\chi)^{p- 1}=\frac{1}{2}(p-1)\cdot\varphi(p^{a}-1)$ ,

where $\varphi$ is as usual the Euler’s function.
Since by Prop. 1, Coroll., $\dim$ $A$ is equal to $\frac{1}{2}(p-1)\cdot\varphi(p^{a}-1)$ , Prop. 2, iii)

shows that $A$ is a simple abelian variety. Hence we have
THEOREM 2. The jacobian variety $J_{a}$ of the curve $C_{a}$ contains as simple

component the simple abelian variety $A$ with multiplicity one, which has $\tau(\chi)^{p-1}$

as a characteristic root of the $p^{a(p-1)}$-th power endomorphism. (We call A the
main component of $J_{a}.$)

In the case of $a=1$ , the situation is very simplified.
THEOREM 3. For $a=1$ , we have

$J_{1}\sim\prod_{m}(B_{m}\times\cdots\times B_{m})$ (each $B_{m}$ appears $m$ times)

where the index $m$ runs over all divisors of $p-1$ except $m=p-1$ , and each $B_{m}$

is a simple abelian variety of dimension $\frac{1}{2}$ . $\frac{p-1}{m}\varphi(\frac{p-1}{m})$ , which has $\tau(\chi^{m})$

as a characteristic root, and $B_{m}$ is not isogenous to $B_{m}$ , for $m\neq m^{\prime}$ .
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PROOF. We exclude the case characteristic $p=2$ , because in that case, the
curve $C_{1}$ is of genus $0$ . As $a=1$ , we have

(2) $\tau_{j}(\chi^{t})=-\sum_{u\in GF(p)^{*}}\chi^{t}(u)\exp(\frac{2\pi ij}{p}u)$ ,

and

$\langle 13)^{\prime}$

$\tau(\chi^{t})=\prod_{\rho}\mathfrak{P}_{\rho^{(t\beta)}}^{\lambda}$

where $\rho$ ranges over representatives of prime residue-classes $mod$ . $p-1$ . Let
$m$ and $n$ be any divisors of $p-1$ except $m$ or $n=p-1$ . Assume that $\tau(\chi^{m})^{ft}$

and $\tau(\chi^{n})^{\nu}$ are conjugate algebraic numbers, for some positive integers $\mu$ and $\nu$ .
Then by (13), the set $\{\mu\cdot\lambda(m\rho);\rho\}$ and the set $\{\nu\cdot\lambda(n\rho);\rho\}$ are the same.
Since $g$ . $c$ . $m$ . of the sets are $\mu m$ and $vn$ , respectively, we have $\mu m=\nu n$ . Hence

$\frac{1}{m}\sum_{\rho}\lambda(m\rho)=\frac{1}{n}\sum_{\rho}\lambda(n\rho)$ . On the other hand we can elementarily prove that

$\sum_{\rho}\lambda(s\rho)=(p-1)\varphi(p-1)/2$ for $s\not\equiv Omod.p-1$ . So we get $m=n$ . From this

fact, combined with (11) and (12), the equivalence classes of the $\tau_{j}(\chi^{t})$ are
represented by $\tau(\chi^{m})$ , where $m$ runs over all divisors of $p-1$ except $m=p-1$ .
Now because of the expression (2), we easily see that $\tau_{j}(\chi^{t})=\tau_{i}(\chi^{s})$ , if and

only if $t=s$ and $Indj\equiv Indimod$ . $\frac{p-1}{(t,p-1)}$ , where we put $Indj=v$ , if $j\equiv\omega^{\nu}$

$mod.p,$ $\omega$ being a generator of the group of prime residue classes $mod$ . $p$ .
From this and (13), we conclude that $Q_{r(\chi t)}=K_{p- 1}\cap Q(\tau(\chi^{t}))$ , and we can deter-
mine the prime ideal decomposition of $\tau(\chi^{t})^{p-1}$ in $Q_{r(\chi t)}$ . On account of what
has been outlined, Theorem 3 will be obtained.

\S 3. According to the notation of (3), the Tate group $T_{\iota}(J_{a})$ is the direct
sum of the Tate groups $T_{\iota}(A_{i})$ . The elements $\alpha$ of the automorphism group
$G$ induce the endomorphisms $\xi_{\alpha}^{(i)}$ on each $A_{i}$ , so that we obtain representations
$M_{\iota}(\xi_{\alpha}^{(i)})$ of $G(i=1, \cdot.. , h)$ . The l-adic representation $M_{\iota}(\xi_{\alpha})$ of $G$ on $T_{\iota}(J_{a})$ is
the direct sum of the $M_{l}(\xi_{a}^{(i)})$ . We shall determine the representation $M_{l}(\xi_{\ell t}^{(1)})$

on the main component $A=A_{1}$ .
THEOREM 4. The representation $M_{\iota}(\xi_{\alpha}^{(1)})$ of $G$ on $T_{\iota}(A)$ is the direct sum of

the irreducible representations $\psi^{\nu}$ of multiplicity one, where $v$ runs through the
numbers such that $1\leqq\nu\leqq(p^{a}-1)(p-1)$ and $(\nu, (p^{a}-1)(p-1))=1$ .

PROOF. As $A$ is a simple abelian variety, $A_{0}(A)$ is a division algebra.
Hence the characteristic roots of $M_{\iota}(\xi_{\sigma}^{(1)})$ are conjugate to each other, where $\sigma$

is defined by (1). Now the characteristic roots of $M_{\iota}(\xi_{\sigma})$ are, by Theorem
1, { $\psi^{\nu}(\sigma);1\leqq v\leqq(p^{\alpha}-1)(p-1)$ , v-i $0mod.p^{a}-1$ }. So the number of such

characteristic roots that are conjugate to $\psi^{\prime/}(\sigma)$ is equal to $\varphi(\frac{(p^{a}-1)(p-1)}{d})$ ,

$d=(\mu, (p^{a}-1)(p-1))$ . If we assume $d>1$ , then we have
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$\varphi(\frac{(p^{a}-1)(p-1)}{d})<\varphi((p^{a}-1)(p-1))$ .

But the right side is just equal to 2 $\dim A=(p-1)\varphi(p^{a}-1)$ . Therefore the
characteristic roots of $M_{l}(\xi_{\sigma}^{(1)})$ must be $\{\psi^{l^{l}}(\sigma);1\leqq\mu\leqq(p^{a}-1)(p-1),$ $(\mu, (p^{a}-1)$

$(p-1))=1\}$ , that proves the theorem.
COROLLARY. $Q(\xi_{\sigma}^{(1)})$ is the field $K_{(p^{a}- 1)(p-1)}$ of $(p^{a}-1)(p-1)$ -th roots of unity.
Hereafter we write simply $\xi_{\sigma}^{(1)}=\xi_{0}.$ . The endomorphism algebra $\sim i_{0}(A)$ of

$A$ contains the field $Q(\xi_{\sigma})$ of degree 2 $\dim A=(p-1)\varphi(p^{a}-1)$ over $Q$ . The p-th
power endomorphism of $J_{a}$ induce an endomorphism of $A$ , which is denoted
by $\Pi$ . Since $\Pi\xi_{\sigma}=\xi_{\sigma}^{p}\Pi$ , we get $\Pi^{a(p- 1)}\xi_{\sigma}=\xi_{\sigma}\Pi^{a(p- 1)}$ because of Lemma 1.
Consequently $\Pi^{a(p- 1)}$ is in $Q(\xi_{\sigma})$ . Let $K$ denote the decomposition field of $p$ in
$Q(\xi_{\sigma})$ . Then, by Lemma 1, $K$ is also the decomposition field of $p$ in $K_{p^{a_{-1}}}$ .
On account of $\Pi\xi_{\sigma}\Pi- 1=\xi_{\sigma}^{p}$ , the mapping $\eta$ : $\gamma\rightarrow\Pi\gamma\Pi- 1(\gamma\in Q(\xi_{\sigma}))$ is a generator
of the Galois group of $Q(\xi_{\sigma})$ over $K$. Since $\Pi a(p- 1)$ is fixed by $\eta,$

$\Pi a(p- 1)$ is in
$K$. Thus we conclude that the algebra $Q(\Pi, \xi_{\sigma})$ which is generated by $\Pi and^{1}$

$\xi_{\sigma}$ , is a cyclic algebra over $K:(\Pi^{a(p- 1)}, Q(\xi_{\sigma}),$
$\eta$ ). The rank of this algebra

over $K$ is equal to $[Q(\xi_{\sigma}):K]^{2}=a^{2}(p-1)^{2}$ . By the way, Proposition 2 shows
that the field $K$ is the center of $\leftrightarrow q_{0}(A)$ . Since $d_{0}(A)$ contains the field $ Q(\xi_{\sigma}\rangle$

of $d_{\vee}^{\circ}gree2\dim A$ , its rank over the center $K$ must be $[Q(\xi_{\sigma}) : K]^{2}$ . Thus we
have proved the following

THEOREM 5. The endomorphism algebra $\epsilon A_{0}(A)$ of the main component $A$

of $J_{a}$ is the cyclic algebra over $K$ :
$(\Pi^{a(p- 1)}, Q(\xi_{\sigma}),$

$\eta$)

where $\sigma$ is the automorphism of the curve $C_{a}$ defined by (1), and $\eta$ is a gen-
erating automorphism of $Q(\xi_{\sigma})$ over $K$.

Tokyo Metropolitan University
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