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Let p be any prime number, and consider the Davenport-Hasse curves C,
defined by the equations

Y—y=x?""1  (@=12,3, )

over the prime field GF(p). If we denote by # a primitive (p*—1)(p—1)-th
root of unity in the algebraic closure of GF(p), the map

(1) g (X, y) — (0.7(, 0pa_1y)

defines an automorphism of C,, which generates a cyclic group G of order
(pe—1)(p—1). In this note we shall investigate the Davenport-Hasse curves,
on the basis of the automorphism groups G.

In §1, we will determine the [-adic representation of G (Theorem 1)).

In §2, we shall investigate simple factors of the jacobian variety J, of C,.
Let y be a character of order p*—1 of GF(p®*. Then owing to Davenport-
Hasse [17], the characteristic roots of p%th power endomorphism of J, are

2mij t=1, ., p*—2
) — t kil ’
@ === yweo[ Hlew] (2770,
Let J, be isogenous to a product:
©) Ja~ Ay X Ay X oo XAy, Ay= By X - X By (=1, h,

where the B; are simple abelian varieties not isogenous to each other. Then
the A, are in one-to-one correspondence to the conjugate classes of the z,(¥%
as algebraic numbers (Tate [2]). Let A= A, correspond to the conjugate class
of z(y) =17,(y), and call it the main component of J,. Then we see that A is
a simple abelian variety (Theorem 7). For ¢ =1, we describe completely the
decomposition of the jacobian variety into simple factors (Theorem 3). The
results are obtained from the prime ideal decomposition of the z;(x") and from
determining the fields which are generated by the z;(3*) over @, combined
with the recent work of Tate [2].

In § 3, using results of §1, the [-adic representation of the automorphism
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group G on the main component A is determined: the ‘ main’ representation
of G is realized on the main component A of J, (Theorem 4). From this fact,
we see that the endomorphism algebra 1,(A) of A is generated by the p-th
power endomorphism and the endomorphism &,, which is induced by the auto-
morphism ¢ defined by (1) (Theorem 5).
The author thanks to Professor H. Morikawa for his kind encouragement..
A short summary of this paper has been announced in [4].

§1. If we put z=1?"1, the curve C, is birationally equivalent to the
curve defined by the equation

(4) x @E-Dp-1 — Z(Z_«l)p~1 i
The previous automorphism ¢ is given in this case by
vy 0: (z,x) —(z,0x).

LEMMA 1. The smallest natural number f such that p7 =1 mod. (p%—1)
(»—01) is equal to a(p—1).
Proor. For any non-negative integers v, p, we have

p“’”’”EDPa"i‘pﬂ_u mod. (]I)‘L"—l)(,b‘"l)

Therefore, p*»*#=1 mod. (p*—1)(p—1) (0= p < a), if and only if y=0 mod. p—1.
and p=0. g.e.d.

By this lemma, # is in the field 2= GF(p*®-D). So the algebraic function
field k(z, x) defined by the equation (4) is a Kummer extension over £k(z) of
degree (p®—1)(p—1), whose Galois group G is generated by ¢. We denote by
Py, p;, the prime divisors of %(z) which are the numerators of principal divisors
(2), (z—1) respectively, and by p. the denominator of (z). It is easy to see
that p, and p. are totally ramified, and p, is ramified by exponent p®—1, in
k(z, x). 1f we put x?""(z—1)"'=uw, the inertia field of p, in k(z, x) is k(z, w),
of defining equation w?-'=z. So p, decomposes in k(z, w) into p—1 prime
divisors. Summarizing, we have

(5) po - iﬁépa_l) (p—l)’ bl = @31,1 te S"131,10—1)1)(}_1’ Doo - sﬁgga—l) D

in k(z, x). Since the prime divisors P, P, 1 =1 < p—1), Poo are of degree
one, they correspond respectively to the points P, P, , 1 =i¢<p—1), P of the
complete non-singular model C, of the function field k(z, x).

We denote by &,, the correspondence of the curve C, defined by an ele-
ment « of the Galois group G. Let P be a point of C,, and n a positive
integer, and 4 the diagonal of C, X C,. We denote by V,.(P) the subgroup of
G composed of the identity element ¢ of G and of all the elements « of G,
other than e, such that P X P has in the intersection &,- 4 a coefficient which
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is at least equal to n. Then on account of (5), we have
VI(PO =V(Po)=0G,

6
© Vi(Py,)={0"; v=0 mod. p—1} I=si=p-1).

Since the ramification exponents are all prime to p, we have

) Va(Po) = Vo(Peo) = Vo(Pr,0) = {e} .

We denote by M,(§,) (a € G) the representation of G on the Tate group T,(J,)
of the jacobian variety J, of C,, where [ is a prime number different from
characteristic p, and denote by ap(a) for a #¢, the multiplicity of PX P in
the intersection 4-&,. We shall quote the result of Weil [3]

LEMMA 2. The trace of the representation My(£,) is given by the formula:

r Mo =2—2ap@) (a#e)
®
tr My(§)=2¢
where g is the genus of C, and is equal to (p*—2)(p—1)/2.
From this lemma combined with (6) and (7), we calculate readily :
—(p—1 y =0 mod. p—1 (6% #¢)
) tr My(En) =
0 y =0 mod. p—1.
As G is a cyclic group of order (p*—1)(p—1), its character group G* is gen-
erated by ¢ such that
v 2mi
(10) gb(O' ): exXp Tp‘t;_r)-l(%t——f)— .
Then we have
(p®—1)(p—1

tr ML('Ea) = ”gl )C/lsb#(a) ’

where the coefficients ¢, are calculated by the relations of orthogonality of
characters:

— ]' 12 -1
=Ty @ MG

If we substitute the terms in the summation by (8), (9) and [10), we get
—_— 1 R _pa—Z 12 -(@-1y .
Cw= DTy L2~ I, 90 - (01
1 P2 2m
= g [¢° D Zexe Ty ]

{ 1 r=0 mod. p¢—1
0 =0 mod p*—1.
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Thus we have proved

Ut ME)= T .

y#0 mod. p%—1

THEOREM 1. The [-adic representation M(E,) of the automorphism group
G is the direct sum of the irreducible representations ¢* of multiplicity one,
where v runs from 1 to (p*—1)(p—1) except v =0 mod. p*—1.

§2. In the first place we shall summarize the facts about the prime ideal
decomposition of the characteristic roots z,(x%) of p%th power endomorphism
(Davenport-Hasse [1]). After this we put p*=g, and denote by K, the field
of the n-th roots of unity over the field @ of rational numbers. Then the
t(x") are in K-y, We write simply (3% in place of z,(3%). From the expres-
sion (2) of 7,(y3) it follows that

ayn ) — ' OH=2,H  A=j=p—-D
by the automorphisms exp 2mi —exp amt 7 of K, over K, ,, and
p p prlq q
(12 () — (" (G, q—-H=D
b . 2l 2m1 :
y the automorphisms exp s exp - . 7 of K-y over K,. The Galois

group of K, , over Q is isomorphic to the group R of prime residue-classes
mod. ¢g—1. Denote by P the subgroup of R which is generated by p mod.g—1,
and let p run through representatives of the factor group R/P: R=32X)pP.
Then the prime ideal decomposition of p is as follows: ’

o
®)=TLps in Kooy =5, (€7 =D =T1%,,
P

(p) = ];_)I SBE~I in Kp(q-l) .

For a rational integer a, we denote by Ala) = a,+ta;p+ -+ +ag,p% ' 0= a;
=< p—1, not all @;=p—1) the smallest non-negative residue of a mod. ¢g—1,
and put o(a)=a,+a;+ - +a,-;. The prime ideal decomposition of z(3") in
Kpq-p 18

(13) (D= TLF .

For the (p—1)-th power of z(3%) which belongs to K, , by [1I}, the prime ideal
decomposition in K,_, is

(14 (eGP =TIp;“" .
0

It is said that z,(y") and (3% are equivalent when there exist natural
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numbers n, m such that z,(x)" and ¢, (™ are conjugate algebraic numbers.
Clearly this is an equivalence relation. If the jacobian variety J, is isogenous
over the algebraic closure of GF(p) to a product in the same notation as (3):

(3) .]aNAIXAzx"'XAh: A;=B; X« X B;,

then the A, are in one-to-one correspondence to the equivalence classes of the
7;(x" (Tate [27].

The following lemma is easily proved.

LEMMA 3. For 0< a<p®—1 we have

D l=za@=Zap—-D-1,

i) ol@)=11if and only if a=p* 0<i<a—-1),

iii) o(a)=a@p—D—1 if and only if a=p*—1—p* 0<i<a—1).

PROPOSITION 1. [If t satisfies (f, p°—1)>1, then ©(x) and (3" are not
equivalent.

PrROOF. Suppose that ¢ satisfles (¢, p®—1)=d >1, then (A(p?), p*—1)=d,
and by Lemma 3, o(pt) cannot take the value 1 nor the value a(p—1)—1 for
any p. If we assume that there exist natural numbers n and m such that
(" and z(x")™ are conjugate algebraic numbers, the prime ideal decomposi-
tion (13) shows that the sets {n-0(p); p} and {m - o(tp); p} are the same. But
this contradicts the above mentioned fact.

COROLLARY. The set {z;(x"); (e, p*—1) =1, 1< p<p®—1, 1 <7< p—1} fills
up just an equivalence class of the z;(x%).

The decomposition fields of p in K, , and in K,q-,, are the same, which
we denote by K. For any natural number g the prime ideal decomposition of
(0" in Ky is (o)) = I1 5. Among the numbers o(p)y, the number g

0
appears only once because of Lemma 3. Therefore Q(z(y)”) contains K.

LEMMA 4. z(y) is invariant under the automorphisms exp _qZ_n_zf — exp q2_7r_zl

pj
(G=12, -, 0a) of Kyq-p over K,, i.e.,, t(g)=c(?)= - ::T(Xpo’_l).
Proor. From the expression of z(y) as a generalized Gaussian sum, it

follows that

w(pr) = — 3 yrwy exp | 2;1‘ tr(u) |

; 21
= —ugox(up ) eXp [Ttr(upf)]

=7(x) ,

which proves the assertion.

As (x) =y '(Nz(y) A £j<p—1) by the automorphisms exp 2;” exp( 2‘7;1].

of K,q-» over K, ,, Q(z(x)?") is contained in K,.,. Further, by Lemma 4,
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t(x)?"! is invariant under the automorphisms of the decomposition group of p

in K, ,. Hence Q(z(y)*™) is contained in K. When we put Q=) Q)"
=1
from what has been stated, we get “

Qn=Q ()" H=K.

Now for any p, prime ideal p, of K,_, is regarded as prime ideal of K,
which is also denoted by p,. Let | z(3)? |y, denote the normal absolute value
of (x)?"* at the prime p, of K. From we have | z(x)?"* s =p 7. Recall
that z(y)?~! is a characteristic root of p*®-b-th power endomorphism. Putting
pe?-v =g, we have

12GOP lop = 0,500
In the expression (3) of J,, let A, correspond to the equivalence class, to which
7(y) belongs (Prop. 1, Coroll.). Hereafter we put A;=A. Let J(A) denote
the endomorphism ring of the abelian variety A, and put ,(4)=JdA)R Q.
We have prepared all things to apply Tate’s results to our case.

PROPOSITION 2. 1) A (A) is a central simple algebra over K, which splits
at all finite primes p of K not dividing p.

ii) The local invariants of the algebra J(A) at the primes P, are given by

inv p,Ll(A)] = "‘a’%@i)“ mod. Z .

iii)y The dimension of the simple constituent B, of A is
. 1
dim B, = —-a(p—1) - deg ()"t = 5 (p—1) - p(p*~1),

where ¢ is as usual the Euler’s function.
Since by Prop. 1, Coroll,, dim A is equal to %(p~l) - p(p*—1), Prop. 2, iii)

shows that A is a simple abelian variety. Hence we have

THEOREM 2. The jacobian variety ], of the curve C, contains as simple
component the simple abelian variety A with multiplicity one, which has (y)?!
as a characteristic root of the p*®Y-th power endomorphism. (We call A the
main component of J,.)

In the case of a=1, the situation is very simplified.

THEOREM 3. For a=1, we have

Ji~TI (B, X -+« X B) (each B,, appears m times)

where the index m runs over all divisors of p—1 except m=p—1, and each B,

. . . . . . 1 —1 -1 .
is a simple abelian variety of dimension 5 ﬁm ga( Pm ), which has t(3™)

as a characteristic root, and B,, is not isogenous to B,,, for m +#m’.
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ProOF. We exclude the case characteristic p=2, because in that case, the
curve C, is of genus 0. As a=1, we have

, _ 21y
@ == 35 gwexp (T u),
and
3y () = L™
0

where p ranges over representatives of prime residue-classes mod. p—1. Let
m and n be any divisors of p—1 except m or n=p—1. Assume that <(y™"
and (y")” are conjugate algebraic numbers, for some positive integers p and v.
Then by [(I3Y, the set {g-A(mp); p} and the set {v-A(np); p} are the same.
Since g.c.m. of the sets are pm and wvn, respectively, we have ym=yn. Hence

%1— > A(mp) = —711— >3 A(np). On the other hand we can elementarily prove that
0 P
S A(sp) =(p—De(p—1)/2 for s+0 mod.p—1. So we get m=n. From this

0

fact, combined with and [12), the equivalence classes of the r,(y%) are
represented by 7z(y™), where m runs over all divisors of p—1 except m=p—1.
Now because of the expression (2)’, we easily see that z;(3)=r7,(y, if and

only if =5 and Indj=Ind: mod. , where we put Indj=y, if j=0"

_»-1

t,p—1
mod. p, w being a generator of the group of prime residue classes mod. ».
From this and [I3), we conclude that Q.= K,-, N\ Q(z(3"), and we can deter-
mine the prime ideal decomposition of z(¥)?~! in Q.. On account of what

has been outlined, will be obtained.

§3. According to the notation of (3), the Tate group T,(J,) is the direct
sum of the Tate groups T,(A;). The elements o of the automorphism group
G induce the endomorphisms &% on each A;, so that we obtain representations
M(EP) of G 1=1, ---, h). The [-adic representation M,(&,) of G on T(J,) is
the direct sum of the M/(£%). We shall determine the representation AM,(EP
on the main component A= A,.

THEOREM 4. The representation M(EP) of G on T, (A) is the direct sum of
the irreducible representations ¢* of multiplicity one, where v runs through the
numbers such that 1 <y < (p*—1D(p—1) and v, (p*—1(p—1)=1.

PrROOF. As A is a simple abelian variety, 4,(4) is a division algebra.
Hence the characteristic roots of AM,/(£9L) are conjugate to each other, where o
is defined by (1). Now the characteristic roots of M/(&,) are, by Theorem
1, {¢"0); 1=vZ(p*—D(p—1), v+0 mod. p—1}. So the number of such

characteristic roots that are conjugate to ¢”(g) is equal to go(ﬂj—lc)i@:l—)-),
d=(u, (p*—1)(p—1)). If we assume d >1, then we have
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o(L=HP=DY <o ey p-1).

But the right side is just equal to 2 dim A= (p—De(»*—1). Therefore the
characteristic roots of M(£®) must be {¢*(0); 1= p < (*—1(p—D), (¢, p*—1)
(p—1) =1}, that proves the theorem.

COROLLARY. Q(EP) is the field Ka-pop-1 of (0*—1)(p—1)-th roots of unity.

Hereafter we write simply £ =¢§,. The endomorphism algebra .7,(A) of
A contains the field Q(§,) of degree 2 dim A = (p—Dep(p*—1) over Q. The p-th
power endomorphism of J, induce an endomorphism of A, which is denoted
by II. Since [1&,=¢2I], we get [[°®-bf,=¢,I1°?-D because of [Lemma T
Consequently [7¢?-0 is in Q(§,). Let K denote the decomposition field of p in
Q(¢,). Then, by Lemma 1, K is also the decomposition field of p in Ka_;.
On account of /7&,11-*= &2, the mapping »: y— I 7II-* (y € Q(&,)) is a generator
of the Galois group of Q(&,) over K. Since [1*?-v is fixed by », [1¢®-? is in
K. Thus we conclude that the algebra Q(/I, &,) which is generated by /I and
&5 18 a cyclic algebra over K: (I1*?-9, Q(&,), n). The rank of this algebra
over K is equal to [Q(&,): K?=a%(p—1)%. By the way, Proposition 2 shows
that the field K is the center of .i,(A). Since A, A) contains the field Q(&,)
of degree 2 dim A, its rank over the center K must be [Q(&,) : K. Thus we
have proved the following

THEOREM 5. The endomorphism algebra A A) of the main component A
of J. 1s the cyclic algebra over K:

(1270, Q(&q), 1)

where ¢ is the automorphism of the curve C, defined by (1), and » is a gen-
erating automorphism of Q(&,) over K.
Tokyo Metropolitan University
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