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In this paper, we point out that one can test the validity of the mean
value theorem ([10], [11]) for the adele transformation spaces attached to
certain algebraic transformation spaces defined over the rationals by looking
at the first two homotopy groups of the underlying complex manifolds.

Notation and conventions: As usual $Z,$ $Q,$ $R,$ $C$ are the integers, the ra-
tional numbers, the real numbers, the complex numbers, respectively. Further,
we shall frequently use the following notation

$Q_{v}$ : the completion of $Q$ at a valuation $v$ of $Q$ .
$Z_{p}$ : the $p$ -adic integers in $Q_{p}$ .
$F_{p}$ : the finite field with $p$ elements.

$S$ : any finite set of valuations of $Q$ including $ v=\infty$ .
$\Omega$ : a universal domain.

$G_{m}$ : the multiplicative group of $\Omega$ .
$K^{*}:$ the multiplicative group of a field $K$.

$\overline{K}$ : the algebraic closure of a field $K$.
$[E]$ : the cardinality of a set $E$ .
If $0$ denotes a set of geometric objects, we shall denote by $O_{R}$ the subset

of $O$ which is rational over a field $K$. For a topological space $X$, we shall
denote by $L(X)$ the set of all R-valued continuous functions on $X$ with com-
pact support. We shall use freely terminology and results in the first two
chapters of [12].

\S 1. Three properties of a variety.

Let $X$ be an algebraic variety defined over $Q$ . There is a finite set $S$ such
that for $p\in\in S$ the variety $X^{(p)}$ over $F_{p}$ obtained by the reduction modulo $p$

has at least one rational point over $F_{p}$ ([7]). We shall say that $X$ is of type
$(C_{1})$ if it has the following property:

$(C_{1})$ the product $\prod_{P\oplus S}([X_{Fp}^{(p)}]/p^{\dim X})$ is absolutely convergent.

Clearly, this property is independent of the choice of $S$ .
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The set Mor $(X, G_{m})$ of morphisms of $X$ in $G_{m}$ forms a module under the
addition: $(f+g)(x)=f(x)g(x)$ . This module contains the constants as a sub-
module. Put $M(X)=Mor(X, G_{m})/G_{m}$ . We shall say that $X$ is of type $(C_{2})$ if
it has the following property:

$(C_{2})$ the module $M(X)=0$ .
Since the set $X_{C}$ of complex points of $X$ is an arcwise connected Haus-

dorff space, the homotopy groups $\pi_{i}(X_{C}),$ $i\geqq 1$ , make sense. We shall say
that $X$ is of type $(C_{3})$ if it has the following property:

$(C_{3})$ the fundamental group $\pi_{1}(X_{C})$ is finite.
In this paper, we shall mainly consider the case where $X$ is a connected

linear algebraic group or a homogeneous space for such a group. However,

we give here an example of $X$ which is, in general, not a homogeneous space
and has all the properties: namely, let $X$ be the hypersurface in the affine

$(r+1)$-space defined by the polynomial $F(X)=\sum_{i=0}^{r}a_{i}X_{i}^{a}-b=0,$ $a_{i}\neq 0,$ $b\neq 0$ in $Q$ .
Then, we see that $X$ has all three properties, provided $r\geqq 3$ . Actually, $X_{C}$ is
simply connected.

\S 2. Special algebraic group.

Let $G$ be a connected linear algebraic group defined over $Q$ . We denote
by $\hat{G}$ the module of rational characters of $G:\hat{G}=Hom(G, G_{m})$ . This is a sub-
module of Mor $(G, G_{m})$ . Clearly, $\hat{G}\cap G_{m}=0$ . On the other hand, by a theorem
of Rosenlicht ([12, Theorem 2.2.2]), we have Mor $(G, G_{m})=\hat{G}+G_{m}$ , and hence
an isomorphism:

(1) $M(G)\cong\hat{G}$ .

We shall show that for a connected linear algebraic group $G$ the three
properties $(C_{i}),$ $i=1,2,3$ , are equivalent each other.

We first recall the Levi-Chevalley decomposition over $Q$ :

(2) $G=UTS$ ,

where $U$ is the unipotent radical of $G,$ $R=UT$ is the radical of $G,$ $A=TS$ is
reductive, $T$ is a torus defined over $Q$ which is the identity component of the
center of $A,$ $S$ is a semi-simple group which is the derived group of $A,$ $G=UA$
is a semi-direct product with $U$ normal and $A$ is isogenous to $T\times S$ . If
$G=UT^{\prime}S^{\prime}=UA^{\prime}$ is another decomposition of the same type, $A^{\prime}$ is conjugate
to $A$ by an element of $U_{Q}$ and so $T,$ $S$ are uniquely determined up to isomor-
phisms over Q. ([4, 0.8]).

We now prove the implications: $(C_{2})\Rightarrow(T=1)=\gg(C_{3})\Rightarrow(C_{2})$ . Assume that
$\hat{G}=0$ . Since $A$ is a factor group of $G,\hat{A}$ is a subgroup of $\hat{G}=0$ , hence $\hat{A}=0$ .
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Let $f$ be the isogeny $TxS\rightarrow A$ given by $(t, s)\rightarrow ts$ . Then $\hat{f}$ has the finite
cokernel, and hence $\hat{T}\times\hat{S}=\hat{T}$ is finite. But, $\hat{T}$ is Z-free, which implies that
$T=1$ . Next, assume that $T=1,$ $i$ . $e$ . $G=US$ . Since $U_{C}$ is homeomorphic to a
complex vector space, we have $\pi_{1}(G_{C})=\pi_{1}(S_{C})$ , where the latter group is finite
by Weyl’s theorem. Lastly, assume that $\hat{G}\neq 0$ . Take a nontrivial character
$\chi\in\hat{G}$ . Let $(Ker\chi)_{0}$ be the (algebraic and topological) identity component of
$Ker\chi$ . Since $G_{C}/(Ker\chi)_{0}$ is a finite covering of $G_{C}/Ker\chi=C^{*}$ , the funda-
mental group of $G_{C}/(Ker\chi)_{0}$ is infinite. Passing to the homotopy sequence of
the exact sequence

$0\rightarrow(Ker\chi)_{0}\rightarrow G_{C}\rightarrow G_{C}/(Ker\chi)_{0}\rightarrow 0$

we get the exact sequence $\rightarrow\pi_{1}(G_{C})\rightarrow\pi_{1}(G_{C}/(Ker\chi)_{0})\rightarrow 0$ , which shows that
$\pi_{1}(G_{C})$ is infinite, and our implications are completed, in view of (1).

Next, we prove the equivalence: $(C_{1})\Leftrightarrow(T=1)$ . Choose $S$ so that for $p\in\in S$

we have $G^{(p)}=U^{(p)}T^{(p)}S^{(p)}$ where $U^{(p)},$ $T^{(p)},$ $S^{(p)}$ remain connected unipotent,
torus, connected semi-simple, respectively. Denote by $\mu_{p}(X)$ the factor belong-
ing to $p$ in the infinite product introduced at the beginning of \S 1. Since the
number of points rational over a finite field is unchanged under the isogeny,
we have

$\mu_{p}(G)=\mu_{p}(U)\mu_{p}(T)\mu_{p}(S)$ $(p\not\in S)$ .

In order to prove the proposed equivalence, it is enough to show that $U$ and
$S$ have the property $(C_{1})$ but $T(\neq 1)$ has not that property. As for $U$, the
matter is trivial, because $U$ is isomorphic to an affine space as a variety. As
for $S$ , the assertion is a consequence of the vanishing of the first and second
Betti numbers of the maximal compact subgroup of $S_{C}$ and the formula due
to Chevalley and Steinberg on the number $[S_{Fp}^{(p)}]$ . Finally, for $T$ , the expres-
sion of $[T_{1!p}^{(p)}]$ in terms of the Galois module structure of $\hat{T}$ shows that $T(\neq 1)$

has not the property $(C_{1})$ . (For more details, see [8, Appendix II].) Summariz-
ing these arguments, we get

THEOREM 2.1. Let $G$ be a connected linear algebraic group defined over $Q$ .
Let $G=UTS$ be a Levi-Chevalley decomposition over $Q$ given by (2). Then, the
four properties $(C_{1}),$ $(C_{2}),$ $(C_{3})$ and $(T=1)$ are equivalent each other.

DEFINITION 2.2. A connected linear algebraic group $G$ defined over $Q$ will
be called a special algebraic group if it has any one of the four equivalent
properties in Theorem 2.1.

Thus, $G$ is special if and only if it is a semi-direct product of a normal
unipotent subgroup and a connected semi-simple subgroup, defined over $Q$ .
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\S 3. Special homogeneous space.

A pair $(G, X)$ of a connected algebraic group $G$ and an algebraic variety
$X$ is called a homogeneous space defined over $Q$ , if $G$ acts transitively on $X$

and $Q$ is the field of definition for $G,$ $X$ and the action. As usual, the action
will be written as $(g, x)\rightarrow gx,$ $g\in G,$ $x\in X$ . For an $\chi\in X$ , denote by $G_{x}$ the
isotropy group of $x$ . If $x,$ $x^{\prime}\in X$ are related by $x^{\prime}=gx,$ $g\in G$ , we have
$G_{x},$ $=gG_{x}g^{-1}$ ; hence, over $\Omega$ , algebraic (and topological when $\Omega=C$ ) properties
of $G_{x}$ is independent of the choice of $x\in X$ . When we fix an $x\in X$ , we denote
by $f$ rc the injection $G_{x}\rightarrow G$ and the projection $G\rightarrow X$ given by $c(g)=g,$ $g\in G_{x}$ ,
$\kappa(g)=gx,$ $g\in G$ . Thus, we get the exact sequence

(3) $0\rightarrow G_{x}\rightarrow G\rightarrow X\rightarrow 0$ ,

where the point $x$ is distinguished in $X$ . If $G_{x}$ is connected, (3) induces the
exact sequence

(4) $0\rightarrow\pi_{2}(X_{C})\rightarrow\pi_{1}(G_{x,C})\rightarrow\pi_{1}(G_{C})\rightarrow\pi_{1}(X_{C})\rightarrow 0$ ,

because $\pi_{2}$ (connected Lie group) $=0$ .
If, in particular, $X=G,$ $G$ acts on itself by the left multiplication and

(G. $G$) can be identified with $G$ . In the following, all definitions for $(G, X)$

will be consistent with this identification.
DEFINITION 3.1. A homogeneous space $(G, X)$ defined over $Q$ will be called

a special homogeneous space if it satisfies the following conditions:
(i) $X_{Q}$ is non-empty,

(ii) $G$ and $G_{\xi}$ , for some $\xi\in X_{Q}$ , are both special algebraic groups.
From the above remark, (ii) is independent of the choice of $\xi\in X_{Q}$ . For

$\xi,$ $\eta\in X_{Q},$ $G_{\xi}$ and $G_{\eta}$ are Q-forms of each other. In case $X=G$ , this definition
is identical with Definition 2.2, because $e\in G_{Q}$ and $G_{e}=\{e\}$ .

THEOREM 3.2. Let $(G, X)$ be a special homogeneous space defined over $Q$ .
Then the variety $X$ has all three properties $(C_{\dot{t}}),$ $i=1,2,3$ .

PROOF. Taking the reduction modulo $p$ of (3), for $x=\xi\in X_{Q}$ , we get the
exact sequence

$0\rightarrow G_{\xi^{p)}}^{(}\rightarrow G^{(p)}\rightarrow X^{(p)}\rightarrow 0$ ,

for almost all $p$ . Since $G_{\xi}^{(p)}$ is connected for almost all $p$ , we get, by Lang’s
theorem, the exact sequence

$0\rightarrow G_{\xi.Fp}^{(p)}\rightarrow G_{Fp}^{(p)}\rightarrow X_{Fp}^{(p)}\rightarrow 0$ ,

and hence $[G_{\xi,Fp}^{(p)}][X_{F’ p}^{(p)}]=[G_{Fp}^{(p)}]$ for $p\not\in S$ , for sufficient large $S$ . Then, the
absolute convergence of the product

$\prod_{p\in s}([X_{F}^{(p_{p^{)}}}]/p^{\dim X})$
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follows from the absolute convergence of those products for $G_{\xi}$ and $G$ and
the relation $\dim G-\dim G_{\xi}=\dim X$, which proves $(C_{1})$ for $X$ . Next, since
$\kappa;G\rightarrow X$ is surjective, the induced map Mor (X, $G_{m}$) $\rightarrow Mor(G, G_{m})$ is injective;
but Mor $(G, G_{m})=G_{m}$ and hence Mor (X, $G_{m}$) $=G_{m}$ , which proves $(C_{2})$ for $X$ .
Finally, since $\pi_{1}(G_{C})$ and $\pi_{1}(G_{\xi,C})$ are finite, we see from (4) that $\pi_{1}(X_{C})$ and
$\pi_{2}(X_{C})$ are also finite, which proves $(C_{s})$ for $X$ .

Here are three typical examples of special homogeneous spaces.
(Ex I) $G=SL(n),$ $X=\Omega^{n}-\{0\},$ $n\geqq 2$ . $G$ acts on $X$ as linear transforma-

tions. For
$\xi=\left(\begin{array}{l}1\\0\\\vdots\\ 0\end{array}\right)\in X_{Q}$

,

$G_{\xi}=(0^{-\frac{\Omega^{n- 1}}{SL(n-1)})}1=US,$ $U=(01|\frac{\Omega^{n-1}}{1})$ $S=(\frac{1}{0}|\frac{0}{SL(n-1)})$

a semi-direct product with $U$ normal. Since $\pi_{1}(G_{C})=\pi_{1}(G_{\xi,C})=0$ , we get
$\pi_{1}(X_{C})=\pi_{2}(X_{C})=0$ by (4).

(Ex II) Let $s,$
$t$ be non-singular symmetric matrices in $Q$ of degree $m,$ $n$ ,

$m-n\geqq 3$ .
$G=0^{+}(s)=\{g\in SL(m),{}^{t}gsg=s\}$ ,

$X=\{x\in\Omega_{m,n},$ $c_{XSX=t\}}$

where $\Omega_{m,n}$ denotes the set of all ($m$ , n)-matrices over $\Omega$ . The action of $G$ on
$X$ is the matrix multiplication. We assume that $X_{Q}$ is non-empty so that we
can take a $\xi\in X_{Q}$ . Then, $G_{\xi}$ is isomorphic with $0^{+}(u)$ , where $u$ is a suitable
non-singular symmetric matrix in $Q$ of degree $m-n$ ; hence $G_{\xi}$ is semi-simple
and $(G, X)$ is special. Over $C$, we have

$G_{C}\approx 0^{+}(m, C)=0^{-\vdash}(m, R)\times R^{\mu}$ , $\mu=m(m-1)/2$ ,

$G_{\xi,C}\approx 0^{+}(m-n, C)=0^{+}(m-n, R)\times R^{\nu}$ , $v=(m-n)(m-n-1)/2$ .

By a result of Mostow, we know the existence of the exact sequence

(5) $0\rightarrow R^{\mu-\nu}\rightarrow X_{C}\rightarrow V_{m,n}=0^{+}(m, R)/0^{+}(m-n, R)\rightarrow 0$

(cf. [1, p. 424]). Since $m-n\geqq 3,$ $\pi_{1}(V_{m,n})=\pi_{2}(V_{m,n})=0$ . Hence, taking the
homotopy sequence of (5), we get $\pi_{1}(X_{C})=\pi_{2}(X_{C})=0$ .

(Ex III) $G=SL(n),$ $X=\{x\in\Omega_{n}, t_{X}=x, \det x=1\},$ $n\geqq 3$ , where $\Omega_{n}$ denotes
the set of all square matrices of degree $n$ . The action is given by $(g, x)\rightarrow gx^{t}g$.
If we take $\xi=1_{n}\in X$, we have $G_{\xi}=0^{+}(n)$ . Since $\pi_{1}(0^{+}(n))=Z/(2)$ , we get,
from (4), $\pi_{1}(X_{C})=0$ and $\pi_{2}(X_{C})=Z/(2)$ .
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\S 4. Adelization.

Let $X$ be an algebraic variety defined over $Q$ . For each valuation $ v(=\infty$

or p) of $Q$ , we get a locally compact space $X_{v}$ consisting of points of $X$ ra-
tional over the completion $Q_{v}$ . If $v=p,$ $X_{p}$ contains a compact set $X_{Z_{p}}$ . For
an $S$ , put $X_{s}=\prod_{v\in S}X_{v}x\prod_{p\not\in s}X_{Z_{p}}$ . The adele space $X_{A}$ is the union $\bigcup_{s}X_{s}$ together

with its inductive limit topology with respect to $S$ , and is locally compact.
We identify $X_{Q}$ as a subset of $X_{A}$ by the diagonal imbedding. If $X$ is quasi-
affine, $i$ . $e$ . if $X$ is Q-isomorphic with a Q-open subset of an affine variety
defined over $Q,$ $X_{Q}$ is discrete in $X_{A}$ . (As for more details on adele spaces,
see [12, Ch. I]).

Now, suppose that $X$ is non-singular and admits a gauge form ru defined
over $Q,$ $i$ . $e$ . an everywhere holomorphic never zero differential form of highest
degree defined over $Q$ . For each $v$ , ru induces a measure $tu_{v}$ on $X_{v}$ and we
have, for some $S$,

$\int_{x_{Zp}}\omega_{p}=[X_{Fp}^{(p)}]/p^{\dim X}$ , $p\not\in S$ .

If $X$ has the the property $(C_{1})$ , the formal product $\prod_{v}\omega_{v}$ well-defines a mea-
sure on $X_{A}$ . If, in addition, $X$ has the property $(C_{2})$ , that measure on $X_{A}$ is
the unique one as is seen by the product formula in $Q$ . We shall call this
measure the canonical measure on $X_{A}$ and denote by $dX_{A}$ . (As for more details
on measures on $X_{A}$ , see [12, Ch. II].)

THEOREM 4.1. Let $(G, X)$ be a special homogeneous space defined over $Q$ .
Then, the variety $X$ is quasi-affine; hence $X_{Q}$ is discrete in $X_{A}$ . Furthermore,
$X$ admits the canonical measure $dX_{A}$ which is independent of $G$ and its action
on $X$ which make $X$ into a homogeneous space.

PROOF. Since $\hat{G}_{\xi}=0,$ $\xi\in X_{Q}$ , the first assertion is a consequence of [9,

Theorem 3]. Secondly, since $G$ and $G_{\xi},$ $\xi\in X_{Q}$ , have the property $(C_{2})$ , they
are unimodular and hence $X$ admits a G-invariant gauge form $\omega$ defined over
$Q$ . In view of the properties $(C_{1}),$ $(C_{2})$ of $X$, the measure $\omega_{A}=\prod_{v}\omega_{v}$ must be
the $dX_{A},$ $q$ . $e$ . $d$ .

\S 5. Orbits of $G_{A}$ in $X_{A}$ .
Let $(G, X)$ be a special homogeneous space defined over $Q$ . For a fixed

$\xi\in X_{Q}$ , the exact sequence

(6) $0\rightarrow G_{\xi}\rightarrow^{c}G\rightarrow^{\kappa}X\rightarrow 0$

induces the exact sequence
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$\langle 6)_{A}$ $0\rightarrow G_{\xi A}\succ G_{A}$
$\prime_{A}\rightarrow^{\kappa_{A}}X_{A}$ .

Although $\kappa_{A}$ is not necessarily surjective, we have the following
LEMMA 5.1. $\kappa_{A}$ is open.
PROOF. The statement is equivalent to say that $\kappa_{v}$ ; $G_{v}\rightarrow X_{v}$ is open for

all $v$ and $\kappa_{z_{p}}^{\prime}$

; $G_{z_{p}}\rightarrow X_{z_{p}}$ is surjective for almost all $p$ , where the former is a
standard property of v-adic transformation groups and the latter is a special
case of a well-known fact [3, Remarque, p. 161].

LEMMA 5.2. For any $x\in X_{A}$ , the orbit $G_{A}x$ is open in $X_{A}$ .
In fact, since $G_{A}x=\bigcup_{S}G_{s}x$ , it is enough to show that $G_{s}x$ is open in $X_{A}$

for a sufficiently large $S$ , or equivalently that $G_{v}x_{v}$ is open in $X_{v}$ for $v\in S$ and
$G_{Z_{P}}x_{p}=X_{Z_{I^{y}}}$ for $p\not\in S$, where $x=(x_{v})$ . Now, the former is, again, a standard
property of v-adic transformation groups. As for the latter, take $S$ large so
that $x_{p}\in X_{Z_{p}}$ for $p\not\in S$ and $G_{Z_{p}}\xi=X_{Z_{p}}$ for $p\in\in S$ (cf. Lemm 5). Then, one
takes a $g_{p}\in G_{Z_{p}}$ such that $\chi_{p}=g_{p}\xi$ and one has $G_{Z_{p}}x_{p}=G_{Z_{p}}\xi=X_{Z_{p}}$ , for $p\not\in S$ ,

$q$ . $e$ . $d$ .
One can generalize Lemma 5.2 as follows.
LEMMA 5.3. For any subset $E\subset X_{A},$ $G_{A}E$ is open and closed in $X_{A}$ .
In fact, since $G_{A}E=\bigcup_{x\in E}G_{A}x$ , it is open by Lemma 5.2. On the other hand,

$X_{A}=G_{A}E+(X_{A}-G_{\Lambda}E)$ is a disjoint sum of $G_{A}$-stable subsets, hence $X_{A}=G_{A}E$

$+G_{A}E^{\prime}$ , with $E^{\prime}=X_{A}-G_{A}E$ . Since $G_{A}E^{\prime}$ is open, $G_{A}E$ is closed, q. e. $d$ .
Later on, we shall be interested in the case where $E=X_{Q}$ . Here, we give

a sufficient condition in order that $G_{A}X_{Q}=X_{A}$ .
DEFINITION 5.4. A special homogeneous space $(G, X)$ over $Q$ is said to be

[of type $(W)$ if, for any field $K$ containing $Q$ , the sequence

$t_{R}$ $\kappa_{K}$

$0\rightarrow G_{\xi,K}\rightarrow G_{K}\rightarrow X_{K}\rightarrow 0$ , $\xi\in X_{Q}$ ,

is exact. (Obviously, this property is independent of the choice of $\xi.$)

Spaces in (Ex I), (Ex II) are of type $(W)$ ; the matter is trivial for (Ex I),

and the property $(W)$ for (Ex II) is nothing but the Witt theorem.
LEMMA 5.5. If $(G, X)$ is of type $(W)$ , then $\kappa_{A}$ is surjective, i. e. $G_{A}\xi=X_{A}$ ,

for any $\xi\in X_{Q}$ , and, a fortiori, $G_{A}X_{Q}=X_{A}$ .
In fact, take any $\chi=(x_{v})\in X_{A}$ . By Lemma 5.1 and by the definition of

the adele, there is an $S$ such that, for $p\not\in S$ , we have $\chi_{p}=g_{p}\xi$ for some
$g_{p}\in G_{Z_{p}}$ . On the other hand, by the condition $(W)$ , there is a $g_{v}\in G_{v}$ such
that $ x_{v}=g_{v}\xi$ , for $ v\in$ S. Putting $g=(g_{v})$ , we get $ x=g\xi$ , which proves our
assertion.

REMARK 5.6. We shall show that $G_{A}X_{Q}\neq X_{A}$ for $(G, X)$ in (Ex III). In
view of Lemma 5.5, this implies that the space in (Ex III) is not of type $(W)$ .
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We first recall briefly the Hilbert symbol and the Hasse-Witt symbol for qua-
dratic forms (for details, see [5]). For $a,$ $b\in Q_{v}^{*}$ , the Hilbert symbol $(a, b)_{v}$

takes values $\pm 1$ ; it is 1 if and only if the equation $ax^{2}+by^{2}=1$ has a solution
in $Q_{v}$ . For a quadratic from $q(x)=a_{1}x_{1}^{2}+\cdots+a_{n}x_{n}^{2},$ $a_{i}\in Q_{v}^{*}$ , the Hasse-Witt
symbol is defined by

$c(q)_{v}=(a_{1}, d_{1})_{v}\cdots(a_{n}, d_{n})_{v},$ $d_{i}=a_{1}\cdots a_{i}$ , $1\leqq i\leqq n$ .
For any quadratic form $q(x)$ over $Q_{v},$ $c(q)_{v}$ is well-defined by using its diagonal
equivalent. If $q(x)$ and $q^{\prime}(x)$ are equivalent, then $c(q)_{v}=c(q^{\prime})_{v}$ . For a quadratic
form $q(x)$ over $Q,$ $c(q)_{v}=1$ for almost all $v$ and we have

(7) I $c(q)_{v}=1$ .

Now, if $G_{A}X_{Q}=X_{A}$ for (Ex III), then, for $x=(x_{v})\in X_{A}$ defined by

$x_{\infty}=\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & -1\end{array}\right)$ , $\chi_{p}=\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)$ for all $p$ ,

there must be a $\xi\in X_{Q}$ such that $x=g\xi^{t}g$ with some $g\in G_{A}$ . Identifying a
quadratic form with the corresponding symmetric matrix, the above argument
shows that $\xi$ is equivalent to $x_{v}$ for all $v$ ; hence $c(\xi)_{v}=c(x_{v})_{v}$ for all $v$ . Now,

we have $c(x_{\infty})_{\infty}=-1$ and $c(x_{p})_{p}=1$ for all $p$ , hence 11 $c(x_{v})_{v}=-1$ , which con-
tradicts the product formula (7) applied for $ q=\xi$ . Therefore we must have
$G_{A}X_{Q}\neq X_{A}$ .

\S 6. Global and local classes in $X_{Q}$ .
We are going to define two equivalence relations in the discrete set $X_{Q}$

of $X_{A}$ . Namely, let $\xi,$
$\eta$ be points of $X_{Q}$ . We shall say that $\xi,$

$\eta$ are globally
equivalent, written $\xi_{g1}\sim_{ob}\eta$

, if we have $\eta=g\xi$ for some $g\in G_{Q}$ . Hence the global

class containing $\xi$ is the orbit $ G_{Q}\xi$ . On the other hand, we shall say that $\xi,$
$\eta$

are locally equivalent, written $\xi\sim\eta 1oc$ if we have $\eta=g_{A}\xi$ for some $g_{A}\in G_{A}$ .
Hence the local class containing $\xi$ is $G_{A}\xi\cap X_{Q}$ .

LEMMA 6.1. $\xi_{1oc}\sim\eta\langle=\rangle\eta=g_{v}\xi,$
$g_{v}\in G_{v}$ , for all $v$ .

In fact, $(\Rightarrow)$ is trivial. As for $(\ll=)$ , choose $S$ such that $\eta\in X_{Z_{p}},$ $G_{Z_{p}}\xi=X_{Z_{I)}}$

for $p\not\in S$ (cf. Lemma 5.1). Then, for $p\not\in S$ , there is a $g_{p}^{\prime}\in G_{Z_{p}}$ such that
$\eta=g_{p}^{f}\xi$ . For $v\in S$ , put $g_{v^{\prime}}=g_{?)}$ . Then, $g_{A}=(g_{v}^{\prime})\in G_{A}$ satisfies the condition
$\eta=g_{A}\xi$ of local equivalence, $q$ . $e$ . $d$ .

Since $G_{Q}\subset G_{A}$ , globally equivalent points are necessarily locally equivalent
and a local class consists of a certain number of global classes. By the fol-
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lowing Lemma, this number is always finite. For a local class $0$ , we denote
by $h(\Theta)$ the number of global classes in $\Theta$ . Denoting by $\xi_{i},$ $1\leqq i\leqq h(\Theta)$ repre-
sentatives of global classes in $\Theta$ , we have the relations:

(8) $G_{A}\Theta=G_{A}\xi_{i}$ , $\Theta=\bigcup_{i=1}^{n}G_{Q}\xi_{i}h(0)$ (disjoint) $=G_{A}\xi_{i}\cap X_{Q}$ ,

$ G_{A}X_{Q}=\bigcup_{\Theta}G_{A}\Theta$ (disjoint).

Let $A$ be an algebraic group defined over $Q$ or a Galois module over $Q$ .
Using the standard notation in Galois cohomology, we put

$h^{p}(A)=[H^{p}(Q, A)]$ , $p\geqq 0$ ,

$I^{p}(A)=Ker(H^{p}(Q, A)\rightarrow\prod_{v}H^{p}(Q_{v}, A))$ ,

$i^{p}(A)=[I^{p}(A)]$ .
It is fundamental that $i^{1}(G)$ is finite if $G$ is a linear algebraic group [3, $7.1_{r}$

Th\’eor\‘eme].
LEMMA 6.2. $h(\Theta)\leqq i^{1}(G_{\xi}),$ $\xi\in\Theta$ .
PROOF. It is enough to show that there is an injection $\varphi$ from the quotient

$\Theta/glob\sim$ into $I^{1}(G_{\xi})$ . Now, for any $\eta\in\Theta=G_{A}\xi\cap X_{Q}$ , there is a $g\in G_{\overline{Q}}$ such
that $\eta=g\xi$ . Since $\xi,$

$\eta$ are invariant under the Galois group $\mathfrak{g}=\mathfrak{g}(\overline{Q}/Q)$ ,
$\eta_{\sigma}=g^{-1}g^{\sigma},$ $\sigma\in \mathfrak{g}$ , define a cocycle $c(\eta)$ of $\mathfrak{g}$ in $G_{\xi,\overline{Q}}$ . Since $\eta=g_{v}\xi,$ $g_{v}\in G_{v}$ , for
all $v$ , the element $g_{v}^{-1}g=h_{v}$ is in $G_{\xi,\overline{Q}_{v}}$ , and hence, for $\sigma\in \mathfrak{g}_{v}=\mathfrak{g}(\overline{Q}_{v}/Q_{v})$ , one
has $\eta_{\sigma}=g^{-1}g^{0}=h_{v}^{-1}g_{v}^{-1}g_{v}^{\sigma}h_{v}^{\sigma}=h_{v}^{-1}h_{v}^{\sigma}$ , which shows that the cocycle $c(\eta)$ is trivial
locally everywhere. If

$\eta^{\prime}\sim\eta g1ob$
then it is easy to see that $c(\eta)\sim c(\eta^{\prime})$ (cohomo-

logous); therefore we obtain a well-defined map $\varphi$ : $\Theta/g1ob\sim\rightarrow I^{1}(G_{\xi})$ induced by
$\eta\rightarrow c(\eta)$ . It remains to show that $\varphi$ is injective. In fact, suppose that $ c(\eta)\sim$

$c(\eta^{\prime}),$
$i$ . $e$ . $\eta_{\sigma}^{\prime}=h^{-1}\eta_{\sigma}h^{\sigma}$ for some $h\in G_{\xi,\overline{Q}}$ . Putting $\eta=g\xi,$ $\eta^{\prime}=g^{\prime}\xi,$ $g,$ $g^{\prime}\in G_{\overline{Q}}$ ,

we get $g^{\prime}h^{-1}g^{-1}=g^{\prime\sigma}h^{-\sigma}g^{-\sigma}$ for all $\sigma\in \mathfrak{g}$ and hence $g^{\prime}=kgh,$ $k\in G_{Q},$ $i$ . $e$ .
$\eta^{\prime}\sim\eta g1ob$

$q$ . $e$ . $d$ .
DEFINITION 6.3. A special homogeneous space $(G, X)$ defined over $Q$ is

said to be of type $(H)$ if $h(\Theta)=1$ for all $\Theta$ .
LEMMA 6.4. If $(G, X)$ is of type (W), then it is of type $(H)$ .
In fact, since $ X_{Q}=G_{Q}\xi$ for any $\xi\in X_{Q}$ , we have $ G_{A}\xi\cap X_{Q}=G_{Q}\xi$ for all

$\xi\in X_{Q}$ .
REMARK 6.5. The spaces in (Ex I), (Ex II) being of type $(W)$ , they are

of type $(H)$ . The space in (Ex III), which is not of type $(W)$ by Remark 5.6,
is also of type $(H)$ ; this is an immediate consequence of the well-known
“ Hasse principle ‘’ for the equivalence of quadratic forms over $Q$ . In view of
Lemma 6.2, if $i^{1}(G_{\xi})=1$ for any $\xi\in X_{Q}$ , then $(G, X)$ is of type $(H)$ ; this is
the case if $G_{\xi}$ is simply connected and has no simple factor of type $E_{8}$ ([6]).
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When we view a special algebraic group $G$ as homogeneous space by the
identification $G=(G, G),$ $G$ is clearly of type $(W)$ , and hence of type $(H)$ .

\S 7. Tamagawa number of special algebraic groups.

Let $G$ be a special algebraic group defined over $Q$ . Let $dG_{A}$ be the can-
onical measure of the adele group $G_{A}$ . Since $\hat{G}=0$ , we have $(\hat{G})_{Q}=0$ and
hence, by a result of Borel and Harish-Chandra [2, 9.4, Theorem] the Tama-
gawa number

$\tau(G)=\int_{G_{A}/G_{Q}}dG_{A}$

is well-defined. A. Weil has conjectured that

$(\#)$ $\pi_{1}(G_{C})=0\Rightarrow\tau(G)=1$ .

This has been proved for a large part of classical groups (Tamagawa, Weil),

for some exceptional groups (Demazure, Mars) and for Chevalley groups (Lang-
lands), but is not yet completely solved.

On the other hand, the author has determined $\tau(G)$ modulo $(\#)$ , the relative
theory, as an application of his determination of the Tamagawa number of
algebraic tori. Since we need the result later on, we recall it here briefly.
First of all, we have to introduce a Galois module structure on $\pi_{1}(G_{C})$ . As is
well-known, there is a simply connected algebraic group $\tilde{G}$ defined over $Q$ and
an isogeny $f:\tilde{G}\rightarrow G$ defined over $Q$ , unique up to Q-isomorphisms in the sense
of algebraic coverings. (In [8] only semi-simple case is treated, but one can
extend it to the case of special algebraic groups without difficulty.) Since
$Kerf$ is a Q-closed finite commutative subgroup of $\tilde{G}$ , it is acted by the Galois
group $\mathfrak{g}=\mathfrak{g}(\overline{Q}/Q)$ . In view of the isomorphism

$Kerf\approx\pi_{1}(G_{C})$

obtained by $Kerf\ni z\rightarrow f$ (a path joining $z$ the idetity of $\tilde{G}$ ), we can transfer
the 9-module structure of $Kerf$ to $\pi_{1}(G_{C})$ . From now on, we regard $\pi_{1}(G_{C})$

as a g-module in this manner, which is unique up to g-isomorphisms. $\ln$ this
situation, the relative theory tells that the ratio $\tau(G)/\tau(\tilde{G})$ depends only upon
the $\mathfrak{g}$-module $\pi_{1}(G_{C})$ . More precisely, we have

(9) $\tau(G)/\tau(\tilde{G})=h^{0}(\pi_{1}(G_{C}))/i^{1}(\pi_{1}(G_{C}))\wedge\wedge$ ,

where $\hat{M}=Hom(M, (\overline{Q})^{*})$ , the character module. From this we can deduce,

for example, the following
LEMMA 7.1. Let $(G, X)$ be a special homogeneous space defined over $Q$ and

let $\tilde{G},\tilde{G}_{\xi}$ be the universal covering groups (over $Q$) of $G,$ $G_{\xi},$ $\xi\in X_{Q}$ , respec-
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tively. If $\pi_{1}(X_{C})=\pi_{2}(X_{C})=0$ , then one has $\tau(G)/\tau(\tilde{G})=\tau(G_{\xi})/\tau(G_{\hat{\sigma}})$ .
In fact, since $\pi_{1}(X_{C})=\pi_{2}(X_{C})=0$ , we get an isomorphism $\alpha$ : $\pi_{1}(G_{\xi,C})\approx$

$\pi_{1}(G_{C})$ by the exact sequence (4). Now, one checks without difficulty that the
map $\alpha$ is compatible with the g-module structures of $\pi_{1}(G_{\xi,C})$ and $\pi_{1}(G_{C}),$ $i$ . $e$ .
a g-isomorphism. Our assertion then follows from (9), $q$ . $e$ . $d$ .

\S 8. Tamagawa number of uniform special homogeneous spaces.

Let $(G, X)$ be a special homogeneous space defined over $Q$ and let $dG_{A}$ ,
$dX_{A}$ be the canonical measures on $G_{A},$ $X_{A}$ , respectively (cf. Theorem 4.1). Since
$G_{A}X_{Q}$ is open and closed in $X_{A}$ (Lemma 5.3), $dX_{A}$ induces on this subset a
measure which we denote again by $dX_{A}$ . For a function $f\in L(G_{A}X_{Q})$ and
$g\in G_{A}$ , the summation $\sum_{\xi\in XQ}f(g\xi)$ is actually a finite sum, because the support

of $f$ is compact and $X_{Q}$ is discrete in $X_{A}$ , and hence in $G_{A}X_{Q}$ . Furthermore,

the summation viewed as a function on $G_{A}$ can be regarded as a function on
$G_{A}/G_{Q}$ since it is invariant under the right multiplication by the elements of
$G_{Q}$ . Thus the quantity

$\tau(G)^{-1}\int_{G_{A}/0_{Q}}(\sum_{\xi\in x_{Q}}f(g\xi))dG_{A}$

represents the “ mean value “ of that function on $G_{A}/G_{Q}$ . We shall be interested

in the connection of this mean value with the plain integral $\int_{G_{A}X_{Q}}f(x)dX_{A}$ .

DEFINITION 8.1. A special homogeneous space $(G, X)$ is said to be uniform
if there is a constant $\tau(G, X)$ such that

$\int_{a_{A}x_{Q}}f(x)dX_{A}=\tau(G, X)\tau(G)^{-I}\int_{G_{\Lambda}/G_{Q}}(\sum_{\xi eX_{Q}}f(g\xi))dG_{A}$

for all $f\in L(G_{A}X_{Q})$ . When that is so, the number $\tau(G, X)$ will be called the
Tamagawa number of $(G, X)$ . If, in particular, $\tau(G, X)=1$ , we say that $(G,$ $ X\lambda$

has the mean value property.
REMARK 8.2. We check here that the above definition of $\tau(G, X)$ is com-

patible with the ordinary definition of $\tau(G)$ when $G=(G, G)$ . Namely, for this
case we have $G_{A}X_{Q}=G_{A}G_{Q}=G_{A}$ . Then, by Fubini theorem, we have

$\int_{G_{A}}f(x)dG_{A}=\int_{G_{A}/c_{Q^{\xi\in G}Q}}$$(\Sigma f(g\xi))dG_{A}$

for all $f\in L(G_{A})$ , which shows that $(G, G)$ is uniform with $\tau(G, G)=\tau(G)$ . In
our terminology, the Weil $s$ conjecture $(\#)$ can be restated as follows:

$(\#\#)$ $\pi_{1}(G_{C})=0\Rightarrow(G, G)$ has the mean value property.

Using the notation in \S 6, we have the following criterion for the uniformity
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of $(G, X)$ .
LEMMA 8.3. A special homogeneous space $(G, X)$ defined over $Q$ is uniform

if and only if the number $\sum_{i=1}^{h(\Theta)}\tau(G_{\xi_{i}})$ is independent of the local classes $\Theta$ . When

lhat is so, $\tau(G, X)$ is given by $\tau(G, X)=\tau(G)/(\sum_{i=1}^{\aleph}\tau(G_{\xi_{i}}))h(0)$

PROOF. For a $\xi\in X_{Q}$ , one has obviously the following two exact sequences,
or fiberings:

(10) $0\rightarrow G_{\xi,Q}\rightarrow G_{Q}\rightarrow G_{Q}\xi\rightarrow 0$ ,

(10) $0\rightarrow G_{\xi.A}\rightarrow G_{A}\rightarrow G_{A}\xi\rightarrow 0$ .

In an obvious sense, (10) forms a discrete subfibering of the fibering (10) .
Since $ G_{A}\xi$ is open and closed in $X_{A}$ (Lemma 5.3), $dX_{A}$ induces a measure on
$ G_{A}\xi$ , which we denote again by $dX_{A}$ . Then it is not difficult to see that the
three measures $dG_{\xi A},$ $dG_{A}$ and $dX_{A}$ are coherent with respect to the fibering
(10). In this situation, we know the following formula of Fubini type with
respect to the pair of fiberings $((10)_{A}, $(10) $)$ :

(11) $\tau(G_{\xi})\int_{G_{A}\xi}f(x)dX_{A}=\int_{G_{A}/G_{Q}}(\sum_{\eta\in G_{Q}\xi}f(g\eta))dG_{A}$

for all $f\in L(G_{A}\xi)$ (cf. [12, Lemma 2.4.2]). Now take a local class $\Theta$ with re-
presentatives $\xi_{i},$ $1\leqq i\leqq h(\Theta)$ , of global classes in it. Summing the formula
(11) for all $\xi_{i}$ , using (8), we get

(12) $(\sum_{i=1}^{h(\Theta)}\tau(G_{\xi_{i}}))\int_{G_{A}\Theta}f(x)dX_{A}=\int_{o_{A/G_{Q}}}(\sum_{\eta\in\Theta}f(g\eta))dG_{A}$

for all $f\in L(G_{A}X_{Q})$ . For simplicity, put

$\tau(\Theta)=\sum_{i=1}^{h(\Theta)}\tau(G_{\xi_{i}})$ .

Then, if $\tau(\Theta)$ is independent of $\Theta$ , by summing up (12) over all $\Theta$ , we get

(13) $\tau(\Theta)\int_{G_{A}x_{Q}}f(x)dX_{A}=\int_{G_{A}/G_{Q}\xi\in x_{Q}}$$(\Sigma f(g\xi))dG_{A}$

for all $f\in L(G_{A}X_{Q})$ . Hence we see that $(G, X)$ is uniform with $\tau(G, X)=$

$\tau(G)/\tau(\Theta)$ . Conversely, suppose that $(G, X)$ is uniform. Let $f\in L(G_{A}X_{Q})$ be
such that its support is contained in $ G_{A}\Theta$ for a given $\Theta$ . We have then, by
Definition 8.1 and (12),

$\int_{G_{A}\Theta}f(x)dX_{A}=\int_{o_{A}x_{Q}}f(x)dX_{A}=\tau(G, X)\tau(G)^{-1}\int_{o_{A}/G_{Q}\xi\in x_{Q}}$$(\Sigma f(g\xi))dG_{A}$

$=\tau(G, X)\tau(G)^{-1}\int_{a_{A/G_{Q}}}(\sum_{\eta\subset- 0\sim}f(g\eta))dG_{A}=\tau(G, X)\tau(G)^{-1}\tau(\Theta)\int_{G_{A}\Theta}f(x)dX_{A}$ ,
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which implies that $\tau(\Theta)$ is equal to the constant $\tau(G)/\tau(G, X)$ independent of
$\Theta$ , q. e. d.

COROLLARY 8.4. If $(G, X)$ is of type $(W)$ , then it is uniform.
In fact, since $(G, X)$ is of type $(H)$ (Lemma 6.4), it is enough to show that

$\tau(G_{\xi})$ is independent of $\xi\in X_{Q}$ . However, since $\kappa_{Q}$ : $G_{Q}\rightarrow X_{Q}$ is surjective, we
see that any two groups $G_{\xi},$ $G_{\eta},$ $\xi,$ $\eta\in X_{Q}$ , are conjugate by an element of $G_{Q}$ ,

and hence $\tau(G_{\xi})=\tau(G_{\eta})$ , q. e. d.
REMARK 8.5. The spaces in (Ex I), (Ex II) being of type $(W)$ , they are

uniform. By using known values of Tamagawa numbers for special linear
groups and special orthogonal groups, we get $\tau(G, X)=1,$ $i$ . $e$ . those spaces
have the mean value property. For example, the sphere $X=\{x\in\Omega^{n},$ $ x_{1}^{2}+\cdots$

$+x_{n}^{2}=r,$ $r\in Q^{*}$ }, viewed as a homogeneous space for $0^{+}(n)$ has the Tamagawa
number 1, for $n\geqq 4$ . As for the space in (Ex III), we have $\tau(G, X)=1/2$ , be-
cause $G_{\xi}=0^{+}(\xi)$ for all $\xi\in X_{Q}$ and the space is of type $(H)$ . As we have
seen before (the end of \S 3), the first two homotopy groups of $X_{C}$ vanish for
(Ex I), (Ex II) but not for (Ex III). Therefore, we see that as far as those
examples are concerned, the vanishing of the first two homotopy groups of
$X_{C}$ corresponds precisely to the validity of the mean value property of $(G, X)$ .
In the next section, we shall look at these from more general point of view.

\S 9. Mean value theorem.

Let $(G, X)$ be a special homogeneous space defined over $Q$ . We impose
on $X$ the condition

(14) $\pi_{1}(X_{C})=\pi_{2}(X_{C})=0$ .

If, in particular, $X=G,$ (14) is reduced to a single condition $\pi_{1}(G_{C})=0$ , since
$\pi_{2}(G_{C})=0$ always. In view of $(\#\#),$ (14) seems to be a natural requirement in
order to expect the mean value property for $(G, X)$ . Now, let $\Theta$ be a local
class of $(G, X)$ and let $\xi_{i},$ $1\leqq i\leqq h(\Theta)$ , be representatives of global classes in
$\Theta$ . By Lemma 8.3, we see that $(G, X)$ has the mean value property if and

only if $\tau(G)=\sum_{i=1}^{h(0\backslash )}\tau(G_{\xi_{t}})$ for any $\Theta$ . Denoting by $\tilde{G}$ the universal covering group

over $Q$ of a special algebraic group $G$ defined over $Q$ , the condition (14) implies

that $(G, X)$ has the mean value property if and only if $\tau(\tilde{G})=\sum_{i=1}^{h(0-)}\tau(\tilde{G}_{\xi_{i}})$ for

any $0$ (cf. Lemma 7.1). Therefore, if we assume the validity of the Weil’s
conjecture $(\#)$ for $\tilde{G}$ and $\tilde{G}_{\xi}$ , for any $\xi\in X_{Q}$ , we see that $(G, X)$ has the mean
value property if and only if $h(\Theta)=1$ for any $\Theta$ , i. e. $(G, X)$ is of type $(H)$ .
Summarizing, we get

THEOREM 9.1. Let $(G, X)$ be a special homogeneous space defined over $Q$
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of type $(H)$ . If Weil’s conjecture holds for the universal covering groups $G,$ $G_{\xi}$ ,

for any $\xi\in X_{Q}$ , then one has:

$\pi_{1}(X_{C})=\pi_{2}(X_{C})=0\Rightarrow\tau(G, X)=1$ ,

$i$ . $e$ . $(G, X)$ has the mean value property.
REMARK 9.2. If, in particular, $X=G$ , the space $(G, G)$ is of type $(W)$ , and

hence type $(H)$ . Hence, as we remarked above, this Theorem is regarded as
a direct extension of the WeiPs conjecture for tne case of special homogeneous
spaces.

The University of Pennsylvania
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