Pluricanonical systems on algebraic surfaces of general type

Dedicated to Professor S. Iyanaga on his 60th birthday

By Kunihiko KODAIRA

(Received Aug. 10, 1967)

By a minimal non-singular algebraic surface of general type we shall mean a non-singular algebraic surface free from exceptional curves (of the first kind) of which the bigenus P_2 and the Chern number c_1^2 are both positive, where c_1 denote the first Chern class of the surface (see § 3). Let S denote a minimal non-singular algebraic surface of general type defined over the field of complex numbers and let K be a canonical divisor on S. The number of non-singular rational curves E on S satisfying the equation : KE = 0 is smaller than the second Betti number of S, where KE denotes the intersection multiplicity of K and E. We define \mathcal{E} to be the union of all the non-singular rational curves E with KE = 0 on S and represent it as a sum: $\mathcal{E} = \sum \mathcal{E}_{\nu}$ of its connected components \mathcal{E}_{ν} . Obviously \mathcal{E} may be an empty set. Consider a holomorphic map $\Phi: z \to \Phi(z)$ of S into a projective n-space P^n . We shall say that Φ is biholomorphic modulo $\mathcal E$ if and only if Φ is biholomorphic on $S-\mathcal E$ and $\Phi^{-1}\Phi(z) = \mathcal{E}_{\nu}$ for $z \in \mathcal{E}_{\nu}$. For any positive integer *m*, we let Φ_{mK} denote the rational map of S into P^n defined by the pluri-canonical system |mK|, where $n = \dim |mK|$. Note that, if |mK| has no base point, then Φ_{mK} is a holomorphic map. D. Mumford proved that, for every sufficiently large integer $m_{,}$ the pluri-canonical system |mK| has no base point and Φ_{mK} is biholomorphic modulo \mathcal{E} (see Mumford [6]; compare also Zariski [9], Matsusaka and Mumford [5]). His proof is based on results of Zariski [9] and covers the abstract. case. On the other hand, it has been shown by Safarevič [8] that $\Phi_{_{9K}}$ is a birational map. The main purpose of this paper is to prove the following theorem:

THEOREM. For every integer $m \ge 4$, the pluri-canonical system |mK| has no base point and Φ_{mK} is a holomorphic map. For every integer $m \ge 6$, the map Φ_{mK} is biholomorphic modulo \mathcal{E} .

§1. Notation.

Let S be a non-singular algebraic surface defined over the field C of complex numbers. We shall denote by x, y, z points on S, by $C, C_1, \dots, \Theta, \dots$ irreducible curves on S, by X, Y, D, D_1, \dots divisors on S and by m, n, h, i, j, k rational integers. We say that a divisor $D = \sum_i n_i C_i$ is positive and write D > 0if the coefficients n_i are positive. For any divisors D and X on S we denote by DX the intersection multiplicity of D and X. We write D^2 for DD. We indicate by the symbol \approx linear equivalence. We let [D] denote the complex line bundle over S determined by the divisor D.

Let F be a complex line bundle over S. By a local holomorphic section of F we shall mean a holomorphic section of F defined over an open subset of S. Let $\varphi: z \rightarrow \varphi(z)$ be a local holomorphic section of F. We choose a sufficiently fine finite covering $\{U_j\}$ of S and denote by $\varphi_j(z)$ the fibre coordinate of $\varphi(z)$ over U_j , provided that $z \in U_j$. Let x be a point on S and let (z_1, z_2) denote a local coordinate of the center x on S. We call x a zero of φ of order h if

$$\varphi_j(x) = 0$$
, $(\partial^{m+n}\varphi_j/\partial z_1^m \partial z_2^n)(x) = 0$ for $m+n \le h-1$

and if at least one partial derivative $(\partial^h \varphi_j / \partial z_1^n \partial z_2^{h-n})(x)$ of order h does not vanish, provided that $x \in U_j$. We denote by \mathcal{O} the sheaf over S of germs of holomorphic functions and by $\mathcal{O}(F)$ the sheaf over S of germs of holomorphic sections of F. Moreover we denote by the symbol

$$\mathcal{O}(F - hx - ky - \cdots)$$

the subsheaf of $\mathcal{O}(F)$ consisting of germs of those holomorphic sections of F of which the points x, y, \cdots are zeros of respective orders $\geq h, \geq k, \cdots$. We remark that $\mathcal{O}(-x)$ is the sheaf of the ideals of the point x and that

$$\mathcal{O}(F-hx-ky-\cdots)=\mathcal{O}(F)\bigotimes_{\mathcal{O}}\mathcal{O}(-x)^{h}\mathcal{O}(-y)^{k}\cdots.$$

Let C^n denote the vector space of *n* complex variables. The stalks of the quotient sheaf $\mathcal{O}/\mathcal{O}(-x)^h$ are

$$(\mathcal{O}/\mathcal{O}(-x)^h)_z = \begin{cases} C^{h(h+1)/2}, & \text{if } z = x \\ 0 & \text{otherwise} \end{cases}$$

To indicate this we write

 $C_x^{h(h+1)/2} = \mathcal{O}/\mathcal{O}(-x)^h$.

Then, for instance, we have

(1)
$$\mathcal{O}(F)/\mathcal{O}(F-hx-ky) \cong C_x^{h(h+1)/2} \oplus C_y^{k(h+1)/2}$$

For any holomorphic section ϕ of a complex line bundle over S, we denote

by (ϕ) the divisor of ϕ . Let D be a positive divisor on S. Obviously D is the divisor (ϕ) of a holomorphic section ϕ of the complex line bundle [D]. We say that x is a point of D and write $x \in D$ if and only if x is a zero of ϕ . We define the multiplicity of a point x of D to be m if x is a zero of ϕ of order m. Moreover we call x a simple point or a multiple point of D according as m=1 or $m \geq 2$. We shall say that a local holomorphic section ϕ of F defined on an open subset $W \subset S$ is divisible by D if φ_j/ϕ_j is holomorphic on $U_j \cap W$ for every neighborhood U_j . We denote by $\mathcal{O}(F-D)$ the sheaf over S of germs of those holomorphic sections of F which are divisible by D. We have the isomorphism :

$$\mathcal{O}(F-D) \cong \mathcal{O}(F-[D]).$$

We define

$$\mathcal{O}(F-D-hx-ky-\cdots)=\mathcal{O}(F-D)\cap\mathcal{O}(F-hx-ky-\cdots).$$

Note that, if x is a point of D of multiplicity $m \ge h$, then

(2)
$$\mathcal{O}(F-D-hx-ky-\cdots) = \mathcal{O}(F-D-ky-\cdots).$$

We denote by |F| the complete linear system consisting of the divisors (φ) of holomorphic sections $\varphi \in H^0(S, \mathcal{O}(F))$, $\varphi \neq 0$, and define

$$\dim |F| = \dim H^{0}(S, \mathcal{O}(F)) - 1.$$

Note that |[D]| = |D|. Letting $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$ be a base of the linear space $H^0(S, \mathcal{O}(F))$, we define a rational map

$$\Phi_F: z \to \Phi_F(z) = (\varphi_0(z), \varphi_1(z), \cdots, \varphi_n(z))$$

of S into P^n . We call z a base point of the complete linear system |F| if $z \in D$ for all divisors $D \in |F|$. It is obvious that, if |F| has no base point, then Φ_F is a holomorphic map. We let K denote either the canonical bundle of S or a canonical divisor on S. We denote by p_g , P_m and q, respectively, the geometric genus, the m-genus and the irregularity of S. Note that

$$P_m = \dim |mK| + 1$$
, $m = 1, 2, 3, \cdots$.

For any divisor X on S we let $\pi(X)$ denote the virtual genus of X defined by the formula:

$$2\pi(X) - 2 = X^2 + KX.$$

Every complex line boundle F over S is determined by a divisor D on S:F = [D]. We let $F^2 = D^2$. Moreover, for any divisor X on S, we define

$$FX = DX$$
, $F = [D]$.

§2. Vanishing theorems.

Let F be a complex line bundle over S and let C denote an irreducible curve on S. We define the restriction to C of the sheaf $\mathcal{O}(F)$ to be the quotient sheaf:

$$\mathcal{O}(F)_{C} = \mathcal{O}(F)/\mathcal{O}(F-C).$$

For any element φ of $\mathcal{O}(F)$ we denote by φ_c the element of $\mathcal{O}(F)_c$ corresponding to φ .

Let \tilde{C} denote the non-singular model of C and let μ be the holomorphic birational map of \tilde{C} onto C. Moreover let $\mu * F$ denote the complex line bundle over \tilde{C} induced from F. For any complex line bundle \mathfrak{f} over \tilde{C} we denote by $c(\mathfrak{f})$ the Chern class of \mathfrak{f} which can be regarded as an integer. We have

$$c(\mu *F) = FC$$
.

Letting b be an effective divisor on \tilde{C} , we denote by $\mathcal{O}(\mathfrak{f}-\mathfrak{d})$ the sheaf over \tilde{C} of germs of holomorphic sections of \mathfrak{f} which are divisible by b. Let \mathfrak{c} denote the *conductor* of C on \tilde{C} . We have the exact sequence

(3)
$$0 \longrightarrow \mathcal{O}(\mu^* F - \mathfrak{c}) \xrightarrow{\mu} \mathcal{O}(F)_C \longrightarrow M \longrightarrow 0$$

where *M* is a sheaf over *C* such that the stalk M_z is zero for every simple point *z* of *C*. In forming the exact sequence (3) we regard $\mathcal{O}(\mu^*F-\mathfrak{c})$ as a sheaf over *C* by means of the map $\mu: \widetilde{C} \to C$ (see [2], § 1).

In what follows we denote by $C\{t\}$ the ring of convergent power series in a variable t with coefficients in C. Let x be a point of C of multiplicity m. The inverse image $\mu^{-1}(x)$ consists of a finite number of points $p_1, \dots, p_{\lambda}, \dots, p_r$ on \tilde{C} . We introduce a local coordinate (w, z) of the center x on S which is "general" with respect to C (we write w, z in place of z_1, z_2). Then, for each point p_{λ} , we find a local uniformization variable t_{λ} of the center p_{λ} on \tilde{C} such that, in a neighborhood of p_{λ} , the map μ takes the following form

$$\mu: t_{\lambda} \to (w, z) = (P_{\lambda}(t_{\lambda}), t_{\lambda}^{m_{\lambda}}), \qquad P_{\lambda}(t_{\lambda}) \in t_{\lambda}^{m_{\lambda}}C\{t_{\lambda}\},$$

where m_{λ} is a positive integer and $t_{\lambda}^{m_{\lambda}}C\{t_{\lambda}\}$ denotes the ideal of $C\{t_{\lambda}\}$ generated by $t_{\lambda}^{m_{\lambda}}$. It is clear that

$$R(w, z) = \prod_{\lambda=1}^{r} \prod_{k=0}^{m_{\lambda}-1} (w - P_{\lambda}(\varepsilon_{\lambda}^{k} z^{1/m_{\lambda}})), \qquad \varepsilon_{\lambda} = e^{2\pi i/m_{\lambda}},$$

is a polynomial of the form

$$w^m + A_1(z)w^{m-1} + \cdots + A_m(z)$$
 , $A_k(z) \in z^k C\{z\}$,

and the equation:

K. Kodaira

$$R(w, z) = w^{m} + A_{1}(z)w^{m-1} + \dots + A_{m}(z) = 0$$

is a minimal equation of C on a neighborhood of x. We let

$$B_h(w, z) = w^h + A_1(z)w^{h-1} + \cdots + A_h(z)$$
.

We define

$$\sigma_{\lambda} dt_{\lambda} = d(t_{\lambda}^{m_{\lambda}}) / \partial_{w} R(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m_{\lambda}}),$$

where $\partial_w R(w, z) = \partial R(w, z) / \partial w$. The exponent c_λ in the expansion

$$\sigma_{\lambda} = t_{\lambda}^{-c_{\lambda}}(a_{\lambda 0} + a_{\lambda 1}t_{\lambda} + a_{\lambda 2}t_{\lambda}^{2} + \cdots), \qquad a_{\lambda 0} \neq 0,$$

is a non-negative integer and, by definition,

$$\mathbf{c} = c_1 p_1 + \cdots + c_\lambda p_\lambda + \cdots + c_r p_r + \cdots$$

Since the complex line bundle F is locally trivial, the restriction to the point x of the exact sequence (3) is reduced to

$$0 \longrightarrow \bigoplus_{\lambda=1}^{r} \mathcal{O}(-\mathfrak{c})_{p_{\lambda}} \xrightarrow{\mu} (\mathcal{O}_{\mathcal{C}})_{x} \longrightarrow M_{x} \longrightarrow 0.$$

For any convergent power series f = f(w, z) in w and z, we denote by f_c the restriction of f to C. Obviously the stalk $(\mathcal{O}_c)_x$ consists of the restrictions f_c of elements f of \mathcal{O}_x . It is clear that $\mathcal{O}(-\mathfrak{c})_{p_\lambda} = t_\lambda^{e_\lambda} C\{t_\lambda\}$. Hence an arbitrary element of the ring $\bigoplus_{\lambda=1}^{r} \mathcal{O}(-\mathfrak{c})_{p_\lambda}$ can be written in the form

$$\xi = \sum_{\lambda=1}^{r} \xi_{\lambda}(t_{\lambda}) , \qquad \xi_{\lambda}(t_{\lambda}) \in t_{\lambda}^{c_{\lambda}} C\{t_{\lambda}\} .$$

LEMMA 1. For any element $\xi = \sum_{\lambda=1}^{r} \xi_{\lambda}(t_{\lambda})$ of the ring $\bigoplus_{\lambda=1}^{r} \mathcal{O}(-\mathfrak{c})_{p_{\lambda}}$, there exists one and only one element f of \mathcal{O}_{x} of the form

$$f = \sum_{h=0}^{m-1} f_h(z) w^{m-1-h}$$
, $f_h(z) = \sum_{n=0}^{\infty} f_{hn} z^n$,

which satisfies the equation:

$$f_c = \mu \xi$$
.

Moreover the coefficients f_{hn} of f are given by the formula

(4)
$$f_{hn} = \frac{1}{2\pi i} \sum_{\lambda=1}^{r} \oint \xi_{\lambda}(t_{\lambda}) B_{h}(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m_{\lambda}}) t_{\lambda}^{-(n+1)m_{\lambda}} \sigma_{\lambda} dt_{\lambda}.$$

For a proof of this lemma, see [2], Appendix I.

For any integer h, we denote by h^+ the positive part of h, i.e., $h^+ = \max{\{h, 0\}}$.

LEMMA 2. Let k be a non-negative integer and let

$$\mathfrak{d}_x = \sum_{\lambda=1}^r (k-m+1)^+ m_\lambda p_\lambda \,.$$

Then we have

(5)
$$\mu \bigoplus_{\lambda=1}^{r} \mathcal{O}(-\mathfrak{c}-\mathfrak{d}_{x})_{p_{\lambda}} \subset (\mathcal{O}(-kx)_{c})_{x}.$$

PROOF. We take an arbitrary element ξ of $\bigoplus_{\lambda} \mathcal{O}(-\mathfrak{c}-\mathfrak{d}_x)_{p_{\lambda}}$ and, with the aid of the above lemma, determine an element f of \mathcal{O}_x satisfying the equation: $f_c = \mu \xi$. Let $d_{\lambda} = (k-m+1)^+ m_{\lambda}$. We then have

$$\xi = \sum_{\lambda=1}^r \xi_{\lambda}(t_{\lambda}), \qquad \xi_{\lambda}(t_{\lambda}) \in t_{\lambda}^{c_{\lambda}+d_{\lambda}} C\{t_{\lambda}\}.$$

Since

$$\hat{\xi}_{\lambda}(t_{\lambda})B_{h}(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m}\lambda)t_{\lambda}^{-(n+1)m}\lambda\sigma_{\lambda} \in t_{\lambda}^{(h-n-1)m}\lambda^{+d}\lambda C\{t_{\lambda}\}$$

and

$$(h-n-1)m_{\lambda}+d_{\lambda} \ge 0$$
 for $m-1-h+n \le k-1$,

we infer from (4) that

$$f_{hn} = 0$$
, for $m - 1 - h + n \le k - 1$.

It follows that $f \in \mathcal{O}(-kx)_x$, q.e.d.

We remark that, in the case in which x is a simple point of C, the formula (5) is reduced to the equality

$$\mu \mathcal{O}(-\mathfrak{d}_x)_p = (\mathcal{O}(-kx)_C)_x, \qquad p = \mu^{-1}(x).$$

THEOREM 1. Let C be an irreducible curve on S and let F denote a complex line bundle over S. Moreover let x and y be distinct points of C with respective multiplicities m and n and let h and k denote non-negative integers. If

$$FC-C^2-KC > (h-m+1)^+m+(k-n+1)^+n$$
,

then the cohomology group $H^1(C, \mathcal{O}(F-hx-ky)_c)$ vanishes.

PROOF. In view of Lemma 2 and the above remark, we have the exact sequence

$$0 \to \mathcal{O}(\mu^*F - \mathfrak{c} - \mathfrak{d}_x - \mathfrak{d}_y) \to \mathcal{O}(F - hx - ky)_c \to M'' \to 0$$

where b_x and b_y are effective divisors on \tilde{C} of respective degrees $(h-m+1)^+m$ and $(k-n+1)^+n$ and M'' is a sheaf over C such that the stalk M''_z vanishes for every simple point z of C. Hence we obtain the exact sequence

$$\cdots \to H^1(\tilde{C}, \mathcal{O}(\mu^*F - \mathfrak{c} - \mathfrak{d}_x - \mathfrak{d}_y)) \to H^1(C, \mathcal{O}(F - hx - ky)_C) \to 0.$$

Let \mathfrak{k} denote the canonical bundle of \widetilde{C} . Since

$$\mathfrak{t} = \mu^*([C] + K) - [\mathfrak{c}]$$

(see [2], § 2), we have

$$c(\mu^*F - [c + b_x + b_y] - f) = FC - C^2 - KC - (h - m + 1)^+ m - (k - n + 1)^+ n > 0.$$

K. Kodaira

Hence, using the duality theorem, we infer that

$$H^1(\widetilde{C}, \mathcal{O}(\mu^*F - \mathfrak{c} - \mathfrak{d}_x - \mathfrak{d}_y)) = 0.$$

Combining this with the above exact sequence, we conclude that

$$H^1(C, \mathcal{O}(F-hx-ky)_c) = 0$$
,

q. e. d.

THEOREM 2. Let F be a complex line bundle over S with $F^2 > 0$. If there exists a positive integer m such that the complete linear system |mF| has no base point, then the cohomology group $H^1(S, \mathcal{O}(F+K))$ vanishes.

PROOF. Let $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$ be a base of the linear space $H^0(S, \mathcal{O}(mF))$. Since, by hypothesis, |mF| has no base point,

$$\Phi: z \rightarrow \Phi(z) = (\varphi_0(z), \varphi_1(z), \cdots, \varphi_n(z))$$

is a holomorphic map of S into a projective n-space P^n . Suppose that the image $\Phi(S)$ is a curve in P^n . Then, for any pair of general hyperplanes L_1 and L_2 in P^n , the intersection $\Phi(S) \cap L_1 \cap L_2$ is empty. The inverse images $D_1 = \Phi^{-1}(L_1)$ and $D_2 = \Phi^{-1}(L_2)$ are divisors belonging to |mF|. It follows that $m^2F^2 = D_1D_2 = 0$. This contradicts that $F^2 > 0$. Thus we see that the image $\Phi(S)$ is a surface in P^n .

Let $\{U_j\}$ be a finite covering of S by small open subsets U_j . The complex line bundle F is determined by a 1-cocycle $\{f_{jk}\}$ composed of non-vanishing holomorphic functions $f_{jk} = f_{jk}(z)$ with respective domains $U_j \cap U_k$. Let $\varphi_{\lambda j}(z)$ denote the fibre coordinate of $\varphi_{\lambda}(z)$ over U_j and let

$$a_j(z) = \left(\sum_{\lambda=0}^n |\varphi_{\lambda j}(z)|^2\right)^{1/m}$$
, for $z \in U_j$.

Since |mF| has no base point, $a_j(z)$ is positive. Moreover, since

$$\varphi_{\lambda j}(z) = f_{jk}(z)^m \varphi_{\lambda k}(z)$$
, on $U_j \cap U_k$,

we have

$$a_j(z) = |f_{jk}(z)|^2 a_k(z)$$
, on $U_j \cap U_k$.

We let

$$\gamma = -\frac{i}{2\pi} \sum_{lpha,eta=1}^{2} \gamma_{lphaeta}(z) dz^{lpha} \wedge dar{z}^{eta} = -\frac{i}{2\pi} \,\partial\,\overline{\partial} \log a_{f}(z) \,, \qquad i = \sqrt{-1} \,,$$

on each open set $U_j \subset S$. The real *d*-closed (1, 1)-form γ thus defined belongs to the Chern class c(F) of F (see [3], Lemma). The (1, 1)-form $m\gamma$ is induced from a standard Kähler form on P^n by the holomorphic map $\Phi: S \to P^n$, while the image $\Phi(S)$ is a surface. Consequently, there exists a proper analytic subset N of S such that the Hermitian matrix $(\gamma_{\alpha\beta}(z))$ is positive definite for every point $z \in S - N$. Hence, applying a differential geometric method of [3], we infer that $H^1(S, \mathcal{O}(F+K))$ vanishes (see Mumford [7]).

§3. Composition series of pluri-canonical divisors.

Let S be a non-singular algebraic surface and let K denote a canonical divisor on S.

DEFINITION. We call S a minimal non-singular algebraic surface of general type if and only if S is free from exceptional curves (of the first kind) and

(6)
$$P_2 = \dim |2K| + 1 \ge 1, \quad K^2 \ge 1.$$

We remark that, if S is free from exceptional curves of the first kind and if either $P_2 = 0$ or $K^2 \leq 0$, then S is one of the following five types of surfaces: projective plane, ruled surface, K3 surface, abelian variety, elliptic surface (see $\lceil 4 \rceil$, Enriques $\lceil 1 \rceil$, Šafarevič $\lceil 8 \rceil$).

In what follows in this paper we let S denote a minimal non-singular algebraic surface of general type.

By a divisorial cycle on S we shall mean a linear combination $\sum r_i C_i$ of a finite number of irreducible curves C_i on S with rational coefficients r_i . We say that a divisorial cycle $\sum r_i C_i$ is positive if the coefficients r_i are positive. We indicate by the symbol ~ homology with respect to rational coefficients. For any divisorial cycles ξ and η on S we denote by $\xi\eta$ the intersection multiplicity of ξ and η . We write ξ^2 for $\xi\xi$. Since, by hypothesis, $K^2 \ge 1$, the following lemma is an immediate consequence of Hodge's index theorem (see Zariski [9], § 6):

LEMMA 3. Let ζ be a divisorial cycle on S. If $K\zeta = 0$ and if $\zeta \not\sim 0$, then ζ^2 is negative.

In connection with this lemma, we note that every positive divisorial cycle on S is not homologous to zero.

We have the inequality: $KC \ge 0$ for every irreducible curve C on S. Moreover the equality: KC = 0 holds if and only if C is a non-singular rational curve with $C^2 = -2$ (see Mumford [6]). In fact, since, by hypothesis, $P_2 \ge 1$, the bicanonical system |2K| contains a positive divisor D. If KC < 0, then DC < 0 and therefore C^2 is a negative integer, while $C^2 + KC = 2\pi(C) - 2$. Hence $\pi(C) = 0, C^2 = -1$ and thus C is an exceptional curve of the first kind. If KC = 0, then, by Lemma 3, we have

$$2\pi(C) - 2 = C^2 + KC = C^2 < 0$$
.

This proves that $\pi(C) = 0$ and $C^2 = -2$.

THEOREM 3. The number of those irreducible curves E on S which satisfy the equation: KE = 0 is smaller than the second Betti number b_2 of S.

PROOF. Let $E_1, \dots, E_i, \dots, E_n$ be irreducible curves on S such that $KE_i = 0$. For our purpose it suffices to show that the curves E_i are homologically independent. Assume a homology

$$\sum_{i=1}^k r_i E_i \sim \sum_{i=k+1}^n r_i E_i , \qquad r_i \ge 0.$$

Then we have

$$\left(\sum_{i=1}^{k} r_{i}E_{i}\right)^{2} = \left(\sum_{k=1}^{n} r_{i}E_{i}\right)^{2} = \sum_{i=1}^{k} \sum_{j=k+1}^{n} r_{i}r_{j}E_{i}E_{j} \ge 0.$$

Hence we infer from Lemma 3 that the coefficients r_i vanish, q.e.d.

We denote by \mathcal{E} the sum of all the irreducible curves E_i on S satisfying $KE_i = 0$:

$$\mathcal{E} = E_1 + \, \cdots \, + E_i + \, \cdots \, + E_b$$
 , $\qquad b < b_2$

Obviously the vanishing of KE_i implies that the canonical bundle K is trivial on the non-singular rational curve E_i .

Let e be a positive integer such that dim $|eK| \ge 0$ and let D denote a pluricanonical divisor belonging to the system |eK|.

LEMMA 4. If D is a sum: D = X+Y of two positive divisors X and Y, then we have the inequality:

 $XY \ge 1$.

PROOF. We let

$$\begin{aligned} X &= rK + \xi, \qquad r = KX/K^2, \ K\xi &= 0, \\ Y &= sK + \eta, \qquad s &= KY/K^2, \ K\eta &= 0, \end{aligned}$$

where ξ and η are divisorial cycles. Since $X+Y=D\approx eK$, we have a homology: $\xi+\eta\sim 0$. Hence we obtain

$$XY = rsK^2 - \xi^2$$
.

On the other hand, r and s are non-negative and, since the positive divisors X and Y are not homologous to zero, if $\xi \sim 0$ then rs is positive. If $\xi \not\sim 0$, then, by Lemma 3, ξ^2 is negative. Consequently, XY is a positive integer, q.e.d.

We represent the pluri-canonical divisor D as a sum:

$$D = \sum_{i=1}^{n} C_{i} = C_{1} + \dots + C_{i} + \dots + C_{n}$$

of irreducible curves C_i and let

$$D_i = C_1 + C_2 + \cdots + C_i.$$

We call the representation: $\sum_{i=1}^{n} C_i$ a composition series. Since $KD = eK^2 \ge K^2 \ge 1$, at least one irreducible component Θ of D satisfies the inequality: $K\Theta \ge 1$.

LEMMA 5. Let Θ be an irreducible component of D with $K\Theta \ge 1$. There exists a composition series $D = \sum_{i=1}^{n} C_i$ with $C_1 = \Theta$ satisfying the condition

(a)
$$KC_1 \ge 1$$
, $D_{i-1}C_i \ge 1$ for $i=2, 3, \dots, n$

PROOF. We choose the components C_2, C_3, \cdots of D successively by induction. Suppose that we have chosen $C_1 = \Theta, C_2, \cdots, C_{i-1}$ such that

$$D_{j-1}C_j \ge 1$$
, for $j=2, 3, \cdots, i-1$,

and let

 $D = D_{i-1} + Z_i$,

where $D_{j-1} = C_1 + \cdots + C_{j-1}$. If $Z_i > 0$, then, by Lemma 4, $D_{i-1}Z_i \ge 1$ and therefore at least one irreducible curve $C \le Z_i$ has $D_{i-1}C \ge 1$. Hence, letting $C_i = C$, we obtain

 $D_{i-1}C_i\!\geq\!1$,

q. e. d.

LEMMA 6. Let E_1 and E_2 be irreducible curves on S satisfying the condition that $KE_1 = KE_2 = E_1E_2 = 0$. If D is a sum:

$$D = X + Y + E_1 + E_2$$

of E_1 , E_2 and two positive divisors X, Y and if KX > 0, KY > 0, then XY is non-negative.

PROOF. We write

$$\begin{split} X &= rK + r_1 E_1 + r_2 E_2 + \xi , \qquad K\xi = E_1 \xi = E_2 \xi = 0 , \\ Y &= sK + s_1 E_1 + s_2 E_2 + \eta , \qquad K\eta = E_1 \eta = E_2 \eta = 0 , \end{split}$$

where ξ and η are divisorial cycles. Since $E_1^2 = E_2^2 = -2$, the coefficients r, s, r_{ν} , s_{ν} , $\nu = 1, 2$, are given by the formulae:

$$K^2r = KX$$
, $K^2s = KY$, $-2r_{\nu} = E_{\nu}X$, $-2s_{\nu} = E_{\nu}Y$.

The linear equivalence $X+Y+E_1+E_2 \approx eK$ implies that

$$1+r_1+s_1=0$$
, $1+r_2+s_2=0$, $\xi+\eta\sim 0$.

Hence we obtain

$$XY = rsK^2 - 2r_1s_1 - 2r_2s_2 + \xi\eta = rsK^2 + \sum_{n=1}^2 2r_{\nu}(r_{\nu} + 1) - \xi^2 \ge rsK^2 - 1 - \xi^2.$$

Since, by hypothesis, r and s are positive and, by Lemma 3, $\xi^2 \leq 0$, this proves that XY > -1, while XY is an integer. Consequently XY is non-negative, q. e. d.

We write the curve $\mathcal{E} = E_1 + E_2 + \cdots + E_b$ as a sum:

$$\mathcal{E} = \mathcal{E}_1 + \cdots + \mathcal{E}_{\nu} + \cdots + \mathcal{E}_{\kappa}$$

of connected components \mathcal{E}_{ν} . We shall say that a positive divisor X meets D if there exists a point z such that $z \in X$, $z \in D$. Since $DE_i = eKE_i = 0$, if E_i meets D, then E_i is a component of D. Hence, if \mathcal{E}_{ν} meets D, then $\mathcal{E}_{\nu} < D$.

LEMMA 7. If $\mathcal{E}_{\lambda} + \mathcal{E}_{\nu} < D$, $\lambda \neq \nu$, then there exists a composition series $D = \sum_{i=1}^{n} C_{i}$ with $C_{n-1} < \mathcal{E}_{\lambda}$, $C_{n} < \mathcal{E}_{\nu}$, which satisfies the condition

(
$$\beta$$
) $D_{i-1}C_i \ge 0$, $KC_i + D_{i-1}C_i \ge 1$, for $i = 1, 2, \dots, n$.

PROOF. We may assume that $E_1 < \mathcal{E}_{\lambda}$, $E_2 < \mathcal{E}_{\nu}$. Suppose that we have chosen $C_1, \dots, C_j, \dots, C_{i-1}$ satisfying

$$(\beta_j) D_{j-1}C_j \ge 0, KC_j + D_{j-1}C_j \ge 1, for j = 1, 2, \dots, i-1,$$

in such a manner that

$$D = D_{i-1} + X_i + E_1 + E_2$$
 , $X_i \ge 0$,

where $D_{j-1} = C_1 + \cdots + C_{j-1}$. Then we have two alternatives: either $KX_i = 0$ or there is an irreducible curve $C \leq X_i$ satisfying the condition:

(7)
$$D_{i-1}C \ge 0$$
, $KC + D_{i-1}C \ge 1$.

In fact, since $KD_{i-1} \ge KC_1 \ge 1$, if $KX_i > 0$, then, by Lemma 6, $D_{i-1}X_i$ is nonnegative. It follows that either there is an irreducible curve $C \le X_i$ with $D_{i-1}C \ge 1$ or every irreducible curve $C \le X_i$ satisfies the equation: $D_{i-1}C = 0$. If $D_{i-1}C \ge 1$ for an irreducible curve $C \le X_i$, then the curve C satisfies (7). The inequality: $KX_i > 0$ implies that an irreducible curve $C \le X_i$ satisfies $KC \ge 1$. If $D_{i-1}C = 0$, then this curve C satisfies (7).

If there exists an irreducible curve $C \leq X_i$ satisfying (7), then, letting $C_i = C$ and $D_i = D_{i-1} + C_i$, we get

$$(\beta_i)$$
 $D_{i-1}C_i \ge 0$, $KC_i + D_{i-1}C_i \ge 1$,

and

 $D = D_i + X_{i+1} + E_1 + E_2, \qquad X_{i+1} \ge 0.$

Thus we choose $C_1, \dots, C_i, \dots, C_h$ satisfying

$$D_{i-1}C_i \ge 0$$
, $KC_i + D_{i-1}C_i \ge 1$, for $i = 1, 2, \dots, h$,

where $D_{i-1} = C_1 + \dots + C_{i-1}$, such that

$$D = C_1 + \dots + C_h + X + E_1 + E_2$$
, $X \ge 0$, $KX = 0$.

Now, with the aid of Lemma 4, we extend the series $C_1 + \cdots + C_h$ to a composition series

$$D = C_1 + \dots + C_h + C_{h+1} + \dots + C_n$$

such that

(8)
$$(C_1 + \dots + C_h + \dots + C_{i-1})C_i \ge 1$$
, for $i = h+1, \dots, n$.

Note that $C_i < \mathcal{E}$ for $i = h+1, \dots, n$. If $C_j C_{j+1} = 0$ for an integer j, h < j < n, then the inequalities (8) are not affected by the permutation : $C_j \rightarrow C_{j+1}, C_{j+1} \rightarrow C_{j+1}$

Moreover $E_1 < \mathcal{C}_{\lambda}$ and $E_2 < \mathcal{C}_{\nu}$ appear among the irreducible components C_i , $i = h+1, \dots, n$. Hence, by means of an appropriate permutation of the components $C_{h+1}, C_{h+2}, \dots, C_n$, we obtain a composition series $D = \sum_{i=1}^{n} C_i$ satisfying the condition (β) such that $C_{n-1} < \mathcal{C}_{\lambda}$, $C_n < \mathcal{C}_{\nu}$, q. e. d.

In a similar manner we obtain the following

LEMMA 8. If $\mathcal{E}_{\lambda} < D$, then there exists a composition series: $D = \sum_{i=1}^{n} C_{i}$ with $C_{n} < \mathcal{E}_{\lambda}$ which satisfies the above condition (β).

§4. Pluri-canonical systems.

In this section we denote by K the canonical bundle of S. Let e be a positive integer such that dim $|eK| \ge 0$ and let D be a member of |eK|. Moreover let m denote an integer > e. For any composition series:

$$D=C_1+C_2+\cdots+C_i+\cdots+C_n$$
 ,

we let

$$Z_i = C_i + C_{i+1} + \dots + C_n$$
, $Z_{n+1} = 0$

and define

$$F_i = mK - [Z_i].$$

Then, by a simple calculation, we obtain

(9)
$$F_{i+1}C_i - C_i^2 - KC_i = (m-e-1)KC_i + D_{i-1}C_i.$$

Let x and y be distinct points of D and let

$$\boldsymbol{\Xi}_i = \mathcal{O}(\boldsymbol{m}\boldsymbol{K} - \boldsymbol{Z}_i - \boldsymbol{h}\boldsymbol{x} - \boldsymbol{k}\boldsymbol{y}) = \mathcal{O}(\boldsymbol{m}\boldsymbol{K} - \boldsymbol{Z}_i) \cap \mathcal{O}(\boldsymbol{m}\boldsymbol{K} - \boldsymbol{h}\boldsymbol{x} - \boldsymbol{k}\boldsymbol{y})$$
 ,

where h and k are non-negative integers. We consider the ascending chain:

$$\mathcal{Z}_1 \subset \mathcal{Z}_2 \subset \cdots \subset \mathcal{Z}_i \subset \cdots \subset \mathcal{Z}_{n+1} = \mathcal{O}(mK - hx - ky) \ .$$

We assume that the multiplicities of the points x and y of D are not smaller than h and k, respectively, and that

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1} - h_i x - k_i y)_{C_i}$$
 ,

where h_i and k_i are non-negative integers.

LEMMA 9. If

$$(m-e-1)KC_i+D_{i-1}C_i > \frac{1}{4}(h_i+1)^2 + \frac{1}{4}(k_i+1)^2$$
, for $i=1, 2, ..., n$,

then we have the inequalities

(10)
$$\dim H^{1}(S, \mathcal{O}((m-e)K)) \ge \dim H^{1}(S, \Xi_{i}), \quad i=2, 3, \cdots, n+1.$$

PROOF. According as $x \in C_i$ or $x \notin C_i$, we define m_i to be the multiplicity of the point x of C_i or zero. Similarly, according as $y \in C_i$ or $y \notin C_i$, we define n_i to be the multiplicity of the point y of C_i or zero. Since

$$-\frac{1}{4} - (h_i + 1)^2 + -\frac{1}{4} - (k_i + 1)^2 \ge (h_i - m_i + 1)^+ m_i + (k_i - n_i + 1)^+ n_i$$
 ,

we infer from Theorem 1 and the formula (9) that

$$H^{1}(S, \Xi_{i+1}/\Xi_{i}) \cong H^{1}(C_{i}, \mathcal{O}(F_{i+1}-h_{i}x-k_{i}y)_{C_{i}}) = 0.$$

It follows that the sequences

$$H^1(S, \Xi_i) \rightarrow H^1(S, \Xi_{i+1}) \rightarrow 0$$

are exact, while

$$\varXi_1 = \mathcal{O}(mK - D) \cong \mathcal{O}((m - e)K).$$

Hence we obtain the inequalities (10), q. e. d.

LEMMA 10. There exists an integer m_0 such that

(11)
$$\dim H^1(S, \mathcal{O}((m-e)K)) = \dim H^1(S, \mathcal{O}(mK)), \qquad \text{for } m \ge m_0$$

(see Zariski [9]).

PROOF. With the aid of Lemma 5, we choose a composition series: $D = \sum_{i=1}^{n} C_i$ satisfying the condition (α) and let

$$\Xi_i = \mathcal{O}(mK - Z_i)$$
.

We have

$$\Xi_{i+1}/\Xi_{i} \cong \mathcal{O}(F_{i+1})/\mathcal{O}(F_{i+1}-C_{i}) = \mathcal{O}(F_{i+1})_{C_{i}} \, .$$

Assume that $m \ge e+2$. Then it follows from the condition (α) that

$$(m-e-1)KC_i+D_{i-1}C_i \ge 1$$
.

Hence, by Lemma 9, we have the inequality

dim $H^1(S, \mathcal{O}((m-e)K)) \ge \dim H^1(S, \mathcal{O}(mK))$.

Hence we infer readily the existence of an integer m_0 such that the equality (11) holds for $m \ge m_0$, q. e. d.

For any point $x \in S$, we have the exact sequence

$$0 \to \mathcal{O}(mK - x) \to \mathcal{O}(mK) \to C_x \to 0$$

(see (1)) and the corresponding exact cohomology sequence

(12)
$$0 \to H^{0}(S, \mathcal{O}(mK-x)) \to H^{0}(S, \mathcal{O}(mK)) \to C$$
$$\to H^{1}(S, \mathcal{O}(mK-x)) \to H^{1}(S, \mathcal{O}(mK)) \to 0 \to \cdots.$$

THEOREM 4. Let e be a positive integer such that $P_e \ge 2$, $eK^2 \ge 2$. If $m \ge e+2$ and if $m \ge m_0$, then, for every point $x \in S$, the sequence

(13)
$$0 \to H^{0}(S, \mathcal{O}(mK-x)) \to H^{0}(S, \mathcal{O}(mK)) \to C \to 0$$

is exact.

PROOF. Since dim $|eK| = P_e - 1 \ge 1$, we find a divisor $D \in |eK|$ such that $x \in D$.

I) The case in which $x \notin \mathcal{E}$. We choose a composition series: $D = \sum_{i=1}^{n} C_i$ satisfying the condition (α) and let

$$\Xi_i = \mathcal{O}(mK - Z_i - x)$$
.

We find an integer h such that $x \in C_h$, $x \notin Z_{h+1}$. Since $C_h \not\triangleleft \mathcal{E}$, we have $KC_h \ge 1$. Moreover, we may assume that $KC_h \ge 2$ if h=1. In fact, since, by hypothesis,

$$KD = eK^2 \ge 2$$
,

if $KC_h = 1$, then there exists an irreducible curve $\Theta \leq D - C_h$ with $K\Theta \geq 1$. In view of Lemma 5, we may assume that $C_1 = \Theta$. It follows that $h \geq 2$.

Since $x \in Z_i$ for $i \leq h$, we have

$$\Xi_i = \mathcal{O}(mK - Z_i)$$
, for $i \leq h$.

We have the commutative diagram:

$$\mathcal{O}(mK - Z_h) \subseteq \mathcal{O}(mK - Z_{h+1} - x)$$

$$\lim_{\substack{\| \\ \mathcal{O}(F_{h+1} - C_h) \subseteq \mathcal{O}(F_{h+1} - x)}}$$

Hence we obtain the isomorphism:

$$\Xi_{h+1}/\Xi_h \cong \mathcal{O}(F_{h+1}-x)_{\mathcal{O}_h}.$$

Thus we infer that

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1} - \delta_{ih} x)_{C_i}$$

where δ_{ih} denotes Kronecker's delta. Since $m-e \ge 2$ and $KC_h \ge 1+\delta_{h1}$, it follows from the condition (α) that

$$(m-e-1)KC_i+D_{i-1}C_i \ge 1+\delta_{ih}$$
.

Hence, by Lemma 9, we have the inequality

dim
$$H^1(S, \mathcal{O}((m-e)K)) \ge \dim H^1(S, \mathcal{O}(mK-x))$$

Combining this with (11) and (12), we infer the exactness of (13).

II) The case in which $x \in \mathcal{E}_{\lambda}$. With the aid of Lemma 8, we choose a composition series: $D = \sum_{i=1}^{n} C_{i}$ with $C_{n} < \mathcal{E}_{\lambda}$ which satisfies the condition (β) and let

$$\Xi_i = \mathcal{O}(mK - Z_i).$$

Since $\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1})_{C_i}$ and

$$(m-e-1)KC_i+D_{i-1}C_i \ge KC_i+D_{i-1}C_i \ge 1$$
,

we have, by Lemma 9,

K. Kodaira

dim
$$H^1(S, \mathcal{O}((m-e)K)) \ge \dim H^1(S, \mathbb{Z}_n)$$
.

Combined with (11), this proves that

(14)
$$\dim H^1(S, \mathcal{O}(mK)) \ge \dim H^1(S, \mathcal{O}(mK-C_n)).$$

Since K is trivial on C_n , we have the exact sequence

$$0 \to \mathcal{O}(mK - C_n) \to \mathcal{O}(mK) \to \mathcal{O}_{C_n} \to 0.$$

Moreover C_n is a non-singular rational curve. Hence we obtain the exact sequence

$$0 \to H^{0}(S, \mathcal{O}(mK - C_{n})) \to H^{0}(S, \mathcal{O}(mK)) \to C$$
$$\to H^{1}(S, \mathcal{O}(mK - C_{n})) \to H^{1}(S, \mathcal{O}(mK)) \to 0.$$

Combining this with (14), we infer that the sequence

$$0 \to H^{0}(S, \mathcal{O}(mK - C_{n})) \to H^{0}(S, \mathcal{O}(mK)) \to C \to 0$$

is exact, while every holomorphic section $\varphi \in H^0(S, \mathcal{O}(mK))$ is reduced to a constant on \mathcal{E}_{λ} . Hence the exactness of (13) follows.

THEOREM 5. The cohomology group $H^1(S, \mathcal{O}(mK))$ vanishes for every integer $m \ge 2$.

PROOF. Let e be a positive integer such that $P_e \ge 2$, $eK^2 \ge 2$. The existence of such an integer e is obvious by the Riemann-Rock theorem. Let k = m-1 and choose a positive integer n such that $nk \ge e+2+m_0$. By Theorem 4, the sequence

$$0 \rightarrow H^{0}(S, \mathcal{O}(nkK-x)) \rightarrow H^{0}(S, \mathcal{O}(nkK)) \rightarrow C \rightarrow 0$$

is exact for every point $x \in S$. It follows that the complete linear system |nkK| has no base point, while $(kK)^2 = k^2K^2 > 0$. Hence, by Theorem 2,

$$H^1(S, \mathcal{O}(mK)) = H^1(S, \mathcal{O}(kK+K)) = 0$$

q. e. d.

COROLLARY. The pluri-genera P_m , $m \ge 2$, are given by the formula:

(15)
$$P_m = \frac{1}{2} m(m-1)K^2 + p_g - q + 1.$$

THEOREM 6. Let e be a positive integer such that $P_e \ge 2$, $eK^2 \ge 2$. If $m \ge e+2$, then the pluri-canonical system |mK| has no base point and the map Φ_{mK} is holomorphic.

PROOF. It follows from Theorem 5 that $m_0 = e+2$, where m_0 is the integer appeared in (11). Hence we infer from Theorem 4 that, if $m \ge e+2$, then |mK| has no base point and, consequently, Φ_{mK} is a holomorphic map, q.e.d.

For any pair of distinct points x and y on S, we have the exact sequence

$$0 \to \mathcal{O}(mK - x - y) \to \mathcal{O}(mK) \to C_x \bigoplus C_y \to 0$$

(see (1)) and the corresponding exact cohomology sequence

$$\cdots \to H^0(S, \mathcal{O}(mK)) \to \mathbb{C}^2 \to H^1(S, \mathcal{O}(mK - x - y)) \to \cdots$$

We shall say that x and y are distinct modulo \mathcal{E} if x and y are distinct and not contained in one and the same connected component of \mathcal{E} .

THEOREM 7. Let e be a positive integer such that $P_e \ge 3$, $eK^2 \ge 2$. If $m \ge e+3$, then, for any pair of points x and y on S which are distinct modulo \mathcal{E} , the sequence

(16)
$$0 \to H^{0}(S, \mathcal{O}(mK - x - y)) \to H^{0}(S, \mathcal{O}(mK)) \to C^{2} \to 0$$

is exact.

PROOF. Since dim $|eK| = P_e - 1 \ge 2$, we find a divisor $D \in |eK|$ such that $x \in D$, $y \in D$.

I) The case in which $x, y \in \mathcal{E}$. With the aid of Lemma 5, we choose a composition series: $D = \sum_{i=1}^{n} C_i$ satisfying the condition (α) and let

$$\Xi_i = \mathcal{O}(mK - Z_i - x - y).$$

We find h and j such that $x \in C_h$, $x \notin Z_{h+1}$, $y \in C_j$, $y \notin Z_{j+1}$. Then we have

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1} - \delta_{ih} x - \delta_{ij} y)_{C_i}.$$

Since $C_h \not\lt \mathcal{C}$, $C_j \not\lt \mathcal{C}$, we have $KC_h \ge 1$, $KC_j \ge 1$ and, as was mentioned in the proof of Theorem 4, we may assume that $KC_1 \ge 2$ if *h* is equal to 1. The condition (α) implies therefore that

$$(m-e-1)KC_i + D_{i-1}C_i \ge 1 + \delta_{ih} + \delta_{ij}$$
.

Hence, by Lemma 9 and Theorem 5, $H^{1}(S, \mathbb{Z}_{n+1})$ vanishes. It follows that the sequence (16) is exact.

II) The case in which $x \in \mathcal{C}_{\lambda}$, $y \in \mathcal{C}_{\nu}$, $\lambda \neq \nu$. With the aid of Lemma 7, we choose a composition series: $D = \sum_{i=1}^{n} C_i$ with $C_{n-1} < \mathcal{C}_{\lambda}$, $C_n < \mathcal{C}_{\nu}$ which satisfies the condition (β) and let

$$\Xi_i = \mathcal{O}(mK - Z_i).$$

Since $\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1})_{\mathcal{C}_i}$ and

$$(m-e-1)KC_i + D_{i-1}C_i \ge KC_i + D_{i-1}C_i \ge 1$$

we infer from Lemma 9 and Theorem 5 that

(17)
$$H^{1}(S, \mathcal{O}(mK - C_{n-1} - C_{n})) = 0.$$

Since K is trivial on C_{n-1} and on C_n , we have the exact sequence

$$0 \to \mathcal{O}(mK - C_{n-1} - C_n) \to \mathcal{O}(mK) \to \mathcal{O}_{C_{n-1}} \oplus \mathcal{O}_{C_n} \to 0 \; .$$

Combining this with (17), we infer that the sequence

K. Kodaira

$$0 \to H^{0}(S, \mathcal{O}(mK - C_{n-1} - C_{n})) \to H^{0}(S, \mathcal{O}(mK)) \to C^{2} \to 0$$

is exact, while every holomorphic section $\varphi \in H^{\circ}(S, \mathcal{O}(mK))$ is reduced to a constant on each connected component of \mathcal{E} . Hence the exactness of (16) follows.

III) The case in which $x \in \mathcal{E}$, $y \in \mathcal{E}_{\lambda}$. We choose a composition series: $D = \sum_{i=1}^{n} C_{i}$ with $C_{n} < \mathcal{E}_{\lambda}$ satisfying the condition (β) and let

$$\Xi_i = \mathcal{O}(mK - Z_i - x).$$

We find h such that $x \in C_h$, $x \notin Z_{h+1}$. Then we have

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1} - \delta_{ih} x)_{C_i}.$$

Moreover, since $KC_h \geq 1$, we have

$$(m-e-1)KC_i + D_{i-1}C_i \ge 1 + \delta_{ih}$$
.

Hence, by Lemma 9 and Theorem 5, we get

$$H^1(S, \mathcal{O}(mK - C_n - x)) = 0$$
.

Combining this with the exact sequence

$$0 \to \mathcal{O}(mK - C_n - x) \to \mathcal{O}(mK) \to \mathcal{O}_{C_n} \oplus C_x \to 0$$
,

we infer that the sequence

$$0 \to H^{0}(S, \mathcal{O}(mK - C_{n} - x)) \to H^{0}(S, \mathcal{O}(mK)) \to C^{2} \to 0$$

is exact. Hence the exactness of (16) follows, q. e. d.

Now we consider the exact sequence

$$0 \to \mathcal{O}(mK-2x) \to \mathcal{O}(mK) \to C^{\mathbf{3}}_{\mathbf{x}} \to 0.$$

THEOREM 8. Let e be a positive integer such that $P_e \ge 4$, $eK^2 \ge 2$. If $m \ge e+3$ and if $x \notin \mathcal{E}$, then the sequence

(18)
$$0 \to H^{0}(S, \mathcal{O}(mK-2x)) \to H^{0}(S, \mathcal{O}(mK)) \to C^{\bullet} \to 0$$

is exact.

PROOF. Since, by hypothesis, dim $|eK| = P_e - 1 \ge 3$, we find a divisor $D \in |eK|$ such that x is a multiple point of D. We choose a composition series: $D = \sum_{i=1}^{n} C_i$ satisfying the condition (α) and let

$$\Xi_i = \mathcal{O}(mK - Z_i - 2x).$$

We find h such that $x \in C_h$, $x \notin Z_{h+1}$. As was mentioned in the proof of Theorem 4, we may assume that $KC_h \ge 2$ if h = 1. To prove the exactness of (18) it suffices to show the vanishing of $H^1(S, \mathbb{Z}_{n+1})$.

i) If x is a multiple point of C_h , then

Pluricanonical systems on algebraic surfaces

$$E_i = \mathcal{O}(mK - Z_i)$$
, for $i \leq h$

and therefore

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1}-2\delta_{ih}x)_{C_i}.$$

Since $m-e \ge 3$ and $KC_1 \ge 1+\delta_{h_1}$, it follows from the condition (α) that

$$(m-e-1)KC_i+D_{i-1}C_i \ge 1+2\delta_{ih}$$
.

Hence, by Lemma 9 and Theorem 5, $H^{1}(S, \mathbb{Z}_{n+1})$ vanishes.

ii) If x is a simple point of C_h , then we find an integer j < h such that

$$x \in C_j$$
, $x \notin C_{j+1} + C_{j+2} + \cdots + C_{h-1}$.

Since x is a simple point of Z_{j+1} , we have the isomorphism:

$$\mathcal{O}(mK - Z_{j+1} - 2x) \cong \mathcal{O}(F_{j+1} - x).$$

Moreover we have the commutative diagram:

$$\begin{array}{c} \mathcal{O}(mK - Z_j) \subseteq \mathcal{O}(mK - Z_{j+1} - 2x) \\ & \text{if } & \text{if } \\ \mathcal{O}(F_{j+1} - C_j) \subseteq \mathcal{O}(F_{j+1} - x) \ . \end{array}$$

Hence Ξ_{j+1}/Ξ_j is isomorphic to $\mathcal{O}(F_{j+1}-x)_{C_j}$. Thus we see that

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(F_{i+1} - (\delta_{ij} + 2\delta_{ih})x)_{c_i}.$$

Moreover, since $KC_j \ge 1$, $KC_h \ge 1$, the condition (α) implies that

$$(m-e-1)KC_i+D_{i-1}C_i \ge 1+\delta_{ij}+2\delta_{ih}$$
.

Hence, by Lemma 9 and Theorem 5, $H^{1}(S, \mathbb{Z}_{n+1})$ vanishes, q. e. d.

Let Φ be a holomorphic map of S into a complex manifold. We shall say that Φ is *one-to-one modulo* \mathcal{E} if any only if

$$\Phi^{-1}\Phi(z) = \begin{cases} z, & \text{for } z \in S - \mathcal{E}, \\ \mathcal{E}_{\lambda} & \text{for } z \in \mathcal{E}_{\lambda}. \end{cases}$$

Moreover we say that Φ is *biholomorphic modulo* \mathcal{E} if Φ is one-to-one modulo \mathcal{E} and biholomorphic on $S-\mathcal{E}$.

THEOREM 9. Let e be a positive integer such that $P_e \ge 3$, $eK^2 \ge 2$. For every integer $m \ge e+3$, the map Φ_{mK} is holomorphic and one-to-one modulo \mathcal{E} .

PROOF. We infer from Theorem 7 that Φ_{mK} is holomorphic and $\Phi_{mK}(x) \neq \Phi_{mK}(y)$ for any pair of points x, y on S which are distinct modulo \mathcal{E} . Moreover the image $\Phi_{mK}(\mathcal{E}_{\lambda})$ of each component \mathcal{E}_{λ} is a point, since K is trivial on \mathcal{E}_{λ} , q. e. d.

The exactness of the sequence (18) implies that Φ_{mK} is biholomorphic in a neighborhood of x on S. Hence we infer from Theorems 8 and 9 the following

THEOREM 10. Let e be a positive integer such that $P_e \ge 4$, $eK^2 \ge 2$. For

every integer $m \ge e+3$, the map $\Phi_{m\kappa}$ is holomorphic and biholomorphic modulo \mathcal{E} . LEMMA 11. If $p_g = 0$, then q = 0.

PROOF. We have the Noether formula:

$$8q + K^2 + b_2 = 12p_g + 10$$
 ,

where b_2 denotes the second Betti number of S. Since $K^2 \ge 1$, this formula proves that, if $p_g = 0$, then $q \le 1$. Suppose that q = 1. Then there exists a holomorphic map Ψ of S onto an elliptic curve \varDelta such that the inverse image $C = \Psi^{-1}(u)$ of any general point $u \in \varDelta$ is an irreducible non-singular curve. Since $C^2 = 0$, C and K are homologically independent. It follows that $b_2 \ge 2$. This contradicts the Noether formula. Thus we infer that q = 0, q. e. d.

LEMMA 12. If $K^2 = 1$, then $p_g \leq 2$ and $q \leq 1$.

PROOF. i) Assume that $p_g \ge 2$. Any general member of |K| is an irreducible non-singular curve of genus 2. To prove this we let D denote a general member of |K|. The general member D has an irreducible component C with $C^2 \ge 0$. Since $KD = K^2 = 1$, we have

while

$$D = C + X$$
, $X \ge 0$, $KC = 1$, $KX = 0$,

$$C^{2} = 2\pi(C) - 2 - KC$$
, $C^{2} + CX = KC$.

Hence we infer that CX=0 and therefore, by Lemma 4, X=0. Thus we see that D=C. If follows that $\pi(C)=2$. By a theorem of Bertini, C has no singular point outside the base points of |K|, while, since $C^2=1$, any base point of |K| is a simple point of C. Hence C is a non-singular curve. It is clear that

dim
$$H^0(C, \mathcal{O}([C])_C) \leq 1$$
.

Combining this with the exact sequence

$$0 \to H^{0}(S, \mathcal{O}) \to H^{0}(S, \mathcal{O}(C)) \to H^{0}(C, \mathcal{O}([C])_{\mathcal{O}}) \to \cdots$$

we obtain the inequality

$$p_{g} = \dim H^{0}(S, \mathcal{O}(C)) \leq 2$$
.

ii) Since $P_2 \ge p_g$, we infer from (15) that

$$q = K^2 + 1 + p_g - P_2 \leq 2$$
.

iii) Now we assume that q=2 and derive a contradiction. There exist on S two linearly independent holomorphic 1-forms φ_1 and φ_2 .

If $\varphi_1 \wedge \varphi_2 = 0$, then there exists a holomorphic map Ψ of S onto a nonsingular algebraic curve \varDelta of genus 2 such that the inverse image $\Theta_u = \Psi^{-1}(u)$ of any general point $u \in \varDelta$ is an irreducible non-singular curve. Since, by Lemma 11, $p_g \ge 1$, the canonical system |K| contains a positive divisor D.

Since $KD = K^2 = 1$, we have a composition series:

$$D = C + \sum_{i=2}^{n} E_i$$
, $KC = 1$, $KE_i = 0$.

Since $\Theta_u^2 = 0$, $K\Theta_u$ is positive, while $K\Theta_u = 2\pi(\Theta_u) - 2$ is even. Moreover the projection $\Psi(E_i)$ of each rational curve E_i is a point on Δ . Hence $C\Theta_u = K\Theta_u \ge 2$ and therefore C is a covering of Δ with at least two sheets. It follows that

$$2\pi(C)-2 \ge 4\pi(\varDelta)-4 \ge 4$$
.

This contradicts that

$$2\pi(C) - 2 = C^2 + KC = 2KC - \sum_i CE_i \le 2$$

If $\varphi_1 \wedge \varphi_2 \neq 0$, then φ_1 and φ_2 define a holomorphic map Φ of *S* onto the Albanese variety *A* attached to *S*. The canonical divisor $(\varphi_1 \wedge \varphi_2)$ is an irreducible non-singular curve of genus 2. To prove this we let

$$(\varphi_1 \wedge \varphi_2) = C + X$$
, $X \ge 0$, $KC = 1$, $KX = 0$.

Suppose that the restrictions φ_{1C} and φ_{2C} of φ_1 and φ_2 to C are linearly dependent. Then $\Phi(C)$ is either a point or an elliptic curve on A. If X > 0, then X is composed of non-singular rational curves $E_i < \mathcal{E}$. Hence $\Phi(X)$ consists of a finite number of points on A. Consequently, there exists an irreducible non-singular curve Γ on A which meets neither $\Phi(C)$ nor $\Phi(X)$. It follows that $K\Phi^{-1}(\Gamma) = 0$ and therefore $\Phi^{-1}(\Gamma)$ is composed of rational curves. This contradicts that $\pi(\Gamma) \ge 1$.

Thus φ_{1C} and φ_{2C} are linearly independent and therefore the genus of the non-singular model of C is not smaller than 2, while

$$2\pi(C) - 2 = C^2 + KC = 2 - CX$$

and, by Lemma 4, CX is positive if X > 0. Hence we infer that C is a nonsingular curve of genus 2 and X=0. It follows that $(\varphi_1 \land \varphi_2) = C$.

The Euler number of S is equal to the sum of the indices of the singular points of the *covariant* vector field φ_1 . Since $(\varphi_1 \land \varphi_2) = C$, the vector field φ_1 has no singular point outside C. We may assume that φ_{1c} has two simple zeros x and y on C. Since φ_{2c} does not vanish at x, we can choose a local coordinate (w, z) of the center x on S such that

$$\varphi_2 = dz$$
, $\varphi_1 \wedge \varphi_2 = w dw \wedge dz$.

It follows that

$$\varphi_1 = w dw + \rho z dz$$
 , $\rho \neq 0$,

where ρ is a holomorphic function of z. This shows that x is a singular point of φ_1 of index 1. Thus the vector field φ_1 has exactly two singular points of index 1 and therefore the Euler number $\chi(S)$ of S is equal to 2. This contradicts the Noether formula:

$$\chi(S) + K^2 = 12(p_g - q + 1)$$
,

q. e. d.

THEOREM 11. The bigenus of S is not smaller than two: $P_2 \ge 2$.

PROOF. i) If $p_g \ge 2$, then it is obvious that $P_2 \ge p_g \ge 2$.

ii) If $p_g = 1$, then, by the Noether formula, $q \leq 2$. If, moreover, $K^2 = 1$, then, by Lemma 12, $q \leq 1$. Hence, using (15), we obtain

$$P_2 = K^2 + p_g - q + 1 \ge 2$$
.

iii) If $p_g = 0$, then, by Lemma 11, q = 0 and therefore

 $P_2 = K^2 + 1 \ge 2$.

Thus we see that $P_2 \ge 2$. Moreover, using (15), we get

 $P_3 = 2K^2 + P_2 \ge 4$.

Hence we infer from Theorems 6 and 10 the following

THEOREM 12. For every integer $m \ge 4$, the pluricanonical system |mK| has no base point and the map Φ_{mK} is holomorphic. For every integer $m \ge 6$, the map Φ_{mK} is holomorphic and biholomorphic modulo \mathcal{E} .

If $p_g \ge 4$, then, by Lemma 12, $K^2 \ge 2$. Hence we infer from Theorem 10 the following

THEOREM 13. If $p_g \ge 4$, then, for every integer $m \ge 4$, the map $\Phi_{m\kappa}$ is holomorphic and biholomorphic modulo \mathcal{E} .

§5. Birational embeddings.

It has been shown by Safarevič [8] that, if $p_g \ge 4$, then $\Phi_{3\kappa}$ is a birational map. In this section we prove in the context of this paper that, if $p_g \ge 4$, then |3K| has no base point and $\Phi_{3\kappa}$ is a holomorphic birational map.

Let Λ denote the set of those irreducible curves C on S which satisfy the inequality: $KC \leq 1$.

LEMMA 13. If $K^2 \ge 2$, then Λ is a finite set.

PROOF. In view of Theorem 3 it suffices to consider the subset A_1 of A consisting of irreducible curves C with KC = 1. We choose a base $\{K, B_1, \dots, B_i, \dots, B_i, \dots, B_n\}$ of divisorial cycles on S such that B_1, \dots, B_i, \dots are divisors satisfying the conditions

 $B_i^2 < 0$, $KB_i = 0$, $B_i B_k = 0$ for $i \neq k$.

For each curve $C \in \Lambda_1$, we have a homology

$$C \sim r_0 K + \sum_{i=1}^h r_i B_i$$
, $r_0 = 1/K^2$, $r_i = B_i C/B_i^2$.

We have

$$C^2 = 1/K^2 + \sum_{i=1}^{h} r_i^2 B_i^2 \leq 1/K^2 \leq 1/2$$

and

$$C^{2} = 2\pi(C) - 2 - KC = 2\pi(C) - 3$$
.

Hence we infer that $C^2 = -1$ or -3 and that

(19)
$$-\sum_{i=1}^{n} r_i^2 B_i^2 < 4$$

The homology class of C contains no irreducible curve other than C. In fact, if Θ is an irreducible curve on S and if $\Theta \sim C$, then $\Theta C = C^2 < 0$ and therefore Θ coincides with C. Moreover $r_i B_i^2 = B_i C$, $i = 1, 2, \dots, h$, are rational integers. Hence we infer from (19) the finiteness of the set Λ_1 , q.e.d.

THEOREM 14. If $p_g \ge 4$, then the tri-canonical system |3K| has no base point and Φ_{3K} is a holomorphic birational map.

PROOF. Since, by hypothesis, $p_g \ge 4$, we have, by Lemma 12, $K^2 \ge 2$. Hence, by Theorem 6, the tri-canonical system |3K| has no base point and Φ_{3K} is a holomorphic map. Moreover, by Lemma 13, Λ is a finite set. Let C denote the union of the curves $C \in \Lambda$. To prove that Φ_{3K} is a birational map, it suffices to show that, for any pair of distinct points $x, y \in S-C$, the sequence

(20)
$$0 \to H^{0}(S, \mathcal{O}(3K - x - y)) \to H^{0}(S, \mathcal{O}(3K)) \to C^{2} \to 0$$

is exact.

We denote by |K-x-y| the linear subsystem of |K| consisting of those divisors $D \in |K|$ which pass through x and y in the sense that $x \in D$, $y \in D$. It is obvious that

$$\dim |K - x - y| \ge p_g - 3 \ge 1.$$

Let D be a general member of |K-x-y|. We choose a composition series: $D = \sum_{i=1}^{n} C_i$ satisfying the condition (α) and let

$$\Xi_i = \mathcal{O}(3K - Z_i - x - y).$$

We find h and j such that $x \in C_h$, $x \notin Z_{h+1}$, $y \in C_j$, $y \notin Z_{j+1}$. Since, by hypothesis, $x \notin C$, $y \notin C$, we have $KC_h \ge 2$, $KC_j \ge 2$. Moreover, we may assume that $KC_1 \ge 3$ if h=j=1. To show this we suppose that h=j=1 for every composition series: $D = \sum_{i=1}^{n} C_i$ satisfying the condition (α). Then, in view of Lemma 5, KC_i vanishes for $i \ge 2$. Thus the composition series has the form

$$D=C+E_2+\cdots+E_i+\cdots+E_n$$
 , $E_i<\mathcal{E}$,

where $C = C_1$. Since D is a general member of |K-x-y| and since $E_i^2 = -2$,

the sum: $\sum_{i=2}^{n} E_i$ is the fixed component of |K-x-y|. Let $C' + \sum_{i=2}^{n} E_i$ be another general member of |K-x-y|. Then C and C' intersect at x and y and therefore

$$KC = C^2 + \sum_{i=2}^n E_i C \ge C^2 = CC' \ge 2.$$

Suppose that KC = 2. Then $C^2 = CC' = 2$, and, by Lemma 4, D = C. It follows that $C \cap C' = x \cup y$. By a theorem of Bertini, the general member C has no singular point outside the base points x and y, while, since CC' = 2, x and y are simple points of C. Thus C is a non-singular curve. It is clear that $\pi(C) = 3$. Thus C is non-rational and therefore

$$\dim H^{0}(C, \mathcal{O}(K)_{c}) \leq KC = 2.$$

Since, by hypothesis, $p_g \ge 4$, this contradicts the exact sequence

 $0 \to {\pmb{C}} \to H^{\rm o}(S,\, {\mathcal O}(K)) \to H^{\rm o}(C,\, {\mathcal O}(K)_{{\mathcal C}}) \to \cdots.$

Thus we see that $KC_1 \ge 3$.

We have

$$\Xi_{i+1}/\Xi_i \cong \mathcal{O}(3K - \delta_{ih}x - \delta_{ij}y)_{C_i}$$

Since $KC_h \ge 2$, $KC_j \ge 2$ and $KC_1 \ge 3$ if h=j=1, the condition (α) implies that

$$KC_i + D_{i-1}C_i \geq 1 + \delta_{ih} + \delta_{ij}$$
.

Hence, by Lemma 9 and Theorem 5, $H^1(S, \Xi_{n+1})$ vanishes and, consequently, the sequence (20) is exact, q. e. d.

University of Tokyo

References

- [1] F. Enriques, Le Superficie Algebriche, Bologna, 1949.
- [2] K. Kodaira, On compact complex analytic surfaces, I, Ann. of Math., 71 (1960), 111-152.
- [3] K. Kodaira, On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S. A., **39** (1953), 1268-1273.
- [4] K. Kodaira, On the structure of compact complex analytic surfaces, IV, to appear in Amer. J. Math.
- [5] T. Matsusaka and D. Mumford, Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., 86 (1964), 668-684.
- [6] D. Mumford, The canonical ring of an algebraic surface, Ann. of Math., 76 (1962), 612-615.
- [7] D. Mumford, Pathologies III, Amer. J. Math., 89 (1967), 94-104.
- [8] I. P. Šafarevič, Algebraic Surfaces, Moskva, 1965.
- [9] O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., 76 (1962), 560-612.