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\S 0. Introduction.

This is a continuation of the paper [4], referred to as Part I in this
paper. We employ the notation of Part I, in which we call connected
compact complex manifolds of complex dimension 2 “ surfaces ‘’. The purpose
of the present paper is to prove

THEOREM III. Plurigenera of surfaces are invariant under arbitrary holo-
morphic deformations.

The proof is based heavily on the classification theory of all surfaces
established by Italian algebraic geometers and K. Kodaira [7].

\S 1. Proof for surfaces of which all plurigenera vanish.

First, we consider an algebraic surface which is birationally equivalent
to the product of an algebraic curve and a projective line. We call this ruled
surface, extending the previous definition of ruled surfaces in [7, IV].

PROPOSITION 1. Any deformation of a ruled surface is also ruled.
PROOF. For a rational surface, this is Theorem I in Part I, and for

an irrational ruled surface this follows immediately from the classification of
surfaces in [7, IV]. $q$ . $e$ . $d$ .

By Proposition I and the vanishing of all plurigenera of a ruled surface,
Theorem III is proved when a ruled surface appears as a deformation of the
surface.

Second, we shall consider the other surfaces of which all plurigenera
vanish.

PROPOSITION 2. All plurigenera of surfaces with $b_{1}=1$ and $P_{12}=0$ vanish
and the class consisting of such surfaces is closed under deformations.

PROOF. The former part of Proposition 2 has been proved in Theorem
35 in $\overline{\llcorner}7$ , II]. To prove the latter part, we recall the following Lemma $A$ ,

which was used in Part I.
LEMMA A. Let $X$ and $Y$ be complex manifolds, and let $f$ be a proper and

simple holomorphic map from $X$ to $Y$, such that every fibre $X_{y}$ is a surface.
The following two assertions can be establish ed.
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I. If there exists an irreducible exceptional curve of the $f\hat{i}rst$ kind $E_{0}$ in a
fibre $X_{0}$ for a point $0\in Y$ , then $E_{0}$ can be extended locally, $i$ . $e.$ , there exist a
neighborhood $U$ and a complex submanifold $E$ of $f^{-1}(U)$ , whose restriction to
$X_{0}$ is the curve $E_{0}$ . We note that for any point $y\in U,$ $E_{y}=E\cap X_{y}$ is an
irreducible exceptional curve of the first kind on the surface $X_{y}$ .

II. If there exists a complex submanifold $E$ of $X$ such that its restriction
to $X_{y}$ : $E_{y}=E\cap X_{y}$ is an irreducible exceptional curve of the first kind on $X_{y}$

at any $y\in Y$ , then we can construct a complex manifold $\hat{X}$, which is simple over
$Y$, and a holomorphic map $\mu:X\rightarrow\hat{X}$ over $Y$ , such that $\mu|_{Xy}$ : $X_{y}\rightarrow\hat{X}_{y}$ shrinks $E_{y}$

to a simple point in $\hat{X}_{y}$ for every point $y\in Y$ , and such that $\mu|_{X- E}$ : $ X-E\rightarrow$

$\hat{X}-\mu(E)$ is biholomorphic.
PROOF. For the proofs of I and II, we refer to Theorem 5 in [6] and

Appendix I, respectively. $q$ . $e$ . $d$ .
Now, we continue the proof of Proposition 2. Let $f:X\rightarrow Y$ be a fibre

space of connected complex manifolds describing a complex analytic family
of deformations of $S$ with $b_{1}=1,$ $P_{12}=0$ , namely, $f$ is proper, simple and sur-
jective, and $X_{0}=S$ for a point $0\in Y$ . We denote by $\Sigma$ the set of points $y\in Y$

such that $b_{1}(X_{y})=1$ and $P_{12}(X_{y})=0$ . By the principle of upper semi-continuity,
the set $\Sigma$ is open. Under the assumption that $ Y-\Sigma$ is not empty, we derive
a contradiction. Since $P_{12}(X_{y})>0$ for $ y\in Y-\Sigma$ , the minimal model of $X_{y}$ ,

which we denote by $X_{y^{\star}}$ , is elliptic, referring to Lemma 27 in [7, IV]. According
to Lemma A we can choose a neighborhood $U$ of $y$ and construct a fibre
space $X_{U}^{*}\rightarrow U$ describing a complex analytic family consisting of the surfaces
$X_{y’}^{*},$ $y^{\prime}\in U$ . By Theorem 29 in [7, II], it follows that $P_{12}(X_{y}^{\star,})>0$ . Therefore,
$ Y-\Sigma$ is open. This contradicts the connectedness of $Y$ .

COROLLARY. Theorem III is proved for the surfaces with $b_{1}\equiv 1mod 2$ and
$P_{m}=0$ for all $m\geqq 1$ .

PROOF. This corollary is a direct conclusion of Lemma 27 in [7, II] and
Proposition 2 above. $q$ . $e$ . $d$ .

\S 2. Proof for surfaces of type ($i$) and for the algebraic surfaces of
general type.

Third, we shall consider minimal surfaces with some plurigenera $>0$ .
PROPOSITION 3. Minimal surfaces with some plurigenera $>0$ can be classified

into the following four classes.
i) the class of surfaces with $p_{g}=0$ and $12K\approx 0^{1)}$ ;

ii) the class of surfaces with $K\approx O$ ;

1) $K$ “ denotes a canonical divisor of the surface under consideration and $ t\approx$

indicates linear equivalence of divisors.
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iii) the class of elliptic surfaces of general type, defined to be elliptic sur-
faces with some plurigenera $\geqq 2$ ;

iv) the class of algebraic surfaces of general type, defined to be surfaces
with $P_{2}>0$ and $c_{1}^{2}>0$ .

PROOF. This classification is easily derived from Table II in [7, IV].
PROPOSITION 4. Each class in Proposition 3 is closed under deformations.
PROOF. For the class ii), we have a straight proof of Proposition 4 de-

pending on Lemma $C$ below, which follows from the following Lemma $B$ in
the theory of complex spaces.

LEMMA B. Let $f:X\rightarrow Y$ be a fibre space of complex spaces such that $f$ is
proper, and let $g$ be a f-flat, coherent $O_{X}$ -Module. If $\dim H^{0}(X_{y}, q_{y})$ is in-
dependent of $y\in Y$, then $f_{*}(\mathcal{G})$ is a locally free $O_{Y}$ -Module whose rank is equal
to $\dim H^{0}(X_{y}, \mathcal{G}_{y})$ and the canonical homomorphism $f_{*}(q)_{y}\otimes_{0_{Y,y}}k(y)\rightarrow H^{0}(X_{y}, 9_{y}^{i})$

is isomorphic, where $k(y)$ is the field of complex numbers regarded as $C)_{Y,y^{-}}$

Module by the map $f-f(y)$ for the germ of $f:\{f\}\in \mathcal{O}_{Y,y}$ .
PROOF. We refer to Satz 5 in [2]. $q$ . $e$ . $d$ .
LEMMA C. Under the same condition as in Lemma $B$ , we assume further

that $Y$ is connected, $X_{y}$ is reduced and irreducible for every point $y\in Y,$ $q$ is
invertible and that $g_{0}\rightarrow-O_{X_{0}}$ for a fixed point $0\in Y$ . Then, $S_{y\rightarrow}^{7-0_{x_{y}}}$ for every
point $y\in Y$ .

PROOF. By $Y^{\prime}$ , we denote the set of points $y$ such that $9^{7},\rightarrow\sim 0_{x_{y}}$ as $C)_{X_{y^{-}}}$

Module. Then $Y^{\prime}$ is closed by the upper semi-continuity of $\dim H^{0}(X_{y}, 9_{y}^{i^{-1}})$

as a function of $y\in Y$ . We shall show that $Y^{\prime}$ is open, which proves Lemma
C. For an arbitrarily fixed point $1\in Y^{\prime}$ , we can choose a non-vanishing section
$s.\in H^{0}(X_{1}, g_{1})$ , then $s$ extends to a section $ s\sim$ of $g$ on the inverse image $f^{-1}(U)$

of a neighborhood $U$ by Lemma B. Since $s_{z}\sim\in H^{0}(X_{z}, 9_{z})$ is a non-vanishing
section for every point $z$ in a small neighborhood $V$ of $y$ in $U$ , it follows that
$\mathscr{Z}_{z\rightarrow}\sim 0_{x_{z}}$ for every $z\in V$ . Therefore $Y^{\prime}$ is open. $q$ . $e$ . $d$ .

To prove Proposition 3 for the class i), we define a surface of type (i) to
be a surface whose i-canonical divisor: $iK$ is linearly equivalent to $0$ but $jK$ is
not so for $0<j<i$ . We shall show that any deformation of a surface of type
(i) is also of type (i). Let $f:X\rightarrow Y$ be a fibre space of complex manifolds
describing a complex analytic family of deformations of a surface $S$ of type
(i), namely, $X_{0}=S$ for a point $0\in Y$ . In this proof, we denote the underlying
topological manifold of a complex manifold $M$ by the symbol $(M)$ . Then, the
topological fibre space $f:(X)\rightarrow(Y)$ is a fibre bundle. Hence, there exists a
connected open covering $\{U_{\lambda}\}_{\lambda}\Lambda$ of $Y$ , such that $(f^{-1}(U_{\lambda}))$ is homeomorphic
to the product $(S)\times(U_{\lambda})$ for every $\lambda\in\Lambda$ . On the other hand, $X_{0}=S$ has an
unramified covering manifold $\tilde{S}$, such that $\tilde{S}$ is of type (1) and the degree of
the covering holomorphic map $\mu:\tilde{S}\rightarrow S$ is $i$ , referring to Theorem 33 in [7, II].

Now we get a complex manifold $\tilde{X}_{\lambda}$ and an unramified holomorphic map $\mu_{\text{{\it \‘{A}}}}$ :
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$\tilde{X}_{\lambda}\rightarrow f^{-1}(U_{\lambda})$ such that $(\tilde{X}_{\text{{\it \‘{A}}}})$ is homeomorphic to $(\tilde{S})\times(U_{\lambda})$ and the map $\mu_{\lambda}$ is
equal to the product of $\mu$ and $id_{U_{\lambda}}$ for each $\lambda\in\Lambda$ . Then, the holomorphic
map $f\circ\mu_{\lambda}$ : $\tilde{X}_{\lambda}\rightarrow U_{\lambda}$ is proper, simple and surjective. Moreover, $(f\circ\mu_{\lambda})^{-1}(0)$ is
biholomorphic to the surface $\tilde{S}$ for any sufiix $\lambda$ such that $0\in U_{\lambda}$ . Therefore,
$(f\circ\mu_{\lambda})^{-1}(y)$ is of type (1) by the previous argument for any point $y\in U_{\text{{\it \^{A}}}}$ and
any suffix $\lambda$ such that $0\in U_{\lambda}$ . Since $Y$ is connected and $\{U_{\lambda}\}_{\lambda\subset\Lambda}$ is a covering
of $Y,$ $(f\circ\mu_{\lambda})^{-1}(y)$ is of type (1) for every $y\in U_{\lambda}$ and $\lambda\in\Lambda$ . Thus, $X_{y}$ is of
type (i). $q$ . $e$ . $d$ .

To prove Proposition 3 for the classes iii) and iv), we define $n(S)$ to be
the number of quadric transforms required to obtain the non-rational surface
$S$ from one of its relative minimal model $s*$ . By $f:X\rightarrow Y$ , we denote a fibre
space describing a family of surfaces. Then, by Lemma $A,$ $n(X_{y})$ is lower
semi-continuous as a function of $y\in Y$ . If $X_{0}$ is in the class iii) for a point
$0\in Y$ , the set of points $y\in Y$ , such as $n(X_{y})>0$ is open. This set coincides
with the set of $y\in Y$ such that the minimal model of $X_{y}$ is of general type.
Hence, this set is closed by the upper semi-continuity of $P_{m}(X_{y})$ as a function
of $y\in Y$ . If $X_{0}$ is in the class iv) for a point $0\in Y$ , then $X_{y}^{*}$ is also in the
class iv) for every $y\in Y$, because if $X_{y^{*}}$ is in the class iii), $c_{1}^{2}(X_{0})=c_{1}^{2}(X_{y})$

$\leqq c_{1}^{2}(X_{y^{*}})=0$ . Now, from the vanishing of $H^{1}(X_{y^{*}}, (\Omega^{2})^{\otimes 2})$ (which has been
proved in Theorem 5 in [7]), it follows immediately that $n(X_{y})=\dim H^{1}(X_{y}$ ,
$(\Omega^{2})^{\otimes 2})$ . Hence, $n(X_{y})$ is an upper semi-continuous function of $y\in Y$ . Con-
sequently, $n(X_{y})=n(X_{0})=0$ . This completes the proof of Proposition 3.

PROPOSITION 5. Plurigenera of surfaces in each class in Proposition 3 are
as follows:

TABLE III

$|_{\overline{i_{v)}}^{\underline{ii)}}}^{\underline{clas_{i)}s}}i^{i^{i)}}|_{\frac{(Foranexp1icitformu1aofP_{m},seeProposition8.)}{P_{mI\cdot 1}=\frac{1}{2}m(m+1)c_{1}^{2}+1-q+p_{g}}}^{\frac{p1urigenera(m=1,2,\cdots)}{mm}}\frac{P=1whenm\equiv 0mod iP=0.whenm\not\equiv 0wherei=2,3,4and6^{mod i}’}{m}\frac{P=1}{P_{\nu}\geqq 2foranindex\nu\geqq 1}|$

PROOF. The formula for the class iv) is found in Theorem 5 in [8].

The verification is easy for the other classes. $q$ . $e$ . $d$ .
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We note that the invariance of plurigenera for the class i) is proved in
the proof of Proposition 3. Hence, for our purpose it is sufficient to prove
Theorem III for the elliptic surfaces of general type.

\S 3. Proof for elliptic surfaces of general type.

In the following Propositions 6, 7, 8, 9 and 10, we denote by $S$ an elliptic
surface of general type.

PROPOSITION 6. $P_{m}(S)$ becomes arbitrarily large, when “ m”grows to infinity.
PROOF. It is immediately proved that $P_{m\nu}(S)\rightarrow\infty(m\rightarrow\infty)$ for any integer

$\nu$ satisfying $P$. $\geqq 2$ . Combining this with the formula (40) in [7, I], Proposition
6 is proved.

PROPOSITION 7. The irreducible algebraic pencil of elliptic curves on $S$ is
unique. This is determined by the canonical fibration of the elliptic surface $S$ .

PROOF. The m-canonical system $|mK|$ for sufficiently large $m$ is compo-
site with an irreducible algebraic pencil of elliptic curves $\{F_{y}\}_{y\in\Delta}$ . Every
member of this pencil $\{F_{y}\}$ is a fibre of the canonical fibring $\Psi$ : $ S\rightarrow\Delta$ , where
we denote by $\Delta$ and $\Psi$ the base curve of the elliptic surface $S$ and the
canonical map of $S$ , respectively. Now, let $\{E_{\lambda}\}_{/\in B}$ be an arbitrarily given
irreducible algebraic pencil of elliptic curves on $S$ . If $E_{\lambda}$ is not contained in
$\{F_{y}\}$ , then the intersection number of $E_{\lambda}$ and $F_{y}$ : $E_{\lambda}\cdot F_{y}>0$ . Hence,

(1) $E_{\lambda}K=\frac{1}{m}E_{\lambda}\cdot mK=\frac{1}{m}\sum_{y}E_{\lambda}F_{y}>0$ .

Combining $E_{\lambda}^{2}\geqq 0$ with this, we have the following false relation:

(2) $0=2\pi(E_{\lambda})^{2)}-2=E_{\lambda}^{2}+KE_{\lambda}>0$ .

Thus $E_{\lambda}\in\{F_{y}\}$ . By the irreducibility of these pencils, we get $\{E_{\grave{\Lambda}}\}=\{F_{y}\}$ .
Note that $\Delta$ corresponds to $B$ birationally and bijectively.

PROPOSITION 8. The m-genus $P_{m}(S)(m=2,3, 4, )$ is given by the following

formula:
(3) $ P_{m}(S)=m(2\pi-1-q+p_{g})+\sum_{\lambda--1}^{\hslash}[m(1-\frac{1}{m_{\lambda}})]+1-\pi$ ,

where we denote by $\pi,$ $q,$ $p_{g}$ , and $m_{1},$ $\cdots$ , $m_{s}$ , respectively, the genus of the base
curve $\Delta$ of $S$ , the irregularity of $S$ , the geometric genus of $S$ and the multi-
plicities of the multiple fibres $\Psi^{*}(a_{1}),$ $\cdots$ , $\Psi^{*}(a_{s})$ of the canonical map $\Psi$ of S.

The bracket $[$ $]$ denotes the Gauss symbol.
PROOF. By the formula (40) in [7, I], an m-canonical divisor $mK$ is given

as follows:

2) $\pi(E_{\lambda})$ denotes the arithmetic genus of $E_{A}$ .
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(4) $mK=m\Psi^{*}(f-\mathfrak{s})+\sum_{\lambda=1}^{l}m(m_{\lambda}-1)\Psi^{-1}(a_{\lambda})$

where we denote by $\mathfrak{k}$ and $\mathfrak{f}$ a canonical divisor and a divisor of degree
$1-q+p_{g}$ , respectively. Let $\mathfrak{d}_{m}=\mathfrak{d}_{m}(S)$ indicate the divisor:

$m(\mathfrak{k}-t)+\sum_{\lambda=1}^{s}[m(1-\frac{1}{m_{\lambda}})]a_{\lambda}$ on $\Delta$ .

Then the equality $P_{m}(S)=\dim|\mathfrak{d}_{m}(S)|+1$ holds. Thereforc, to prove the
formula in Proposition 8, it suffices to show that $\deg(\mathfrak{k}-\mathfrak{d}_{m})<0$ , since this
implies that the complete linear system $|\mathfrak{d}_{m}|$ is not special.

PROOF OF THE INEQUALITY; $\deg(\mathfrak{k}-\mathfrak{d}_{m})<0$ .
We obtain immediately the following formula (5) where $t$ denotes the non-

negative integer $1-q+p_{g}$ .
(5) $\deg(\mathfrak{k}-\mathfrak{d}_{m})=2\pi-2-m(2\pi-2)-mt-\sum_{\lambda=1}^{s}[m(1-\frac{1}{m_{\lambda}}$)].
On the other hand, we infer from Proposition 6 that the following inequality
(6) holds:

(6) $2\pi-2+\sum_{\lambda=1}^{s}(1-\frac{1}{m_{\lambda}})+t>0$ ,

where $t$ denotes $1-q+p_{g}$ , too. We recall that in the classical theory of
automorphic functions, it has been proved that the right side of the formula
(5) is negative for every set of integers $\{\pi ; m_{1}, \cdots , m_{s} ; t\}$ satisfying the
inequality (6) in calculating the dimensions of the vector spaces consisting
of all Fuchsian forms of weight $m\geqq 2$ attached to a Fuchsian group of genus
$\pi$ which has elliptic points $a_{1},$ $\cdots$ , $a_{s}$ with respective orders $m_{1},$ $\cdots$ , $m_{s}$ and
certain parabolic points $b_{1},$ $\cdots$ , $b_{t}$ . $q$ . $e$ . $d$ .

COROLLARY. There exists an integer $\alpha$ such that the complete linear system
$|\mathfrak{d}_{m}(S)|$ on the curve $\Delta$ is very ample for every elliptic surface of general type
$S$ and for every integer $ m\geqq\alpha$ . Moreover we can choose $\alpha=86$ .

PROOF. It is sufficient for very ampleness of $|\mathfrak{d}_{m}(S)|$ to choose $\alpha$ such
that $\deg(\mathfrak{d}_{m}(S))\geqq 2\pi+1$ for every $ m\geqq\alpha$ . Hence, by the following elementary
assertion we can prove Corollary.

For any integers $\pi\geqq 0,$ $s\geqq 0,$
$m_{1}$ , $\cdot$ .. , $m_{s}\geqq 2,$ $t\geqq 0$ among which the in-

equality (6) holds, there exists an integer $\alpha$ such that for every $ m\geqq\alpha$ the
following inequality;

$m(2\pi-2)+\sum_{\lambda=I}^{s}[m(1-\frac{1}{m_{\lambda}})]+mt\geqq 2\pi+1$

holds. Moreover, $\alpha$ may be chosen to be 3, 6, 14, 8 and 86, in the cases in which
i) $t+\pi\geqq 2$ , ii) $\pi=1$ and $s\geqq 1$ , iii) $\pi=0$ and $s+t\geqq 4$ , iv) $\pi=0,$ $t=1$ and $s=2$ ,

and v) $\pi=0$ and $s=3$ , respectively.
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PROOF. We can prove this in the former four cases easily. In the last
case, we recall the inequality:

$-2+\sum_{\lambda-1}^{3}(1-\frac{1}{m_{\lambda}})\geqq\frac{1}{42}$

which may be found in the usual proof of the estimates of the order of the
automorphism group of the curve with the genus $\geqq 2$ . Letting $\alpha_{m}(\lambda)$ be

$m(1-\frac{1}{m_{\lambda}})$ , we have

$[\alpha_{m}(\lambda)]-\alpha_{m}(\lambda)\geqq-(1-\frac{1}{m_{\lambda}})$ for $\lambda=1,2,3$ .

Then, we have

$\sum_{\lambda=\iota}^{3}[\alpha_{m}(\lambda)]=\sum_{\lambda=1}^{3}\alpha_{m}(\lambda)+\sum_{\lambda=1}^{3}\{[\alpha_{m}(\lambda)]-\alpha_{m}(\lambda)\}$

$\geqq(m-1)\sum_{\lambda=1}^{3}(1-\frac{1}{m_{\lambda}})=(m-1)(2+\div)$ ,

where we denote the reciprocal of $\sum_{\lambda=1}^{3}(1-\frac{1}{m_{\lambda}})-2$ by $\epsilon$ . The inequality

$(m-1)(2+\div)>2\cdot m$ implies $m>2\epsilon+1$ . On the other hand, $ 2\epsilon$ is smaller

than or equal to 84. Thus, for every $m\geqq 86$ we have the inequality:

$\sum_{\lambda=1}^{3}[m(1-\frac{1}{m_{\lambda}})]\geqq 2m$ . q. e. d.

Note that a surface with $\pi=0,$ $m_{1}=2,$ $m_{2}=3,$ $m_{3}=7,$ $t=0$ has the
following plurigenera: $P_{4}=P_{43}=0,$ $P_{6}=P_{85}=1,$ $P_{84}=P_{86}=2$ . Such a surface
can be obtained from $E\times P^{1}$ by logarithmic transformations, where $E$ is an
elliptic curve.

PROPOSITION 9. $\pi(S)$ is invariant under deformations.
PROPOSITION 10. The set $\{m_{1}(S), \cdots , m_{s}(S)\}$ is invariant under deformations.
PROOF OF PROPOSITIONS 9 AND 10. We shall describe a complex analytic

family of elliptic surfaces of general type as in Lemma B. Thus, let $X$ and
$Y$ be connected complex manifolds, and let $f$ be a proper, simple and sur-
jective holomorphic map from $X$ onto $Y$ , such that every fibre $X_{y}$ is an elliptic
surface of general type. We denote by $g$ the invertible sheaf $(\Omega_{x/Y}^{2})^{\otimes\alpha}$ , where
$\Omega_{x/Y}^{2}$ is the sheaf of germs of holomorphic 2-forms over $f:X\rightarrow Y$ (cf. p. 14-08
in [3, VII]). Then, we have $P_{\alpha}(X_{y})=\dim H^{0}(X_{y}, 9^{i_{y}})$ . Since $P_{\alpha}(X_{y})$ is an
upper semi-continuous function of $y\in Y$ , there exists a non-empty open subset
$Y^{\prime}$ of $Y$, on which the function $P_{a}(X_{y})$ is constant. Hence, for $y\in Y^{\prime}$ , it
follows from Lemma $B$ that $f_{*}(\mathscr{Z})\otimes_{0_{r’ y}}k(y)\rightarrow\sim H^{0}(X_{y}, \mathscr{Z}_{y})$ . Let $Q$ be the
cokernel of the natural homomorphism $\sigma_{g}$ : $f*f_{*}g\rightarrow 9^{i}$ , and let $\Sigma$ be its
support: $\Sigma=suppQ$ . Then codim $(\Sigma)\geqq 1$ . Since $\sigma_{\xi Y}$ is surjective on $ X-\Sigma$ ,
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the canonical holomorphic map $j:X-\Sigma\rightarrow P(f_{*}(S^{i}))$ is defined by Proposition
2.1 in [3, V]. On the other hand, the holomorphic map $j_{y}$ induced from $j$ at
each point $y\in Y^{\prime}$ is the restriction to the open set $X_{y}-\Sigma_{y}$ of the holomorphic
map $h_{y}$ associated with the complete linear system $|\alpha K_{y}|$ , where $K_{y}$ denotes
the canonical divisor of $X_{y}$ . Furthermore, at every point $p\in Y-Y^{f},$ $j_{p}$ is also
the restriction to $X_{p}-\Sigma_{p}$ of the holomorphic map $h_{p}$ , which is associated with
the sub-linear system of $|\alpha K_{p}|$ . This sub-linear system consists of the
effective divisors defined by the sections of $f_{*}(\mathcal{G})\otimes k(p)$ on $X_{p}$ . We note that
$X_{p}$ does not coincide with $\Sigma_{p}$ because we have, by the principle of upper semi-
continuity, the inequality: $2\leqq P_{a}(X_{y})=\dim f_{*}(g)\otimes k(y)\leqq\dim f_{*}(\mathscr{Z})\otimes k(p)$ for
every $y\in Y^{\prime}$ and $p\in Y-Y^{\prime}$ .

We shall show that $j$ will extend to a holomorphic map $h$ from $X$ to
$P(f_{*}(\Phi))$ . First, we define $h$ as a set-theoretical map by $h(x)=h_{f(x)}(x)$ for
each $\chi\in X$. Next, by the following Lemma $D$ , we see that $h$ is holomorphic.

LEMMA D. Let $h$ be a function of complex variables $z_{1},$ $z_{2}$ and $w$ , satisfy-
ing the following two conditions:

1. For an arbitrarily fixed $w,$ $h(z_{1}, z_{2}, w)$ is holomorphic with respect to the
complex variables $z_{1},$ $z_{2}$ .

2. $h$ is holomorphic on the complement of $A$ , where $A$ is an analytic set of
codimension 1, such that $A$ contains no analytic set defined by $w=const$ . Then,
$h$ is holomorphic.

PROOF. In a neighborhood of a general point $p$ of $A,$ $A$ is defined by
$\zeta_{1}=0$ after choosing a suitable system of local coordinates $\zeta_{1},$ $\zeta_{2},$ $\omega=w-w(p)$

with the center $p$ according to the condition 2. Hence, $h$ is given by means
of the Laurent series in $\zeta_{1}$ : $h=\sum_{i=1}^{\infty}A_{i}(\zeta_{2}, \omega)/\zeta_{i}^{i}+\sum_{j=0}^{\infty}B_{j}(\zeta_{2}, \omega)\zeta_{1}^{j}$ , where $A_{i},$ $B_{j}$

(for $i>0,$ $j\geqq 0$) are all holomorphic functions. By the condition 1, all $A_{i}$

(for $i>0$) have to vanish. Namely, $h$ is holomorphic at any general point of
$A$ . Then, it follows from a theorem of Hartogs that $h$ is holomorphic every-
where. $q$ . $e$ . $d$ .

Thus, we have a fibre space $h$ : $X\rightarrow Z$ over $Y$ , where we denote by $Z$ the
reduced sub-complex space of $P(f_{*}(9))$ with $h(X)$ as the underlying topo-
logical space. For every $y\in Y^{\prime},$ $h_{y}$ : $X_{y}\rightarrow Z_{y}$ is the canonical fibring of the
elliptic surface $X_{y}$ , but for a point $p\in Y-Y^{\prime},$ $Z_{p}$ may have a singular point.
If we assume that $\pi(X_{y})$ is independent of $y\in Y,$ $Z_{p}$ is non-singular. We
shall prove this as follows. For $y\in Y^{\prime}$ and for $p\in Y-Y^{\prime}$ , the equalities $\pi(X_{p})$

$=\pi(X_{y})=\pi(Z_{y})=\pi(Z_{p})$ follow from the assumption above and the independence
of the arithmetic genus $\pi(Z_{y})$ of $y\in Y$ . On the other hand, the effective
genus of $Z_{p}$ is equal to $\pi(X_{p})$ by Proposition 7. Therefore, $X_{p}$ is non-singular.

We shall, now, show that, for every multiple fibre $h_{p}^{\star}(q)=mL_{p}$ of multi-
plicity $m$ (whose reduced connected component is $L_{p}$), $(m-1)L_{p}$ extends locally
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to an effective divisor $X$ on $f^{-1}(U)$ , where $U$ is a small neighborhood of $p$ ,

and that $\Leftrightarrow\Gamma|_{X_{y}}$ decomposes into a sum of multiple fibres for $y\in U;\approx \mathcal{L}|_{X_{y}}$

$=.\sum_{?--1}^{f}(m^{(i)}-1)L_{y}^{(i)}$ , where $m^{(i)}\geqq 2,$ $L_{y}^{(i)}$ is the reduced component of the multiple

fibre $h_{y}^{\star}(q_{y}^{(i)})$ of $h_{y}$ : $X_{y}\rightarrow Z_{y}$ over $q_{y}^{(i)}\in Z_{y}$ , and that the multiplicity of $h_{y}^{\star}(q_{y}^{(i)})$

$=m_{y}^{*(i)}$ is greater than or equal to $m^{(i)}$ for each $1\leqq i\leqq t$ . We shall show
furthermore that $m^{(1)}$ is equal to $m$ under the assumption $t=1$ .

If the above is proved, then Propositions 9 and 10 can be derived as
follows:

By Proposition 8 we have

$ P_{m}(X_{p})=m(2\pi-1-q+p_{g})+\sum_{\lambda=1}^{s}[m(1-\frac{1}{m_{\lambda}})]+1-\pi$ ,

where $\pi=\pi(X_{p})$ , $q=q(X_{p})=q(X_{y})$ , and $p_{g}=p_{g}(X_{p})=p_{g}(x_{y})$ . Moreover, by
Proposition 8 and by the preceding assertion, we have

$P_{m}(X_{y})=m(2\pi^{\prime}-1-q+p_{g})+\sum_{\lambda=1}^{s}\sum_{i=1}^{c_{\lambda}}[m(1-\frac{1}{m_{\lambda}^{*(i)}})]+1-\pi^{\prime}$ ,

where $\pi=\pi(X_{p})$ . We note that $\pi=\pi(X_{p})=the$ effective genus of $Z_{p}\leqq\pi(Z_{p})$

$=\pi(Z_{y})=\pi(X_{y})=\pi^{\prime}$ .
If there exist some indices $\lambda$ , such that $t_{\lambda}\geqq 2$ or $t_{\lambda}=1$ and $m_{\lambda}^{*(1)}>m_{\lambda}$ , then

$\sum_{i=1}^{t_{\lambda}}[m(1-\frac{1}{m_{\lambda}^{*(i)}})]>[m(1-\frac{1}{m_{\lambda}})]$

for sufficiently large $m$ , while $P_{m}(X_{y})\leqq P_{m}(X_{p})$ by the principle of upper-semi-
continuity. It follows that $t_{\lambda}=1,$ $m_{\lambda}^{*(1)}=m_{\lambda}$ for any $\lambda$ and $\pi^{\prime}=\pi$ . Thus we
prove the invariance of plurigenera of elliptic surfaces of general type under
deformations.

We shall proceed to prove the assertion mentioned above. We take $Y$ to
be a complex manifold of complex dimension 1 and $p$ to be a point on the
boundary of $Y^{\prime}$ . First, we shall consider the case in which $c_{2}(X_{p})=c_{2}(X_{y})\neq 0$ .
Since $\pi(X_{p})=\pi(X_{y})$ for every $y$ , by the formula (12.8) in [5, II], the holo-
morphic map $g:Z\rightarrow Y$ is simple. We can choose a point $q\in Z_{p}$ and a section
$U=\{q_{y}\}_{y\in Y}$ of $g$ such that $q_{p}$ is $q$ and each fibre in $X_{y}$ over $q_{y}$ is regular for
every $y\in Y$ . We have the induced divisor $V=h^{*}(U)$ . In the usual way, we
can associate the invertible sheaf $O(V)$ with the divisor $V$ on the complex
manifold. Now we let $S^{i}$ be the invertible sheaf $\Omega_{x/Y}^{2}\otimes o(V)^{\otimes 2}$ on $X$, then we
have

$\dim H^{0}(X_{y}, S^{t_{y}})=\dim H^{0}(Z_{y}, O(f_{y}-\mathfrak{f}_{y}+2q_{y}))$

$=\pi+2-q+p_{g}=p_{g}+2$ .
This is independent of $y\in Y$ . Hence we can take a section $s$ of $\mathscr{Z}_{p}$ on $X_{p}$

such that the divisor of $s=(m_{p}-1)L_{p}+F^{\prime}$ , where $F^{\prime}$ does not contain $L_{p}$ any
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more by a theorem of Bertini. Then, by Lemma $B$ , we can extend $s$ to a
section $ s\sim$ of $S^{7}$ on the inverse image $f^{-1}(U)$ of a neighborhood. Therefore,
we can choose a divisor $X$ on $f^{-1}(U)$ which induces on $X_{p}$ the divisor $(m-1)L_{p}$ .
For every point $y$ in a neighborhood of $p$ , we can write the divisor on $X_{y}$

induced from $X$ in the form $\sum_{x=1}^{f}(m^{(i)}-1)L_{i}$ , where $m^{(i)}\geqq 2$ and $L_{i}$ is the reduced

connected component of the multiple fibre on $X_{y}$ . Next we shall show that
$m^{(1)}=m$ under the assumption $t=1$ . Since the multiple fibre has the form
$mIb$ by Theorem (6.2) in [5, II], there exists a system of local coordinates
$(\sigma, z, w)$ of $X$ with the center $x$ lying on $h_{p}^{-1}(q)-$ { $finite$ points}, such that $\sigma$ is
a local uniformization variable on $Y$ with the center $p$ and $z=0$ is a local
equation of $L_{p}$ . We denote by $(\sigma, \tau)$ a system of local coordinates on $Z$ with
the center $q$ . Then $h$ is written in the form :
(8) $\tau=z^{m}+\sigma B(\sigma, z, w)$ ,

where $B$ is a holomorphic function of $(\sigma, z, w)$ . Moreover, let $\tilde{A}(\sigma, z, w)=0$

be a local equation of $s$ with the center $x$ . Then

(9) $\tilde{A}(\sigma, z, w)=z^{m- 1}+\sigma A(\sigma, z, w)$ ,

where $A$ is a holomorphic function of $(\sigma, z, w)$ and therefore, $\tilde{A}(0, z, 0)=z^{m-1}$ .
By the Weierstrass preparation theorem $\tilde{A}$ may be written by use of a unit
$\epsilon$ and holomorphic functions $A_{1}$ , $\cdot$ .. , $A_{m}$ of $(\sigma, w)$ in the form of a pseudo-
polynomial:

(10) $\tilde{A}=\epsilon(z^{m-1}+\sigma A_{1}z^{m-2}+\cdots+\sigma A_{m- 1})$ .

Obviously we may assume $\epsilon=1$ . Letting $R$ be the Puiseux series ring of $\sigma$ ,

we consider $\tilde{A}(\sigma, z, w)$ to be a holomorphic function of $(z, w)$ over $R$ . Such a
consideration is the same as studying locally $<\mathcal{L}|_{X_{y}}$ for any point $y$ in a small
neighborhood of $p$ . Therefore, the number of distinct roots of $A(\sigma, z, 0)$ as
an equation of $z$ over $R$ is equal to the number of branches of $\rightarrow C|_{X_{y}}$ . By
the assumption $t=1,\tilde{A}(\sigma, z, 0)=0$ has one root $\alpha(\sigma)\in R$ . Hence, if we rewrite
$\tilde{A}$ by replacing $z$ with $Z=z-\alpha(\sigma),\tilde{A}(\sigma, z, w)$ becomes a pseudo-polynomial of
$Z$ with coefficients $\overline{A}_{1},$

$\cdots$ , $\overline{A}_{m- 1}$ such that $\overline{A}_{i}$ is a holomorphic function of $w$

over $R$ , and $\overline{A}_{i}(0)=0$ for every $i,$ $1\leqq i\leqq m-1$ . By the local irreducibility of
$L_{y}^{(1)},\tilde{A}$ has one and only one irreducible factor as a pseudo-polynomial of $Z$ :

(10) $\tilde{A}=(Z^{e}+A_{1}^{\star}Z^{e-1}+\cdots+A_{e}^{*})^{l}$ .
Therefore, we have $el=m-1$ . Note that, to prove $m^{(1)}=m$ , it suffices to show
$e=1$ . We shall prove $el^{\prime}=m$ for an integer 1’. Combined with $el=m-1$ , this
proves $e=1$ . We let $\tau_{0}$ be $\alpha(\sigma)^{m}+\sigma B(\sigma, \alpha(\sigma),$ $O$) $\in R$ , then we can write $z^{m}+\sigma B$

$-\tau_{0}$ , up to a unit factor $\epsilon^{\prime}$ , in the form of a pseudo-polynomial of $Z$ whose
coefficients $\overline{B}_{1},$

$\cdots$ , $\overline{B}_{m}$ are holomorphic functions of $w$ over $R$ such that
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$\overline{B}_{1}(0)=$ $=\overline{B}_{m}(0)=0$ :

(11) $z^{m}+\sigma B-\tau_{0}=\epsilon^{\prime}(Z^{m}+\overline{B}_{1}Z^{m- 1}+\cdots+\overline{B}_{m})$ .

According to the fact that $X|x_{y}$ is a fibre of $h_{y}$ : $X_{y}\rightarrow Z_{y}$ , $Z^{m}+\overline{B}_{1}Z^{m-1}+\cdots+\overline{B}_{m}$

has one and only one irreducible factor which is the same as in (10):

(12) $Z^{m}+\overline{B}_{1}Z^{n\iota-1}+\cdots+\overline{B}_{m}=(Z^{e}+A_{1}^{*}Z^{e-1}+\cdots+A_{e}^{\star})^{l^{\prime}}$

Therefore, we have $el^{\prime}=m$ .
To complete the proof of the previous assertion, we shall prove that the

multiplicity $m^{*(i)}$ of $h_{y}^{\star}(q_{y}^{(i)})$ in $X_{y}$ is not smaller than $m^{(i)}$ . We choose a non-
Weierstrass point $z$ on $Z_{0}$ and a section $U=\{z_{y}\}_{y\in Y}$ such that $z_{p}$ coincides
with $z$ and such that each fibre over $z_{y}$ of $h_{y}$ : $X_{y}\rightarrow Z_{y}$ is regular for $y\in Y$ .
Then we have the induced divisor $V=h^{*}(U)$ . Now, denoting by $g$ the inver-
tible sheaf $O(\approx C)\otimes G(V)^{\otimes\pi}$, we have

(13) $\dim H^{0}(X_{p}, \mathcal{G}_{p})=\dim H^{0}(Z_{p}, O(\pi z))=1$ .
Hence, for any point $y$ in a small neighborhood of $p$ , we have

(14) $\dim H^{0}(X_{y},$ $o(\sum_{i=1}^{t}(m^{(i)}-1)L_{i}+h_{y}^{-1}(z_{y})))=\dim H^{0}(X_{y}, \mathcal{G}_{y})=1$ .

On the other hand, $m^{*(i)}$ is smaller thanrs $m^{(i)}$ for some indices $i$ if and only
if the following inequality holds:

(15) $\dim H^{0}(X_{y},$ $o(\sum_{?=1}^{t_{\lambda}}(m^{(i)}-1)L_{i}+\pi h_{y}^{-1}(z_{y})))$

$=\dim H^{0}(Z_{y}, \mathcal{O}(q_{y}^{(i)}+\cdots+\pi z_{y}))\geqq 2$ ,

because $z_{y}$ is also a non-Weierstrass point of $Z_{y}$ .
In the case where $c_{2}(X_{p})=c_{2}(X_{y})=0$ , the proof is easy. Since the multiple

fibre has the form $mI_{0}$ by Table II in [5, III], we make use of Proposition 11
below employing the notation in the previous case.

PROPOSITION 11. If a multiple fibre is $mL_{p}$ , where $L_{p}$ is a non-singular
elliptic curve, $L_{p}$ is extended locally and uniquely.

PROOF. We denote by $N$ the normal bundle of $L_{p}$ in $X_{p}$ . Then we have
$(m-1)N$ ls $0$ and $mN\approx O$ on $L_{p}$ . Hence, we have $H^{0}(L_{p}, O(N))=H^{1}(L_{p}, \mathcal{O}(N))$

$=0$ . By Theorem 5 in [6], $L_{p}$ can be uniquely extended to a divisor $X$ of
$X$, by making $Y$ smaller if necessary. Moreover, we let $yt$ be the normal
bundle of -C on $X$, then we have $\Re_{p}=N$ and $\dim H^{0}(X_{y}, O((m-1)\mathfrak{N}_{y}))=$

$\dim H^{0}(L_{p}, \mathcal{O}((m-1)N))=0$ for any point $y$ in a small neighborhood of $0$ .
This completes the proof of Theorem III for the class iii).
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\S 4. Completion of the proof of Theorem III.

Finally, we shall consider non-minimal surfaces. Let $f:X\rightarrow Y$ be a fibre
space of complex manifolds describing a complex analytic family of defor-
mations of the surface S. Thus $X_{0}=S$ for a point $0\in Y$ . We denote by the
symbol $s*$ the minimal model of the surface $S$ . In the case in which $X_{0}^{\star}$ is
in one of the classes i), ii) and iii) in Proposition 3, then $n(X_{y})$ is independent
of $y$ by the same reasoning as in the proof of Proposition 5. By Lemma $A$ ,
there exists an open covering $\{U_{i}\}$ of $Y$ , such that we can construct for each
index $i$ a fibre space $\tilde{X}_{i}\rightarrow U_{i}$ describing a complex analytic family consisting
of $X_{y^{*}},$ $y\in U_{i}$ . Thus, we have proved Theorem III in this case by the uni-
queness of the minimal models of non-ruled surfaces. In the case in which
$X_{0}^{*}$ is in the class iv), we infer from the closedness of other classes under
deformations that $X_{y^{*}}$ is also in the class iv). For any $y\in Y$ , there exists a
neighborhood $U_{1}$ of $y$ and a fibre space $\tilde{X}_{1}\rightarrow U_{1}$ of a complex analytic family
of surfaces such that $\tilde{X}_{1,y}$ is $X_{y^{*}}$ and $\tilde{X}_{1,z}$ is dominated by $X_{z}$ for $z\in U_{1}$ ,

according to Lemma A. $\tilde{X}_{1,z}$ is also minimal by Proposition 5. Therefore,

$n(X_{y})$ is independent of $y\in Y$ . Consequently, $P_{m}(X_{y})=n(X_{y})+c_{1}^{2}(X_{y})\underline{m(m}_{2}\underline{-1)}$

$+1-q(X_{y})+p_{q}(X_{y})$ is independent of $y\in Y$ . This completes the proof of
Theorem III.

APPENDIX 1. A proof of Lemma $A$ , II.
For any point $0\in Y$ , letting $U_{0}$ be a relatively compact, holomorphically

convex and open neighborhood of $E_{0}$ in $U_{0}$ , we have $H^{1}(U_{0}, \Theta)=0$ , where we
denote by $0$ the sheaf of germs of holomorphic vector fields. Hence, by a
theorem of Andreotti and Vesentini in [1], there exist an open neighborhood
$N$ of $0$ and an open set $U$ in $f^{-1}(N)$ such that $U\cap X_{0}=U_{0}$ and such that $U$

is biholomorphic to $U_{0}\times N$ over $N$. We may assume that $U\cap X_{y}$ is the open
neighborhood of $E_{y}$ in $X_{y}$ for $y\in N$. On the other hand, we can construct a
complex manifold $\tilde{U}_{0}$ such that $U_{0}=Q_{p}(\sigma_{0})$ and $E_{0}=Q_{p}(p)$ , where $Q_{p}$ denotes
the quadric transformation with the center $p$ on $\tilde{U}_{0}$ . Therefore, replacing $U$

by $\tilde{U}_{0}\times N$, we obtain from $f^{-1}(N)$ the complex manifold $\tilde{X}_{N}$ over $N$.
This proof is due to T. Suwa.
APPENDIX 2. A supplement to the proof of Theorem II in Part I.
We might add the following Proposition 12 to the proof of Theorem II

in Part I.
PROPOSITION 12. Any surface with $c_{1}^{2}=c_{2}=0$ is free from exceptional

curves of the first kind.
PROOF. When a surface $S$ with $c’=c_{2}=0$ dominates a surface $s*$ which

is free from exceptional curves, then $s*$ has the following invariants: $c_{1}^{2}(S^{*})>0$ ,

$1-q(S^{*})+p_{g}(S^{*})=0$ . This is impossible by a formula in [9], which shows
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that $1-q(S^{*})+p,(S^{*})>0$ when $c\frac{9}{1}(S^{*})>0$ . $q$ . $e$ . $d$ .
APPENDIX 3. On the topological invariance of plurigenera of some special

surfaces.
The following Proposition 13 is a partial solution of the problem, “ Are

all plurigenera topological invariants ¿‘

PROPOSITION 13. All plurigenera $P_{m}(S)$ of a surface $S$ is determined by
certain topological invariants, if $S$ is homeomorphic to an irrational ruled sur-
face or a hyperelliptic surface or a complex torus of dimension 2 or a Hopf
surface or an elliptic surface of which fundamental group is finite but is
neither an abelian group generated by at most two elements nor a dihedral
group of order $4k$ for an integer $k\geqq 1$ (which we call an F-surface).

PROOF. Using Theorem II and Remark $B$ in Part I, we can immediately
prove Proposition 13 for the first four cases. To prove Proposition 13 for
the last case, we prove the following:

THEOREM IV. All F-surfaces can be classified as shown in Table IV below,
and any surface which is homeomorphic to a surface in Table IV is an F-
surface, that is, one of the surfaces classified in Table IV.

TABLE IV

In this table, $by$ Cent $G$ we denote the center of the group $G$ , and we use the
notation in Proposition 8. We note that the elliptic surface in Table IV is of
general type, hence, all $P_{m}$ can be calculated by use of $p_{g}$ and $\pi_{1}$ .

PROOF. Let $S$ be an elliptic surface with a base curve $\Delta$ and a canonical
map $\Psi:S\rightarrow\Delta$ , and let $m_{1},$ $\cdots$ , $m_{s}$ be multiplicities of multiple fibres of $\Psi$ :
$S\rightarrow\Delta$ at $a_{1}$ , $\cdot$ .. , $ a_{s}\in\Delta$ , respectively. If $\pi=\pi(\Delta)$ is equal to zero and $\Psi:S\rightarrow\Delta$

has at most two multiple fibres, then the fundamental group $\pi_{1}(S)$ of $S$ is
an abelian group generated by at most two elements. Otherwise, we can
construct a universal ramified covering manifold $\tilde{\Delta}$ of $\Delta$ which has ramification
indices $m_{1},$ $\cdots$ , $m_{s}$ at $a_{1},$

$\cdots$ , $a_{s}$ , respectively. Hence $S$ has an unramified cover-
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ing manifold $\tilde{S}=S\times_{\Delta}\tilde{\Delta}$ and a holomorphic surjective map $\tilde{\Phi}$

. : $\tilde{S}\rightarrow\tilde{\Delta}$ which has

no multiple fibres. If $\pi_{1}(S)$ is finite, then the degree of the covering $\tilde{\Delta}\rightarrow\Delta$

is finite and $\pi_{1}(S)$ is finite cyclic. Therefore, if we assume that $S$ is an F-
surface, then we conclude that $\pi(S)$ is equal to zero and that $\pi_{1}(S)/Cent\pi_{1}(S)$

is the dihedral group of order $m$ or $2m(m\geqq 2)$ , the tetrahedral group, the
octahedral group and the icosahedral group, according as the set of multi-
plicities $\{m_{1}$ , $\cdot$ .. , $m_{s}\}$ is $\{2, 2, m\},$ $\{2,3,3\},$ $\{2,3,4\}$ and {2, 3, 5}, respectively.

To determine all the complex structures, which the underlying topological
manifold of $S$ admits, we consider the above elliptic surface $\tilde{S}=S\times\tilde{\Delta}A$ which

is a finite unramified covering manifold of $S$ . We can easily verify that
$1+p_{g}(\tilde{S})$ is equal to $r(1+p_{g}(S))$ , where $r$ is the degree of the covering : $\tilde{\Delta}\rightarrow\Delta$ .
The canonical divisor $\tilde{K}$ of $\tilde{S}$ may be given as follows:

$\tilde{K}=\tilde{\Psi}^{*}((p_{g}(\tilde{S})-1)\tilde{q})$ ,

where $\tilde{\Psi}$ : $\tilde{S}\rightarrow\tilde{\Delta}$ is the canonical projection of the elliptic fibre space of $\tilde{S}$ and
$\tilde{q}$ is a point on $\tilde{\Delta}$ . Therefore, $\tilde{K}=0$ in $H^{2}(\tilde{S}, Z/(2))$ , because $r$ is an even
integer. This shows that the Stiefel-Whitney class of $\tilde{S}$ is zero. It should be
noticed that the Stiefel-Whitney class is a topological invariant. Consequently,
the underlying topological manifold of $\tilde{S}$ cannot admit a complex structure
of a non-minimal surface. Hence, any surface which is homeomorphic to $\tilde{S}$

is elliptic. Furthermore if a surface $S^{\prime}$ is homeomorphic to the surface $S$

above, then a finite unramified covering manifold of $S^{\prime}$ , which is denoted by
$\tilde{S}^{\prime}$ , is elliptic. Hence, $P_{m}(\tilde{S}^{\prime})$ is asymptotically equal to $\alpha m$ , for a positive
number $\alpha$ , when “

$m$
‘’ grows to infinity. By the inequality: $P_{m}(\tilde{S}^{\prime})\geqq P_{m}(S^{\prime})$ ,

$S^{\prime}$ cannot be birationally equivalent to an algebraic surface of general type.
Consequently, $S^{\prime}$ is elliptic and $S^{\prime}$ has the group $\pi_{1}(S)$ as its fundamental
group. $q$ . $e$ . $d$ .
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