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§1. Introduction.

This is a continuation of our previous paper [I1]. The purpose of this
paper is to give a characterization of the finite simple group S,(6, 2), the sym-
plectic group of 6 variables over the field of 2 elements, by the structure of
the centralizer of an element of order 2 contained in the center of its Sylow
2-subgroup. Let V be a 6-dimensional vector space over the finite field GF(2)
and let f be a skew-symmetric non-degenerate bilinear form on V. The set
of all non-singular linear transformations which leave f invariant form a
group, the symplectic group over GF(2). As is well-known, the structure of
the symplectic group does not depend on the form f. So we may assume

F= %106 F Y525 Vi F X, Y5 X5 Vot X6 V1 -
If J is the matrix of the form f, then the set of non-singular matrices A such

that

tAJA=]
may be identified with the symplectic group. Since this group has the trivial
center, this_is a simple group and of order 2°-3*.5.7 (cf. Artin [1]). Put

1 1

1

and H= C(@) N Sp(6,2). Then a is a central involution of a Sylow 2-subgroup
of S,(6,2). Let A, be the alternating group of degree n and 0,(G) be the
maximal normal subgroup of odd order of the group G. Our main theorem
of this paper is the following.

THEOREM. Let G be a finite group such that G contains an element a of
order 2 which is contained in the center of a Sylow 2-subgroup of G such that
the centralizer Cgla) is 1somorphic to A.

Then () G= A, or Ay or

() G=S,6,2) or
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(iii) G =0,(G)Cys(a) where 0,(G) is abelian.

In this paper we are devoted to prove the case (ii) and (iii). But the case
(iii) is an easy consequence of our previous paper in which we determined
the fusion of the conjugacy classes of involutions and treated the case (i). In
the course of our proof we construct a subgroup G, of G with a (B, N)-pair
in the sense of Tits [9] which is isomorphic to S,(6, 2), and determine the
structure of the centralizers of involutions. The coincidence of G with G, is
accomplished by the result of Suzuki [6] (cf. Thompson [7]. The author
wishes to express his thanks to Dr. Kondo for valuable suggestions and dis-

cussions.

We shall use the following notations which are fairly standard:

G/
0%(G)

Z(G)
SRR
{u, v, -}
Zy

H<G
HAQG
[x, ]

xl/
x~yin G
celg(x)
(X 29)

Sa
GL(n, q)

the commutator subgroup of a group G.

the smallest normal subgroup N of G such that G/N is a 2-
group.

the center of a group G.

the group generated by the elements x, v, ---.

the set of the elements u, v, ---.

a cyclic group of order n.

H is a proper subgroup of G.

H is a normal subgroup of G.

x~y-lxy.

yxy~t.

an element x is conjugate to y in G.

a conjugate class in a group G containing x.

the set of 2/-subgroups of G which X normalizes and which
intersect X in the identity only.

the symmetric group of degree n.

the general linear group of degree n over the field of ¢ elements.

REMARK. Since we defined x¥ =yxy-1, x¥> means (x?).
yxy

§2. Some properties of A.

The group H=C(a) S,(6, 2) is the set of matrices over GF(2) such that

[ 1 A 7
| MM =],

M B
_ A="'BJ.M

1

where A is a row vector, y € GF(2) and
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& =7 7,7, &' = #{#RS

In the isomorphism from H= Cg(a) onto H let the inverse images of #,, £,
#y B, %4 #1, 8, #, &', #} be 7w, p, w, Y, x, 0, 7, o/, wy respectively. Then
one has a ==m,w,r,, We denote this isomorphism by 8. We put S=<{=x,, 7}, 7,,
wh, Ty, 4> and S=0(S) =( #,, #], #,, #} #5, #,>. Then S is the set of matrices
over GF(2) such that

1

D o o
R ™=

a, By, we GF(2)

1

and is an elementary abelian subgroup of order 2°. Put a’ = rizir}, p=rio,
& = (win})’(mizy)® and ¢ = (win})°. Then p* =& =<¢*=1. H is the semidirect pro-
duct of {m,, p, w,, p', my> and (=i, o, w}, 0/, W), {7y, Y, Ty p’, Ty» is mormal in
H and is an elementary abelian group of order 2% and (=i, o, 7}, o', W) is
isomorphic to S,. The action of the elements =}, o, 7}, 6/, 7} on m,, p, Ty, p/, Ty
by conjugation is given by the following table.

b1 o \ h o’ !
T, 71‘1‘ § 23 ‘ Ty Ty T
¢ i 7/{”1 Ty ; Uy “ jo
T, T, YT T, l T, mny’ Ty
/»5/ /’t/nl #/ #/ LT, an.s
2 P Ty Ty MY T, Ty

Let D be a Sylow 2-subgroup of G contained in H. We may assume that
D ={m,, |, m,, wy, w5, Wi {7, pt, ' >=S{7, p, ¢¢'> and hence Z(D)=<{m7,, 73),
D’ ={n,, 7y, @, wims, £». Then we have Ny(S)= D{(&> and Cy(Z(D))=D<p>.
The group {7, g, > is a dihedral group of order 8 with center (x> and acts
on S. There are ten conjugacy classes of involutions of H and they are as
follows.

‘ Ty TiTy

|- ]
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The first and second entries in the columns give respectively, representatives
of the classes and the cardinalities of the intersections of the classes and S.
This implies that every involution of D is conjugate to an element of S in H.
PROPOSITION 1. Let H* be the centralizer of the element (1, 2)(3, 4)(5, 6)
(7, 80O, 10011, 12) in A,,. Then H is isomorphic to H*.
ProoOr. We have an isomorphism by the following correspondence :

7 — (L, 23, 4) 7 —— (1, 3, 4
p —— (1, 2, 6 o — (3, 54, 6)
7, —— (5, 6)(7, 8) 7} —— (5, T)(6, 8)
o —— (1, 2)9, 10 o' —— (7, 9)(8, 10)
s —— (9, 10)(11, 12) 7 — (9, 11)(10, 12)

§3. The generators and relations of the group S,(6, 2) and GL(3, 2).

In this section we characterize the group S,(6, 2) and GL(3, 2) by the de-
fining relations.

Let D, be a finite group generated by the elements u, u,, Uy, Uy, Us, Ug, Uy,
Ug, u, subject to the following relations:

ui=1 for 1<i1<9

Tug, u]=1  for 4<i, ;=9

(U, U5)* = U,

Cuy, Uy, Uy, Ug, Ugp =1 GRY)
UglnUy = Uylhyg,  Uglglly = Ugllglg

Cuts, Cuts, gy Uy Uy =1

U U Ug = U U5, UsUgUg = UgUgUg «

The group <{u,, u,, u;> is a dihedral group of order 8 with the center <{u,> and
acts on {uy, Us, U, U, Uy, Uy y Which is an elementary abelian 2-group of order
2°. The group D, is isomorphic to a Sylow 2-subgroup of S,(6, 2) by the
correspondence
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1 1 1
11 1
1] 1! 1
T L, S — T .
11 1
| 1 1
1 1
1 1 ‘1 1
1 1 I
1 1
L e Uy —— [ e (3.2)
1 1
1 : 1
1 1
1 1
11 1 1
1 1 1
T e —— S Ug ——> |reeemmmmmmmmeeens e
1 1
1 1
1 \ 1)
1 \
I
111
L oo
1
‘ 1
1

Let W, be a finite group generated by the elements w,, w,, w, subject to the
following relations:
wi=1 for 1<i<3

3.3
(W,wy)* = (Wowy)* = (wyws)* =1,

The group W, is isomorphic to the associated Weyl group of a (B, N)-pair of
S,(6, 2) by the following correspondence :
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(3.4)

Put V= uy, us g, Uy, Ug, Ugy Usg, Uy, Vo= <uy, Uy, Uy, Usy Ugy Uy, Ug, Ugy  and

Ve="{ Uy, Uy, Ug, Uy, Usy Ugy Uy, Ugd. Assume that
(Wyuy)® = (Wyu,)® = (Wan,)° =1
(3.5)
Lw;, V1TV, for 1<i<3

and the actions of the elements w,, w,, w, on V,, V,, V, by conjugation are
given by the following table.

w; | W,y Wy

u, u, u,

Uy Ug | Uy Uy

Uy Uy U,

7 u, U, U U,

— e — - (3.6)

Us Us Uy Us

Usg Usg Ug Ug

o u, o g

77;87 - Ug Uy Ug
Ug Ug Usg

Let G, be a finite group generated by D, and W, with the defining relations
[BI), (3.3), (3.5), (3.6). Then we have

PROPOSITION 2. The group G, is isomorphic to S,(6, 2).

Proor. The proof is given in various steps. We show that the homo-
morphism from G, onto S,(6, 2) defined by (3.2) and (3.4) is isomorphism. We
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put B=D;, and N=W=W,.

(@) The set of elements in G;=B\JUBw;B (i=1,2,3) is a subgroup of G,.

Proor. The result follows immediately from (3.5) and (3.6).

DEFINITION. For any we W, let [(w)=1[ be the smallest non-negative
integer such that w=w,w,, --- w;, where Wy; & {wy, Wy, we}.

(b) For any ¢ and we W, if l(ww)= l(w), then w;BwC BwwB.

Proor. By (3.3) we may identify w,, w,, w, with the elements (1, 2)(5, 6),
(2, 34, 5), (3, 4 in S, respectively. Let C,= {1}, C,= {w,, w,, w,}. We shall
give a method of constructing C, for n=2. Suppose that the set C, ---, C,_,
have been constructed. Let C, be the set of all words’ of length n. Define
C,=C,— U C;. Then clearly elements w in C, have [(w)=n.

0=i=n—1
Put v, = X,, u;=X,, u,=X,. To check that for those we W with [(ww)
= l(w), we have w,BwC Bw;wB, we need only to see that w,X,w e Bw,wB for
1=1,2,3. It is easily verified that for those w e W such that [(w,w) = (W),
we can always write w,X;w=w,wY,; with Y, B. The computations are
summarized in the following table which is self-explanatory.

w W) | i) lww) | waw| Y, | ¥, | ¥,
w, |a 26 | 1] 0 | 2 | 2 oy | uw
Cw, @35 1| 2 0 | 2 | u "y
2, ey L1 2 2 0 | w | w |
w0, 1,2 3465 | 2| 1 3 3 ow | wy
W, 14,2306 6 | 2| 1 3 1w |
ww, | L3456 | 2| 3 | 1 | 3 |y U
Cww, | 23,54 | 2| 3 | 1 | 3 | u Cu
Cww, (2453 | 2| 3 3 1w | w |
0,0, a4 6 | 3| 2 2 | 4 T
Cwww,  1(1,23654 | 3| 2 | 4 4 | || u
wawgw, (1,2 46,53 | 3| 2 A > |
www, |1, 3,5642 | 3| 4 | 2 | 4 | u e
WoW,W, 2, 5) B 3 ) 4 2 4 Ug U
W10, 1,45632 | 3| 4 | 4 | 2 | u | u
wngwg_w#— 7(2, (3, 5;) ’——BkﬁT —Héip‘ 2 Uy | Usg
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s, (G305 | 4] 3 | 3 |5 v
l ww, W' ,26,5) 4 3508 " 1 u, |
| wawgwa, W46, 3) % 4 3 | 5 3 wy | ;
| w,w0,10, J L293,65 4| 3 | 5 | 3 | | u | ’
! w1030, wyeHwe | 4| 5 | 3 ; ‘éni Uy | muzi
0560 4555w
| W,10,10,10, ( 2, 5)3, 4) 4] 5 3 | 3 | wu
! Wwaw 0, j(? 42356 4| 5 | 5 | 3 | w | owm|
wwwwaw, | 1,32645 | 5 | 4 | 4 "E 6w
W W, 4! 1, 6) 5 4 | 6 | 6 | |u | u,
wwwgow, | L265GH | 5 4 | 6 | 4 u |
wlwngwlw;“ 4, 96,6 5 4 | 6 | 4 ” ;,,, |
wwwww, | (L54623 | 5| 6 | 4 | 6 | w | | u
w050, ' 1,3,64H25 5| 6 | 4 | 6 | f o,
W0, 0, (1 5, 6, i)éil)ﬁfs)} 6 | 4 | 4 | R o
lzjwzwlwng % a, 4, 6, 3)2, 5) * 57‘{7’*5“’ 6 | 4 | o
wawwawaw, | (1, 6)2 34,5 | 6 5 5 | 7 { ] "
W W W W W, W,y ! 1, 3,52, 6, 4) ‘ 6 5 ) ‘457 - ,Z,, J Ug |
W W W W, W W, J @, 6)(3 4) 6 5 7 5 | U,
10,100,100y } L,450263 | 6 | 5 | 7 | 5 | | u |
wavwawaow, | (1,5,423,6 | 6 | 7 \1 5 7 | w | | u
W WS WoW W, !(1:5, 246 | 6 7 | 5 | 5 |u |
W3yl Wald; W 1, 92, 53, 6) 6 7 7 5 Uy | Uy
gy (6@ 3,54 7 6 | 6 | 8 | oy
W W W, W, W,y w3wzl {d, 6)(2, 4, 5, 3) 7 | 6 8 ; “6—_ 777‘7#‘2—1A_-
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|

WL W W, W, W Wy, 1,4,2,6,3,5) 7 6 8 6 U,

Wy, WyW W, W W, 7 1, 5)(2, 6) 7 8 6 8 —;{; o _u;
wwawwwaow, | (1,53624 | 7| 8| 6| 6 | u | |
le@@wm@;wga@@ 8 7| 7|9 Cu
wawawawawwaaw, | (LORHS5 | 8 | 7 9 | 7 Ly
wwwawwwaw, | LSO | 8 | 9 | T | 7T | w | |
w1w2w1w3w2w1w3w;w3— ‘ 1, 6)(2, 5@, 4; 9 3 3 8 -

(¢) For all w; (i=1,2,3) we have w;Bw, + B.

Proor. It follows from (3.5) and (3.6).

(d) The group G, is a group with a (B, N)-pair in the sense of Tits [8].

Proor. It follows from (a), (b), (¢) and (3.5).

() The group G, is a simple group.

ProOOF. Let B, be the intersection of all the conjugates of B in G, As-
sume that B, = (1). Since B, is a normal subgroup of G,, B, contains some
element of Z(B)={u; usy. On the other hand since

WiWoW3zWeg WIWoWg ___ wWiWy w
U0V = gy WIS — g WIW2 — g Y1 g B
uewngwlzusu)3w2:u9u73$3

(U516)"3721 = (Us1Lg)" 82 = (U4 Us)"% = U,(Uy"%) & B
by (3.6), we have a contradiction. This implies that

By= N B*=() CX))

£EG6)

Let G, be the subgroup of G, generated by all the conjugates of B in G, It
follows from (3.3) and (3.5) that <w,, u,», {w,, u;>» and {w,, u,> are isomorphic
to S;. Thus we have w,~u,, w,~u,;, w,~u, and hence G, contains B and
W. This yields G,=G,=<{B*; g G,)=<B, W). Since G} contains u,, u,, us,
ug by [3.1), it follows from that GO B. By the definition of G, we must
have

Gy=G,=G} 3.8)

Since the set of distinguished generators {w,, w,, w,} of W, is not the union
of two commuting proper subsets by (3.3), (d) implies that we can apply the
result of Tits [9]. Therefore every normal subgroup of G, is contained in B,
or contains Gj. and yield the simplicity of the group G,. This
proves (e).

(f) The group G, is isomorphic to S,(6, 2).
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Proor. By the correspondences (3.2) and (3.4) we get the homomorphism
from G, onto S,(6,2). Thus it follows from (e) that the kernel of this homo-
morphism is trivial and so G, is isomorphic to S,(6, 2). The proof of our
proposition is complete.

By the similar argument as above we can prove the following proposition.

PROPOSITION 3. Let K be a finite group genevated by the elements ry, 7,
a,, a, subject to the following relations:

ri=al=(r,a;0  =(ryry)’=1 for 14,72 39
V1QyV =104y == (0102)2 .
Then the group K is isomorphic to GL(3, 2).

Proor. We put B=<(a,, a,>, N=W=<(r,, 7,) and a;=(a,a,)>

(@) The set of elements in K;=B\JBr;B (i=1,2) is a subgroup of K.

Proor. It follows from (3.9).

(b) For any v and re W, if l(r;v) = I(r), then r;Br C Br;vB.

Proor. By (3.9) we may identify r,, , with the elements (1, 2), (2, 3) in
S; respectively. By (3.9) we need only to see that r,a,y € Br,rB for i=1, 2.
It is easily verified that for those r = W such that [(»;) = (), we can always
write r;a,r =r;7Y; with Y, B. The computations are summarized in the
following table which is self-explanatory.

r B r) | 1) Y, Yy,
r a, 2) 1 o | 2 g
’s @, 3) 1 2 | o | g4
7175 @, 2, 3) 2 1 3 a,
To¥: {, 3, 2 2 3 1 a,
r T 1, 3) 3 2o | 2

(¢) For all r; (i=1, 2) we have r,Br; + B.

Proor. It follows from (3.9).

(d) The group K is a group with a (B, N)-pair in the sense of Tits [8].

Proor. The result follows from (a), (b), (c) and (3.9).

(&) The group K is a simple group. ,

Proor. Let B, be the intersection of all conjugates of B in K. Assume
that B, =+ (1). Since B, is a normal subgroup of K, B, contains Z(B)={a,).
On the other hand since

as'rzrl — azrz & B

by (3.9) we have a contradiction. This implies that
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By=NB*=(). 3.10)
g=K

Let K, be the subgroup of K generated by all conjugates of B in K. It fol-
lows from (3.9) that »,~a, and »,~a, Hence K, contains B and W. This
implies that K=K, =<{B¢; g K>=<{B, W). Since K/ contains a, by (3.9),
we must have K{D B and then by the definition of K, we get

K=K, =K. (3.10)

By (3.10), and Tits [9], K is a simple group.
®) The group K 1is isomorphic to GL(3, 2).
ProOF. By the correspondence

0 1 1 0 0
r,—| 1 0 0 7, —— | 0 0 1
0 0 1 0 1 0
1 1 0 1 0 0
a—| 0 1 0 a,——| 0 1 1
0 0 1 0 0 1

we get the homomorphism from K onto GL(3, 2). It follows from (e) that K
is isomorphic to GL(3, 2). The proof is complete.

§4. Conjugacy classes of involutions of G and the case G > 0*G).

In this section we summarize the result in our previous paper [11] But
our proof in is a little insufficient and so we give some additional ex-
planations in Remark 1 below.

LemMA 1. Assume that Ng(S) > Ny(S). Then the group G posesses pre-
cisely three or four conjugacy classes of involutions. If notations are chosen
suitably, the possibilities for the fusion of the conjugacy classes of involutions
of G are

[ Ty~ T,

Case 1 { mm,~m 7w~ wix)

o~ ani~arri~aa’ ~a’
Ty~ T~ Ty

T Ty~ o’

Case 11
o~ QT

o ~ T T~ Ty
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REMARK 1 (cf. [11] p. 681 Lemma 9). If we replace 7; with z,7; the same
relations still hold in H. Moreover this replacement is independent of the
replacement z}, o, 7}, ¢/, 7, with az}, ao, arl, ac’, ar} in this order (cf. [11]
Lemma 7). Thus we may assume that a’ ~ 75~ anjr; and so n,7,~aa’.

REMARK 2. In [11] our assumption is that G=0%(G). From this we can
easily deduce the condition N4(S)> Ny(S) and for the proof of Lemma 1 we
only used this condition. In both cases of Lemma 1 focal subgroup theorem
[4] implies that G=0%G). Hence if G >O0%G), then we must have Ng(S)
= Ngx(S). Since S is weakly closed in D with respect to G and is an abelian
subgroup, Burnside’s argument implies that if two elements of S are con-
jugate in G, they are conjugate in NgS). Also it follows from the struc-
ture of H that every involution is conjugate to an element of S. Thus Ng(S)
= Ng(S) implies that cclz(a) "D = {a}. By the theorem of Glauberman [3]
we have a & Z(G mod. 0,(G)) and then G [> {a»0,(G). Frattini argument yields

G = Co(@)0:(G) .

Since Cgla) N 0,(G)= (1), a acts fixed-point-freely on 0,.(G) and so 0,(G) is an
abelian group by a theorem of Zassenhaus [12]. This proves the case (iii) of

our theorem.
REMARK 3. In [11] we deduced G= A,, or A,, in the Case I (cf. Kondo

[5]). Thus in the following we shall assume that the fusion of the conjugacy

classes of involutions is as in the Case II.

DEFINITION. We call the representatives =, m,m,, «, a’, canonical repre-
sentatives of the conjugacy classes of involutions.

LEMMA 2. (i) NgD)=D

(i) The group S{p> is conjugate to S{t) in NgS)

(iiiy The extension of Ng(S) over S splits and Ng(S)/S is isomorphic to
GL(3, 2).

ProOF. See Lemmas 3, 9 and p. 682 in [117.

LEMMA 3. If a® is in D for some element x in G, then «® is in S. More

precisely we have the following:
cclg(a) N D = {a, arn}, ar, ar, TT,T gy T4y, T3}

ProoF. Since ccly(an)) D S by the structure of I, the result follows
immediately from Lemma 1.

§5. Construction of a group isomorphic to S,(6, 2).

The main purpose of this section is to prove Lemma 4 and to show the
existence of the subgroup G, of G isomorphic to S,(6, 2).
LEMMA 4. There exists an one to one correspondence between Cy(a)\J Ng(S)
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and (C(&)UN(:S‘))(\SZ,(G, 2) inducing isomorphisms of Cgla) with C(&) N Sy(6, 2)
and Ng(S) with N(S)N S,(6, 2).

To prove this lemma we need several lemmas.

LEMMA 5. There exists an element W, in Ng(S) such that the action of W,
on S is given as follows:

~ ~ , ~ ,
A=, dP=mmina, =,
0] — ot T 1wl 1ot
myl =y, Tyl = Ty Tl = w7 .

Proor. By Lemma 2 (i), (S{pu»)*=S{z) for some element x in NgJS).
Thus (S<{p))*=(S{r)) and Z(S{ p)*=Z(S{r D). Since (S{u)) =<x;, 7, and
(S<tD) =L nm,, win,> we may assume that

. Yo r 7 4 X
¥ =mry, 7§ = wim,ny, (m,wy)* =1, 7,

by Lemma 1. It follows from [x, a1 that [x, 7,]+1. Because

d ccla(m) N Z(SS ) = {7y 7oy sy T3, w373}
an
celg(m) N Z(S< 7)) = {mims, T, 7,5, Ty T3 T3}
we must have nf=n} or w,x}f. If #n¥=r} then (x,7,)®* =’ which is impossible
by Lemma 1. Hence we have

F = mwamh and T = 1} or T =r,.

Now (zjm,m,)® = m{*aa’ and then by Lemma 3 and the following table which is
self-explanatory

(W) e @y
70( 7 o’ S
ar] s TyTy
aTh TiTh T,
o TiTTh 7 a’n'gr
C xmm, 5,
‘ T T, | T, 7h R - |
T TC,7Th TS,
we have
¥ = w7} or mF = whrh.

Similarly by the following table
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(7 mwomy)” 5" (myrs)”
(04 a’'m T,
o] T TT,TT4Th
anh T\ T T, 7Ty
any T T, Ty aa’
/ !l I4
TTTeTy UPUSUS ToToTlg
7 Y- !
T oty T\ Ty T Ty
ﬂ'lﬂ:zﬂé aﬂ:i”‘é
we have
¥ = T, or ¥ =il

Assume that n}*=nxf If 7{*=rir} and n{® = r,7{x}, then a’? = a’w, ~ aa’ which
is impossible by Lemma 1.

which is also impossible.

If n*=rx{ and n§* = n,mi7l, then a’*=a’'m,~ aa’
Thus we have

" = i}

i = i}
or

47 = T4} ¥ =, wiwl .

Assume that 7z} =r, If n{?=rjx, and #n}*=r,nix}, then «’*=m,r, Which is
impossible by Lemma 1.
is also impossible.

If n/®=n{z} and n}® = r,xix}, then a’*=m,7, which
Thus we have

e _ .. g % ! !

[ ¥ = mim} [ " = Moy
or

ThE = WL} | = w,wims.

Hence we have the following four possibilities of the action of the element x
on S.

- I | 11 | 111 v 7
n.ini o s 7
e o o T T4, Y -

N e b 4

- e P i) }i;ng T
o, x x xp xpp!
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For the cases I, 1I, 111, IV, put &, = x, 7x, xp’, xuy’, respectively. This proves
our lemma.
LEMMA 6. Let K be a complement of S in Ng(S). Then we may assume
that
K= pmr,, p'my, §mimy, T, wi), o = pmm,
or
K= pr,ms, t'a, Emms, taa’, wE), (raa )i = pn,m,,
and in both cases
w¥ =1, W, =w¥ (mod. S).
Proor. It is easily verified that the complement of S in Ny(S) is conjugate
to one of the following groups:

<)U7r1772: /1/751: E?Eéﬂg, T>
pmym,, p'ny, Emsms, Ta)
{urm,my, p'a, Emyms, Tal)

{pm,my, p'a, Emymg, Taa’y.

Since K is isomorphic to GL(3, 2), every involution in K is conjugate and
hence ra * pm7,, Ta’ * pr,w, imply that we have two possibilities of K as
stated in our lemma. Since KN\ S=() and C4z(S) =S, there exists an element
w¥ in K such that w¥* =1 and w¥=%, (mod.S). By the maximality of N(S)
in Ng(S) we get Ng(S)=<w¥, N;z(S)>. By Lemma 5 we have (S(/,c))%: N €D
and hence ¥ = p, pr,, pm,, pmw, by Lemma 1. Now z*! e K or (raa’)" € K
yields our result.

LEMMA 7. There exists an isomorphism from NgS) onto N(§)mSp(6, 2)
such that the restriction to Ny(S) is that of 0 defined in section 2.

Proor. The actions of the elements wf, &% pp/, ¢ on S by conjugation
are given by the following table:

* 2 /
W & | pp v
N B — N
4
Ty ' Ty T4 \ T, T,
I4 ! ! 4 7 ’
o ey T3 ’ Ty Ty
o ;| o o ) 5.1
Ty | mmim,my Ty Ty o G.D
B | mem | m o} 7
Ty ‘ oy I Ty T, Ty
7 I4 - 14 o e —/‘h I ’
73 | 7y [ a1 (rYys 7y

Assume that K= pumx, p'n, Exinl, =, w¥). We put
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1 111 1
1 111 1 1
1 1 I
v, = ; Vo == |----emmmmmomes . --------------------
1 1
1 1
1 | 1
11 11 1
1 1 1111
1 11
[ B I e —
1 11
11 1
1/ ‘ 1

Then r,, 7,, a,, a, satisfy the relations of Proposition 3 and so {7, 7, a;, a,>
is isomorphic to GL(3, 2). By (5.1), the result follows from the correspondence

w;k Y1, T(Sﬂéné)2 — 7,
pY' T, — ay, T—>4a,.

Assume that K= ur,r;, p'a, Emms, taa’, wi¥). We put

L R
1 1
1 1
¥y == | fooneeeneenee e Ve =1
1 1
| 1 | 1
1 f 1,
(.2)
11 1
1 11
1: 1
N F e — Ay = |-
1 11
11 |
1 1

Then Proposition 3 implies that {7, »,, a,, a,> is isomorphic to GL(3, 2). By
(5.1) the result follows from the correspondence

wf——r,, (raa’)Enim)? —1,,

pp'my —— ay, raa’ — a,.
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The proof is complete. We note that yields Lemma 4.
DEFINITION. Let w,, w, be the inverse images of r»,, r,, respectively given

in (6.2). We put w,=(az))’. Thus w,=r&an;.
LEMMA 8.
wh = = wd = (w0)* = ()t = 1.
ProOOF. Since w,, w, < Ng(S) and w,, wyse H=Cg(a), the result follows

immediately.
LeMMa 9.
(w1w3)2 e m,w, Ty, ).

PRrROOF. By definition, we have w,w, € Cy(m,7,, w5). Since
aw1W3W1W3 — awlwgwl — (aﬂ'é)wlw3 — (C(ﬂ'é)wl =
(772”3>w1w3w1w3 - ()Wtz”:z)wlww1 - (Z-aa/)mwa - (aal)wl =T,Tg,

we have
(w1w3)2 S CG(TCIT[Z’ T3, A, 71'277:3) — CG(ﬂlf oy T3, ﬂ'é) - S<ﬂ> .

Moreover
(U, ) 1WsWIYs = (7,7r,) 131 = (@@ )18 = (T )1 = pm,m,
(raa/)P1¥s¥1Vs = (qa/)1V8%1 = (1, 7,)"1"8 = (um,my)"t = raa’ ,

(aayesmsss = (zaa) s = pum, 18 = (e ) =

and thus we have

(W,wy)? € Clpm,ms, taa’, aa’) NS p) =7 7wy, 75 75

This proves our lemma.
LEMMA 10. (w,wy)?=1, that is, [w,, wy]=1.
Proor. It follows from Lemma 9 that (am)¥s¥1¥s¥1=qr| and so

(am)¥s¥ivs = gmf .
This implies that
(am)*1*s = (aumry)™
and then
Clam))™s, w,] = [weamiw,, w,]=1.
Since (w,arn)®*=1 and [w,, ax} =1, we must have

[w,, wy]=1.
This proves our lemma.
LEMMA 11. Let G, be a subgroup of G generated by the elements w,, w,,
w, and the group D. Then G, is isomorphic to S,(6, 2). Moreover G, is gener-
ated by Ny(S) and H=C4la).
Proor. We put
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u, = pp'ny, Uy = (T, Ty, Uy =rtaa’,
Uy, = T,T5, Us =TT, , U=« ,
u,=aa’, Ug = AT}, Uy = ATy,

and
W0:<w19 W, w3>y Do_—-—D.

Then the group G, satisfies the conditions [(3.1), (3.3), (3.5), (3.6) of Proposition
2 by the results of section 2 and Lemmas 5,8, 10. Hence G, is isomorphic to
Sp(6, 2). The second assertion is trivial.

§6. Final characterization.

In this section we determine the structure of the centralizers of involutions
and identify G with G, by the result of Suzuki [6]
LEMMA 12. Hg(S; 2%) is trivial.
PROOF. Assume that R e Hy(S; 2"). Since {xx}, iz} normalizes R and
is isomorphic to Z,x Z,, Brauer-Wielandt’s theorem [107] implies that
R = Cg(m{my) Cp(msms) Cr(mims) -

On the other hand it follows from the structure of H that C,(x{x}) is a 2-group
and so Cyp(ninl) =(1). Since nimi~ mri~ nizl in H we have Cgr(mir;) = Cr(mind)
= (1) and hence R=(1). This proves our lemma.

LEMMA 13. Hg(S; 2) s trivial.

ProOOF. Assume that R el(S; 2). Since six four-groups {a, ani),
{a, azhy, {a, anyd, {a, T(w,73), {a, T,mym,>y and {a, 7,w,7;> of S act on R, a
theorem of Brauer-Wielandt [107] implies that

R = Cp(a)Crlam))Cr(a)
= Cr(a)Crlamy)Cr(my)
= Cr(a)Crlamy)Cr(rs)
= Cr(a)Cr(mim,my) Cp(m i)
= Cr(a)Cr(mr,m37,) Cr(m,73)
= Cr@)Cp(m,m,m) Cr(myms) -

Now a~ ani~ anj~ ari~ xiw,m,~n wiw,~ s, by Lemma 3 and therefore
Lemma 12 implies that

Crla) = Cglar)) = Crlams) = Cg(mim,my)

- CR(”lﬂ'-;”a) - CR(ﬂﬂrzﬂg) = (1) .
Thus we have
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R = Cg(n}) = Cg(m;) = Cg(xy)
= Cg(m,77) = Cr(m,ms) = Cr(msmy)

Since S={nri, ny, w}, w7}, w7, w,ws> we get RC Ce(S)=S. It follows from
RN S=(1) that R=(). The proof is complete.

LEMMA 14. Cg(ms) = D{p>.

PrROOF. Since r, is a central involution of D, D is a Sylow 2-subgroup of
Cy(my). Assume that a” € D for some element x in Cy(w;). Since a” = (m,7,)"n,,
(,7,)* = a®r,. It follows from Lemma 3 that we have the following table and
thus a®=a.

xz x

@ (m,7,)

a T, T, T,
oy T, o’
o T, TT,Th o’

/ /

4414 T, T,y o
T, T,Th an; @
T T, T, o’

4 / /
T, T, i, a

In the table above the first, second and third entries of the column give re-
spectively, the posibilities of a?, (7,7,)* and the canonical representative of
cclg((mym,)®). Hence applying a theorem of Glauberman [3] we have a e
Z(Cy(my) mod. 0,(Cy(ry))) and then Cu(rm,) > {a)0,(Cq(wy)). Frattini argument
yields Cg(my) = Cy(rmy, )0, (Cy(my)). Since SC Cy(ry), it follows from Lemma 13
that 0, (Cy(w,)) = (1) and therefore

Co(my) = Col(my, ) = D p? .

This proves our lemma.

LEMMA 15. Cgila’)=S<&, ).

ProOF. Since Z(D)=<{rx,, w,>, it follows from Lemma 1 that «’ is a non-
central involution in any Sylow 2-subgroup of G. On the other hand the order
of the centralizer of any involution which is not conjugate to «, mw,7,, =, is,
at most, 2’. Thus Cgz(a’) D S{z)> implies that S{z) is a Sylow Z2-subgroup of
Cqla’). Assume that a® < S(z) for some element x in Cgla’). Then (aa’)”
=a®a’. By the following table and Lemma 3, we have a®=a.
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a® oo’
B 7—‘&— o aa’ T, T, R
an] amh) o B
amy o an{n}’i a’
ocng aﬁgn; o’
T T} ;ln{nzrcg T,
T YT T T T4 T
T,y TG THT T, - T

In the table above the first, second and third entries of the column give re-

spectively, the possibilities of «a” (aa’)® and the canonical representative of

celg((aa”)®. Again by a theorem of Glauberman and Lemma 13 we have
Cola)=Cela, @)= 5§, ).

This proves our lemma.

LEMMA 16. (i) Cg(mym,, momg) = Sy, p'>.

(i) Co(m,7y, wi75) = Co(m 70y, Ti7sms) = S ).

PrROOF. (i) Since Z(D) =<z my, m3» # {7 Ty, wymwsy by Lemma 1 S{p, p/) is
a Sylow 2-subgroup of Cg(z,7,, m,w;). Assume that a®e S{y, p’> for some
element x in C4(rm,w,, ;). Since a®=r,7,(nf) € S by Lemma 3, we must have
¥ =m, w5, Or wems. On the other hand (r,7,)* =m,7, and thus =¥ = r,7,(7%).
This yields n¥=r, and hence a*=a. By Glauberman’s theorem [3] and
Lemma 13 we have

Co(m 7y, moms) = Colat, m7,, Tymwy) = S< U ).

(ii) Since o’ ~mmi~ ey and S p ) C Colmym,, myms) N Co(mym,, Tymwymy), it
follows from Lemma 15 that S < Cu(x,7,, m,75) N\ Ce(m 7, 7,7,mh).  Since Cg(&)
={a, a'd #{mmy, m;w5y and (a, a') 4 {mm, 7,775y, |Celmimy, mymy)|  and
| Co(m,my, m,woml)| are not divisible by 3. This implies that Cy(z,7,, 7,7 =
Cg(m 7y, mymyms) = S{y. The proof is complete.

LEMMA 17. Let z be an element of order 2 in D.

i) If meg~rm, and wz~a, then z=m7;, T 5 OF T ,T,TT5

(i) If wg~z in Cylrywy), then z=m, w} or mw,x}

Proor. (i) It follows from Lemma 3 that

.2 € {a, ar), an}, A, T(T Ty, T, T4, T Towh}

and then we have

! ' ! ' / ']
z e {m7y, mMTy, T MGT,, T MW, T\ Ty, (T, T4} .
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On the other hand since z,z~=,, we have z =r,x,, 7,7} or m;7,x} by Lemma 1.

(i) By our assumption, a=mm,r,~m 7w,z S{y, p'>. Lemma 1 yields
our result.

LEMMA 18. Cy(m,my) > {7, ).

PrROOF. Since m, 4 7, in Cg(m,m,) by Lemma 1, (=% =,) is a dihedral group
with non-trivial center for any x in Cg(x,xw,) (cf. Brauer-Fowler [2]). We put
Z(n§, my)=<a(x)). Then =nf~ma(x) or z,~ma(x). Since [a(x), 7,7, =
fa(x), m;]=1 we have [a(x), z,]=1. Lemma 14 implies that

a(x) € Cg(my) N Colmy) = S p, '
Assume that 7§~ r,a(x). Since a®= m,7,(7f) ~ w,7,(7,a(x)) = m,a(x), it follows

from Lemma 17 that a(x)=m,x,;, n,7} or mm,wl. Now [nf, a(x)]=1 and then
¥ € Co(m 7y, 7, 7y), Colm,m,, m,w}) or Cglr,m,, w,mymh). By Lemma 16, we have

e S 'y
for all x in Cy(m,m,) with nf~m,a(x). By Lemma 17, we must have
7§ € {7y, T3

Assume that m,~ma(x). In this case we have =¥~ nfa(x) and then there
exists an element y(x) € (z¥, n,> with (zf)¥* =nrfa(x). This implies that a(x)
=7¥(xH?® and [#%, (z5)*]=1. On the other hand Lemma 14 yields Cy(x¥)
=D*p”) and hence there exists an element w(x) in Cy(n§) N Cy(m,m,) with
(@D < D* Since y(x), w(x) € Cyg(m,7w,) Lemma 17 yields

[@pv @] e (ag, m®> .

Now Cg(n?) > {z¥, n4*> and hence (x3)V® =<{x¥, ni*>. It follows from (zf)»*»
=7zja(x) that a(x) =n{® or a(x)=(w,xd)®. Since a(x) = S{y, p’> Lemma 17 im-
plies that

a(x) € {my, s>

This is impossible by Lemma 1 because r,~m,a(x). Thus we have proved
n¥ & (m, wsy for all x in Cuzlm,m,). On the other hand wf is in Ng(S) N Ce(m,7,)
and z¥ =m,n} by Lemma 6 and so =ny* =mx,x{ implies that w,~my~mm; in
Cu(mym,). Hence we get {m,, ;> < C¢(m,mw,). The proof is complete.

LEMMA 19. Cy(m,m,) = D<{ p, wi).

PROOF. Since (Ngy(my, 75)) 1 Co({ms, 7)) is divisible by 6 we have

No({my, mi)) =< wi, p'>Col{ms, 73)) -

By Lemma 14, Co(Km,, }»)=S{z, ¢, p» and then the result follows.

REMARK. By Lemmas 14, 15 and 19, every centralizer of involution of G,
is contained in the group G, generated by H = Cg(a) and Ng(S).

LemMmAa 20. G=G,.
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PrOOF. (cf. Suzuki [6] or Thompson [7]). Assume by way of contradic-
tion that G> G, If there is no element of order 2 in G—G,, then every
involution is contained in G, Since G, is generated by the elements of
order 2, G, is a normal subgroup of G and contains D. Since N4z(D)=D by
Lemma 2 Frattini argument implies that

G = NyD)Gy=DG,=G, .

This contradicts our assumption. Now let y be an element of order 2 in G—G,
and x be any element of order 2 in G,. If x+y in G, then it is well known
that <{x, y) is a dihedral group with non-trivial center. We put Z(x, y)>) = {z).
Then z € Ca(x) N Cye(y) and so y € Cz(z). On the other hand by Lemmas 14, 15
and 19, we have Cy;(x) C G, and so z< G,. This is impossible because ye Cy(2)
C G,. Therefore all involutions in G are conjugate to each other. This is
also impossible because of Lemma 1. Thus we have proved G=G, The
proof of our theorem is complete.
Osaka University
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