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Introduction.

This work contains two theorems, among others, which determine the field
of formal-rational functions, $\hat{K}$, along a closed algebraic set $X$ in a projective
space $P$ and in an abelian variety $A$ , respectively. For obvious reasons, we
assume that $X$ is connected and has a positive dimension. In the case of am-
bient variety $p$, the answer is that $\hat{K}$ is exactly the field of rational functions
on $P$ . If $A$ is the ambient variety, $\hat{K}$ coincides with the field of rational func-
tions on a certain abelian scheme $A^{*}$ over a certain complete local ring $R$ ,

which is derived from the given pair (X, $A$). For instance, if $X$ generates
$A$ , then $R$ is nothing but the base field of $A$ and $A^{*}$ is the maximal one, say
Al (X, $A$), among those \’etale and proper (hence abelian) extensions of $A$ which
are dominated by the albanese variety of $X$ . In the general case, the origin
of $A$ being chosen in $X$ with no loss of generality, let $A^{\prime}$ be the abelian sub-
variety of $A$ which is generated by $X$, and $A^{\prime\prime}=A/A^{\prime}$ . Then $R$ is the com-
pletion of the local ring of $A^{\prime\prime}$ at the origin, and $A^{*}$ is the unique etale exten-
sion of $A\times A^{g}Spec(R)$ that induces the covering Al (X, $A^{\prime}$ ) of the closed fibre
$A^{\prime}$ . (There exists a non-canonical isomorphism of $A^{*}$ with the product
Al (X, $A^{\prime}$ ) $\times Spec(R).)$

In [1], a general problem was posed about the existence of a certain uni-
versal scheme associated with any given formal scheme. The results of this
paper readily imply an affirmative and explicit solution to the problem when
the given formal scheme is the completion of $P$ (resp. $A$) along $X$ as above.
Namely, in this case, $P$ itself (resp. $A^{*}$ described above) is the universal solu-
tion, $i$ . $e.$ , the most dominant (in the sense of an arbitrary small neighborhood
of the image of $X$ ) scheme of finite type over the ring of formal-regular func-
tions, which in this case, is $k$ (resp. $R$). Meanwhile, Hartshorne gave an affir-
mative answer to the same problem, when $X$ is a smooth (or more generally,
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locally complete intersection) subvariety with ample normal bundle in an arbi-
trary smooth algebraic variety. Though Hartshorne’s result is most general
with respect to the ambient variety, it does not cover our results for special
ambient varieties for various reasons related to his cohomology-theoretical
techniques. Some of the essential points are: (i) in our case, $X$ is arbitrary
and need not be locally complete intersection, and (ii) a smooth subvariety $X$

of an abelian variety $A$ can generate $A$ without having ample normal bundle,
though the ampleness of normal bundle implies the generation.

If the base field is the complex number field, then the general GAGA-
techniques, due to J.-P. Serre, enable us to deduce from our results on formal-
rational functions, the corresponding facts on formal-meromorphic functions as
we pass from algebraic geometry to complex-analytic geometry. In other
words, if $P_{an}$ (resp. $A_{an}$) denotes the complex-analytic variety derived from $P$

(resp. $A$), then the field $\hat{K}$ can be identified with the field of formal-meromor-
phic functions along $X$ on $P_{an}$ (resp. $A_{an}$), $i$ . $e.$ , meromorphic functions on the
formal neighborhood of $X$ in $P_{an}$ (resp. $A_{an}$). Thus, in this complex-analytic
setup, one can draw immediate consequences of two kinds. Namely, on one
hand, the result on formal-rational functions implies that if $X\rightarrow Z$ is any other
embedding into an algebraic variety $Z$, which is formally equivalent to the
given one $X\rightarrow P$ (resp. $\rightarrow A$), then these two are complex-analytically equi-
valent. (In fact, in the case of $P$, they are rationally equivalent.) On the
other hand, the same result implies that every meromorphic function in a con-
nected neighborhood of $X$ extends to a global meromorphic function on $P_{an}$

(resp. on a finite abelian covering of $A_{an}$ , provided $X$ generates $A$). The last
result has been proven by complex-analytic methods by W. Barth (M\"unster).

Our proof of the theorems on formal-rational functions are based upon the
theory of formal (or, ” holomorphic ” in the sense of Zariski) functions and
formal schemes, which was first introduced by Zariski and then extended by
Grothendieck. Using the main theorem of GFGA (formal geometry versus
algebraic geometry) on coherent sheaves, due to Zariski and Grothendieck, we
prove the following theorem, which plays an important role throughout the
paper. Let $f:Z^{\prime}\rightarrow Z$ be a proper morphism of algebraic varieties. Let $X$ be
a closed algebraic set in $Z$, and $X^{\prime}=f^{-1}(X)$ . Let $\hat{K}^{\prime}$ (resp. $\hat{K}$ ) be the ring of
formal-rational functions along $X^{\prime}$ (resp. $X$ ) on $Z^{\prime}$ (resp. $Z$ ), and let $K^{\prime}$ (resp.
$K)$ the field of rational functions on $Z^{\prime}$ (resp. $Z$). Then we have a canonical
isomorphism: $\hat{K}^{\prime}\approx[\hat{K}\bigotimes_{K}K^{\prime}]_{0}$ . In particular, when $K^{\prime}=K$, we get the birational

invariance of the ring of formal-rational functions. Besides general techniques
and theorems from the theory of formal schemes, we need certain special
techniques for the special cases. Some of the special techniques for the case
of projective spaces are adopted from [1], in which the theorem of formal-
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rational functions are proven under certain assumptions. We need and prove
a special lemma for the case of abelian varieties, which asserts: If $f:V\rightarrow A$

is a proper morphism from a normal variety and there exists an embedding
of $X$ in $V$ such that $f$ induces an isomorphism of completions along $X$ , then
$V$ is also an abelian variety and $f$ is a separable isogeny, provided $X$ gener-
ates $A$ .

Notations and conventions. By a ring we shall mean a commutative ring
with a unit element. When $R$ is a ring we shall denote its total ring of frac-
tions by $[R]_{0}$ . All the schemes and formal schemes considered in this paper
are tacitly assumed to be locally noetherian. Let us recall that a formak
scheme is sald to be locally noetherian (resp. noetherian) if each point has a
neighborhood of the form Spf $(A)$ , where $A$ is a noetherian ring which is com-
plete with respect to a topology defined by the powers of an ideal (resp. if it
is locally noetherian and if its underlying topological space is quasi-compact).

\S 1. The ring of formal-rational functions.

Let $Z^{*}$ be a (locally noetherian) formal scheme. For each affine open set
$U\subset Z^{*}$ , put

$M_{Z^{*}}^{0}(U)=[G_{2^{*}}(U)]_{0}$ .
Then we obtain1) a presheaf of rings $M_{z*}^{0}$ . Let $M_{z*}$ be the associated sheaf.
and put

$K(Z^{*})=H^{0}(Z^{*}, M_{z*})$ .
This is called the ring of formal-rational2) functions.

Let $\xi\in K(Z^{*})$ . We define the pole sheaf of $\xi$ to be the ideal sheaf $\lambda_{\xi}^{-1}(O_{Z^{*}})|$

with the homomorphism $\lambda_{-}$. : $0_{z*}\rightarrow M_{z*}$ defined by $\lambda_{-}\cdot(g)=\xi g$ , where $\mathcal{O}_{z*}$ is viewed
as a subsheaf of $M_{z*}$ in a natural manner. The pole sheaf of $\xi$ will be denoted
by $P_{\xi}$ . $P_{\xi}$ is coherent. In fact, pick up an affine open set $U$ of $Z^{*}$ , say so
small that $\xi$ belongs to $M_{z*}^{0}(U)$ . Write $\xi=ab^{-1}$ with $a,$ $b\in H^{0}(U, O_{z*})$ , where
$b$ is a non-zero-divisor of $H^{0}(U, C?_{z*})$ . We can view $\lambda_{a}$ as a homomorphism
$O_{U}\rightarrow O_{U}$ , and clearly $\lambda_{a}^{-1}(bO_{U})$ is equal to $P_{\xi}|U$. Since $bo_{U}$ is coherent, so is

1) Let $f$ be a non-zero-divisor of the ring $A=O_{z*}(U)$ . Since $O_{Z}*$ is a coherent
sheaf of rings (EGA I 10. 10. 3), and since there exists an equivalence between the
category of finite A-modules and the category of coherent $O_{Z}*$-Modules (cf. EGA $I$,

10. 10), the multiplication by $f$ defines an injective homomorphism $oz*\rightarrow f(P_{Z}*$ , and hence
for every affine open $V\subset U$ the restriction $f|V$ is a non-zero-divisor of $O_{Z}*(V)$ . There-
fore there exists a natural restriction map $M^{0_{z*}}(U)\rightarrow M^{0_{Z^{*}}}(V)$ for $V\subset U$ .

2) If $Z$ is a locally noetherian scheme, then it can be viewed as a formal scheme
with (0) as the defining Ideal, and the above construction can be applied to $Z$ ; in this
case $K(Z)$ is the ring of rational functions.
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$\lambda_{a}^{-1}(b\mathcal{O}_{U})$ .
The sheaf $\xi P_{\xi}$ , which might be called the sheaf of numerators of $\xi$ , is also

a coherent sheaf of ideals of $0_{z*}$ , because it is the image of $\lambda_{\xi}$ : $P_{\xi}\rightarrow O_{Z^{*}}$ . The
closed subset $Supp(\xi P_{\xi})$ coincides with the support of the section $\xi$ .

LEMMA (1.1). Assume $Z^{*}$ is affme. Then $K(Z^{*})$ is the total ring of frac-
tions of $H^{0}(Z^{*}, O_{Z^{*}})$ .

PROOF. Pick any $\xi\in K(Z^{*})$ . Then the pole sheaf $P_{\xi}$ is coherent. Since
$Z^{*}$ is affine, $P_{\xi}$ is generated by $H^{0}(P_{\xi})$ . Let $A=H^{0}(\mathcal{O}_{Z^{*}})$ and $P=H^{0}(P_{\xi})$ . If
$P$ contains a non-zero-divisor of $A$ , then we are done. It suffices that the ideal
$P$ is not contained in any associated prime $ Q\in$ Ass $(A)$ . For such $Q$ , there

exists $a\in A$ such that $ 0\rightarrow Q\rightarrow A^{a}\rightarrow$ $A$ is exact. If $Q\supset P$ , then $P_{\xi}$ lies in the

kernel of $c?_{Z^{*}}\rightarrow a(2_{Z^{*}}$ , which is impossible. Q. E. D.
Let $Z^{*}$ be a formal scheme. In speaking of inclusion, union and intersec-

tion of closed formal subschemes $Z_{i}^{*},$ $i=1$ and 2, we mean:
$Z_{1}^{*}\subset Z_{2}^{*}\Leftrightarrow I(Z_{1}^{*})\supset I(Z_{2}^{*})$ ,

$I(Z_{1}^{*}UZ_{2}^{*})=I(Z_{1}^{*})\cap I(Z_{2}^{*})$ ,
and

$I(Z_{1}^{*}\cap Z_{2}^{*})=I(Z_{1}^{*})+I(Z_{2}^{*})$ ,

where $I$ denotes the ideal sheaf.
Let $Z^{*}$ be a noetherian formal scheme, and let $X$ be a closed subset. Let

$Z^{**}$ denote the completion of $Z^{*}$ along $X$ ; then there exists a canonical mor-
phism of local-ringed spaces $c:Z^{**}\rightarrow Z^{*}$ . $c$ is flat, therefore it sends non-zero-
divisors of $O_{Z^{*}}$ to non-zero-divisors of $O_{Z^{**}}$ , and hence induces a homomorphism
$\nu;K(Z^{*})\rightarrow K(Z^{**})$ .

LEMMA (1.2). The homomorphism

$\nu;K(Z^{*})\rightarrow K(Z^{**})$

is injective if the following condition is satisfied;
(1.2.1) if $Z^{*}=Z_{1}^{*}UZ_{2}^{*}$ with closed subschemes $Z_{i}^{*}$ and if $ Z_{2}^{*}\cap X=\emptyset$ , then

$Z_{1}^{*}=Z^{*}$ .
PROOF. Pick any $\xi\in K(Z^{*})$ with $\nu(\xi)=0$ . Let $P$ be the pole sheaf of $\xi$

in $\mathcal{O}_{Z^{*}}$ . Then $Q_{1}=\xi P_{\xi}$ is an ideal sheaf in $G_{z*}$ such that $Q_{1}\cdot O_{Z^{**}}=(0)$ by $\nu(\xi)|$

$=0$ . $Z^{*}$ being noetherian, Artin-Rees theorem implies that there exists an
integer $q>0$ such that, if $Q_{2}$ denotes the q-th power of the annihilator Ideal
of $Q_{I}$ in $O_{Z^{*}}$ , we have $Q_{1}\cap Q_{2}=(0)$ . Let $Z_{i}^{*}$ be the formal subscheme of $Z^{*}$

defined by $Q_{i},$ $i=1,2$ . Then $Z_{1}^{*}UZ_{2}^{*}=Z^{*}$ and $ Z_{2}^{*}\cap X=\emptyset$ because, by $Q_{1}O_{z**}$

(0), $Supp(Q_{1})\cap X=\emptyset$ and hence $Q_{2}=0_{z*}$ in a neighborhood of $X$ . By (1.2.1)

we must have $Z_{1}^{*}=z*$ , i. e. $Q_{1}=(0)$ . Namely, $\xi P=(O)$ , which implies $\xi=0$ .
Q. E. D.
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A ring $A$ is called a primary ring if it has only one prime ideal, or equi-
valently, if it is a local ring whose maximal ideal is a nil-ideal. A ring $A$ is
said to be semi-primary if it is a direct product of a finite number of primary
rings. If $A$ is a noetherian ring without embedded primes ( $i$ . $e$ . Ass $(A)$ consists
of the minimal primes), then the total ring of fractions $[A]_{0}$ is semi-primary.
We shall say that a formal scheme $Z^{*}$ is primary if (1) it is noetherian, (2)
the stalks of the structure sheaf have no embedded primes and (3) the only
zero-divisors of $K(Z^{*})$ are nilpotent elements. (We shall see later that $K(Z^{*})$

is actually a primary ring if $Z^{*}$ is primary.) We shall say that a formal
scheme $Z^{*}$ is strongly primary if $(1^{*})$ it is noetherian, $(2^{*})$ the zero ideal of
($2_{Z^{*}.x}$ is a primary ideal for each point $x\in Z^{*}$ and $(3^{*})$ the underlying space of
$Z^{*}$ is connected. It is easy to see that a strongly primary formal scheme is
primary.

REMARK (1.3). If $Z$ is a noetherian scheme, the following conditions are
equivalent, as one can easily see:

i) $Z$ is irreducible (as a topological space) and the local rings $\mathcal{O}_{Z,x}(x\in Z)$

have no embedded primes,
ii) $Z$ is strongly primary,

iii) $Z$ is primary.
But they are quite different in the category of noetherian formal schemes.

LEMMA (1.4). Let $Z$ be an integral noetherian scheme, let $X$ be a connected
closed set of $Z$ and let $\hat{Z}$ be the completion of $Z$ along X. Assume that, for
every $x\in X$, the completion of the local ring $\mathcal{O}_{Z,x}$ is an integral domain. Then
$\hat{Z}$ is a reduced, strongly primary formal scheme, and $K(\hat{Z})$ is a field.

PROOF. For each $x\in X,$ $O_{\hat{Z}.x}$ and $\mathcal{O}_{2,x}$ have the same completion. There-
fore $0_{\hat{Z},x}$ is an integral domain. Thus $\hat{Z}$ is reduced and strongly primary.
The last statement follows from this, as we shall see in Lemma (1.7).

LEMMA (1.5). Let

$A-B\rightarrow\rightarrow Cuv$

be an exact diagram of rings and ring-homomorphisms $(i$ . $e$ . $A\approx\{b\in B|u(b)$

$=v(b)\})$ . If $B$ is semi-primary, then so is $A$ .
PROOF. Let $B=B_{1}\times\cdots\times B_{n}$ be the decomposition into primary rings and

let $e_{i}$ be the unit element of $B_{i}$ . Then $1=\sum e_{i},$ $e_{i}^{2}=e_{i}$ and $e_{i}e_{j}=0(i\neq j)$ . Let
$R$ be the smallest equivalence relation on the set $\{$ 1, 2, $\cdots$ , $n\}$ satisfying

$u(e_{i})\cdot v(e_{j})\neq 0$ $=\rangle$ $(i, j)\in R$ .
Let $S_{\alpha}(1\leqq\alpha\leqq m)$ be the R-equivalence classes, and put

$B_{ct}^{\prime}=\prod_{i\in S_{\alpha}}B_{i},$ $E_{\alpha}=\sum_{i\in S_{\alpha}}e_{i}$
.

Then $u(E_{\alpha})\cdot v(E_{\beta})=0$ for $\alpha\neq\beta,$
$1=\sum_{\alpha}u(E_{\alpha})=\sum_{\alpha}v(E_{\alpha})$ , therefore $u(E.)=v(E.)$ .

It follows that $A=\prod_{\alpha}(A\cap B_{a})$ . Therefore we can now assume, without loss
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of generality, that any two indices in $\{$ 1, 2, $\cdots$ , $n\}$ are R-equivalent; we will
prove, under this assumption, that $A$ is primary. Let P. be the prime ideal
of $B$ corresponding to $e_{i}(i$ . $e$ . $P_{i}=the$ radical of the kernel of the projection
$B\rightarrow B_{i})$ , and put $p_{i}=P_{i}\cap A$ . We claim $p_{1}=p_{2}=\cdots=p_{n}$ . Since the relation
$p_{t}=p_{j}$ defines an equivalence relation on $\{$ 1, 2, $\cdot$ .. , $n\}$ , it suffices to show that

$u(e_{i})\cdot v(e_{j})\neq 0\Rightarrow p_{i}=p_{j}$ .
Let $x\in p_{i}$ . Then $e_{i}x^{\nu}=0$ for some $\nu>0$ , so $u(e_{i}x^{\nu})=u(e_{i})\cdot v(x^{\nu})=0$ . Since
$e_{j}b\rightarrow u(e_{i})v(e_{j}b)$ is a ring-homomorphism from the primary ring $B_{j}=e_{j}B$ into
the ring $e{}_{J}C$ (where $e_{ij}$ is the non-zero idempotent $u(e_{i})\cdot v(e_{j})$ of $C$ ), its kernel
is a nil-ideal. Since $u(e_{i})\cdot v(e_{j}x^{\nu})=0$ , we have $(e_{j}x^{\nu})^{\ell l}=e_{j}x^{\nu/1}=0$ for some $\mu>0$ ,

which shows $x\in p_{j}$ . By symmetry, we have $p_{i}=p_{j}$ as wanted. Put $p=p_{1}$

$=p_{2}=\ldots$ Then $p=P_{1}\cap\cdots\cap P_{n}\cap A$ . Therefore if $x\in A-p$ then $x$ is a unit
\langle in $B$ , hence) in $A$ , and if $\chi\in p$ then $x$ is nilpotent. Q. E. D.

LEMMA (1.6). Let $Z^{*}$ be a formal scheme, and suppose that it has a finite
open covering $\{U_{i}\}$ such that $M_{Z*}(U_{i})$ are semi-primary. Then $K(Z^{*})$ is semi-
primary. In particular, $K(Z^{*})=[K(Z^{*})]_{0}$ .

PROOF. There exists an exact diagram of rings and ring-homomorphisms

$K(Z^{*})=H^{0}(Z^{*}, M_{z*})\rightarrow B=C$ ,

where $B=rJ_{i}M_{z*}(U_{i})$ and $C=\prod_{i.j}M_{z*}(U_{i}\cap U_{j})$ , to which we can apply the pre-
ceding lemma.

COROLLARY (1.7). Let $Z^{*}$ be a formal scheme. If $Z^{*}$ is reduced, then
$K(Z^{*})$ is reduced. If $Z^{*}$ is noetherian and the stalks of $0_{z*}$ have no embedded
primes, then $K(Z^{*})$ is semi-primary. If $Z^{*}$ is primary, then $K(Z^{*})$ is primary.

PROOF. The first assertion is obvious. Under the hypothesis of the second
assertion, $Z^{*}$ is covered by a finite number of open sets of the form Spf $(A)$ ,

where $A$ is noetherian and complete. Therefore every maximal ideal $m$ of $A$

is open and defines a point $z\in Z^{*}$ . The local ring $O_{Z^{*}.g}$ contains $A_{m}$ and has
the same completion as $A_{m}$ (cf. EGA I. 10.1.5 and 0.7.6.17), hence it is faithfully
flat over $A_{m}$ . Since $\mathcal{O}_{Z^{*}.z}$ has no embedded primes, $A_{m}$ has no embedded primes
either. This being true for all maximal ideals, $A$ itself has no embedded
primes and $[A]_{0}$ is semi-primary. Therefore $K(Z^{*})$ is semi-primary by the
preceding lemma. The last assertion is now obvious.

REMARK. When $z*$ is the completion of a reduced algebraic scheme (over

a field) along a closed subscheme, $Z^{*}$ is reduced by a theorem of Chevalley (or
by Grothendieck’s theory of excellent rings, cf. EGA IV. 7. 8. 3). Thus $K(Z^{*})$

is reduced and semi-primary, $i$ . $e$ . a finite direct sum of fields.
The case of a usual scheme is much simpler. Namely, the following lemma

is well known.
LEMMA (1.8). If $Z$ is a primary scheme, then it has a unique generic point,
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say $x$ , and $M_{Z}$ is a constant sheaf equal to the local ring $O_{Z.x}$ . If $Z$ is a noeth-
erian scheme whose local rings have no embedded primes, and if $x_{1},$ $\cdots$ , $x_{n}$ are
the generic points of the irreducible components $Z_{1},$ $\cdots$ , $Z_{n}$ of $Z$, then $ M_{z}=M_{1}\oplus$

$...\oplus M_{n}$ and $K(Z)=0_{Z.x_{1}}\times\cdots\times 0_{Z,x_{n}}$ , where $M_{i}$ is the constant sheaf $O_{Z.x_{i}}$ on
$Z_{i}$ and is zero outside of $Z_{i}$ .

Proof is simple and obvious.

\S 2. The effect of proper morphisms.

This section is essentially based upon the following theorem of Grothen-
dieck.

THEOREM (2.1). (EGA III, 5.1.4). Let $A$ be an I-adically complete noetherian
ring with an ideal I. Let $Y=Spec(A),$ $Y^{\prime}=Spec(A/I)$ and $f:Z\rightarrow Y$ a proper
morphism of schemes. Let $X=f^{-1}(Y^{\prime})$ , and let

$\hat{Y}=\hat{Y}/Y^{\prime}$ , $\hat{Z}=\hat{Z}/X$

denote the completions of $Y$ and $Z$ along $Y^{\prime}$ and $X$ respectively. Let $c:\hat{Z}\rightarrow Z$

be the $co$mpletion morphism. Then the functor $F-\succ c^{*}(F)$ is an equivalence of
the category of coherent sheaves on $Z$ with the category of coherent sheaves on $\hat{Z}$.

PROPOSITION (2.2). Let the notations and the assumptions be the same as
in the above theorem. Then we have a canonical isomorphism

$\nu;K(Z)_{\rightarrow}\sim K(\hat{Z})$

induced by $c$ .
PROOF. Since $f:Z\rightarrow Y$ is proper, $f$ maps every closed point of $Z$ to a

closed point of $Y$ . Since $A$ is I-adically complete, $Y^{\prime}$ contains all the closed
points of $Y$ . Therefore $X=f^{-1}(Y^{\prime})$ contains all the closed points of $Z$ and
hence meets any non-empty closed subscheme of $Z$. Thus the condition $(1.2.1\lambda$

is trivially satisfied with $Z$ for $Z^{*}$ . Hence, by Lemma (1.2), $\nu$ is injective. To
prove the surjectivity of $\nu$ , pick any $\xi\in K(\hat{Z})$ . Let $\hat{P}$ be the pole sheaf of $\xi$

in $0_{\dot{Z}}$ , and $\hat{Q}$ be the ideal sheaf $\xi\hat{P}$ in $\mathcal{O}_{\grave{Z}}$ . By the above theorem of Grothen-
dieck there exist ideal sheaves $P$ and $Q$ in $\mathcal{O}_{Z}$ such that $\hat{P}=PO_{\grave{Z}}$ and $\hat{Q}=QO_{\hat{z}-}$

Consider the commutative diagram of sheaves

$ o_{\uparrow^{\hat{Z}}}\rightarrow^{\alpha\hat}\underline{Hom}(\hat{P}, \mathcal{O}_{\grave{Z}})\uparrow$

$o_{Z}\rightarrow\underline{Hom}(P, O_{Z})$

$\alpha$

where $\alpha$ maps $\varphi\in O_{Z}(U)$ to the homomorphism $P(U)\rightarrow \mathcal{O}_{Z}(U)$ induced by the
multiplication by $\varphi$ , and $\hat{\alpha}$ is defined similarly. The vertical maps are the
completion maps, so that $Ker(\hat{\alpha})$ is the completion of $Ker(\alpha)$ by the equivalence
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of coherent sheaf categories. By definition of $\hat{P},$ $Ker(\hat{\alpha})=(0)$ and hence $Ker(\alpha)$

$=(0)$ . This means that $P$ is locally everywhere generated by non-zero-divisors.
Using (2.1) again, we have $Hom(\hat{P},\hat{Q})\approx Hom(P, Q)$ . Multiplication by $\xi$

defines an element $\lambda_{\xi}\in Hom(\hat{P},\hat{Q})$ ; let $\mu\in Hom(P, Q)$ be such that $\lambda_{\xi}$ is the
completion of $\mu$ . Let $z$ be an arbitrary point of $Z$ and let $U$ be an affine
neighborhood of $z$ ; then $P(U)$ contains non-zero-divisors of $O_{Z}(U)$ . Let $b$ be
such a non-zero-divisor and put $\mu(b)=a\in Q(U)\subset \mathcal{O}_{Z}(U)$ . The quotient ab
$\in M_{Z}(U)$ is independent of the choice of $b$ , as one can check immediately.
Therefore these local rational functions piece together to a rational function
$\xi^{\prime}\in K(Z)$ , and $\mu$ is the multiplication by $\xi^{\prime}$ . It is now clear that $\xi=\nu(\xi^{\prime})$ .

Q. E. D.
We say that a homomorphism of rings $A\rightarrow B$ is admissible if the non-zero-

divisors of $A$ are mapped to non-zero-divisors of $B$ . If $B$ is flat over $A$ then
$A\rightarrow B$ is admissible.

Let $f:Z^{\prime}\rightarrow Z$ be a morphism of finite type of schemes. We say that $f$ is
quasi-admissible, if for each pair of points $z^{\prime}\in Z^{\prime}$ and $z=f(z^{\prime})$ , there exist
affine neighborhoods, $Spec(B)$ of $z$ and $Spec(A)$ of $z$ , such that

(2.3.1) $f$ maps $Spec(B)$ into $Spec(A)$ , and
(2.3.2) $A\rightarrow B$ is admissible.

It is easy to see that, if $f$ is quasi-admissible, then (2.3.2) holds for any pair
of affine open sets $Spec(B)\subset Z^{\prime}$ and $Spec(A)\subset Z$ which satisfy (2.3.1). If $f$ is
quasi-admissible then there is a canonical homomorphism of sheaves of rings
$M_{z}\rightarrow M_{Z}$ , hence a canonical homomorphism $K(Z)\rightarrow K(Z^{\prime})$ .

We say that $f$ is admissible (resp. locally birational) if, in the above defini-
tion, we can replace (2.3.2) by the stronger condition

(2.3.3) there exists an element $a\in A$ which is a non-zero-divisor in $A$ as well
as in $B$ , scuh that the induced map $A_{a}\rightarrow B_{a}$ is flat3), (resp. by the still stronger

condition
(2.3.4) there exists a non-zero-divisor $a$ in $A$ for which we have a commuta-

tive diagram of rings

3) $A_{a}$ and $B_{a}$ denote the localizations of $A$ and $B$ by the powers of $a$ .



60 H. HIRONAKA and H. MATSUMURA

where $A\rightarrow B$ and $A\rightarrow A_{a}$ are the canonical maps and $B\rightarrow A_{a}$ is injective4).
The condition (2.3.4) is equivalent to saying that $A\rightarrow B$ is admissible and the
induced homomorphism $[A]_{0}\rightarrow[B]_{0}$ is an isomorphism (note that $B$ is an A-
algebra of finite type).

We say that $f$ is birational if it is locally birational and $M_{Z}\rightarrow f_{*}(M_{Z^{I}})$ is
an isomorphism.

LEMMA (2.4). Consider a cartesian diagram of schemes

$Z^{\prime}-W^{\prime}=Z^{\prime}x_{Z}W$

$ f\downarrow$ $\downarrow h$

$Z-W$
$g$

where $g$ is flat and $f$ (hence also h) is of finite type. Then $h$ is admissible (resp.

locally birational, resp. birational) if $f$ is so.
PROOF. Since all three properties are local with respect to the bases, we

may assume that $Z$ and $W$ are affine: $Z=Spec(A)$ and $W=Spec(C)$ . More-
over, we may assume that $Z^{f}$ is covered by a finite number of affine open sets
$U_{i}=Spec(B_{i})$ for which (2.3.3) (resp. (2.3.4)) holds. Since $C$ is flat over $A,$ $A$

$\rightarrow C$ and $B_{i}\rightarrow B_{i}\otimes C$ are admissible and (2.3.3) (resp. (2.3.4)) remains valid after
tensoring with $C$ . Thus $h$ is admissible (resp. locally birational) if $f$ is so.
Now, if $f$ is birational, then we have an exact diagram of rings

$[A]_{0}\rightarrow\prod_{i}[B_{i}]_{0^{-\rightarrow\prod_{i,j}[B_{ij}]_{0}}}-\succ$

where $B_{ij}=\Gamma(U_{i}\cap U_{j}, \mathcal{O}_{Z},)$ . Put $K=[A]_{0}$ . Since $C$ is flat over $A,$ $[C]_{0}$ is flat
over $K$. Thus, tensoring the above diagram with $[C]_{0}$ over $K$ and noting that
$[B_{i}]_{0}\approx K$ and $[B_{i}\otimes {}_{A}C]_{0}\approx[C]_{0}$ , we see that

$[C]_{0}-\rightarrow\prod_{i}[B_{i}\otimes C]_{0}\overline{\rightarrow}\prod_{:..j}[B_{ij}]_{0}\otimes_{K}[C]_{0}$

is exact. $C\rightarrow B_{ij}\otimes {}_{A}C$ is admissible (cf. footnote 4)) and $B_{ij}\rightarrow B_{ij}\otimes {}_{A}C$ is also
admissible (by flatness), therefore $[B_{ij}]_{0}\otimes_{K}[C]_{0}$ is a subring of $[B_{ij}\otimes {}_{A}C]_{0}$ .
Thus

$[C]_{0}\rightarrow\prod_{:}[B_{i}\otimes {}_{A}C]_{0}=\prod_{i,j}[B_{ij}\otimes_{A}C]_{0}$

is exact, which proves that

$K(W)\rightarrow K(W^{\prime})=\Gamma(W, h_{*}(M_{W^{\prime}}))$

4) If $Spec(B_{1})$ is open in $Spec(B)$ then $B_{1}$ is flat over $B$ . So we may replace $B$

by $B_{1}$ in (2.3.3). Therefore, the property ” $Z^{\prime}\rightarrow Z$ is admissible is a local property
with respect to both $Z^{\prime}$ and $Z$ . But, despite its name, local birationality is not a local
property with respect to $z/$ . Example: $Z=two$ intersecting lines, $z/=two$ disjoint
lines viewed as the normalization of $Z$ .
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is an isomorphism for $W=Spec(C)$ . Since $Spec(C)$ can be taken arbitrarily
small, this means $M_{W}\approx h_{*}(M_{W},)$ . Q. E. D.

REMARK (2.5). Let $f:Z^{\prime}\rightarrow Z$ be a morphism of finite type of noetherian
schemes. According to the theorem of generic flatness (SGA IV. 6.11 or EGA
IV. 6.9.1) the following condition is sufficient for $f$ to be admissible:

(2.5.1) $Z$ is reduced, the local rings of $Z^{\prime}$ have no embedded primes, and $f$

maps every irreducible component of $Z^{\prime}$ generically onto some irreducible com-
ponent of $Z$.

We now prove the “ birational invariance of the ring of formal-rational
functions “.

THEOREM (2.6). Let $f:Z^{\prime}\rightarrow Z$ be a proper birational morphism of schemes.
Let $X$ be a closed subset of $Z$ and let $X^{\prime}=f^{-1}(X)$ ; put $\hat{Z}=Z_{/x},\hat{Z}^{\prime}=Z_{X^{\prime}}^{\prime}$ .
Then the cannonical morphism $f:\hat{z}^{\gamma}\rightarrow\hat{Z}$ induces an isomorphism

(2.6.1) $M_{\hat{Z}}\rightarrow-\hat{f}_{*}(M_{\hat{Z}},)$

and hence also

(2.6.2) $K(\hat{Z})_{\rightarrow}\sim K(\hat{Z}^{\prime})$ .
PROOF. Let $U=Spec(A)$ be an affine open set in $Z$. It suffices to show

(2.6.2) for $Z=U$ and $Z^{\prime}=f^{-1}(U)$ . Therefore we assume that $Z=Spec(A)$ .
Let $\hat{A}$ be the completion of $A$ by the powers of the ideal of $X$, and consider
the base change

$Z^{\prime}\langle-----W^{\prime}=Z^{\prime}\times ZW$

$Z=Spec(A)-\downarrow W=\downarrow Spec(\hat{A})$

.
Now, $Z$ (resp. $Z^{\prime}$ ) is canonically isomorphic to the completion $W$ of $W$ along
the inverse image of $X$ in $W$ (resp. $\hat{W}^{\prime}$ of $W^{\prime}$ along the inverse image of $X$‘

in $W^{\prime}$). Since $\hat{A}$ is flat over $A,$ $W^{\prime}\rightarrow W$ is proper and birational. Therefore,
in the commutative diagram

$K(W^{\prime})-\rightarrow K(\hat{W}^{\prime})=K(\hat{Z}^{\prime})$

1 $|$

$K(W)\rightarrow K(\hat{W})=K(\hat{Z})$

$K(W)\rightarrow K(W^{\prime})$ is an isomorphism by birationality and the horizontal arrows
are isomorphisms by (2.2). Hence $K(\hat{Z})\approx K(\hat{Z}^{\prime})$ , Q. E. D.

Next we consider more general situations.
THEOREM (2.7). Let $f:Z^{\prime}\rightarrow Z$ be a proper morphism of noetherian schemes;

let $X$ be a closed subset of $Z$ and let $X^{\prime}=f^{-1}(X)$ ; put $\hat{Z}=Z_{/x}$ and $\hat{Z}^{\prime}=Z_{/x}^{\prime}$ .
Assume that

(2.7.1) the local rings of $Z$ and $Z^{\prime}$ have no embedded primes, and $f$ maps
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each irreducible component of $z/$ onto some irreducible component of $Z$ ; and
(2.7.2) one of the following conditions is satisfied:

I) $Z$ is $a$]$fine$ ,

II) $f$ is admissible and $K(Z^{\prime})$ is a finite $K(Z)$ -module,
III) $Z$ and $\hat{Z}$ are reduced.

Then there is a canonical isomorphism

(2.7.3) $[K(Z^{\prime})\otimes_{K(Z)}K(\hat{Z})]_{0\rightarrow}\sim K(\hat{Z}^{\prime})$ .
PROOF. Case I). Let $Z$ be affine : $Z=Spec(A)$ . Let $\hat{A}$ be the I-adic com-

pletion of $A$ , where $I$ is the ideal of $X$ . Put $W=Spec(\hat{A})$ and $W^{\prime}=Z^{\prime}\times ZW$.
Let $Spec(B)\subset Z^{\prime}$ be an arbitrary affine open set. Then, by (2.7.1), $A\rightarrow B$ is
admissible and $Ass_{A}(B)\subset Ass(A)$ . It follows from this that $Ass_{\hat{A}}(B\otimes_{A}\hat{A})$

$\subseteq$ Ass $(\hat{A})$ by [Bourbaki, Alg. Comm. Ch. IV, 2.6. Th. 2]. Therefore $\hat{A}\rightarrow B\otimes\hat{A}$

is also admissible. So both $Z^{\prime}\rightarrow Z$ and $W^{\prime}\rightarrow W$ are quasi-admissible and there
are canonical homomorphisms $K(Z)\rightarrow K(Z^{\prime})$ and $K(W)\rightarrow K(W^{\prime})$ . As in the
preceding proof, we have commutative diagrams

$Z^{\prime}-W^{\prime}\prec-\hat{W}^{\prime}=\hat{Z}^{\prime}$ $K(Z^{\prime})\rightarrow K(W^{\prime})\approx K(\hat{Z}^{\prime})$

$Z^{\downarrow}-W^{\downarrow}\leftarrow-\hat{W}\downarrow=\hat{Z}$

,
$ K^{\uparrow}(Z)\rightarrow K(W)\approx K(\hat{Z})\uparrow$ .

Therefore we have only to prove

(2.7.4) $[K(Z^{\prime})\otimes_{K(Z)}K(W)]_{0\rightarrow}\sim K(W^{\prime})$ .
$W^{\prime}$ is covered by affine open sets of the form $Spec(B\otimes_{A}\hat{A})$ . Both $B\rightarrow B\otimes\hat{A}$

and $\hat{A}\rightarrow B\otimes\hat{A}$ are admissible, hence we have $[B\otimes_{A}\hat{A}]_{0}=[[B]_{0}\otimes_{A}[\hat{A}]_{0}]_{0}$ . Now,
by (2.7.1), $K(Z^{\prime})$ is the direct product of the local rings of the generic points
of the irreducible components of $z/$ , and such direct decomposition induces a
direct decomposition of $K(W^{\prime})$ . Therefore, to prove (2.7.4), we may assume
that $Z^{\prime}$ is irreducible. Then $[B]_{0}$ is independent of the open set $Spec(B)$ ;
more precisely, the restriction map $[B\otimes_{A}\hat{A}]_{0}\rightarrow[B^{\prime}\otimes_{A}\hat{A}]_{0}$ is an isomorphism
for any $Spec(B^{\prime})\subset Spec(B)\subset Z^{\prime}$ . Therefore we get (2.7.4).

Case II). Suppose that $f$ is admissible and $K(Z^{\gamma})$ is a finite $K(Z)$ -module.
This condition continues to hold when we replace $Z$ by an affine open set $U$,

and $Z^{\prime}$ by $f^{-1}(U)$ , because $K(Z^{\prime})$ is simply the direct product of the local rings
of the generic points of $Z^{\prime}$ . We may also suppose that $Z$ and $Z^{\prime}$ are irreduci-
ble. Let $(U_{i})_{1\leqq i\leqq n},$ $U_{i}=Spec(A_{i})$ , be an affine covering of $Z$. Then we have
an exact diagram of rings

$K(\hat{Z})\rightarrow\prod_{i}M_{\hat{Z}}(\hat{U}_{i})=\prod_{i,f}M_{\hat{Z}}(\hat{U}_{ij})$

where $U_{ij}=U_{i}\cap U_{j}$ . Put $L=K(Z^{\prime})$ and $K=K(Z)$ . Then $L$ and $K$ are primary
rings, and $L$ is a flat K-module of finite type. Therefore
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$L\otimes_{K}K(\hat{Z})\rightarrow\prod_{i}L\otimes_{K}M_{\hat{Z}}(U_{i})=\prod_{i.j}L\otimes_{K}M_{Z}(\hat{U}_{ij})$

is exact. All rings in this diagram are semi-primary (since $L$ is finite over
$K)$ . By Case I) proven above, we can rewrite it as

$L\otimes_{K}K(\hat{Z})-\rightarrow\prod_{i}M_{\hat{Z}^{\prime}}(f^{-1}(U_{i}))=\prod_{x,j}M_{\hat{Z}^{}}(f^{-1}(U_{ij}))$ .

This means $L\otimes_{K}K(\hat{Z})=K(\hat{Z}^{\prime})$ , as was wanted.
Case III). Suppose $Z$ and $\hat{Z}$ are reduced. In order to prove (2.7.3) we can

assume that $Z$ and $z/$ are irreducible. Put $L=K(Z^{\prime}),$ $K=K(Z)$ . $K$ is a field,
and $L$ is a primary ring which is a localization of a K-algebra of finite type.
Let $\mathfrak{m}$ be the maximal ideal of $L$ , let $\overline{L}=L/\mathfrak{m}$ and let $x_{1},$ $\cdots$ , $x_{n}\in L$ be such
that their images in $\overline{L}$ constitute a transcendence basis of $\overline{L}$ over $K$. If
$0\neq\varphi(x)\in K[x_{1}$ , $\cdot$ .. , $x.]=K[x]$ , then $\varphi(x)\not\in \mathfrak{m}$ and so $\varphi(x)$ is a unit in $L$ . There-
fore $K\subset K(x)\subset L$ and $L$ is finite over the field $K(x)$ .

Let $Z$ be covered by $m$ affine open sets $(U_{i})_{1i\leqq m}=\leq$ . The theorem being true
when $m=1$ , we proceed by induction on $m$ . Put $Y=U_{1}\cap\cdots\cap U_{m-1},$ $W=U_{m}$

$\cap Y,$ $Y^{\prime}=f^{-1}(Y)$ and $W^{\prime}=f^{-1}(W)$ . Then we can apply the induction hypo-
thesis to $Y$ as well as to $W$. We have an exact diagram of rings

$K(\hat{Z})\rightarrow K(\hat{Y})\times K(\hat{U}_{m})\rightarrow\underline{r_{1}p_{1_{\succ}}}K(\hat{W})$

$r_{2}p_{2}$

where $p_{i}$ are projections and $r_{i}$ are restrictions. From this we want to derive
the exactness of

$[L\otimes_{K}K(\hat{Z})]_{0}\rightarrow[L\otimes_{K}K(\hat{Y})]_{0}\times[L\otimes_{R}K(\hat{U}_{m})]_{0}=[L\otimes_{K}K(\hat{W})]_{0}$ .

Since $[L\otimes K(\hat{Y})]_{0}=K(\hat{Y}$ ’ $)$ , $[L\otimes K(\hat{U}_{m})]_{0}=K(\hat{U}_{m}^{\prime})$ where $U_{m}^{\prime}=f^{-l}(U_{m})$ , and
$[L\otimes K(\hat{W})]_{0}=K(\hat{W}^{\prime})$ , the above diagram would prove $[L\otimes_{K}K(\hat{Z})]_{0}=K(\hat{Z}^{\prime}),$ $i$ . $e$ .
(2.7.3).

Since $K(\hat{Y}),$ $K(\hat{U}_{m})$ and $K(\hat{W})$ are direct products of fields, the following
lemma will complete our proof.

LEMMA (2.8). Let $L$ and $K$ be as abave; let $\hat{K},$
$K_{1},$ $K_{2}$ and $K_{3}$ be finite

direct products of fields containing $K$ such that $K_{1}\subset K_{3},$ $K_{2}\subset K_{3}$ and $\hat{K}=K_{1}\cap K_{2}$ .
Thus there exists an exact diagram

$\hat{K}\rightarrow K_{1}\times K_{2}\frac{p_{1}}{\rightarrow}\succ p_{2}^{K_{3}}$

where $p_{i}(i=1,2)$ are the projections. Then the induced diagram

$[L\otimes_{K}\hat{K}]_{0}\rightarrow[L\otimes_{K}K_{1}]_{0}\times[L\otimes_{K}K_{2}]_{0}=[L\otimes_{K}K_{3}]_{0}$

is also exact.
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PROOF. Since $K\subset K(x_{1})\subset K(x_{1}, x_{2})\subset\cdots\subset K(x_{1}$ , $\cdot$ .. , $x_{n})\subset L$ , it suffices to
consider the following two cases:

(1) $L$ is a simple transcendental extension field of $K$ : $L=K(t)$ .
(2) $L$ is a primary ring which is a finite K-module.

In the second case we can omit $[$ $]_{0}$ in the formula because $L\otimes K$ and $L\otimes K_{t}$

are semi-primary, and the assertion is immediate (because any K-module is flat
over $K$ ). Now let us prove the first case. We are to prove $[K_{1}[t]]_{0}\cap[K_{2}[t]]_{\theta}$

$=[\hat{K}[t]]_{0}$ , where $t$ is an indeterminate over $K_{s}$ . Let $K_{3}=\Phi_{1}\times\cdots\times\Phi_{r}$ be the
decomposition of $K_{3}$ into fields, and let $1=e_{1}+\cdots+e_{r}$ be the corresponding
decomposition of 1 into idempotents. Then $[K_{3}[t]]_{0}=\Phi_{1}(t)\times\cdots\times\Phi_{r}(t)$ . When
$F$ is a field and $u(t)=g(t)/f(t),$ $g(t)\in F[t],$ $f(t)\in F[t]$ with $f$ and $g$ relatively
prime and $f$ monic, we shall call the expression $g(t)/f(t)$ the standard form of
the rational function $u(t)$ . Then it is unique and is invariant under extension
of the coefficient field $F$ . Now pick any element $h\in[K_{1}[t]]_{0\cap}[K_{2}[t]]_{0}$ and
write

$h=(h_{1}, \cdots h_{r})$ , $h_{i}=g_{i}(t)/f_{i}(t)\in\Phi_{i}(t)$

where $g_{i}/f_{i}$ is the standard form of $h_{i}$ . Put $g(t)=(g_{1}(t), \cdot.. , g_{r}(t)),$ $f(t)=(f_{1}(t)$ ,

... , $f_{r}(t))$ , so that $h=g(t)/f(t)$ . We claim that $g(t),$ $f(t)\in K_{1}[t]$ . In fact, if
$K_{1}=\Psi_{1}\times\cdots\times\Psi_{s}$ is the decomposition of $K_{1}$ into fields and $1=e_{1}^{\prime}+\cdots+e_{s}^{\prime},$ $e_{i}^{\prime}$

$\in\Psi_{i}$ , then we may assume that $e_{1}^{\prime}=e_{1}+\cdots+e_{p},$ $e_{2}^{\prime}=e_{p+1}+\cdots+e_{q}$ , etc., and
hence $\Psi_{1}$ is a subfield of $\Phi_{1}\times\cdots\times\Phi_{p}$ . Let $\sigma_{j}$

; $\Psi_{1}\rightarrow\Phi_{j}(1\leqq j\leqq p)$ be the pro-
jection (which is an isomorphism onto a subfield of $\Phi_{j}$). Since $h\in[K_{1}[t]]_{\theta}$

$=\Psi_{1}(t)\times\cdots\times\Psi_{s}(t),$ $he_{1}^{\prime}$ has a standard form $he_{1}^{\prime}=A(t)/B(t)$ with $A,$ $B$ in $\Psi_{1}[t]$ .
Then $\sigma_{j}(A)/\sigma_{j}(B)$ is the standard form of $h_{j}$ and hence $\sigma_{j}(A)=g_{j},$ $\sigma_{j}(B)=f_{j}$

$(1\leqq j\leqq p)$ . Therefore $(g_{1}, \cdots g_{p})=A\in\Psi_{1}[t],$ $(f_{1}, f_{p})=B\in\Psi_{1}[t]$ . The
same is true for each of $\Psi_{2},$ $\cdots$ $\Psi_{s}$ , hence $g,$ $f\in K_{1}[t]$ . By the same reason
we have $g,$ $f\in K_{2}[t]$ , therefore $g,$ $f\in\hat{K}[t]$ and $h\in[\hat{K}[t]]_{0}$ , as was wanted.
Thus we have proven Lemma (2.8) and Theorem (2.7).

DEFINITIONS (2.9). Let $Z$ be a scheme, $X$ a closed subscheme and $\hat{Z}$ the
completion of $Z$ along $X$ . We shall say

(2.9.1) that $X$ is $G1$ in $Z$ if the canonical map $H^{0}(Z, O_{Z})\rightarrow H^{0}(\hat{Z}, O_{\hat{Z}})$ is an
isomorphism,

(2.9.2) that $X$ is $G2$ in $Z$ if $K(\hat{Z})$ is a finite module over $K(Z)$ ,

(2.9.3) that $X$ is $G3$ in $Z$ if the canonical map $K(Z)\rightarrow K(\hat{Z})$ is an isomorphism.
(The letter $G$ is intended to suggest “ generate “.)

REMARKS (2.10). For simplicity let us consider here the case when $Z$ is
an algebraic variety over a field $k$ such that $H^{0}(Z, O_{Z})=k$ . Then $K(Z)$ is a
field, and $K(\hat{Z})$ is a finite direct sum of fields. If $X$ is $G1$ or $G3$ in $Z$ then $X$

must be connected. If we assume that $\hat{Z}$ is primary and that $k$ is algebraically
closed, then we have $G3\Rightarrow G2\Rightarrow G1$ . In fact, $K(\hat{Z})$ is a field, and if $\xi\in H^{0}(\hat{Z}, O_{\hat{Z}})$
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$\subset K(\hat{Z}),$ $\xi\not\in k$ , then $\xi$ would be analytically independent over $k$ and $H^{0}(\hat{Z}, O_{\hat{Z}}))$

would contain the formal power series ring $k[[\xi_{-c}]]$ , where $c\in k$ is such that
$\xi-c=0$ on $X$, so $K(\hat{Z})$ would have infinite transcendence degree over $k$ .

If $X$ is $G1$ in $Z$ and if $f:Z\rightarrow Z^{\prime}$ is a dominant morphism to a variety $Z^{r}$

with $\dim Z^{\prime}>0$ , then $\dim f(X)>0$ . In fact, if $f(X)$ were a point $Q$ , then
$H^{0}(\hat{Z}, \mathcal{O}_{\hat{Z}})$ would contain the completion of the local ring $0_{Z^{fl}.Q}$ , which contradicts
the assumption.

Let $X$ be $G1$ in $Z$, and let $f:Z\rightarrow A$ be a morphism into an abelian variety
$A$ such that $f(X)$ passes through the origin $O_{A}$ ( $i$ . $e$ . the zero element) of $A$ .
Assume that $f(Z)$ generates $A$ . Then $f(X)$ also generates $A$ . In fact, if $B\subset A$

is the abelian subvariety generated by $f(X)$ , then the composite morphism
$Z\rightarrow A\rightarrow A/B$ sends $X$ into a point while the image of $Z$ generates $A/B$ , there-
fore $A=B$ by what we have just remarked.

Hironaka [1] has proved that, if $Z$ is a smooth variety and $X$ is a smooth
and complete subvariety with $\dim X>1$ and $co\dim_{Z}X=1$ such that the normal
bundle of $X$ in $Z$ is ample, then $X$ is $G3$ in $Z$. In the next paragraph we
shall prove, among other things, that the condition $\dim X>1$ can be relaxed
to $\dim X>0$ . For higher codimensions, Hartshorne recently proved that, if $Z$

and $X$ are smooth, if $X$ is complete and $\dim X>0$ , and if the normal bundle
of $X$ in $Z$ is ample in his sense, then $X$ is $G2$ in $Z$ .

We need one more definition. Under the assumption made at the begin-
ning of these remarks (2.10), let $R$ be a normal complete local ring containing
$k$ such that the residue field $R/m_{R}$ (where $m_{R}$ is the maximal ideal of $R$) is,

canonically isomorphic to $k$ (in short, a k-rational normal complete local ring)..

Put $Z_{R}=Z\times kSpec(R)$ , and let $\hat{Z}_{R}$ denote the completion of $Z_{R}$ along the closed
set $X\times y$ , where $y$ is the unique closed point of $Spec(R)$ . We shall say that
$X$ is universally $Gi,$ $(i=1,2,3)$ , if, for any such $R,$ $X\times y$ is $Gi$ in $Z_{R}$ .

If $Z$ is complete, then $Z$ is universally $G3$ in $Z$ itself by $(2,2)$ . Does ’ $x$ is
$Gi$ in $Z$ ’ always imply “ $X$ is universally $Gi$ in $Z’$ ? We do not know the $\cdot$

answer.
Back to the general case, we can derive the following connectedness theo-

rem from Theorem (2.7). (See (2.7.3).)

PROPOSITION (2.11). With the notations and the assumptions of (2.7), let us
assume that $X$ is $G3$ in Z. Then $f^{-1}(X)$ is $G3$ in $Z^{\prime}$ . In particular, $f^{-1}(X)$ is
connected if $Z^{\prime}$ is irreducible.

PROPOSITION (2.12). Let $Z$ be an integral noetherian scheme, and let $X$ be
a closed subscheme which is $G2$ in Z. Then the degree $[K(\hat{Z}):K(Z)]$ bounds
the index of the canonical homomorphism $\hat{\pi}_{1}(X)\rightarrow\hat{\pi}_{1}(Z)$ induced by the inclusion,
where $\hat{Z}$ denotes the completion of $Z$ along X. ( $\hat{\pi}_{1}$ denotes the fundamentaf
group in the sense of Abhyankar-Grothendieck.)
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PROOF. Since the fundamental groups are by definition profinite complete,
the image of the homomorphism is closed. But, for every finite Galois (and
in particular, \’etale) connected covering $f:Z^{\prime}\rightarrow Z,$ $(2.7.3)$ implies that the num-
ber of connected components of $\hat{Z}^{\prime}$ ( $i$ . $e.$ , the same of $f^{-1}(X)$) is bounded by the
degree $[K(\hat{Z}):K(Z)]$ . This means that this degree bounds the index of the
homomorphism from the Galois group of the induced connected covering of $X$

to the Galois group of $f$. (2.12) follows.
The following theorem plays an important role in \S 4.
THEOREM (2.13). Let $Y_{1},$ $\cdots$ , $Y_{n}$ be algebraic varieties over a field $k$ in

Weil’s sense ( $i$ . $e$ . integral schemes of finite type over $Spec(k)$ such that $K(Y_{i})$

are regular extensions of $k$). Let $e_{i}\in Y_{i}$ be a k-rational, geometrically normal
point of $Y_{i}$ , and let $W_{i}\subset Y_{i}$ be a closed set containing $e_{i}$ and universally $G3$ in

$Y_{i}$ , for each $i=1,$ $\cdots$ $n$ . Put $Z=Y_{1}\times\cdots\times Y_{n},$ $ X_{i}=e_{1}\times\cdots\times e_{i-1}\times W_{i}\times e_{i+1}\times$

. . $\times e_{n}$ , and $X=X_{1}$ U... $UX_{n}$ . Then $X$ is universally $G3$ in $Z$.
PROOF. It follows from our assumptions that $Y_{1}\times\cdots\times Y_{i}$ is a variety

over $k$ , and that $e_{1}\times\cdots\times e_{i}$ is a geometrically normal point of $Y_{1}\times\cdots\times Y_{i}$

(cf. EGA IV. 6.14.1). Therefore, by induction, it is enough to consider the case
$n=2$ .

Let $R,$ $m_{R},$ $y$ be the same as in (2.10). We have to prove that $K(Z_{R})_{\rightarrow}^{\sim}K(\hat{Z}_{R})$ .
Here $Z_{R}=Y_{1}\times Y_{2}\times Spec(R),$ $X_{R}=(W_{1}\times e_{2}Xy)U(e_{1}\times W_{2}\times y)$ and $\hat{Z}_{R}$ is the
completion of $Z_{R}$ along $X_{R}$ . Let $Z_{1}$ (resp. $\hat{Z}_{2}$) denote the completion of $Z_{R}$ along
$W_{1}\times e_{2}\times y$ (resp. $\rho_{1}\times W_{2}\times y$).

Let $o_{i}(i=1,2)$ be the local ring of $e_{i}\times y$ on $Y_{i}\times Spec(R)$ , and $\hat{o}_{i}$ its com-
pletion; $0_{i}$ is normal by EGA IV. 6.14.1, hence $\hat{0}_{i}$ is also normal as $0_{i}$ is ex-
cellent (cf. EGA IV. 7.8.3). Let $F,$ $F_{1},$ $F_{2}$ denote the fields of fractions of $R,\hat{0}_{1}$ ,

$\hat{o}_{2}$ respectively. Put $K_{i}=K(Y_{i}),$ $i=1,2$ . Then, by the definition of ” univer-
sally $G3$ “, we have

$K(\hat{Z}_{1})=F_{2}(K_{1})$ , $K(\hat{Z}_{2})=F_{1}(K_{2})$ .
Therefore we have canonical inclusions

$K(Z_{R})=F(K_{1}, K_{2})\subset K(\hat{Z}_{R})\subset K(\hat{Z}_{1})\cap K(\hat{Z}_{2})=F_{2}(K_{1})\cap F_{1}(K_{2})$ ,

where all fields under consideration are viewed as subfields of $[\hat{o}_{12}]_{0},0_{12}$ being
the local ring of $e_{1}\times e_{2}\times y$ on $Z_{R}$ . We want to show $F_{2}(K_{1})\cap F_{1}(K_{2})=F(K_{1}, K_{2})$ ;
this is a purely algebraic problem and is contained in the following lemma.

LEMMA (2.14). Notations being as above, the fields $F_{1}$ and $F_{2}$ are linearly
disjoint over $F$ , and we have $F_{1}(K_{2})\cap F_{2}(K_{1})=F(K_{1}, K_{2})$ .

PROOF. Let $\varphi_{1}$ , $\cdot$ .. , $\varphi_{p}\in F_{1}$ be linearly independent over $F$ . We want to
show that they are linearly independent over $F_{2}$ . Clearing the denominators,

we may assume that $\varphi_{i}\in\hat{0}_{1}$ for all $i$ . Suppose that there is a relation $\sum f_{i}\varphi_{i}$

$=0$ with $f_{i}\in F_{2}$ and, say, $f_{1}\neq 0$ . Again we lnay assume that $f_{i}\in\hat{0}_{2}$ for all $i$ .
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Let $m_{2}$ be the maximal ideal of $O_{Y_{2},e_{2}}$ . Since $\hat{0}_{2}$ is a noetherian integral domain,
by Krull’s Durchschnittssatz there exists an integer $\nu>0$ such that $f_{1}\not\in m_{2}^{\nu}\hat{o}_{2}$ .
Now, since $\hat{0}_{2}$ is the complete tensor product5) of $O_{Y_{2},e_{2}}$ and $R$ over $k$ , we have

$\hat{o}_{2}/m_{2}^{\nu}\hat{0}_{2}=R\otimes_{k}(\mathcal{O}_{Y_{2},e_{2}}/m_{2}^{\nu})$ .
Similarly,

$\hat{o}_{12}/m_{2}^{\nu}\hat{o}_{12}=\hat{0}_{1}\otimes_{k}(O_{Y_{2}.e_{2}}/m_{2}^{\nu})$ .
Moreover, $\hat{o}_{12}$ is flat over $\hat{o}_{2}$ since $Y_{1}\times Y_{2}\times Spec(R)$ is flat over $Y_{2}\times Spec(R)$

\langle cf. Bourbaki, Alg. Comm. Chap. III. 5. Prop. 4), hence we have $m_{2}^{\nu}\hat{0}_{12}\cap\hat{0}_{2}$

$=m_{2}^{\nu}\hat{o}_{2}$ . Let $(\omega_{j})$ be a k-basis of $O_{Y_{2},e_{2}}/m_{2}^{\nu}$ , and write

$f_{i}mod m_{2}^{\nu}\hat{0}_{2}=\sum_{j}a_{ij}\otimes\omega_{j}$ , $a_{ij}\in R$ .

Then, taking the relation $\sum f_{i}\varphi_{i}=0$ modulo $m_{2}^{\nu}\hat{0}_{12}$ , we get

$\sum_{j}(\sum_{i}a_{ij}\varphi_{i})\otimes\omega_{j}=0$
,

therefore all $a_{ij}=0$ . But this is absurd since $f_{1}mod m_{2}^{\nu}\hat{0}_{2}\neq 0$ .
The second assertion of the lemma follows from the first, by considering

the following diagram:

$F$

In fact, by a well-known property of linear disjointness, $F_{1}(K_{2})$ and $F_{2}(K_{1})$ are
linearly disjoint over $F(K_{1}, K_{2})$ , hence the assertion. Q. E. D.

\S 3. Embeddings into projective spaces.

Let $P^{N}$ be the projective space of dimension $N$ over a field $k$ , where $N\geqq 2$ .
We are interested in the function field of the completion of $P^{N}$ along a con-

5) Complete tensor product $=produit$ tensoriel compl\’et\’e. Cf. EGA $0_{I}$. $7.7$, Bourbaki:
Alg. Comm. Chap. III. \S 2. ex. 38, and Nagata [5], \S 42.
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nected closed subscheme $X$ . Let us first consider the most special case in
which $X$ is a linear subspace $P^{1}\subset P^{N}$ .

LEMMA (3.1). $P^{1}$ is universally $G3$ in $P^{N}$ .
PROOF. Take a k-rational normal complete local ring $R$ as in (2.10). $We^{\backslash }$

have to prove that $K(\hat{P}_{R})=K(P_{R})$ , where $P_{R}=P^{N}\times Spec(R)$ and $\hat{P}_{R}$ is the com-
pletion of $P_{R}$ along $P^{1}\times y$ . Choose a homogeneous coordinate system $(z_{0},$ $z_{1}$ ,

, $z_{N}$) of $P^{N}$ such that $P^{1}$ is defined by $z_{2}=\ldots=z_{N}=0$ . Put $v_{i}=z_{i}/z_{0}(1\leqq i$

$\leqq N)$ . Let $Q$ be the point on $P^{1}$ defined by $z_{1}=\ldots=z_{N}=0$ , and let $f:V\rightarrow P^{N}$

be the quadratic transformation of $P^{N}$ with center $Q$ . Put $E=f^{-1}(Q)$ and let
$l$ be the strict transform of $P^{1}$ in $V$ . Thus $f^{-1}(P^{1})=EUl$ ; let $\hat{V}_{R}$ (resp. $V_{1}$ ,

$\hat{V}_{2})$ be the completion of $V_{R}$ along $(EUl)\times y$ (resp. along $E\times y$ , along $l\times y$).

By the birational invariance (2.6), it suffices to show $K(V_{R})\rightarrow\sim K(\hat{V}_{R})$ .
Put $t_{i}=v_{i}/v_{1}(2\leqq i\leqq n)$ . Then $l\times y$ is covered by two affines, $Spec(A_{0})$

and $Spec(A_{1})$ , where $A_{0}=R[v_{1}, t_{2}, \cdots , t_{N}],$ $A_{1}=R[1/v_{1}, t_{2}, \cdots t_{N}]$ , and in each
ring the ideal of $l\times y$ is generated by $m_{R}$ and the $t^{\prime}s$ . Thus Spec$(A_{0})USpec(A_{1})$

$\approx P^{1}\times S\times Spec(R)$ , where $S=S^{N-1}$ is the affine space $Spec(k[t_{2}, \cdot.. , t_{N}])$ , and
in this isomorphism $l\times y$ is mapped to $P^{1}\times e\times y$ , where $e$ is the point $ t_{2}=\ldots$

$=t_{N}=0$ on $S$ . Therefore, by (2.2) or by (2.7), we have

$K(\hat{V}_{2})=[R[[t_{2}, \cdots , t_{N}]]]_{0}(v_{1})$ .

On the other hand, again by the birational invariance, we have

$K(\hat{V}_{1})=[R[[v_{1}, v_{N}]]]_{0}$ .

But $R[[v_{1}, \cdots, v_{N}]]\subset R[t_{2}, \cdots t_{N}][[v_{1}]]$ . When $\Phi$ is a field, the field of frac-
tions of a power series ring $\Phi[[u]]$ is denoted by $\Phi((u))$ . In this notation we-
have $K(\hat{V}_{1})\subset F(t)((v_{1}))$ , where $F=[R]_{0}$ . Therefore

(3.1.1) $K(V_{R})=F(v_{1}, t)\subset K(\hat{V}_{R})\subset K(\hat{V}_{1})\cap K(\hat{V}_{2})\subset F(t)((v_{1}))\cap L(v_{1})$ ,

where $L=[R[[t]]]_{0}$ . Here all the fields under consideration are embedded in
$L((v_{1}))$ . (If $x$ is the unique intersection point of $E$ and $l$ and if $V_{3}$ is the com-
pletion of $V_{R}$ along $x\times y$ , then $K(\hat{V}_{R}),$ $K(\hat{V}_{1})$ and $K(\hat{V}_{2})$ are canonically embedded
in $K(\hat{V}_{3})$ , and $K(\hat{V}_{3})=[R[[v_{1}, t]]]_{0}\subset L((v_{1}))$ , therefore the inclusions (3.1.1) are
justified.) Since $F(t)\subset L$ , Lemma (3.1) is now reduced to the following alge-
braic lemma.

LEMMA (3.2). Let $\Phi,$ $L$ be fields, $\Phi\subset L$ , and let $v$ be an indeterminate over
L. Then

$\Phi((v))\cap L(v)=\Phi(v)$ .
PROOF. Let $\xi\in\Phi((v))\cap L(v),$ $\xi\neq 0$ . As an element of $\Phi((v)),$ $\xi$ can be uni-

quely written in the form $\xi=\sum_{\nu=p}^{\infty}c_{\nu}c^{\nu},$ $c_{\nu}\in\Phi,$ $c_{p}\neq 0$ , where $p$ may be negative...
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On the other hand, $\xi-(\sum_{\cup}^{m}a_{i}v^{i})/(\sum_{0}^{n}b_{i}v^{i})$ for some $a_{i}\in L,$ $b_{i}\in L$ . Then

$(\sum_{0}^{n}b_{i}v^{i})(\sum_{\nu}^{\infty}c_{\nu}v^{\nu})=\sum_{0}^{m}a_{i}v^{i}$ ,

therefore $\hat{o}\sum_{+\nu=j}lRb_{i}c_{\nu}=0$ for all $j>m$ . Let $(w_{\lambda})$ be a linear basis of $L$ over $\Phi$ ,

and write $b_{i}=\sum_{\lambda}f_{i\lambda}w_{\lambda},$
$ f_{i\lambda}\in\Phi$ . Then, for each $\lambda$ , we have

$\sum_{i+v=j}f_{i\lambda}c_{\nu}=0$ for all $j>m$ .
This means $(\sum_{i=0}^{\eta}f_{i\lambda}v^{i})\cdot\xi\in\Phi(v)$ . Since not all $f_{i\lambda}$ are zero, we get $\xi\in\Phi(v)$ ,

Q. E. D.
From now on we assume that $k$ is an infinite field.
THEOREM (3.3). Let $X$ be any conneceted closed subscheme of positive dimen-

sion of $P=P^{N},$ $N\geqq 2$ . Then $X$ is universally $G3$ in $P$.
PROOF. Let $R$ and $y$ be as in (2.10), and let $\hat{P}_{R}$ be the completion of $P_{R}$

along $X\times y$ . Take an irreducible reduced curve $Y$ contained in $X$, and let $\hat{P}_{R}^{\prime}$

be the completion of $P_{R}$ along $Y\times y$ . Since the local rings of $P_{R}$ are normal
and excellent, and since $X\times y$ is connected, $\hat{P}_{R}$ is primary and $K(\hat{P}_{R})$ is a field
by (1.4). Therefore we have a monomorphism $K(\hat{P}_{R})\rightarrow K(\hat{P}_{R}^{\prime})$ . Thus it is
enough to prove $K(\hat{P}_{R}^{\prime})=K(P_{R})$ ; namely, we may assume that $X=Y$. Take a
linear subspace $L$ of dimension $N-2$ and another linear subspace $P^{1}$ in $P$, such
that $ L\cap(P^{1}UX)=\emptyset$ . Let $V=P-L,$ $\pi$ : $V\rightarrow P^{1}$ the projection with center $L$ , and
$i$ : $X\rightarrow P^{1}$ the morphism induced by $\pi;\lambda$ is finite. Let $W$ be the fibre product of
$V$ and $X$ over $P^{1}$ , and $\pi^{\prime}$ : $W\rightarrow X$ the projection. We know (cf. [1]) that $\pi$ can be
given a structure of vector bundle whose zero section is the inclusion $P^{1}\subset V$ .
Hence $\pi^{\prime}$ inherits a structure of vector bundle. Let $X_{1}$ be the zero section of $\pi^{\prime}$ ,

which is equal to $\gamma^{-1}(P^{1})$ where $\gamma:W\rightarrow V$ is the natural finite morphism. We
have another section of $\pi^{\prime}$ , say $X_{2}$ , which induces the inclusion $X\subset V$ . Then
we have an automorphism $\sigma$ of $W$ such that $\sigma(X_{1})=X_{2}$ . Let $\hat{W}_{i}(i=1,2)$ be
the completion of $W_{R}$ along $X_{i}Xy$ . Then $\sigma$ extends to an isomorphism $\sigma_{R}$ ;
$\hat{W}_{1}\rightarrow\sim;\hat{W}_{2}$ , which induces an isomorphism $K(\hat{W}_{2})_{\rightarrow}\sim K(\hat{W}_{1})$ , and the subfield $K(W_{R})$

is mapped onto itself by this isomorphism. Now, by (3.1) and by (2.7), we
have $K(\hat{W}_{1})=K(W_{R})$ . Therefore $K(\hat{W}_{2})=K(W_{R})$ . Since $\gamma(X_{2})=X$ , we have a
natural morphism $\varphi$ : $\hat{W}_{2}\rightarrow\hat{P}_{R}$ , which induces a monomorphism $K(\hat{P}_{R})\rightarrow K(\hat{W}_{2})$

$=K(W_{R})$ . Let $F$ be the field of fractions of $R$ , and let $P_{F}=P\times Spec(F)$ ,
$W_{F}=W\times Spec(F)$ . Then $K(W_{R})=K(W_{F})$ is a finite algebraic extension of
$K(P_{R})=K(P_{F})$ . Therefore $K(\hat{P}_{R})$ is finite algebraic over $K(P_{F})$ and its branch
locus in $P_{F}$ is contained in that of $K(W_{F})$ over $K(P_{F})$ . As we can choose $L$

and $P^{i}$ in various positions, the purity of branch locus implies that $K(\hat{P}_{R})$ is
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unramified over $K(P_{F})$ . $P_{F}$ is simply connected, hence $K(\hat{P}_{R})=K(P_{F})=K(P_{R})$ ,

D. E. D.
COROLLARY (3.4). Let $k$ be an infinite field, and let $Z$ be an algebraic

scheme over $k$ ; suppose that $Z$ is proper over $Spec(k)$ and that the local rings
of $Z$ have no embedded primes. Let $X$ be a closed subset of $Z$, and suppose
that there exists a morphism $f:Z\rightarrow P^{N}$ from $Z$ onto a projective space $P^{N}$ (over

k) such that (i) every irreducible component of $Z$ is mapped onto $P^{N}$ , and (ii)
$f(X)$ is connected and is not a point, and $X=f^{-1}(f(X))$ . Then $X$ is universally
$G3$ in Z. Hence $X$ is connected if $Z$ is irreducible.

PROOF. Immediate from (3.3) and (2.7).

REMARK (3.5). This corollary can be applied, for example, to the following
case: $Z$ is a normal variety, $X$ is a closed subset of codimension 1, and there
exists an $e$ ffective divisor $D$ with $Supp(D)=X$ such that the complete linear
system $|D|$ has no base point and is neither a pencil nor a composite of a
pencil6). Indeed, $|D|$ defines then a morphism $g:Z\rightarrow P^{N}$ such that $\dim g(Z)$,
$=m>1$ , and $D=g^{-1}(H)$ for some hyperplane $H$ of $P^{N}$ . Take a linear sub-
space $P^{N-m- 1}$ in $H$ which does not meet $g(Z)$ . Then, the projection of $P^{N}$ onto
a suitable linear subspace $P^{m}$ with center $P^{N- m- 1}$ induces a finite morphism
$h:g(Z)\rightarrow P^{m}$ , and $H\cap g(Z)=h^{-1}(H^{\prime})$ with $H^{f}=H_{\cap}P^{m}$ . Therefore $f=h\circ g$

satisfies the requirements of (3.4). We note a particularly simple case in the
following

PROPOSITION (3.6). Let $F$ be a non-singular projective surface over an alge-
braically closed field $k$ , and let $D$ be an effective divisor on $F$ with $(D^{2})>0$ and
such that every prime component of $D$ has a non-negative self-intersection num-
$ber$ . Then $K(\hat{F})=K(F)$ , where $\hat{F}$ is the completion of $F$ along $Supp(D)$ .

PROOF. According to Riemann-Roch inequality for surfaces, $\dim|nD|$

grows with $n$ in the order of $n^{2}$ if $(D^{2})>0$ . Therefore $|nD|$ is neither a pencil
nor a composite of a pencil for large $n$ . On the other hand, Zariski has shown
([7] p. 586-588) that $|nD|$ has no base points for large $n$ under the assumption
of the proposition. Therefore we can apply the preceding remark. Q. E. D.

In the case when $D$ is an irreducible non-singular curve on $F,$ $(D^{2})>0$

means that the normal bundle of $D$ in $F$ is ample. Thus the proposition (3.6)
supplements \S 1 of Hironaka [1].

\S 4. Embeddings into abelian varieties.

(4.1). Let $k$ be an algebraically closed field. Let $A$ be an abelian variety
over $k$ , and $X$ a connected closed subset of positive dimension of $A$ . Let $\hat{A}$

6) By definition, a linear system $|D|$ , free from fixed components, is a pencil or
a composite of a pencil if the associated rational map $Z\rightarrow P^{n}(n=\dim|D|)$ has a curve
as image. Cf. Weil [6].
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be the completion of $A$ along $X$ . We assume that $X$ goes through the origin
(or th $e$ unit element) $O_{A}$ of $A$ . Let $A^{\prime}$ be the abelian subvariety of $A$ gener-
ated by $X,$ $i$ . $e.$ , the image of $X\times\cdots\times X\rightarrow A$ by addition with sufficiently many
copies of X. (Since $X$ is connected and $O_{A}\in X$ , the images of such products
are independent of the number of copies. This stationary image is exactly the
smallest abelian subvariety of $A$ that contains $X.$) One can prove that there
exists a solution $(g, B)$ with $g:X\rightarrow B$ for the universal mapping property with
respect to the morphisms from $X$ into abelian varieties. The existence of
$(g, B)$ can be shown as follows. First of all, the pairs $(g_{\alpha}, B_{\alpha})$ of morphisms
$g_{\alpha}$ : $X\rightarrow B_{\alpha}$ with abelian varieties $B_{\alpha}$ constitute a directed system, as one defines:
$(g_{\alpha}, B_{\alpha})>(g_{\beta}, B_{\beta})$ if $g_{\beta}=hg_{\alpha}$ with a morphism $ h:B_{\alpha}\rightarrow B_{3}\int$ . To find $(g, B)$ as
above, it is enough to consider only those $(g_{\alpha}, B_{\alpha})$ such that $g_{\alpha}(X)$ generates
$B_{\alpha}$ . Then $\dim B_{\alpha}$ has a universal bound. In fact, let $X_{i}$ be the irreducible
components of $X$, and $A_{i}=Alb(X_{i})$ , the albanese variety of $X_{i}$ in the sense of
rational maps. Then we can find a rational map (morphism in an open dense
subset of $X$ ) $f:X\rightarrow\prod_{l}A_{i}$ and $h:\prod_{\tau}A_{i}\rightarrow B_{\alpha}$ such that $hf=g_{\alpha}$ , with reference

to any given $(g_{a}, B_{\alpha});h$ is then a homomorphism up to a translation and hence
surjective. Thus $\sum_{i}\dim A_{i}$ bounds $\dim B_{\alpha}$ . It then follows that there exists a
universal integer $m$ such that the morphism from the m-fold product of $X$ to
$B_{\alpha}$ induced by $g_{\alpha}$ is surjective for all $\alpha$ . The existence of $(g, B)$ , which is
called the strict albauese variety of $X$, follows from this by the same argu-
ment as in the case of ordinary albanese variety.

By translation we may assume that $g(O_{A})=O_{B}$ , so that we have an epimor-
phism $p:B\rightarrow A^{\prime}$ with $p\circ g=i$ . The morphism $p$ factors into a connected mor-
phism7) $p_{1}$ : $B\rightarrow B^{*}$ and a finite separable homomorphism $p_{2}$ : $B^{*}\rightarrow A^{\prime}$ ; indeed it
suffices to take $B^{*}=B/$(the connected component of $O_{B}$ in $Kerp$). Since
$p_{2}\circ p_{1}\circ g=i:X\rightarrow A^{\prime}$ is a closed immersion, $p_{1}\circ g:X\rightarrow B^{*}$ is also a closed im-
mersion, and $p_{2}$ is etale, so that the completion $\hat{B}^{*}$ of $B^{*}$ along $p_{1}(g(X))$ and
the completion $\hat{A}^{\prime}$ of $A^{\prime}$ along $X$ are isomorphic. We shall see later that
$K(\hat{A}^{\prime})=K(\hat{B}^{*})=K(B^{*})$ .

Let $A^{\prime/}=A/A^{\gamma}$ , the quotient abelian variety, and let $q:A\rightarrow A^{\prime/}$ be the na-
tural morphism. Let $R$ be the completion of the local ring of $A^{\prime\prime}$ at $O_{A’},$ .
Since $q$ is smooth with fibre $q^{-1}(O_{A},,)=A^{\prime}$ , after the base extension $Spec(R)$

$\rightarrow A^{\prime\prime}$ , the morphism $\hat{q}$ : $A\times_{A},,$ $Spec(R)\rightarrow Spec(R)$ has sections; take one such
section, say $\sigma$ . Since $q$ (and hence $\hat{q}$ ) is a principal fibre space with geometric
fibre $A^{\prime}$ , the existence of a section $\sigma$ induces an isomorphism

(4.1.1) $A\times A$ ” $Spec(R)\approx A^{\prime}\times_{k}Spec(R)$ .

7) Cf. EGA. Ch. IV, 4.5.5.
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Let us define

(4.1.2) $A^{*}=B^{*}\times_{k}Spec(R)$ .
Note that the completion morphism $\hat{A}\rightarrow A$ is factored by a morphism $\hat{A}\rightarrow A^{*};$

call this $\lambda$ .
THEOREM (4.2). Under the assumptions stated above, $X$ is universally $G2$

in $A^{\prime}$ , the embedding $p_{1}\circ g:X\rightarrow B^{*}$ is universally $G3$ , and the morphism $\lambda:\hat{A}$

$\rightarrow A^{*}$ induces an isomorphism

$[R]_{0}(K(B^{*}))=K(A^{*})\rightarrow-K(\hat{A})$ .
REMARK. The last isomorphism depends on the choice of the section $\sigma$ ,

hence it is not canonical unless $A=A^{\prime}$ .
PROOF. Let $X_{1},$ $\cdots$ , $X_{m}$ be the irreducible components of $X$, arranged in

such a way that $(X_{1}U UX_{i-1})\cap X_{i}\neq\emptyset$ for $1<i\leqq m$ . We proceed by induc-
tion on $m$ . Put $Y=X_{1}U\cdots UX_{m- 1}$ and assume, as we may, that the origin $O_{A}$

is chosen in $Y\cap X_{m}$ . (When $m=1$ , we take $O_{A}$ in $X_{m}$ and put $Y=O_{A}.$) Let
$A_{Y}^{\prime}$ be the abelian subvariety of $A$ generated by $Y$, and let

$p_{2Y}$ : $B_{Y}^{*}\rightarrow A_{Y}^{\prime}$

be defined in the same way as $B^{*}\rightarrow A^{\prime}$ . Then, by induction hypothesis, $Y$ is
universally $G2$ in $A_{Y}^{\prime}$ and universally $G3$ in $B_{Y}^{*}$ .

LEMMA (4.3). Let $X$ be an irreducible subvariety of a projective space $P^{N}$

over $k$ , and let $X^{\prime}$ be the intersection of $X$ and a linear subspace $P^{N-s}$ such that
$\dim X^{\prime}=\dim X-s>0$ . Then $X^{\prime}$ is universally $G3$ in X. Let $f:X\rightarrow A$ be a
morphism of $X$ into an abelian variety and suppose that $O_{A}\in f(X)$ and that
$f(X)$ generates A. Then $f(X^{\prime})$ also generates $A$ .

PROOF. The first assertion can be proven as in (3.5), and hence $X^{\prime}$ is $G1$

in $X$ also. Therefore the second assertion follows from (2.10).
Returning to the proof of (4.2), we first prove that $X=YUX_{m}$ is univer-

sally $G2$ in $A^{\prime}$ . Choose a projective embedding of $A$ ; if $\dim X_{m}>1$ then almost
all hyperplanes through $O_{A}$ cut irreducible subvarieties on $X_{m}$ by Bertini’s
theorem. This and (4.3) show that there exists an irreducible curve $\Gamma\subset X_{m}$

passing through $O_{A}$ and such that its image in $A^{\prime}/A_{Y}^{\prime}$ generates $A^{\prime}/A_{Y}^{\prime}$ . Let
$\tilde{\Gamma}$ be the normalization of $\Gamma,$ $\varphi:\tilde{\Gamma}\rightarrow\Gamma$ the canonical finite morphism and $e$ a
point of $\tilde{\Gamma}$ lying over $O_{A}$ . Let $n=\dim A^{\prime}/A_{Y}^{\prime}$ and let $W$ be the product of
$B_{Y}^{*}$ and $n$ copies of $\tilde{\Gamma}$ :

$W=B_{Y}^{*}\times\tilde{\Gamma}\times\cdots\times\tilde{\Gamma}$ .

Let $S:W\rightarrow A^{\prime}$ be the morphism defined by

$S(b\times P_{1}\times\cdots\times P_{n})=p_{2Y}(b)+\Sigma\varphi(P_{i})$ .
$S$ is surjective. Let $R$ be any k-rational normal complete local ring as in (2.10).
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Let $\hat{A}_{R}^{\prime}$ (resp. $\hat{A}_{\Gamma R}^{\prime}$) be the completion of $A_{A}^{\prime}i=A^{\prime}\times Spec(R)$ along $(YUX_{m})\times y$

(resp. along $(YU\Gamma)\times y$), where $y$ is the closed point of $Spec(R)$ . Since $K(A_{R}^{\prime})$

$\subset K(\hat{A}_{1\{}^{\prime})\subset K(\hat{A}_{\Gamma R}^{\prime})$ , we have only to show that $K(\hat{A}_{\Gamma R}^{\prime})$ is finite algebraic over
$K(A_{R}^{\prime})$ . Let $s_{R}$ : $W_{R}\rightarrow A_{R}^{\prime}$ be the morphism $s\times 1_{Spec(R)}$ . Put

$W^{\prime}=(Y\times e\times\cdots\times e)U(O\times\tilde{\Gamma}\times e\times\cdots\times e)$ U... $U(O\times e\times\cdots\times eX\tilde{\Gamma})$

and let $\hat{W}_{R}$ denote the completion of $W_{R}$ along $W^{\prime}Xy$ . Since $s_{R}^{-1}((YU\Gamma)\times y)$

contains $W^{\prime}$ , we have a canonical injection $K(\hat{A}_{\Gamma R}^{\prime})\subset K(\hat{W}_{R})$ . $Y$ is universally
$G3$ in $B_{Y}^{*}$ , therefore by (2.12) we have $K(\hat{W}_{R})=K(7V_{R})$ , which is finite algebraic
over $K(A_{R}^{\prime})$ . Thus $X$ is universally $G2$ in $A^{\prime}$ .

We need one more lemma to complete the proof of (4.2).
LEMMA (4.4). In the notations of (4.2), let $f;V\rightarrow A^{\prime}$ be a finite surjective

morphism from a normal variety $V$, and suppose that there exists a morphism
$j:X\rightarrow V$ with $i=f\circ j$, and that $f$ induces an $isomorph\iota smf$ from the completion
$V$ of $V$ along $j(X)$ to $A^{\prime}$ . Then $V$ is an abelian variety and $f$ is \’etale.

PROOF. First we prove that $K(V)$ is separable over $K(A)$ . For that pur-
pose, take a k-rational point $x$ of $X$ and put $z=j(x)$ . Let $S$ be the completion
of the local ring of $V$ at $z$ . Then $[S]_{0}\supset K(V)$ . By assumption $S$ is isomor-
phic to the completion of $\mathcal{O}_{A,x}$ . Since $\mathcal{O}_{A,x}$ is an excellent ring, $S$ is separable
over it (cf. EGA IV. 7.8.3. $(V)$). In view of the canonical inclusions $[S]_{0}\supset K(V)$

$\supset K(A^{\prime}),$ $K(V)$ is separable over $K(A^{\prime})$ . Then, by the purity of branch locus,

the branch locus $D$ in $A^{\prime}$ of $f:V\rightarrow A^{\prime}$ is purely of codimension 1 in $A^{\prime}$ . By
applying (4.3), we can find a curve $\Gamma_{i}\subset X_{i}$ which is $G3$ in $X_{i}$ ; adding
a few more curves in $X$ we can make $U_{i}\Gamma_{i}$ connected. Then $A^{\prime}$ is the
smallest abelian subvariety of $A^{\prime}$ containing $\Gamma_{1}$ U... $U\Gamma_{m}$ . Suppose $D$ is not
empty. Then the intersection number $(\Gamma\cdot D)$ on $A^{\prime}$ must be positive, where
$\Gamma$ is the l-cycle $\Gamma_{1}+\cdots+\Gamma_{m}$ . In fact, if $(\Gamma\cdot D)=0$ , then for any $d\in D$

we have $\Gamma_{(l}\subset D$ , where $\Gamma_{a}$ denotes the translation of $\Gamma$ by $d$ . This implies
immediately that $D$ contains a translation of the abelian subvariety of $A^{\prime}$

generated by $\Gamma$ , which is absurd. Take a generic point $a$ of $A^{\prime}$ over $k$ (in

Weil’s sense). Then $ T_{a}\cap D\neq\emptyset$ . Let $Z$ be an irreducible component of $\Gamma$ such
that $ Z_{a}\cap D\neq\emptyset$ . Then $f^{-1}(Z_{a})$ is a prime rational cycle over the field $k(a)$ .
Thus every $\overline{k(a)}$ -irreducible component $Z^{*}$ of $f^{-1}(Z_{a})$ must meet every k-irre-
ducible component of $f^{-1}(D)$ . Hence $z*$ must meet the ramification locus $E$ of
$f$ in $V$ . Clearly, $j(Z)$ is a specialization of such $z*$ over $k$ and hence $j(Z)$

$\cap E\neq\emptyset$ . This contradicts the assumption that $\hat{f}$ is an isomorphism (so that $f$

induces an \’etale morphism in some neighborhood of $j(X)$ in V). We now have
that $f$ is \’etale. But this implies that $V$ is an abelian variety ([4]). Q. E. D.

We can now complete the proof of (4.2). In the notations of (4.1), $\hat{A}$ is
also the completion of $A\times_{A^{\prime}},Spec(R)$ along $X\times A^{1/}y$ , where $y$ is the closed
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point of $Spec(R)$ . By (4.1.1) $\hat{A}$ is isomorphic to the completion $\hat{A}_{R}^{\prime}$ of $A_{R}^{\prime}=A^{r}$

$\times Spec(R)$ along $XXy$ . We can now forget the definition of $R$ in (4.1) and
let $R$ be an arbitrary k-rational normal complete local ring. We propose to
prove that $K(B_{R}^{*})\approx K(\hat{A}_{R}^{\prime})$ . Then it will follow, as in the special case of $A=A^{\prime}$

$=B^{*}$ , that $X$ is universally $G3$ in $B^{*}$ , and the proof of (4.2) will be completed.
$K(\hat{A}_{R}^{\prime})$ is finite algebraic over $K(A_{R}^{\prime})=F(K(A^{\prime}))$ , where $F=[R]_{0}$ , as we have

already seen. Moreover, we know that $K(\hat{A}_{R}^{\prime})\subset K(W_{R})=F(K(W))$ , where $W$ is
a variety over $k$ such that $K(W)$ is finite algebraic over $K(A^{\prime})$ . $K(\hat{A}_{R}^{\prime})$ is separ-
able over $F(K(A^{\prime}))$ by the same reason as in the proof of (4.4). Therefore, by
Galois theory, there exists a unique field $L$ such that $K(A^{\prime})\subset L\subset K(W)$ and
$F(L)=K(\hat{A}_{R}^{\prime})$ . Let $V$ be the normalization of $A^{\prime}$ in $L$ , and let $f:V\rightarrow A^{\gamma}$ be the
canonical finite morphism. Then we have a commutative diagram of R-mor-
phisms

where $h$ is the completion morphism. Since $f_{R}(g(\hat{A}_{R}^{\prime}))=X\times y,$ $g(\hat{A}_{R}^{\prime})$ is con-
tained in $V\times y$ . We have $\hat{A}_{P_{v}}^{\prime}\otimes_{R}(R/m_{R})=\hat{A}^{\prime}$ and $V_{R}\otimes_{R}(R/m_{R})=V$ , therefore
$g$ induces a $k$ -morphism $\hat{A}^{\prime}\rightarrow V$ , and combining it with the canonical morphism
$X\rightarrow\hat{A}^{\prime}$ we have a morphism of k-schemes $j:X\rightarrow V$ . $j(X)$ is closed in $V$ since
$X$ is proper over $Spec(k)$ . We have $g(\hat{A}_{R}^{\prime})=j(X)\times y$ . Let $\hat{V}$ (resp. $\hat{V}_{R}$) be the
completion of $V$ along $j(X)$ (resp. of $V_{R}$ along $j(X)\times y$). Then $f_{R}$ induces a
canonical morphism $\hat{f}_{R}$ : $\hat{V}_{R}\rightarrow\hat{A}_{R}^{\prime}$ , which factors the identity automorphism of
$\hat{A}_{R}^{\prime}$ by means of the completion of $g$. Since $f_{R}$ is finite and since $\hat{V}_{R}$ is normal
(because the local rings of $V_{R}$ are excellent and normal), it follows that $\hat{f}_{R}$ is
an isomorphism. Therefore $\hat{f}_{R}\otimes_{R}(R/m_{R})$ , which is equal to the completion

$\hat{f}:\hat{V}\rightarrow\hat{A}^{f}$ of $f_{J}$ must be an isomorphism. By (4.4), $V$ is then an abelian variety.
and after a suitable choice of the origin in $V,$ $f$ is a separable isogeny. By
the definition of the strict albanese variety $B$ of $X$ we get a canonical mor-
phism $B\rightarrow V$ , which is surjective as $V\rightarrow A^{\prime}$ is finite. Since $f:V\rightarrow A^{\prime}$ is \’etale.
$B\rightarrow V$ factors through $B^{*}$ . Thus we have a commutative diagram
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whence $K(\hat{A}_{R}^{\prime})=K(V_{R})\subset K(B_{R}^{*})$ . On the other hand $\hat{B}_{R}^{*}=\hat{A}_{K}^{\prime}$ because $\hat{B}_{R}^{*}$ is the
product (over k) of the formal schemes $\hat{B}^{*}=\hat{A}^{\prime}$ and Spf $(R)$ . Therefore $K(BR)$

$\subset K(\hat{B}_{R}^{*})\subset K(\hat{A}_{R}^{\prime})$ . Thus we obtain $K(\hat{A}_{R}^{\prime})=K(B_{R}^{*})$ , Q. E. D.
THEOREM (4.5). Let $A$ and $X$ be the same as in (4.2). Let us assume that

$X$ goes through $O_{A}$ and the morphi $smX\times X\rightarrow A$ by addition is surjective. Then
$X$ is universally $G3$ in $A$ .

PROOF. By (4.2), it is enough to prove that $B^{*}=A$ . First of all, the as-
sumption implies $A^{\prime}=A$ . Thus we have a separable isogeny $p_{2}$ : $B^{*}\rightarrow A$ and
an imbedding $j:X\rightarrow B^{*}$ . $(j=p_{1}\circ g)$ Since $p_{2}\circ j=the$ inclusion, the assumption
on $X\times X\rightarrow A$ implies the same on $X\times X\rightarrow B^{*}$ , induced by $j$ . If $p_{2}$ is not an
isomorphism, then there exists $t\in p_{2}^{-1}(O_{A}),$ $\neq O_{B}*$ , and $ j(X)_{t}\cap j(X)\neq\emptyset$ . But
this is impossible, because $p_{2}$ induces an \’etale morphism in some neighborhood
of $j(X)$ . Q. E. D.

REMARK (4.5.1). The surjectivity assumption of (4.5) is satisfied if $A$ is a
simple abelian variety and 2 $\dim X\geqq\dim A$ .

\S 5. Examples (the case of curves in surfaces).

(5.1) Let $k$ be an algebraically closed field, $F$ a smooth projective surface
over $k$ , and $C$ a smooth irreducible curve on $F$ . We have shown that $C$ is $G3$

in $F$ if $C^{2}>0$ . On the other hand, if $C^{2}<0$ , a result of Hironaka [2] shows
that $C$ is contractible to a point not only formally but also in some neighbor-
hood of $C$ in the \’etale topology. Anyway $C$ is not $G1$ in $F$ if $C^{2}<0$ , cf. the
proof of (5.11). In the remaining case in which $C^{2}=0$ , we have the following
result.

PROPOSITION (5.1.1). Let $F$ and $C$ be as above and assume that $C^{2}=0$ . Then
$C$ cannot be $G2$ in F. But, if the divisor class $C\cdot C$ on $C$ is not a torsion ele-
ment in Pic $(C)$ , then $C$ is $G1$ in $F$ but not $G2$ .

PROOF. For any divisor or divisor class (modulo linear equivalence) $D$ on
$F$ or on $C$ , we denote by $[D]$ the corresponding invertible sheaf. Let $J$ be the
ideal sheaf of $C$ in $O_{F}$ . Then $J\approx[C]^{-1}$ . Ptl $tL=[C\cdot C]^{-1}\cong J/J^{2}$ . Consider the
following exact sequences

$0\rightarrow J^{n}/J^{n-\vdash 1}\rightarrow 0_{F}/J^{n+1}\rightarrow 0_{F}/J^{n}\rightarrow 0$

for $n=1,2$ , $\cdot$ .. , and note that $J^{n}/J^{n+1}\approx L^{\otimes n}$ . Take a divisor $D$ on $F$ such that
(D. $C$ ) $=d>{\rm Max}((2g-2, g-1)$ , where $g=genus$ of $C$ . Tensoring the above
sequences with $[D]$ , we have exact sequences

$0\rightarrow[D]\otimes L^{\otimes n}\rightarrow[D]/J^{n+\iota}[D]\rightarrow[D]/J^{n}[D]\rightarrow 0$ ,

where $[D]\otimes L^{\otimes n}\approx[(D-nC)\cdot C]$ , and $H^{1}(C, [D]\otimes L^{\otimes n})=0$ since $\deg((D-nC)\cdot C)$

$=d>2g-2$ . Therefore
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$0\rightarrow H^{0}(C, [D]\otimes L^{\otimes n})\rightarrow H^{0}(C, [D]/J^{n+1}[D])\rightarrow H^{0}(C, [D]/J^{n}[D])\rightarrow 0$

is exact, and $\dim H^{0}(C, [D]\otimes L^{\otimes n})=d-g+1>0$ . Hence we must have

$\dim\underline{(\lim}H^{0}(C, [D]/J^{n+1}[D]))=\infty$ .
If $\hat{F}$ is the completion of $F$ along $C$ , the projective limit in the above formula
is equal to $H^{0}(\hat{F}, C)_{\hat{F}}\otimes[D])$ , which would be of finite dimension if $K(\hat{F})$ were
finite algebraic over $K(F)$ . Thus $C$ is not $G2$ in $F$ .

(Remark. A similar but simpler argument shows that if $Z$ is a smooth
variety and $X$ is a smooth subvariety such that the locally free sheaf $J/J^{2}$

(wtere $J$ is the ideal sheaf of $X$ in $\mathcal{O}_{Z}$) is ample, in other words such that the
normal bundle of $X$ in $Z$ is negative, then $\dim H^{0}(\hat{Z}, \mathcal{O}_{\hat{Z}})=\infty.)$

Suppose $C$ is not $G1$ in $F$, i. e. that $H^{0}(\hat{F}, G_{\hat{\Gamma}})\neq k$ , and take a non-constant
formal function $\xi\in H^{0}(\hat{F}, G_{\overline{F}})$ . Then, since $H^{0}(\hat{F}, \mathcal{O}_{\hat{F}}/JO_{\hat{F}})=H^{0}(F, 0_{\Gamma\prime}/J)$

$=H^{0}(C, \mathcal{O}_{C})=k$ , there exists a constant $c\in k$ such that $\xi-c\in J^{n},$ $\not\in J^{n+1}$ . Then
$H^{0}(F, J^{n}/J^{n+1})=H^{0}(C, L^{\otimes n})\neq 0$ , but as $L^{\otimes n}$ represents the divisor class $nC\cdot C$

which is of degree zero, this means $nC\cdot C\sim 0$ .
REMARK (5.1.2). Let $X$ be a smooth projective variety of dimension $n\geqq 2$ ,

and $Y$ a smooth subvariety of codimension 1 of $X$ . Suppose that the self-
intersection $Y^{2}$ , viewed as a divisor class on $Y$, is numerically equivalent to a
sum of distinct smooth subvarieties $D_{1}+\cdots+D_{r}$ on $Y$, and that the difference
$Y^{2}-(D_{1}+\cdots+D_{r})$ is a non-torsion element of $Pic^{\tau}(Y)$ . For instance,

(a) $\dim X=2,$ $Y^{2}>0$ and $p.(Y)>0$ ,

or (b) $Y$ is the zero section of a line bundle $X$ associated with a non-torsion
element of $Pic^{\tau}(Y_{0})$ , where $Y_{0}$ is a smooth projective variety with
$h^{01}(Y_{0})>0$ .

Now, $Y$ and $X$ being as above, we apply the monoidal transformations to $X$

whose centers are first $D_{1}$ and then the successive strict transform of $D_{i},$ $i=2$ ,

... , $\gamma$ . Let $f:X^{\prime}\rightarrow X$ be their composition. Let $Y^{\prime}$ be the strict transform of
$Y$ by $f$. Then one can show that $H^{0}(\hat{X}^{\prime}, 0_{\hat{X}},)=k$ but $K(\hat{X}^{\prime})$ has an infinite
transcendence degree over $k$ , where $\hat{X}^{\prime}$ is th $e$ completion of $X^{\prime}$ along $Y^{\prime}$ . The
proof is the same as above, except that we need a theorem of “ simultaneous
amplification “ due to Matsusaka-Mumford-Kleiman, which asserts: with respect

to a fixed projective embedding of $Y^{\prime}$ , there exists a positive integer $\nu$ such

that $L(\nu)$ satisfies the theorems A and $B$ of Cartan-Serre for all $L\in Pic^{\tau}(Y^{\prime})$

(Kleiman [11] \S 2, Th. 2).

(5.2). If a smooth rational curve $C$ is $G1$ in a smooth surface $F$, then $F$

must be a rational surface. In fact,

(i) $C^{2}\geqq 0$ by (5.1) (or by [2]);

(ii) $-2=2p_{a}(C)-2=C^{2}+C\cdot K$, where $K$ is the canonical class of $F$, hence
C. $K<0$ by (i);
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(iii) $1(K)=h^{02}(F)=0$ by (i) and (ii);
(iv) the Picard scheme of $F$ is reduced by $(iii)^{8)}$ , therefore $h^{01}(F)=the$

dimension of Alb $(F)$ , which is zero by (2.10);
(v) we have an exact sequence

$0\rightarrow O_{F}\rightarrow[C]\rightarrow[C\cdot C]\rightarrow 0$

and $H^{i}(F, O_{F})=(0)$ by (iv). Hence

$(*)$ $0\rightarrow H^{0}(F, (3_{F})\rightarrow H^{0}(F, [C])\rightarrow H^{0}(C, [C\cdot C])\rightarrow 0$

is exact. Since $C\approx P^{1},$ $l(C)=\dim_{k}H^{0}([C])=(C^{2})+2\geqq 2$ . Therefore $F$ is rationaf
by a theorem of ${\rm Max}$ Noether. But we get more. In fact, since $\tau_{r_{C}}|C|$ is
complete by $(^{*})$ , the complete linear system $|C|$ has no base point and defines
a morphism $f:F\rightarrow P^{n+1}$ , where $n=(C^{2})$ , such that $C=f^{-1}$ (hyperplane). If
$(C^{2})=0$ , then $f:F\rightarrow P^{1}$ defines a structure of $P^{1}\times P^{1}$ on $F$, at least in a neigh-
borhood of $C$ in F. (This is a consequence of $(C^{2})=0$ and $h^{01}(F)=0$ , but in
this case $C$ is not $G1$ in $F.$) When $(C^{2})>0$ , the image $f(F)$ has dimension
2, for if otherwise $|C|$ would be a composite of pencil, contradicting the
fact that $C$ is irreducible. Moreover, since $T_{r_{C}}|C|$ is complete, for any
point $Q$ of $C$ one can find a divisor $D\in|C|$ such that $Q$ has coefficent 1 in
D. $C$ , and this implies that $f$ is a birational correspondence between $F$ and $f(F)$

which is an isomorphism in a neighborhood of C. $f(F)$ is a surface of degree
$n$ in $P^{n+1}$ , not contained in any hyperplane, and such a surface is well known
to be rational. This proves again the rationality of $F$ (cf. Nagata [8] \S 10).

(vi) In particular, if $(C^{2})=1$ , then $f:F\rightarrow P^{2}$ is an isomorphism in a neigh-
borhood of $C$ and maps $C$ onto a line. In other words, a neighborhood of $C$

in $F$ is isomorphic to a neighborhood of the zero section of $V(G(1))$ over a
projective line $P^{1}$ .

(5.3) Let $F=P^{2}$ and $C=P^{1}$ , a line in $P^{2}$ . Then (5.2) shows that this,

$C\rightarrow F$ is the unique (within a neighborhood of $C$ ) embedding of $C$ with the
normal bundle of degree 1. We shall show that there are infinitely many dis-
tinct formal imbeddings $C\rightarrow F^{*}$ with regular formal surfaces $F^{*}$ , such that the
normal bundles are of degree 1. There $F^{*}$ cannot be obtained from algebraic
surfaces by completion, except the unique one $\hat{F}$ which is the completion of $F^{\cdot}$

along $C$ . Let $J$ be the ideal sheaf of $C$ on $F$, and $F_{m}$ the subscheme of $F$ de-
fined by $J^{m+1}$ for every integer $m\geqq 0$ . Let Aut (X) denote the group of auto-
morphisms of a (formal) scheme $X$ over $k$ . If $X=\hat{F}$ or $F_{m}$ then $Aut_{q}(X)$

(resp. $Aut_{q}(X)$) denote the sheaf (resp. the group) of those automorphisms of
$X$ which induce the identity of $F_{q}$ , where $0\leqq q<m$ . Let $\underline{Aut}_{0}^{*}(X)$ denote the

8) This result is due to Severi-Nakai (cf. Nakai [9]), and is also a consequence of
the obstruction theory of Picard functor (cf. $e$ . $g$ . Mumford [10]).
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sheaf of those automorphisms of $X$ which induce the identity in $F_{0}=C$ and
also the identity in the normal bundle of $C$ in $F$ . Let $S_{m}$ be the sheaf $J^{m}/J^{m+1}$

restricted to $C$ , so that $S_{m}$ is canonically isomorphic to the m-th symmetric
tensor power of $S_{1}$ . By the smoothness of $F$, we get

(a) an exact sequence of group sheaves

$1\rightarrow\underline{Aut}_{m-1}(F_{m})\rightarrow\underline{Aut}_{p}(F_{m})\rightarrow\underline{Aut}_{p}(F_{m-1})\rightarrow 1$

for each $m-1\geqq p\geqq 0$ .
(b) An isomorphism (from ” multiplicative ” to ” additive ”)

$\underline{Aut}_{q-1}(F_{q})\rightarrow\approx\overline{T}\otimes S_{q}$

for each $q>1$ , where $\overline{T}$ is the sheaf on $C$ induced by $T_{F}(=the$ tangent sheaf
of $F$ ).

(c) an exact sequence

$1\rightarrow\underline{Aut}_{0}^{*}(F_{1})\rightarrow\underline{Aut}_{0}(F_{1})\rightarrow\underline{Hom}_{c)}^{*}(S_{1}, S_{1})\rightarrow 1$

where $\mathcal{O}=0_{c}$ and $\underline{Hom}^{*}$ denotes the sheaf of invertible elements in $\underline{Hom}$ .
(d) isomorphisms

$\underline{Hom}^{*}(S_{1}, S_{1})\cong \mathcal{O}^{*}$

and
$\underline{Aut}_{0}^{*}(F_{1})\rightarrow=T_{c}\otimes S_{1}$

where $T_{c}=the$ tangent sheaf of $C$ .
LEMMA (5.3.1). The natural homomorpihsm $\lambda_{q}$ : Aut $(\hat{F})\rightarrow Aut(F_{q})$ is surjec-

tive for all $q\geqq 3$ .
PROOF. $\sigma\in$ Aut $(F)$ induces an element of Aut $(\hat{F})$ if and only if $\sigma(C)=C$ .

(In fact, $K(\hat{F})=K(F)$ implies that every element of Aut $(\hat{F})$ is obtained in this
manner.) Let $(x_{0}, x_{1}, x_{2})$ be a homogeneous coordinate system of $F$ such that
$C$ is defined by $x_{2}=0$ . Then every $\sigma$ as above can be represented by a matrix:

$\sigma=\left(\begin{array}{lll}a_{1l} & a_{l2} & 0\\a_{21} & a_{22} & 0\\a & a & 1\end{array}\right)$

Those $\sigma$ with $a_{31}=a_{32}=0$ induce all the automorphisms of $C$, so that $\text{{\it \‘{A}}}_{0}$ is sur-
jective. Hence it is enough to prove

$2_{q}^{\prime}$ : $Aut_{0}(\hat{F})\rightarrow Aut_{0}(F_{q})$

is surjective for all $q\geqq 3$ . Those $\sigma$ which induce the identity in $F_{0}=C$ are
represented by matrices of the form
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$\left(\begin{array}{lll}b & 0 & 0\\0 & b & 0\\a’ & a^{\prime\prime} & 1\end{array}\right)$

From now on, we consider only those $\sigma$ of this type. Let $t=x_{1}/x_{0}$ and $u=x_{2}/x_{0}$ .
Pick any $\sigma$ with $b=1$ . Then $\sigma$ induces a section of Aut* $(F_{1})$ . We have

$\sigma(t)=(t+a^{\prime\prime}u)/(1+a^{\prime}u)\equiv t+D(a^{\gamma}, a^{\prime\prime})t$

$mod J^{2}$

$\sigma(u)=u/(1+a^{\prime}u)\equiv u+D(a^{\prime}, a^{\prime/})u$

where $D(a^{\prime}, a^{\prime/})=(a^{\prime\prime}+a^{\prime}t)u\frac{\partial}{\partial t}$ .
The section of $\underline{Aut}_{0}^{*}(F_{1})$ , induced by $\sigma$ , corresponds to the section of

$T_{c}\otimes S_{1}$ , induced by the above $D(a^{\prime}, a^{\prime\prime})$ , under the isomorphism of (d). But
$H^{0}(T_{c}\otimes S_{1})=H^{0}(o(1))=k\oplus k$ . Hence those $\sigma$ induces all the sections of Aut* $(F_{1})$ .
Now, pick any $\sigma$ with an arbitrary $b\in k^{*}$ . Then, by a homomorphism of $(c)$ ,

$\sigma$ induces an element of $H^{0}(Hom_{o}^{*}(S_{1}, S_{1}))$ , which is isomorphic to $H^{0}(O^{*})=k^{*}$

by (d). This element induced by $\sigma$ is nothing but $b$ . It is now clear that $\lambda_{1}^{\prime}$

is surjective. Therefore, it suffices to show that

$\mu_{q}$ : $Aut_{1}(F)\rightarrow Aut_{1}(F_{q})$

is surjective for all $q\geqq 3$ . We have an exact sequence

$0\rightarrow 0_{F}\rightarrow O_{F}(1)\oplus\Theta_{F}(1)\oplus O_{F}(1)\rightarrow T_{F}\rightarrow 0$

which induces

(e) $0\rightarrow O\rightarrow O(1)\oplus O(1)\oplus O(1)\rightarrow T\rightarrow 0$ .
By this exact sequence, we can easily compute

$H^{0}(\overline{T}\otimes S_{2})\cong H^{0}(\overline{T}(-2))\cong H^{1}(c?(-2))\cong k$ .
It follows that $H^{0}(\overline{T}\otimes S_{q})=(0)$ for all $q\geqq 3$ . By (a) and (b), this implies that

$\kappa_{q}$
; $Aut_{1}(F_{q})\rightarrow Aut_{1}(F_{q- 1})$

is injective for every $q\geqq 3$ . For $q=3$ , we have $Aut_{1}(F_{2})\cong H^{0}(\overline{T}\otimes S_{2})\cong k$ . We
shall prove that $\kappa_{3}=0$ and hence $Aut_{1}(F_{q})=1$ for all $q\geqq 3$ . Take any element
$\xi\in k$ , say $\xi\neq 0$ . Let $D_{0}(\xi)$ (resp. $D_{1}(\xi)$) be the derivation in $k[t, u]$ (resp.
$p[1/t, u/t])$ defined by

$D_{0}(\xi)u=0$ , $D_{0}(\xi)t=\xi u^{2}$

$D_{1}(\xi)u^{\prime}=0$ , $D_{1}(\xi)t^{\prime}=-\xi u^{\prime 2}$

where $t^{\prime}=1/t$ and $u^{\prime}=u/t$ . Then $D_{0}\equiv D_{1}mod J^{3}T_{F}$ , and hence they define an
element $\overline{D}(\xi)\in H^{0}(\overline{T}\otimes S_{2})$ . This is clearly the derivation which corresponds
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to $\xi$ by $H^{0}(\overline{T}\otimes S_{2})\cong k$ . Let $\sigma_{0}$ (resp. $\sigma_{1}$) be the automorphism of $k[t, u]$ (resp.
$k[t^{\prime}, u^{\prime}])$ defined by

$\sigma_{0}(u)=u,$ $\sigma_{0}(f)=t+\xi u^{2}$

$\sigma_{1}(u^{\prime})=u^{\prime},$ $\sigma_{1}(t^{\prime})=t^{\gamma}-\xi u^{\gamma 2}$

then $\sigma_{0}\equiv\sigma_{1}mod J^{3}$ , and they define an element $\overline{\sigma}\in Aut_{1}(F_{2})$ , which corresponds
to $\overline{D}(\xi)$ by $Aut_{1}(F_{2})\cong H^{0}(\overline{T}\otimes S_{2})$ . Let $\delta$ be the connecting homomorphism
$Aut_{1}(F_{2})\rightarrow H^{1}(\underline{Aut}_{2}(F_{3}))$ , associated with

$1\rightarrow\underline{Aut}_{2}(F_{3})\rightarrow\underline{Aut}_{1}(F_{3})\rightarrow\underline{Aut}_{1}(F_{2})\rightarrow 1$ .

Let us identify $\underline{Aut}_{2}(F_{3})$ with $\overline{T}\otimes S_{8}$ by (b). Let $N$ be the normal sheaf to $C$

in $F$, i. e., the dual of $S_{1}$ . We have an exact sequence

$0\rightarrow T_{c}\rightarrow\overline{T}\rightarrow N\rightarrow 0$

which induces $\delta^{\gamma}$ : $H^{1}(\overline{T}\otimes S_{3})\rightarrow H^{1}(N\otimes S_{3})$ . We have $H^{1}(N\otimes S_{3})\cong H^{1}(O(-2))\cong k$ .
$\delta(\overline{\sigma})$ is obtained by taking $\sigma_{1}^{-1}\sigma_{0}mod J^{4}$ , which is an automorphism of $F_{s}$ in
$Spec(k[t, u])\cap Spec(k[t^{\prime}, u^{\prime}])$ . By a direct calculation, we get

$\sigma_{1}^{-1}\sigma_{0}(u)=u-\frac{\xi}{t}u^{3}$

$mod J^{4}$

$\sigma_{1}^{-1}\sigma_{0}(t)=t$

or
$\sigma_{1}^{-1}\sigma_{0}(u^{\prime})=u^{\prime}-\frac{\xi}{t’}u^{\prime 3}$

$mod J^{4}$ .
$\sigma_{1}^{-1}\sigma_{0}(t^{\prime})=t^{\prime}$

Let $E=-\frac{\xi}{t}u^{3}-\partial^{\partial}\overline{u}=-\frac{\xi}{t}u^{\prime 3}\partial^{\frac{\partial}{u}}$ , which induces an element $\overline{E}$ of $H^{1}(O(-2))_{y}$

such that
$\overline{E}=^{\xi_{\overline{t}}}--e_{0}=-t^{\xi_{-e_{1}(=\delta^{\prime}\delta(\overline{\sigma}))}}$

where $e_{0}$ (resp. $e_{1}$) is a suitable generator of $o(-2)$ in $Spec(k[t, u])$ (resp. in
$Spec(k[t^{\prime}, u^{\prime}]))$ . We can get an isomorphism $H^{1}(G(-2))\cong k$ by

$0\rightarrow o(-2)\rightarrow o(-1)\rightarrow k_{P}\rightarrow 0$

where $P$ is for instance, the point $t=0$ . Here the connecting homomorphism
$H^{0}(k_{P})(=k)\rightarrow=H^{1}(O(-2))$ is an isomorphism and maps $-\xi\in k$ to the above $\overline{E}$ .
It is now clear that $Aut_{1}(F_{2})\rightarrow H^{1}(Aut_{2}(F_{3}))$ is injective. (In fact, one can prove
that this is an isomorphism.) Hence $\kappa_{3}=0$ , and $Aut_{1}(F_{q})=(1)$ for all $q\geqq 3$ .
This together with the surjectivity of Aut $(F)\rightarrow Aut(F_{1})$ , proves Lemma (5.3.1).

Let $\hat{U}=Spf(k[t][[u]]),\hat{U}^{\prime}=Spf(k[t^{\prime}][[u^{\prime}]])$ with $t^{\prime}=1/t$ and $u^{\prime}=u/t$,

and $\hat{W}=Spf(k[t, t^{\prime}][[u]])$ . Then $\hat{F}=\hat{U}U\hat{U}^{\prime}$ and $\hat{W}=\hat{U}\cap\hat{U}^{\prime}$ . Take any
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automorphism $\gamma$ of $\hat{W}$ which induces the identity in $\hat{W}\cap F_{q-1}$ , where $q\geqq 3$ .

Then there exists a derivation $w\in H^{0}(J^{q}T_{W})$ , $i$ . $e.,$
$w=g\frac{\partial}{\partial t}+h\frac{\partial}{\partial u}$ with $g,$

$h$

$\in(u^{q})k[t, t^{\prime}][[u]]$ , such that

$\gamma(f)\equiv f+w(f)mod J^{q+1}$

for all $f\in H^{0}(O_{\hat{W}})$ . We have a canonical isomorphism $J^{q}T_{\grave{W}}/J^{q+1}T_{\grave{W}}\rightarrow\approx\overline{T}\otimes S_{q}|\hat{W}$

($=the$ restriction to $|\hat{W}|=|W_{\cap}C|$ ). By means of the covering $\hat{F}=\hat{U}\cap\hat{U}^{\prime}$ ,

the C\v{e}ch method gives a surjective homomorphism $H^{0}(\overline{T}\otimes S_{q}|\hat{W})\rightarrow H^{1}(\overline{T}\otimes S_{q})$ .
Thus $w$ induces an element $\overline{w}\in H^{1}(\overline{T}\otimes S_{q})$ . We shall write this $\overline{w}(\gamma)$ .

On the other hand, any $\gamma$ as above defines a formal scheme

$F_{\gamma}^{*}=\hat{U}U_{\gamma}\hat{U}^{\prime}$

where the piecing together is done by

$\hat{U}\supset\hat{W}\rightarrow\gamma\hat{W}\subset\hat{U}^{\prime}$ .

LEMMA (5.3.2). Assume $q\geqq 4$ . For every $\overline{w}\in H^{1}(\overline{T}\otimes S_{q})$ , we can find
$\gamma\in Aut_{q-1}(\hat{W})$ such that $\overline{w}=\overline{w}(\gamma)$ . Moreover, if $\overline{w}(\gamma)\neq 0$ , then $F_{r}^{*}$ is not isomor-
phic to $F$ as a formal scheme over $k$ .

PROOF. The first assertion is already proven. To prove the second, as-
sume that there exists an isomorphism $\sigma$ : $\hat{F}\rightarrow F_{\gamma}^{*}$ . By (5.3.1), we can modify
$\sigma$ by an automorphism of $\hat{F}$ so that $\sigma$ induces the identity modulo $J^{q}$ . Here
we refer to the definition of $F_{\gamma}^{*}$ which gives a canonical way of identifying
$F_{q- 1}$ as a subscheme of $F_{\gamma}^{*}$ . Moreover, $\sigma|\hat{U}$ and $\sigma|\hat{U}^{\prime}$ can be viewed as auto-
morphisms of $\hat{U}$ and $\hat{U}^{\prime}$ in a natural way. Viewing the equality

(a $|\hat{U}^{\prime}$) $\circ(\sigma|\hat{U})^{-1}=\gamma$

from this point of view, we get $\overline{v}\in H^{0}(\overline{T}\otimes S_{q}|\hat{U})$ and $\overline{v}^{\prime}\in H^{0}(\overline{T}\otimes S_{q})|\hat{U}^{\prime})$ , as-
sociated with $(\sigma|\hat{U})$ and $(\sigma|\hat{U}^{\prime})$ respectively, such that $\overline{v}^{\prime}-\overline{v}|\hat{W}$ is the element
of $H^{0}(\overline{T}\otimes S_{q}|\hat{W})$ associated with $\gamma$ In view of the definition of $\overline{w}(\gamma)$ , we get
$\overline{w}(\gamma)=0$ .

THEOREM (5.3.3). $F_{r}^{*}$ is not algebraizable, $i$ . $e.$ , it cannot be obtained as the
completion of an algebraic scheme, for every $\gamma\in Aut^{q-1}(\hat{W})$ such that $\overline{w}(\gamma)\neq 0$ ,

provided $q\geqq 4$ .
PROOF. Immediate from (5.3.2), because we have the uniqueness of em-

bedding of $P^{1}$ into a non-singular surface as was seen in (5.3.1).
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