On the theory of commutative formal groups

By Taira Honda

(Received Nov. 10, 1969)

The theory of (commutative) formal groups was initiated by M. Lazard and J. Dieudonné around 1954. Lazard [11], [12] studied commutative formal groups over an arbitrary commutative ring by treating the coefficients of power series explicitly. Whereas Dieudonné investigated formal groups over a field of characteristic $p>0$ exclusively. He reduced in [4] the study of commutative formal groups over a perfect field of characteristic $p>0$ to that of modules over a certain non-commutative ring, so-called Dieudonné modules, and obtained in [5] a complete classification of isogeny classes of commutative formal groups over an algebraically closed field of characteristic $p>0$. Later Manin [16] studied isomorphism classes of simple formal groups. The study of one-dimensional formal groups over \mathfrak{p}-adic integer rings was begun by Lubin [13] and a number of interesting results were obtained by him and Tate.

In this paper we first construct a certain general family of commutative formal groups of arbitrary dimension over a \mathfrak{p}-adic integer ring. Over the ring $W(k)$ of Witt vectors over a perfect field of characteristic $p>0$, this exhausts all the commutative formal groups. These are attached to a certain type of matrices with elements in the ring $W(k)_{\sigma}[[T T]]$ of non-commutative power series, where σ is the Frobenius of $W(k)$, and homomorphisms of these formal groups are described in terms of matrices over $W(k)_{\sigma}[[T]]$. By reducing the coefficients of formal groups over $W(k) \bmod p W(k)$ we get formal groups over k. It is shown that all the commutative formal groups over k are obtained in this manner. Moreover homomorphisms of commutative formal groups over k are also described in terms of $W(k)_{\sigma}[[T]]$-modules by lifting these homomorphisms to power series over $W(k)$. Thus we get the main results of Dieudonné [4] again by the method quite different from his. In [4] he used tools peculiar to characteristic $p>0$ and his construction of formal groups was indirect, whereas in our method the relation between formal groups over $W(k)$ and those over k is transparent and the construction of formal groups is explicit and elementary.

We now explain briefly how to construct commutative formal groups over $W(k)$ in case of dimension one. Take an element u of $W(k)_{\sigma}[[T]]$ of the
form $p+\sum_{\nu=1}^{\infty} c_{\nu} T^{\nu}\left(c_{\nu} \in W(k)\right)$ and put $p u^{-1}=\sum_{\nu=0}^{\infty} b_{\nu} T^{\nu}$. The b_{ν} are elements of the fraction field of $W(k)$ and $b_{0}=1$. Form $f(x)=\sum_{\nu=0}^{\infty} b_{\nu} x^{p^{\nu}}$ and $F(x, y)=$ $f^{-1}(f(x)+f(y))$. Then F is a formal group over $W(k)$. In some special case this fact can be proved by using the basic lemma of Lubin-Tate [14] (cf. [10]). In general case we have to adopt another idea. Any formal group over $W(k)$ is isomorphic to one obtained in this manner. Let v be another element of $W(k)_{\sigma}[[T]]$ of the form mentioned above and let $g(x)$ and $G(x, y)$ be the corresponding power series and the formal group, respectively. It is known that any homomorphism of F to G is of the form $g^{-1}(c f(x))$ with $c \in W(k)$. We assert that $g^{-1}(c f(x))$ is in reality a homomorphism over $W(k)$, if and only if there is $t \in W(k)_{\sigma}[[T]]$ such that $v c=t u$. All these results will be generalized and proved for an arbitrary dimension and for more general coefficient rings of characteristic 0 with discrete valuation.

Our results can be applied to construct and characterize formal groups over \boldsymbol{Z} corresponding to a certain type of Dirichlet series with matrix coefficients, thus generalizing the results of the last half of our previous paper [10]. In particular we get an interesting interpretation of the Dirichlet series obtained from a representation of Hecke operators in the space of cusp forms of dimension -2 with respect to a congruence unit group Γ_{N} of a maximal order of an indefinite quaternion algebra over \boldsymbol{Q} (Shimura [19]). There is an intimate connection between this Dirichlet series and a formal completion of the Jacobian J_{N}.

§ 1. Invariant differential forms on a formal group.

1.1. Let S be a ring. We denote by S^{m} the module consisting of all the column vectors of dimension m with components in S and by $M_{m}(S)$ the full matrix ring of order m with elements in S. I_{m} denotes the indentity matrix of order m. For $a=^{t}\left(a_{1}, \cdots, a_{m}\right) \in S^{m}$ we write a^{ν} for ${ }^{t}\left(a_{1}^{\nu}, \cdots, a_{m}^{\nu}\right)$.

Let R be a commutative ring with the identity. Let x be the set of n variables x_{1}, \cdots, x_{n}. We denote by $R[[x]]$ the ring of formal power series on x_{1}, \cdots, x_{n}. For basic properties of $R[[x]]$ we refer to Bourbaki [3]. We shall often regard x as the column vector ${ }^{t}\left(x_{1}, \cdots, x_{n}\right)$ in $R[[x]]^{n}$. Let f and g be power series in $R[[x]]$. We shall say that f is congruent to g modulo degree $r, f \equiv g \bmod \operatorname{deg} r$, if f and g differ only in terms of total degree $\geqq r$. Let I be a submodule of $R . f$ is said to be congruent to g modulo $I, f \equiv g$ $\bmod I$, if all the coefficients of $f-g$ belong to I. We shall write $f \equiv g \bmod \operatorname{deg} r$, $\bmod I$, if there are $\varphi, \psi \in R[[x]]$ such that $f-g=\varphi+\psi, \varphi \equiv 0 \bmod \operatorname{deg} r$ and $\psi \equiv 0 \bmod I$. These definitions extend to $R[[x]]^{m}$. If $f=^{t}\left(f_{1}, \cdots, f_{m}\right)$ and
$g={ }^{t}\left(g_{1}, \cdots, g_{m}\right)$ are elements of $R[[x]]^{m}, f \equiv g \bmod *$ will mean $f_{i} \equiv g_{i} \bmod *$ for $1 \leqq i \leqq n$. We write $R[[x]]_{0}^{m}=\left\{f \in R[[x]]^{m} \mid f \equiv 0 \bmod \operatorname{deg} 1\right\}$.

Let $x^{\prime}={ }^{t}\left(x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right)$ be another set of variables. If $f\left(x^{\prime}\right)={ }^{t}\left(f_{1}\left(x^{\prime}\right), \cdots, f_{l}\left(x^{\prime}\right)\right)$ $\left(f_{i}\left(x^{\prime}\right)=f_{i}\left(x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right)\right)$ is in $R\left[\left[x^{\prime}\right]\right]^{l}$ and $\varphi(x)={ }^{t}\left(\varphi_{1}(x), \cdots, \varphi_{m}(x)\right)$ is in $R[[x]]_{0}^{m}$, the power series $f_{i}(\varphi(x))=f_{i}\left(\varphi_{1}(x), \cdots, \varphi_{m}(x)\right)$ is well-defined and ${ }^{t}\left(f_{1}(\varphi(x)), \cdots\right.$, $\left.f_{l}(\varphi(x))\right)$ is an element of $R[[x]]^{l}$. We denote it by $f(\varphi(x))$ or simply by $f \circ \varphi$, if there is no fear of ambiguity. Define the identity function i of $R[[x]]_{0}^{n}$ by $i(x)=x$. If $\varphi(x)$ is an element of $R[[x]]_{0}^{n}$ such that $\varphi(x) \equiv P x \bmod \operatorname{deg} 2$ with an invertible matrix P in $M_{n}(R)$, there is a unique element $\psi(x)$ in $R[[x]]_{0}^{n}$ satisfying $\varphi \circ \psi=\psi \circ \varphi=i$. We shall call this ψ the inverse function of φ and denote it by φ^{-1}.

We adopt the classical definition of formal group.
Definition. Let x and y be sets (or vectors) of n variables. An n dimensional formal group over R is an element $F(x, y)$ of $R[[x, y]]_{0}^{n}$ satisfying :
i) $\quad F(x, y) \equiv x+y \bmod \operatorname{deg} 2$,
ii) $\quad F(F(x, y), z)=F(x, F(y, z))$.

If F satisfies $F(x, y)=F(y, x)$ moreover, F is said to be commutative.
It follows from (i) that there is a unique $i_{F}(x) \in R[[x]]_{0}^{n}$ such that $F\left(x, i_{F}(x)\right)=F\left(i_{F}(x), x\right)=0$. Part (ii) shows that $F(x, 0)=x$ and $F(0, y)=y$.

Definition. Let F and G be formal groups over R, of dimension n and m, respectively. An element φ of $R[[x]]_{0}^{m}$, where $x=^{t}\left(x_{1}, \cdots, x_{n}\right)$, is said to be a homomorphism of F to G, if φ satisfies $\varphi \circ F=G \circ \varphi$, where $(G \circ \varphi)(x, y)$ stands for $G(\varphi(x), \varphi(y))$. If $m=n$ and φ is invertible, φ^{-1} is also a homomorphism of G to F. Such φ is called an isomorphism and G is said to be (weakly) isomorphic to $F, \varphi: F \sim G$ over R. If there is an isomorphism φ of F to G such that $\varphi(x) \equiv x \bmod \operatorname{deg} 2$, we shall say that G is strongly isomorphic to F and write $\varphi: F \approx G$ over R.

If G is commutative, the set $\operatorname{Hom}_{R}(F, G)$ of all homomorphisms of F to G over R forms a module by defining $\left(\varphi_{1}+\varphi_{2}\right)(x)=G\left(\varphi_{1}(x), \varphi_{2}(x)\right)$ for φ_{1}, φ_{2} $\in \operatorname{Hom}_{R}(F, G)$. In particular $\operatorname{End}_{R} G\left(=\operatorname{Hom}_{R}(G, G)\right)$ becomes a ring by defining the multiplication by composition of functions.
1.2. Let $A=R[[x]]$ be as in 1.1. We denote by $\mathscr{D}(A ; R)$ the space of derivations of A over R. It is a free left A-module with a base D_{1}, \cdots, D_{n}, where $D_{i}=\partial / \partial x_{i}$ (cf. [3]). Denote by $\mathfrak{D}^{*}(A ; R)$ the dual A-module of $\mathfrak{D}(A ; R)$, the space of differentials of A over R. For $f \in A$ the map $D \mapsto D f$ of $\mathfrak{D}(A ; R)$ into A defines a differential, which we denote by $d f$. A differential of this form is called exact. It is well-known that $d x={ }^{t}\left(d x_{1}, \cdots, d x_{n}\right)$ is an A-base of $\mathfrak{D}^{*}(A ; R)$ and $d f=\sum_{i=1}^{n}\left(D_{i} f\right) d x_{i}$ for any $f \in A$.

Let $B=R\left[\left[x^{\prime}\right]\right]$ be another ring of power series on m variables and let $\omega=\sum_{j=1}^{m} \psi_{j}\left(x^{\prime}\right) d x_{j}^{\prime}$ be a differential in $\mathfrak{D}^{*}(B ; R)$. If $\varphi \in R[[x]]_{0}^{m}, \sum_{j=1}^{m} \psi_{j}(\varphi(x)) d \varphi_{j}(x)$ is a differential in $\mathfrak{D}^{*}(A ; R)$. We denote it by $\varphi^{*}(\omega)$. φ^{*} is an R-homomorphism of $\mathfrak{D}^{*}(B ; R)$ into $\mathfrak{D}^{*}(A ; R)$.

Let F be an n-dimensional formal group over R. Introducing a new set $t=\left(t_{1}, \cdots, t_{n}\right)$ of variables we may consider that F is also defined over R_{t} $=R[[t]]$.

Definition. The right translation T_{t} on F is an element of $R_{t}[[x]]^{m}$ defined by $T_{t}(x)=F(x, t)$. A differential ω in $\mathfrak{D}^{*}(A ; R)$ is said to be a right invariant differential on F if $T_{t}^{*}(\omega)=\omega$.

We denote by $\mathfrak{D}^{*}(F ; R)$ the space consisting of all right invariant differentials on F. As in the case of a Lie group or an algebraic group, we have:

Proposition 1.1. If F is an n-dimensional formal group over $R, \mathfrak{D}^{*}(F ; R)$ is a free R-module of rank n. More precisely, $\left(\psi_{i j}(z)\right.$) denoting the inverse matrix of $\left(\left(\partial / \partial x_{j}\right) F_{i}(0, z)\right)$, we have $\psi_{i j}(0)=\delta_{i j}$ and $\omega_{i}=\sum_{j=1}^{n} \psi_{i j}(x) d x_{j}(1 \leqq i \leqq n)$ form an R-basis of $\mathfrak{D}^{*}(F ; R)$. Moreover the base $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ is characterized by these two properties.

Proof. Differentiating $F_{i}(u, F(v, w))=F_{i}(F(u, v), w)$ relative to u_{j}, we get

$$
\left(\partial / \partial x_{j}\right) F_{i}(u, F(v, w))=\sum_{k=1}^{n}\left(\partial / \partial x_{k}\right) F_{i}(F(u, v), w)\left(\partial / \partial x_{j}\right) F_{k}(u, v),
$$

so that

$$
\left(\partial / \partial x_{j}\right) F_{i}(0, F(v, w))=\sum_{k=1}^{n}\left(\partial / \partial x_{k}\right) F_{i}(v, w)\left(\partial / \partial x_{j}\right) F_{k}(0, v)
$$

or by matrix notation

$$
\begin{equation*}
\left(\left(\partial / \partial x_{j}\right) F_{i}(0, F(v, w))\right)=\left(\left(\partial / \partial x_{j}\right) F_{i}(v, w)\right)\left(\left(\partial / \partial x_{j}\right) F_{i}(0, v)\right) . \tag{1.1}
\end{equation*}
$$

Since $\left(\partial / \partial x_{j}\right) F_{i}(0, z) \equiv \delta_{i j} \bmod \operatorname{deg} 1$, the matrix $\left(\left(\partial / \partial x_{j}\right) F_{i}(0, z)\right)$ is invertible, $\psi_{i j}(z) \in R[[z]]$ and $\psi_{i j}(0)=\delta_{i j}$. Hence (1.1) is equivalent to

$$
\begin{equation*}
\left(T_{t} \psi_{i j}(z)\right)\left(\left(\partial / \partial x_{j}\right) F_{i}(z, t)\right)=\left(\psi_{i j}(z)\right) \tag{1.2}
\end{equation*}
$$

Now a differential $\omega=\sum_{i=1}^{n} \psi_{i}(x) d x_{i}$ in $\mathfrak{D}^{*}(A ; R)$ is right invariant on F, if and only if

$$
\begin{equation*}
\psi_{j}(x)=\sum_{k=1}^{n} \psi_{k}(F(x, t))\left(\partial / \partial x_{j}\right) F_{k}(x, t) . \tag{1.3}
\end{equation*}
$$

This shows $\omega_{1}, \cdots, \omega_{n} \in \mathfrak{D}^{*}(F ; R)$ by (1.2). On the other hand we get from (1.3)

$$
\psi_{j}(0)=\sum_{k=1}^{n} \psi_{k}(t)\left(\partial / \partial x_{j}\right) F_{k}(0, t),
$$

which implies that, if $\omega \in \mathfrak{D}^{*}(F ; R), \omega=0 \Leftrightarrow \psi_{i}(0)=0$ for $1 \leqq i \leqq n$. Therefore the map $\Phi: \omega \mapsto^{t}\left(\psi_{1}(0), \cdots, \psi_{n}(0)\right)$ defines an R-isomorphism of $\mathfrak{D}^{*}(F ; R)$ into R^{n}. Since the $\Phi\left(\omega_{i}\right)(1 \leqq i \leqq n)$ are the unit vectors of R^{n}, the map Φ is surjective and $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ is a base of $\mathfrak{D}^{*}(F ; R)$.

We shall call this $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ the canonical base of $\mathfrak{D}^{*}(F ; R)$.
Proposition 1.2. Let F, G be formal groups over R and $\varphi \in \operatorname{Hom}_{R}(F, G)$. If $\eta \in \mathfrak{D}^{*}(G ; R)$, then $\varphi^{*}(\eta) \in \mathfrak{D}^{*}(F ; R)$.

Proof. Write $\eta=\sum_{i=1}^{m} \psi_{i}\left(x^{\prime}\right) d x_{i}^{\prime}$ where m is the dimension of G. Then

$$
\begin{aligned}
T_{t}\left(\varphi^{*}(\eta)\right) & =T_{t}\left(\sum_{i=1}^{m} \psi_{i}(\varphi(x)) d \varphi_{i}(x)\right) \\
& =\sum_{i=1}^{m} \psi_{i}(\varphi(F(x, t))) d \varphi_{i}(F(x, t)) \\
& =\sum_{i=1}^{m} \psi_{i}(G(\varphi(x), \varphi(t))) d G\left(\varphi_{i}(x), \varphi_{i}(t)\right) \\
& =\sum_{i=1}^{m} \psi_{i}(\varphi(x)) d \varphi_{i}(x) \\
& =\varphi^{*}(\eta)
\end{aligned}
$$

1.3. We now study invariant differential forms on a commutative formal group.

Proposition 1.3. Let F be a commutative formal group over R. Then every differential in $\mathfrak{D}^{*}(F ; R)$ is closed.

Proof. Let $\omega_{i}=\sum_{j=1}^{n} \psi_{i j}(x) d x_{j}(1 \leqq i \leqq n)$ be the canonical base of $\mathfrak{D}^{*}(F ; R)$. We shall prove $d \omega_{i}=0$ for $1 \leqq i \leqq n$. First $d \omega_{i}$ is a right invariant 2-form, since

$$
\begin{aligned}
T_{i}^{*}\left(d \omega_{i}\right) & =T_{i}^{*}\left(\sum_{j=1}^{n} d \psi_{i j}(x) \wedge d x_{j}\right) \\
& =\sum_{j} d \psi_{i j}(F(x, t)) \wedge d F_{j}(x, t) \\
& =d\left(T_{i}^{*}\left(\omega_{i}\right)\right) \\
& =d \omega_{i} .
\end{aligned}
$$

Now differentiating

$$
\sum_{k=1}^{n}\left(\partial / \partial x_{k}\right) F_{i}(0, z) \psi_{k j}(z)=\delta_{i j}
$$

relative to z_{l} and putting $z=0$, we get

$$
\sum_{k}\left(\partial^{2} / \partial x_{k} \partial y_{l}\right) F_{i}(0,0) \psi_{k j}(0)+\sum_{k}\left(\partial / \partial x_{k}\right) F_{i}(0,0)\left(\partial / \partial x_{l}\right) \psi_{k j}(0)=0,
$$

which is reduced to

$$
\left(\partial^{2} / \partial x_{j} \partial y_{l}\right) F_{i}(0,0)+\left(\partial / \partial x_{l}\right) \psi_{i j}(0)=0,
$$

since

$$
\psi_{k j}(0)=\delta_{k j} \quad \text { and } \quad\left(\partial / \partial x_{k}\right) F_{i}(0,0)=\delta_{i k} .
$$

Hence, by the commutativity of F we get

$$
\begin{aligned}
\left(\partial / \partial x_{l}\right) \psi_{i j}(0) & =-\left(\partial^{2} / \partial x_{j} \partial y_{l}\right) F_{i}(0,0) \\
& =-\left(\partial^{2} / \partial x_{l} \partial y_{j}\right) F_{i}(0,0) \\
& =\left(\partial / \partial x_{j}\right) \psi_{i l}(0) .
\end{aligned}
$$

Since

$$
\begin{aligned}
d \omega_{i} & =\sum_{j, l}\left(\partial / \partial x_{l}\right) \psi_{i j}(x) d x_{l} \wedge d x_{j} \\
& =\sum_{j<l}\left(\left(\partial / \partial x_{l}\right) \psi_{i j}(x)-\left(\partial / \partial x_{j}\right) \psi_{i l}(x)\right) d x_{l} \wedge d x_{j}
\end{aligned}
$$

the coefficients of $d x_{l} \wedge d x_{j}$ in $d \omega_{i}$ have no constant term. So we have only to prove that, if $\eta=\sum_{i<j} \lambda_{i j}(x) d x_{i} \wedge d x_{j}$ is right invariant on F and $\lambda_{i j}(0)=0$ for all $1 \leqq i<j \leqq n, \eta$ must be equal to 0 . An easy computation shows that $T_{t}^{*}(\eta)=\eta$ is equivalent to

$$
\lambda_{k l}(x)=\sum_{i<j} \lambda_{i j}(F(x, t))\left|\begin{array}{ll}
\left(\partial / \partial x_{k}\right) F_{i}(x, t) & \left(\partial / \partial x_{l}\right) F_{i}(x, t) \\
\left(\partial / \partial x_{k}\right) F_{j}(x, t) & \left(\partial / \partial x_{l}\right) F_{j}(x, t)
\end{array}\right|,
$$

which implies

$$
\lambda_{k l}(0)=\sum_{i<j} \lambda_{i j}(t)\left|\begin{array}{ll}
\left(\partial / \partial x_{k}\right) F_{i}(0, t) & \left(\partial / \partial x_{l}\right) F_{i}(0, t) \\
\left(\partial / \partial x_{k}\right) F_{j}(0, t) & \left(\partial / \partial x_{l}\right) F_{j}(0, t)
\end{array}\right|
$$

for $1 \leqq k<l \leqq n$. Since the matrix $\left(\left(\partial / \partial x_{j}\right) F_{i}(0, t)\right)$ is regular, this shows in fact $\lambda_{i j}(0)=0$ for all $i<j \Rightarrow \lambda_{i j}(t)=0$ for all $i<j$.

We now consider the case where R is a \boldsymbol{Q}-algebra. In this case every power series in $R[[x]]$ is termwise integrable with respect to x_{i}. The following lemma is essentially well-known in elementary analysis and the proof is easy.

Lemma 1.4. If R is a \boldsymbol{Q}-algebra, a closed differential in $\mathfrak{D}^{*}(A ; R)$ is exact.
The following theorem, mentioned in [10], was also proved in [7] in a slightly different manner.

Theorem 1. Let F be an n-dimensional commutative formal group over a \boldsymbol{Q}-algebra R and let $\omega^{t}\left(\omega_{1}, \cdots, \omega_{n}\right)$ be the canonical base of $\mathfrak{D}^{*}(F ; R)$. Then there exists a unique element f of $R[[x]]_{0}^{n}$ such that $\omega=d f$. This f satisfies

$$
f(x) \equiv x \quad \bmod \operatorname{deg} 2
$$

and

$$
F(x, y)=f^{-1}(f(x)+f(y)) .
$$

In particular $F(x, y) \approx x+y$ over R.

Proof. The existence of f follows from Proposition 1.3 and Lemma 1.4. The uniqueness follows from the fact that $d \varphi=0$ for $\varphi \in R[[x]]$, if and only if φ is a constant. Since $\psi_{i j}(0)=\delta_{i j}$, we have $f(x) \equiv x \bmod \operatorname{deg} 2$. Now, $d f(x)$ being right invariant, we have

$$
d f(F(x, t))=d f(x)
$$

which implies

$$
f(F(x, t))-f(x) \in R[[t]]
$$

Writing $g(t)=f(F(x, t))-f(x)$ and putting $x=0$ we get

$$
g(t)=f(t)
$$

Thus we have

$$
f(F(x, t))=f(x)+f(t)
$$

or

$$
F(x, t)=f^{-1}(f(x)+f(t))
$$

This completes the proof of our theorem.
1.4. Let R be an integral domain of characteristic 0 and K its fraction field.

Lemma 1.5. Let $x={ }^{t}\left(x_{1}, \cdots, x_{n}\right)$ and $y={ }^{t}\left(y_{1}, \cdots, y_{n}\right)$ be sets of n variables. If $\psi \in K[[x]]^{m}$ satisfies

$$
\phi(x+y)=\psi(x)+\psi(y)
$$

ψ must be linear, i.e. there is an $m \times n$ matrix C over K such that $\psi(x)=C x$.
Proof. We have only to consider the case where $m=1$ and ψ is a homogeneous polynomial. Then our assertion is verified by a simple computation. (See the proof of Lemma 3.2)

Let F be a commutative formal group over R, of dimension n. By Theorem 1 there is $f(x) \in K[[x]]_{0}^{n}$ such that $f \equiv i \bmod \operatorname{deg} 2$ and $F(x, y)=f^{-1}(f(x)+f(y))$. If there is another element h of $K[[x]]_{0}^{n}$ satisfying $h \equiv i \bmod \operatorname{deg} 2$ and $F(x, y)=h^{-1}(h(x)+h(y))$, we have

$$
\begin{aligned}
& f \circ h^{-1} \equiv i \quad \bmod \operatorname{deg} 2 \\
& \left(f \circ h^{-1}\right)(x+y)=\left(f \circ h^{-1}\right)(x)+\left(f \circ h^{-1}\right)(y)
\end{aligned}
$$

Hence we get $f \circ h^{-1}=i$ or $f=h$ by Lemma 1.5.
Definition. Let R and K be as above; let F be an n-dimensional commutative formal group over R. The unique element f of $K[[x]]_{0}^{n}$, such that $f \equiv i \bmod \operatorname{deg} 2$ and $F(x, y)=f^{-1}(f(x)+f(y))$, is called the transformer of F.

Let G be another commutative formal group over R, of dimension m and with the transformer g. If $\varphi \in \operatorname{Hom}_{R}(F, G)$, we have

$$
\varphi\left(f^{-1}(f(x)+f(y))\right)=g^{-1}(g(\varphi(x)+g(\varphi(y))))
$$

Substituting x, y by $f^{-1}(x), f^{-1}(y)$, respectively, we get

$$
\left(g \circ \varphi \circ f^{-1}\right)(x+y)=\left(g \circ \varphi \circ f^{-1}\right)(x)+\left(g \circ \varphi \circ f^{-1}\right)(y) .
$$

Hence by Lemma 1.5 there is an $m \times n$ matrix C over K such that $\left(g \circ \varphi \circ f^{-1}\right)(x)$ $=C x$. This implies $\varphi(x)=g^{-1}(C f(x))$. As $\varphi(x) \equiv C x \bmod \operatorname{deg} 2, C$ is a matrix with elements in R.

Proposition 1.6. Let F, f, G, g be as above. Every element φ of $\operatorname{Hom}_{R}(F, G)$ has the form $g^{-1} \circ(C f)$, where C is an $m \times n$ matrix over R. Conversely, C being an $m \times n$ matrix over $R, g^{-1} \circ(C f) \in \operatorname{Hom}_{R}(F, G)$, if and only if $g^{-1} \circ(C f)$ has coefficients in R. The map $\varphi \mapsto C$ yields an isomorphism of $\operatorname{Hom}_{R}(F, G)$ into the module of $m \times n$ matrices over R. If $F=G$ in particular, this map is a ring isomorphism of $\operatorname{End}_{R} F$ into $M_{n}(R)$.

Proof. The first assertion has already been proved. The second follows from

$$
\left(g^{-1} \circ(C f)\right) \circ F=G \circ\left(g^{-1} \circ(C f)\right) .
$$

The rests follow from the definitions.

§ 2. Formal groups over a \mathfrak{p}-adic integer ring.

Throughout the rest of this paper we exclusively deal with commutative formal groups. By a formal group we always mean a commutative one.

Let K be a discrete valuation field of characteristic 0 and let \mathfrak{o} and \mathfrak{p} be the ring of integers in K and the maximal ideal of \mathfrak{n}, respectively. We assume that the residue class field $k=\mathfrak{o} / \mathfrak{p}$ is of characteristic $p>0$. Consider the following condition on K :
(F) There are an endomorphism σ of K and a power q of p such that

$$
\alpha^{\sigma} \equiv \alpha^{q} \quad \bmod \mathfrak{p} \quad \text { for any } \quad \alpha \in \mathbb{D}
$$

We note $\mathfrak{p}^{\sigma}=\mathfrak{p}$, since σ sends a unit of \mathfrak{o} to \mathfrak{o} and $p^{\sigma}=p$. In this section we study formal groups over \mathfrak{o}, when K satisfies (F). We do not assume the completeness of K.

Let K_{0} be a finite extension of the p-adic number field \boldsymbol{Q}_{p} and let q be the cardinal of its residue field. Then it is well-known that an unramified extension of K_{0} (of finite or infinite degree) or its completion satisfies (F) with a Frobenius σ.
2.1. Let $K_{\sigma}[[T]]$ be the non-commutative power series ring on T with the multiplication rule: $T \alpha=\alpha^{\sigma} T$ for $\alpha \in K$. We denote by $\mathfrak{B}_{m, n}$ (resp. $\mathfrak{U}_{m, n}$) the module consisting of all $m \times n$ matrices over $K_{\sigma}[[T]]$ (resp. $\mathrm{o}_{\sigma}[[T]]$).

Let $x=^{t}\left(x_{1}, \cdots, x_{n}\right)$ be a set of n variables. For $f \in K[[x]]_{0}^{m}$ and $u=\sum_{\nu=0}^{\infty} C_{\nu} T^{\nu} \in \mathfrak{B}_{l, m}$ (where the C_{ν} are matrices over K), we define an element $u * f$ of $K[[x]]_{0}^{l}$ by

$$
(u * f)(x)=\sum_{\nu=0}^{\infty} C_{\nu} f^{\sigma^{\nu}}\left(x^{q^{\nu}}\right) .
$$

This is well-defined, since $f(x)$ has no constant term. If $v=\sum_{\nu=0}^{\infty} D_{\nu} T^{\nu}$ is in $\mathfrak{B}_{k, l}$, we have

$$
\begin{equation*}
(v u) * f=v *(u * f) \tag{2.1}
\end{equation*}
$$

since

$$
\begin{aligned}
(v *(u * f))(x) & =\sum_{\nu=0}^{\infty} D_{\nu} \sum_{\mu=0}^{\infty} C_{\mu}^{\sigma^{\nu}} f^{\sigma^{\mu+\nu}}\left(x^{q \mu+\nu}\right) \\
& =\sum_{\lambda=0}^{\infty} \sum_{\mu+\nu=\lambda} D_{\nu} C_{\mu}^{\sigma^{\nu}} f^{\sigma^{\lambda}}\left(x^{q^{\lambda}}\right) \\
& =((v u) * f)(x)
\end{aligned}
$$

From now on we fix a prime element π of 0 .
Lemma 2.1. For any rational integers $\nu \geqq 0, a \geqq 1$ and $m \geqq 1$ we have

$$
\pi^{-\nu}(X+\pi Y)^{m p a \nu} \equiv \pi^{-\nu} X^{m p a \nu} \quad \bmod \mathfrak{p}
$$

In particular we have

$$
m^{-1}(X+p Y)^{m} \equiv m^{-1} X^{m} \quad \bmod p \boldsymbol{Z}_{p}
$$

for $m \geqq 1$.
This is Lemma 4 of [10]. As the proof is elementary and easy, we omit it here.

We write \mathfrak{A}_{n} (resp. \mathfrak{B}_{n}) for $\mathfrak{A}_{n, n}$ (resp. $\mathfrak{B}_{n, n}$).
Definition. An element u of \mathfrak{U}_{n} is said to be special, if $u \equiv \pi I_{n} \bmod \operatorname{deg} 1$. Let P be an invertible matrix in $M_{n}(\mathfrak{D})$ and let u be a special element of \mathfrak{U}_{n}. An element f of $K[[x]]_{0}^{n}$ is said to be of type ($P ; u$), if f satisfies the follo N ing two conditions:
i) $\quad f(x) \equiv P x \bmod \operatorname{deg} 2$,
ii) $(u * f)(x) \equiv 0 \bmod p$.

If f is of type $\left(I_{n} ; u\right)$, we shall simply say that f is of type u.
Let $u \in \mathfrak{N}_{n}$ be special and put $w=u^{-1} \pi\left(\in \mathfrak{B}_{n}\right)$. Then, i being the identity function,

$$
(u *(w * i))(x)=((u w) * i)(x)=\pi x \equiv 0 \quad \bmod \mathfrak{p} .
$$

This implies that $\left(u^{-1} \pi\right) * i$ is of type u.
Lemma 2.2. Let $u \in \mathfrak{A}_{n}$ be special and put $u^{-1} \pi=I_{n}+\sum_{\nu=1}^{\infty} B_{\nu} T^{\nu}$. Then we have $\pi^{\nu} B_{\nu} \in M_{n}(\mathfrak{p})$ for $\nu \geqq 0$.

Proof. Write $u=\pi I_{n}+\sum_{\nu=1}^{\infty} C_{\nu} T^{\nu}$ and replace T by πT in the equality

$$
\left(\pi I_{n}+\sum_{\nu=1}^{\infty} C_{\nu} T^{\nu}\right)\left(I_{n}+\sum_{\nu=1}^{\infty} B_{\nu} T^{\nu}\right)=\pi I_{n} .
$$

Then we get

$$
\left(I_{n}+\sum_{\nu=1}^{\infty} \pi^{\sigma+\cdots+\sigma^{\nu-1}} C_{\nu} T^{\nu}\right)\left(I_{n}+\sum_{\nu=1}^{\infty} \pi^{1+\sigma+\cdots+\sigma^{\nu-1}} B_{\nu} T^{\nu}\right)=I_{n}
$$

This implies $\pi^{\nu} B_{\nu} \in M_{n}(\mathfrak{D})$, since $\pi^{\sigma \mu}$ is also a prime element of \mathfrak{o}.
2.2. The following two lemmas play crucial roles in our further investigation and will be used repeatedly.

Lemma 2.3. Let $f \in K[[x]]_{0}^{n}$ be of type $(P ; u)$ and let v be an element of $\mathfrak{N}_{m, n}$. Let ψ be an element of $K\left[\left[x^{\prime}\right]\right]_{0}^{n}, x^{\prime}$ being a finite set of variables. If the coefficients (of components) of ψ, of terms of (total) degree $\leqq r-1$, belong to 0 for some $r \geqq 2$, we have

$$
v *(f \circ \psi) \equiv(v * f) \circ \psi \quad \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p}
$$

If $\psi \in \mathrm{n}\left[\left[x^{\prime}\right]\right]_{0}^{n}$ in particular, we have

$$
v *(f \circ \psi) \equiv(v * f) \circ \psi \quad \bmod p
$$

Lemma 2.4. If $f($ resp. $g) \in K[[x]]_{0}^{n}$ is of type $(P ; u)$ (resp. of type $(Q ; u)$), then $g^{-1} \circ f \in \mathbb{D}[[x]]_{0}^{n}$.

Put $h=\left(u^{-1} \pi\right) * i$. First we will prove the first assertion of Lemma 2.3 for $f=h$. Write

$$
u^{-1} \pi=I_{n}+\sum_{\nu=1}^{\infty} B_{\nu} T^{\nu}, \quad v=\sum_{\nu=0}^{\infty} A_{\nu} T^{\nu}
$$

We have

$$
\begin{align*}
((v * h) \circ \phi)\left(x^{\prime}\right) & =\left(\left(\left(v u^{-1} \pi\right) * i\right) \circ \phi\right)\left(x^{\prime}\right) \tag{2.2}\\
& =\sum_{\mu, \nu} A_{\nu} B_{\mu}^{\sigma^{\nu}} \psi\left(x^{\prime}\right)^{q \mu+\nu}
\end{align*}
$$

Now

$$
\begin{equation*}
B_{\mu}^{\sigma^{\nu}} \psi\left(x^{\prime}\right)^{q \mu+\nu}=\pi^{\mu} B_{\mu}^{\sigma^{\nu}} \pi^{-\mu} \psi\left(x^{\prime}\right)^{q^{\mu+\nu}} \tag{2.3}
\end{equation*}
$$

and $\pi^{\mu} B_{\mu}^{\sigma^{\nu}} \in M_{n}(0)$ by Lemma 2.2. We will prove

$$
\begin{equation*}
\pi^{-\mu} \psi\left(x^{\prime}\right)^{q \mu+\nu} \equiv \pi^{-\mu}\left(\psi^{\sigma^{\nu}}\left(x^{\prime q^{\nu}}\right)\right)^{q \mu} \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} \tag{2.4}
\end{equation*}
$$

If $\mu=\nu=0,(2.4)$ is trivial. If $\mu=0$ and $\nu \geqq 1$, we have

$$
\psi\left(x^{\prime}\right)^{q^{\nu}} \equiv \psi^{\sigma^{\nu}}\left(x^{\prime q^{\nu}}\right) \quad \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p}
$$

since terms of ψ of degree $\geqq r$ do not affect this congruence. (Note $\psi(0)=0$.) Assume $\mu \geqq 1$. Because

$$
\psi\left(x^{\prime}\right)^{q^{\nu}} \equiv \psi^{\sigma \nu}\left(x^{\prime q^{\nu}}\right) \quad \bmod \operatorname{deg} r, \quad \bmod \mathfrak{p}
$$

we get (2.4) by Lemma 2.1 and by the fact $\phi(0)=0$. This completes the proof of (2.4). Thus we get from (2.2), (2.3) and (2.4)

$$
\begin{aligned}
((v * h) \circ \phi)\left(x^{\prime}\right) & \equiv \sum_{\mu, \nu} A_{\nu} B_{\mu}^{\sigma^{\nu}}\left(\psi^{\sigma^{\nu}}\left(x^{q^{\nu}}\right)\right)^{q^{\mu}} \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} \\
& =(v *(h \circ \phi))\left(x^{\prime}\right)
\end{aligned}
$$

Proof of Lemma 2.4. Since $g^{-1} \circ f=\left(g^{-1} \circ h\right) \circ\left(h^{-1} \circ f\right)=\left(h^{-1} \circ g\right)^{-1} \circ\left(h^{-1} \circ f\right)$ and $\left(h^{-1} \circ g\right)(x) \equiv Q x \bmod \operatorname{deg} 2$, we have only to prove $h^{-1} \circ f \in 0[[x]]_{0}^{n}$. Put $h^{-1} \circ f=\varphi$ or $f=h \circ \varphi$. The first-degree coefficients of φ are in \mathfrak{D}. Assume that the coefficients of φ, of (total) degree $\leqq r-1$, are integers for some $r \geqq 2$. By Lemma 2.3 for $f=h$ we have

$$
\begin{aligned}
\pi \varphi & =(u * h) \circ \varphi \equiv u *(h \circ \varphi) \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} \\
& =u * f \equiv 0 \bmod \mathfrak{p} .
\end{aligned}
$$

This implies that the r-th degree coefficients of φ are also integers. This completes our proof by induction.

Proof of Lemma 2.3. We have only to prove the first assertion. Notations being as above,

$$
\begin{aligned}
v *(f \circ \psi) & =v *((h \circ \varphi) \circ \psi)=v *(h \circ(\varphi \circ \psi)) \\
& \equiv(v * h) \circ(\varphi \circ \psi) \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p} \\
& =((v * h) \circ \varphi) \circ \psi .
\end{aligned}
$$

Since $\varphi(x) \equiv P x \bmod \operatorname{deg} 2$, we have

$$
((v * h) \circ \varphi)(x) \equiv A_{0} P x \equiv(v *(h \circ \varphi))(x) \bmod \operatorname{deg} 2 .
$$

Put $\lambda_{1}(x)=((v * h) \circ \varphi)(x)-A_{0} P x$ and $\lambda_{2}(x)=(v *(h \circ \varphi))(x)-A_{0} P x$. Then $\lambda_{1} \equiv \lambda_{2} \equiv 0$ $\bmod \operatorname{deg} 2$ and $\lambda_{1} \equiv \lambda_{2} \bmod \mathfrak{p}$ by what we have proved. It follows from this

$$
\lambda_{1} \circ \psi \equiv \lambda_{2} \circ \psi \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p},
$$

since the terms of ψ of degree r do not affect this congruence. Hence we get

$$
\begin{aligned}
v *(f \circ \psi) & \equiv((v * h) \circ \varphi) \circ \psi \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p} \\
& =A_{0} P \psi+\lambda_{1} \circ \psi \\
& \equiv A_{0} P \psi+\lambda_{2} \circ \psi \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} \\
& =(v *(h \circ \varphi)) \circ \psi \\
& =(v * f) \circ \psi .
\end{aligned}
$$

This completes the proof of our lemma.
2.3. The results of 2.2 first allow us to construct certain formal groups over D .

Theorem 2. Assume K satisfies (F). Let P be an invertible matrix in $M_{n}(\mathrm{o})$ and let u be a special element of \mathfrak{A}_{n}. If $f \in K[[x]]_{0}^{n}$ is of type $(P ; u)$, $F(x, y)=f^{-1}(f(x)+f(y))$ is a formal group over $\mathfrak{0}$. Let $g \in K[[x]]_{0}^{n}$ be of type ($Q ; u$) for an invertible matrix Q and put $G(x, y)=g^{-1}(g(x)+g(y)$). Then we have $G \sim F$ over 0 . If $P=Q$ in particular, we have $G \approx F$ over 0 .

Proof. Form $h=\left(u^{-1} \pi\right) * i$ and $H(x, y)=h^{-1}(h(x)+h(y))$. It is clear that

$$
H(x, y) \equiv x+y \quad \bmod \operatorname{deg} 2
$$

Assume that the coefficients of H, of terms of degree $\leqq r-1$, are integers for some $r \geqq 2$. By Lemma 2.3 we have

$$
\begin{aligned}
\pi H(x, y) & =((u * h) \circ H)(x, y) \\
& \equiv(u *(h \circ H))(x, y) \quad \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} \\
& =(u * h)(x)+(u * h)(y) \\
& =\pi x+\pi y \equiv 0 \quad \bmod \mathfrak{p} .
\end{aligned}
$$

This implies that the r-th degree coefficients of H are also integers. This proves $H(x, y) \in \mathrm{d}[[x, y]]$ by induction. All the assertions of our theorem follow from this and from Lemma 2.4, because $F=\varphi^{-1} \circ H \circ \varphi$ if $f=h \circ \varphi$.

As for examples, see $\S 5$.
Proposition 2.5. Let P be an invertible matrix in $M_{n}(0)$ and let u be a special element of $\mathfrak{A r}_{n}$. Then $f \in K[[x]]_{0}^{n}$ is of type $(P ; u)$, if and only if f is of the form $\left(\left(u^{-1} \pi\right) * i\right) \circ \varphi$ with $\varphi \in \mathbb{D}[[x]]_{0}^{n}$ such that $\varphi(x) \equiv P x \bmod \operatorname{deg} 2$.

Proof. "Only if" part is Lemma 2.4. Conversely, if $\varphi \in \mathrm{D}[[x]]_{0}^{n}$ and $\varphi(x) \equiv P x \bmod \operatorname{deg} 2$, we have, writing $h=\left(u^{-1} \pi\right) * i$,

$$
(h \circ \varphi)(x) \equiv P x \quad \bmod \operatorname{deg} 2
$$

and by Lemma 2.3

$$
u *(h \circ \varphi) \equiv(u * h) \circ \varphi=\pi \varphi \equiv 0 \quad \bmod \mathfrak{p} .
$$

This completes our proof.
Dually to Proposition 2.5 we have
Proposition 2.6. Let $f \in K[[x]]_{0}^{n}$ be of type $(P ; u)$ for an invertible matrix P of $M_{n}(\mathrm{D})$ and a special element u of \mathfrak{H}_{n}; Let v be a matrix in $\mathfrak{H}_{m, n}$. Then

$$
v * f \equiv 0 \quad \bmod \mathfrak{p}
$$

if and only if there exists $t \in \mathfrak{Z}_{m, n}$ such that $v=t u$.
PROOF. If $v=t u$ with $t \in \mathfrak{U}_{m, n}$, then

$$
v * f=t *(u * f) \equiv 0 \quad \bmod \mathfrak{p}
$$

Conversely, assume $v * f \equiv 0 \bmod \mathfrak{p}$ for $v \in \mathfrak{A}_{m, n}$. Put $h=\left(u^{-1} \pi\right) * i$ and $\varphi=h^{-1} \circ f$. Since φ is an invertible element of $\mathfrak{D}[[x]]_{0}^{n}$ by Lemma 2.4, we have

$$
(v * h) \circ \varphi \equiv v *(h \circ \varphi)=v * f \equiv 0 \quad \bmod \mathfrak{p}
$$

by Lemma 2.3, so that

$$
\begin{equation*}
v * h=((v * h) \circ \varphi) \circ \varphi^{-1} \equiv 0 \quad \bmod \mathfrak{p} . \tag{2.5}
\end{equation*}
$$

Put $v u^{-1} \pi=\sum_{\nu=0}^{\infty} A_{\nu} T^{\nu}$. Since

$$
v * h=v *\left(\left(u^{-1} \pi\right) * i\right)=\left(v u^{-1} \pi\right) * i,
$$

we have from (2.5)

$$
\sum_{\nu=0}^{\infty} A_{\nu} x^{q^{\nu}} \equiv 0 \quad \bmod \mathfrak{p},
$$

which implies $v u^{-1}=\left(v u^{-1} \pi\right) \pi^{-1} \in \mathfrak{A}_{m, n}$. This completes our proof.
2.4. We now study homomorphisms of formal groups constructed in Theorem 2. $\quad M_{m, n}(0)$ denotes the module of all the $m \times n$ matrices with elements in D .

Theorem 3. Assume K satisfies (F). Let $u \in \mathfrak{N}_{n}$ and $v \in \mathfrak{A}_{m}$ be special and let $f \in K[[x]]_{0}^{n}$ (resp. $g \in K[[x]]_{0}^{m}$) be of type u (resp. of type v). Form $F(x, y)$ $=f^{-1}(f(x)+f(y))$ and $G(x, y)=g^{-1}(g(x)+g(y))$. Then $g^{-1} \circ(C f) \in \operatorname{Hom}_{0}(F, G)$ for $C \in M_{m, n}(\mathrm{D})$, if and only if there exists $t \in \mathfrak{A}_{m, n}$ such that $v C=t u$.

Proof. Put $\varphi=g^{-1} \circ(C f)$. By Proposition $1.6 \varphi \in \operatorname{Hom}_{0}(F, G)$ if and only if $\varphi \in \mathrm{o}[[x]]_{0}^{m}$. In view of Lemma 2.4 we may assume $f=\left(u^{-1} \pi\right) * i$ and $g=\left(v^{-1} \pi\right) * i$. If $\varphi \in \mathrm{o}[[x]]_{0}^{m}$, we have by Lemma 2.3

$$
\begin{aligned}
(v C) * f & =v *(C f)=v *(g \circ \varphi) \\
& \equiv(v * g) \circ \varphi=\pi \varphi \equiv 0 \quad \bmod p
\end{aligned}
$$

Hence, by Proposition 2.6, there exists $t \in \mathfrak{A l}_{m, n}$ such that $v C=t u$. Conversely, suppose that there is $t \in \mathfrak{A}_{m, n}$ such that $v C=t u$. As $\varphi(x) \equiv C x \bmod \operatorname{deg} 2$, the first-degree coefficients of φ are integral. Assume that i-th degree coefficients of φ are integral for $i \leqq r-1(r \geqq 2)$. By Lemma 2.3 we have then

$$
\begin{aligned}
\pi \varphi & =(v * g) \circ \varphi \\
& \equiv v *(g \circ \varphi) \quad \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p} \\
& =v *(C f)=(v C) * f \\
& =(t u) * f=t *(u * f) \\
& \equiv 0 \quad \bmod \mathfrak{p} .
\end{aligned}
$$

This shows that the r-th degree coefficients of φ are integral. Hence we get $\varphi \in \mathrm{o}[[x]]_{0}^{m}$ by induction.

Corollary. Let F, G be as in Theorem 3. The module $\operatorname{Hom}_{0}(F, G)$ is canonically isomorphic to $M_{m, n}(0) \cap v^{-1} \mathfrak{A}_{m, n} u$.

By Theorem $3 g^{-1} \circ(C f) \in \operatorname{Hom}_{0}(F, G)$ for $C \in M_{m, n}(0)$, if and only if $C \in v^{-1} \mathfrak{A}_{m, n} u$. Our assertion follows from this and from Proposition 1.6.

§3. The non-ramified case.

Let $K, \mathfrak{v}, \mathfrak{p}$ and k be as in $\S 2$. In $\S 3$ we assume moreover that:
$\left(F_{1}\right)$ The valuation of K is unramified and (F) is satisfied with $q=p$.
The ring $W\left(k^{\prime}\right)$ of Witt vectors over a perfect field k^{\prime} of characteristic
$p>0$ satisfies $\left(F_{1}\right)$ (cf. [22]). Under $\left(F_{1}\right)$ we can take p as the fixed prime element of o .
3.1. Let x be the set of n variables as usual. Let N be the set of all the non-negative rational integers. For $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \boldsymbol{N}^{n}$ we write x^{α} for $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. Then $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ is the degree of x^{α}. For $1 \leqq i \leqq n$, let ε_{i} denote the vector of \boldsymbol{N}^{n} whose j-th component is $\delta_{i j}(1 \leqq j \leqq n)$. Then $x^{r \varepsilon_{i}}=x_{i}^{r}$ for $r \in \boldsymbol{N}$. Every element of $K[[x]]$ is written in the form $\sum_{\alpha \in N^{n}} a_{\alpha} x^{\alpha}\left(a_{\alpha} \in K\right)$.

Lemma 3.1. For $r \geqq 2$ define the form $\Lambda_{r}(X, Y)$ in $\boldsymbol{Z}[X, Y]$ as follows: If r is not a power of a prime number, we put $\Lambda_{r}(X, Y)=(X+Y)^{r}-X^{r}-Y^{r}$. If r is a power of a prime number l, we put $\Lambda_{r}(X, Y)=l^{-1}\left((X+Y)^{r}-X^{-r}-Y^{r}\right)$. Then Λ_{r} is a primitive polynomial in $\boldsymbol{Z}[X, Y]$.

Proof. Easy. See also [11], III.
For any commutative ring R, Λ_{r} is considered a polynomial in $R[X, Y]$.
Lemma 3.2. Let $\lambda(x)=\sum_{|\alpha|=r} a_{\alpha} x^{\alpha}\left(a_{\alpha} \in K\right)$ be a form of degree r satisfying

$$
\begin{equation*}
\lambda(x+y) \equiv \lambda(x)+\lambda(y) \quad \bmod \mathfrak{p} . \tag{3.1}
\end{equation*}
$$

Then, if r is not a power of $p, a_{\alpha} \in \mathfrak{p}$ for all α. If r is a power of $p, a_{\alpha} \in \mathbb{0}$ for all α and $a_{\alpha} \in \mathfrak{p}$ for $\alpha \neq r \varepsilon_{i}(1 \leqq i \leqq n)$.

Proof. Take $\alpha \in N^{n}$ such that $|\alpha|=r$. If two of $\alpha_{1}, \cdots, \alpha_{n}$, say α_{1} and α_{2}, are not equal to 0 , the coefficient of $x_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} \cdots y_{n}^{\alpha_{n}}$ on the left side of (3.1) is a_{α} and no term of this form appears on the right. Hence we have $a_{\alpha} \in \mathfrak{p}$ for such α. If $\alpha=r \varepsilon_{i}$, we have

$$
a_{\alpha}\left\{\left(x_{i}+y_{i}\right)^{r}-x_{i}^{r}-y_{i}^{r}\right\} \equiv 0 \quad \bmod \mathfrak{p}
$$

from (3.1). Then our assertion is a direct consequence of Lemma 3.1.
Proposition 3.3. Let F be an n-dimensional formal group over \mathfrak{o} and let f be its transformer. Then there exists a special element u of \mathfrak{A}_{n} such that f is of type u.

Proof. As $f(x) \equiv x \bmod \operatorname{deg} 2$, we have $p f(x) \equiv 0 \bmod \operatorname{deg} 2, \bmod \mathfrak{p}$. Suppose that for $\mu \geqq 0$ there are matrices C_{1}, \cdots, C_{μ} in $M_{n}(0)$ satisfying

$$
\begin{equation*}
p f(x)+\sum_{\nu=1}^{\mu} C_{\nu} f^{\sigma \nu}\left(x^{p \nu}\right) \equiv 0 \quad \bmod \operatorname{deg}\left(p^{\mu}+1\right), \quad \bmod \mathfrak{p} . \tag{3.2}
\end{equation*}
$$

Write $f_{i}(x)=\sum_{\alpha} a_{\alpha, i} x^{\alpha}$ for $1 \leqq i \leqq n$. Since $d f_{i}(x) \in \mathfrak{D}^{*}(F ; \mathfrak{D})$ by the results of $\S 1$, the $\left(\partial / \partial x_{j}\right) f_{i}(x)$ have integral coefficients. In particular we have $\alpha_{j} a_{\alpha, i} \in \mathbb{0}$ for $1 \leqq j \leqq n$. Hence by Lemma 2.1 we get

$$
\begin{aligned}
a_{\alpha, i}(x+p y)^{\alpha} & =\alpha_{1} a_{\alpha, i} \alpha_{1}^{-1}\left(x_{1}+p y_{1}\right)^{\alpha_{1}} \prod_{j=2}^{n}\left(x_{j}+p y_{j}\right)^{\alpha_{j}} \\
& \equiv \alpha_{1} a_{\alpha, i} \alpha_{1}^{-1} x_{1}^{\alpha_{1}} \prod_{j=2}^{n}\left(x_{j}+p y_{j}\right)^{\alpha_{j}} \bmod \mathfrak{p}
\end{aligned}
$$

$$
=x_{1}^{\alpha_{1}} a_{\alpha, i} \prod_{j=2}^{n}\left(x_{j}+p y_{j}\right)^{\alpha_{j}}
$$

By repeating the same argument we have

$$
\begin{equation*}
a_{\alpha, i}(x+p y)^{\alpha} \equiv a_{\alpha, i} x^{\alpha} \quad \bmod \mathfrak{p} . \tag{3.3}
\end{equation*}
$$

Put now

$$
\begin{equation*}
p f(x)+\sum_{\nu=1}^{\mu} f^{\nu \nu}\left(x^{p^{\nu}}\right) \equiv \sum_{|\beta| \geqq p^{\mu+1}} b_{\beta} x^{\beta} \bmod \mathfrak{p} \quad\left(b_{\beta} \in K^{n}\right) . \tag{3.4}
\end{equation*}
$$

Substituting x by $F(x, y)$ in (3.4) we get

$$
\begin{equation*}
p f(F(x, y))+\sum_{\nu=1}^{\mu} f^{\sigma \nu}\left(F(x, y)^{p \nu}\right) \equiv \sum_{|\beta| \geqq p^{\mu+1}} b_{\beta} F(x, y)^{\beta} \bmod \mathfrak{p} . \tag{3.5}
\end{equation*}
$$

By (3.3) the left side of (3.5) is congruent $\bmod \mathfrak{p}$ to

$$
\begin{aligned}
& p f(F(x, y))+\sum_{\nu=1}^{\mu} C_{\nu} f^{\sigma \nu}\left(F^{\sigma \nu}\left(x^{p^{\nu}}, y^{p^{\nu}}\right)\right) \\
& \quad=p f(x)+\sum_{\nu=1}^{\mu} C_{\nu} f^{\sigma \nu}\left(x^{p^{\nu}}\right)+p f(y)+\sum_{\nu=1}^{\mu} C_{\nu} f^{\sigma^{\nu}}\left(y^{p^{\nu}}\right) \\
& \quad \equiv \sum_{|\beta| \geq p^{\mu}+1} b_{\beta}\left(x^{\beta}+y^{\beta}\right)
\end{aligned}
$$

Thus, denoting by $b_{\beta, i}$ the i-th component of b_{β}, we get

$$
\begin{equation*}
\sum_{|\beta| \leq p^{\mu+1}} b_{\beta, i}\left\{F(x, y)^{\beta}-x^{\beta}-y^{\beta}\right\} \equiv 0 \quad \bmod \mathfrak{p} \tag{3.6}
\end{equation*}
$$

for $1 \leqq i \leqq n$. Let r be the minimum value of $|\beta|$ such that $b_{\beta, i} \notin \mathfrak{p}$ for some i. Then (3.6) implies

$$
\sum_{|\beta|=r} b_{\beta, i}\left\{(x+y)^{\beta}-x^{\beta}-y^{\beta}\right\} \equiv 0 \quad \bmod \mathfrak{p}
$$

Applying Lemma 3.2 to this we see $r \geqq p^{\mu+1}$. At any rate we have

$$
\sum_{|\beta|=p^{\mu+1}} b_{\beta, i}\left\{(x+y)^{\beta}-x^{\beta}-y^{\beta}\right\} \equiv 0 \quad \bmod p
$$

Hence, by Lemma 3.2, $b_{\beta, i} \in \mathcal{D}$ for $\beta=p^{\mu+1} \varepsilon_{j}(1 \leqq j \leqq n)$ and $b_{\beta, i} \in \mathfrak{p}$ for other β such that $|\beta|=p^{\mu+1}$. Therefore we can find a matrix $C_{\mu+1}$ in $M_{n}(0)$ satisfying

$$
p f(x)+\sum_{\nu=1}^{\mu} C_{\nu} f^{\sigma \nu}\left(x^{p \nu}\right) \equiv-C_{\mu+1} x^{p \mu+1} \bmod \operatorname{deg}\left(p^{\mu+1}+1\right), \bmod \mathfrak{p}
$$

from which follows

$$
\begin{equation*}
p f(x)+\sum_{\nu=1}^{\mu+1} C_{\nu} f^{\sigma \nu}\left(x^{p \nu}\right) \equiv 0 \quad \bmod \operatorname{deg}\left(p^{\mu+1}+1\right), \quad \bmod \mathfrak{p} . \tag{3.7}
\end{equation*}
$$

Thus we have been able to replace μ by $\mu+1$ in (3.2). This implies the existence of $C_{1}, C_{2}, \cdots, C_{\nu}, \cdots \in M_{n}(0)$ satisfying

$$
\begin{equation*}
p f(x)+\sum_{\nu=1}^{\infty} C_{\nu} f^{\sigma \nu}\left(x^{p \nu}\right) \equiv 0 \quad \bmod p . \tag{3.8}
\end{equation*}
$$

This means that f is of type u, where $u=p I_{n}+\sum_{\nu=1}^{\infty} C_{\nu} T^{\nu}$.
3.2. By Theorem 2 and Proposition 3.3 every n-dimensional formal group over o is obtained from a special element of \mathfrak{H}_{n}. Let F and G be n-dimensional formal groups over \mathfrak{b}, with the transformers f and g. By Proposition 3.3 there exist special elements u, v of \mathfrak{H}_{n} such that f (resp. g) is of type u (resp. of type v). By the uniqueness of transformer $F \approx G$ over 0 if and only if $g^{-1} \circ f \in \mathrm{o}[[x]]_{0}^{n}$. By Theorem 3 this happens if and only if there is $t \in \mathfrak{H}_{n}$ such that $v=t u$. It is clear that such t is a unit in \mathfrak{n}_{n}. Let u^{\prime} and v^{\prime} be elements of \mathfrak{U}_{n}. We shall say that v^{\prime} is left associate with u^{\prime}, if there is a unit t^{\prime} in \mathfrak{U}_{n} such that $v^{\prime}=t^{\prime} u^{\prime}$. We have proved the following theorem:

Theorem 4. Assume K satisfies $\left(F_{1}\right)$. Then every n-dimensional formal group over $\mathfrak{0}$ is obtained from a special element of \mathfrak{A}_{n} by the method of Theorem 2. The strong isomorphism classes of n-dimensional groups over 0 correspond bijectively to the left associate classes of special elements of \mathfrak{H}_{n}.

Corollary. Let M be a complete system of representatives of $\mathfrak{p} \bmod \mathfrak{p}$. Then the strong isomorphism classes of n-dimensional formal groups over 0 correspond bijectively to the special elements of \mathfrak{N}_{n} whose coefficient matrices have elements in M.

Proof. Let $u=p I_{n}+\sum_{\nu=1}^{\infty} C_{\nu} T^{\nu}$ be a fixed special element of \mathfrak{N}_{n} and let $t=I_{n}+\sum_{\nu=1}^{\infty} A_{\nu} T^{\nu}$ be a unit in \mathfrak{H}_{n}. Then we have

$$
t u=p I_{n}+\sum_{\nu=1}^{\infty}\left(p A_{\nu}+\sum_{\mu<\nu} A_{\mu} C_{\nu-\mu}^{\sigma^{\prime \prime}}\right) T^{\nu} .
$$

Therefore we can choose $A_{1}, A_{2} \cdots$ successively and uniquely so that the coefficients of the T^{ν} in $t u$ have all their elements in M. Our assertion follows from this and from Theorem 4.
3.3. As for the classification of (strong) isomorphism classes of n-dimensional groups over \mathfrak{o}, it is preferable to construct a module space over \mathfrak{o}. In the following we will perform it in case $n=1$ and 0 is complete.

The following lemma is a slight modification of Lemma 2.1 of [16].
Lemma 3.4. In addition to the condition (F_{1}), suppose that o is complete. Let $u=p+\sum_{\nu=1}^{\infty} c_{\nu} T^{\nu}\left(c_{\nu} \in \mathfrak{n}\right)$ be a special element of $\mathfrak{v}_{\sigma}[[T]]$. If all the c_{ν} are in \mathfrak{p}, there is a unit t in $\mathfrak{v}_{\sigma}[[T]]$ such that $t u=p$. If $c_{1}, \cdots, c_{h-1} \in \mathfrak{p}$ but $c_{h} \notin \mathfrak{p}$, then there is a unit t in $\mathrm{o}_{\sigma}[[T]]$ such that $t u$ is of the form $p+\sum_{\nu=1}^{n} b_{\nu} T^{\nu}$ where
$b_{1}, \cdots, b_{h-1} \in \mathfrak{p}$ and $b_{h} \notin \mathfrak{p}$.
Proof. If all the c_{ν} are in \mathfrak{p}, it suffices to put $t=p u^{-1}$. Assume c_{1}, \cdots, c_{h-1} $\in \mathfrak{p}$ but $c_{h} \notin \mathfrak{p}$. We will show that for every $i \geqq 1$ we can choose $b_{1}^{(i)}, \cdots, b_{h}^{(i)} \in \mathfrak{D}$ and a unit t_{i} of $\mathfrak{o}_{\sigma}[[T]]$ satisfying

$$
\left\{\begin{array}{l}
b_{\nu}^{(i+1)} \equiv b_{\nu}^{(i)} \bmod \mathfrak{p}^{i}, \quad b_{\nu}^{(1)} \equiv c_{\nu} \bmod \mathfrak{p} \quad(1 \leqq \nu \leqq h), \tag{3.9}\\
t_{i} \equiv 1 \bmod \operatorname{deg} 1, \quad t_{i+1} \equiv t_{i} \bmod \mathfrak{p}^{i} \\
t_{i} u \equiv p+\sum_{\nu=1}^{n} b_{\nu}^{(i)} T^{\nu} \bmod \mathfrak{p}^{i} .
\end{array}\right.
$$

First put $b_{1}^{(1)}=\cdots=b_{h-1}^{(1)}=0, b_{h}^{(1)}=c_{h}$ and $t_{1}=c_{h}\left(\sum_{\nu=h}^{\infty} c_{h} T^{\nu-h}\right)^{-1}$. As c_{h} is a unit, $t_{1} \in \mathfrak{o}_{\sigma}[[T]]$. Since

$$
t_{1} u \equiv c_{h} T^{h} \bmod \mathfrak{p},
$$

(3.9) is satisfied by $\left\{b_{\nu}^{(1)} ; t_{1}\right\}$ with $i=1$. Suppose that we have already found $\left\{b_{\nu}^{(j)} ; t_{j}\right\}$ for $1 \leqq j \leqq i$ satisfying (3.9), We try to determine $b_{\nu}^{(i+1)}=b_{\nu}^{(i)}+p^{i} d_{\nu}^{(i)}$ ($1 \leqq \nu \leqq h$) and $t_{i+1}=t_{i}+p^{i} v_{i}$ so that

$$
\begin{equation*}
\left(t_{i}+p^{i} v_{i}\right) u \equiv p+\sum_{\nu=1}\left(b_{\nu}^{(i)}+p^{i} d_{\nu}^{(i)}\right) T^{\nu} \bmod \mathfrak{p}^{i+1} . \tag{3.10}
\end{equation*}
$$

Put $w_{i}=p^{-i}\left\{t_{i} u-\left(p+\sum_{\nu=1}^{h} b_{\nu}^{(i)} T^{\nu}\right)\right\}\left(\in \mathcal{0}_{\sigma}[[T]]\right)$. Since $p^{i} u \equiv p^{i}\left(\sum_{\nu=h}^{\infty} c_{\nu} T^{\nu}\right) \bmod p^{i+1}$, (3.10) is reduced to

$$
\begin{equation*}
v_{i} \sum_{\nu=h}^{\infty} c_{\nu} T^{\nu} \equiv \sum_{\nu=1}^{n} d_{\nu}^{(i)} T^{\nu}-w_{i} \bmod \mathfrak{p} . \tag{3.11}
\end{equation*}
$$

As w_{i} has no constant term, we can choose $d_{1}^{(i)}, \ldots, d_{h}^{(i)} \in \mathfrak{v}$ so that the right hand side of (3.11) has no term of degree $\leqq h$. Hence we can find a series $v_{i} \in \mathfrak{o}_{\sigma}[[T]]$, without constant term and satisfying (3.11). By induction this proves the existence of $\left\{b_{\nu}^{(i)} ; t_{i}\right\}$ for all i. Put $t=\lim _{i \rightarrow \infty} t_{i}$ and $b_{\nu}=\lim _{i \rightarrow \infty} b_{\nu}^{(i)}$ for $1 \leqq \nu \leqq h$. Then $\left\{b_{\nu} ; t\right\}$ satisfy the requirement of our lemma.

Let F be a 1 -dimensional formal group over d . We shall say that F is of height h if the reduction of F modulo \mathfrak{p} is of height h (cf. [11]).

Proposition 3.5. Let K be a complete discrete valuation field satisfying $\left(F_{1}\right)$. The strong isomorphism classes of 1-dimensional formal groups over $\mathfrak{0}$, of height $h(1 \leqq h<\infty)$, correspond bijectively to the special elements of the form $u=p+\sum_{\nu=1}^{n} b_{\nu} T^{\nu}$ where $b_{1}, \cdots, b_{h-1} \in \mathfrak{p}$ but b_{h} is a unit of D . Let $v=p+\sum_{\nu=1}^{n} c_{\nu} T^{\nu}$ be another special element of this form. Then the formal group obtained from u is weakly isomorphic to the one obtained from v, if and only if there exists a unit c of $\mathfrak{0}$ such that $c_{\nu}=c^{1-\sigma \nu} b_{\nu}$ for $1 \leqq \nu \leqq h$.

Proof. Let F be a 1 -dimensional formal group over o . Then its transformer f is of type u^{\prime} for a special element u^{\prime}. If all the coefficients of u^{\prime}
are in \mathfrak{p}, then $F(x, y) \approx x+y$ by Lemma 3.4 and Theorem 2, If not, f is also of type u, where u is a special element of the form $p+\sum_{\nu=1}^{h} b_{\nu} T^{\nu}\left(b_{1}, \cdots, b_{h-1} \in p\right.$, $b_{h} \in \mathfrak{p}$). We will prove that F is of height h. Since

$$
\left(1+p^{-1} \sum_{\nu=1}^{n-1} b_{\nu} T^{\nu}\right)^{-1} u=p+b_{h} T^{n}+\cdots,
$$

it suffices to prove that a formal group obtained from a special element $u^{\prime \prime}$ of the form $p+b_{h} T^{h}+\cdots\left(b_{h} \notin \mathfrak{p}\right)$ is of height h. Put $\left(p u^{\prime \prime-1}\right) * i=h$. Then

$$
h(x)=x-p^{-1} b_{h} x^{p^{h}}+\cdots
$$

and so

$$
\begin{aligned}
h^{-1}(p h(x)) & =p x-b_{h} x^{p^{h}}+\cdots+p^{-1} b_{h}(p x-\cdots)^{p^{h}}+\cdots \\
& \equiv-b_{h} x^{p h}+\cdots \quad \bmod \mathfrak{p}
\end{aligned}
$$

which prove that $h^{-1}(h(x)+h(y))$ is of height h.
Now suppose that there exist a unit c in \mathcal{D} and a unit $t=\sum_{\nu=0}^{\infty} a_{\nu} T^{\nu}$ in $0_{\sigma}[[T]]$ such that $v c=t u$. Comparing the $(\nu+h)$-th degree coefficients of both members of

$$
\left(\sum_{\nu=0}^{\infty} a_{\nu} T^{\nu}\right)\left(p+\sum_{\nu=1}^{n} b_{\nu} T^{\nu}\right)=\left(p+\sum_{\nu=1}^{n} c_{\nu} T^{\nu}\right) c
$$

for $\nu>0$, we get

$$
\begin{equation*}
a_{\nu} b_{h}^{\nu \nu}+\sum_{\mu=1}^{h-1} a_{\nu+\mu} b_{h-\mu}^{\sigma_{h-\mu}^{\nu+\mu}}+p a_{\nu+h}=0 \tag{3.12}
\end{equation*}
$$

Since b_{h} is a unit, it follows from (3.12) that $a_{\nu} \in \mathfrak{p}$ for $\nu \geqq 1$. Hence we get $a_{\nu} \in \mathfrak{p}^{2}$ for $\nu \geqq 1$ again by (3.12). Repeating the same argument we see $a_{\nu} \in \mathfrak{p}^{i}$ for every $\nu \geqq 1$ and for every $i \geqq 1$. This implies $a_{\nu}=0$ for $\nu \geqq 1$, and $t=a_{0}=c$. Our proposition follows from this, from Theorem 3 and from Theorem 4.

In the above proof we proved that $v c=t u$ implied $t=c$. Thereby we did not use the fact that c (resp. t) is a unit. Therefore we get by Theorem 3;

Proposition 3.6. Let u, v be as in Proposition 3.5 and let F, G be formal groups attached to them. Then the module $\operatorname{Hom}_{0}(F, G)$ is canonically isomorphic to $\{c \in \mathfrak{O} \mid v c=c u\}$.
§4. Formal groups over a field of characteristic $p>0$.
Let K be a discrete valuation field satisfying (F) of $\S 2$. For a power series $f \in 0[[x]]^{m}, f *$ denotes the power series in $k[[x]]^{m}$ obtained by reducing the coefficients of f modulo \mathfrak{p}. In $\S 4$ we will study the reductions of formal groups over \mathfrak{D} and their homomorphisms.
4.1. Our first task is to prove two lemmas.

Lemma 4.1. Let $f \in K\left[[x]_{0}^{n}\right.$ be of type $(P ; u)$ and let $\psi\left(x^{\prime}\right) \in \mathfrak{D}\left[\left[x^{\prime}\right]\right]_{0}^{n}$ where x^{\prime} is a finite set of variables. Then we have

$$
f^{-1}\left(\pi \psi\left(x^{\prime}\right)\right) \equiv 0 \quad \bmod p .
$$

Proof. Put $h=\left(u^{-1} \pi\right) * i$. By Lemma 2.4 it suffices to prove

$$
h^{-1}(\pi x) \equiv 0 \quad \bmod \mathfrak{p} .
$$

Write $h(x)=\sum_{\nu} B_{\nu} x^{q^{\nu}}$ and $h^{-1}(\pi x)=l(x)$. Since $l(x) \equiv \pi x \bmod \operatorname{deg} 2$, the firstdegree coefficients of l are in \mathfrak{p}. Assume for $r \geqq 2$ that the i-th degree coefficients of l are in \mathfrak{p} for all $i \leqq r-1$. Write $l(x)=\pi l^{(r)}(x)+丩^{(r)}(x)$ where $l^{(r)}(x) \in \mathrm{D}[[x]]_{0}^{n}$ and $\Delta^{(r)}(x) \equiv 0 \bmod \operatorname{deg} r$. Then it follows from $h(l(x))=\pi x$

$$
\begin{equation*}
l(x)+\sum_{\nu=1}^{r-1} \pi^{q^{\nu}} B_{\nu} l^{(r)}(x)^{q^{\nu}} \equiv \pi x \quad \bmod \operatorname{deg}(r+1) . \tag{4.1}
\end{equation*}
$$

Since $\pi^{q^{\nu}} B_{\nu} \in \pi M_{n}(0)$ for $\nu \geqq 1$ by Lemma 2.2, it follows from (4.1)

$$
l(x) \equiv 0 \quad \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p} .
$$

Hence the r-th degree coefficients of l are also in \mathfrak{p}. Thus we get $l \equiv 0 \bmod \mathfrak{p}$ by induction.

Lemma 4.2. Let $u \in \mathfrak{A}_{n}$ be special and let $f \in K[[x]]_{0}^{n}$ be of type u. Let $\psi_{1} \in K\left[\left[x^{\prime}\right]\right]_{0}^{n}$ and $\psi_{2} \in 口\left[\left[x^{\prime}\right]\right]_{0}^{n}$. Then $f \circ \psi_{1} \equiv f \circ \psi_{2} \bmod \mathfrak{p}$, if and only if $\psi_{1} \equiv \psi_{2} \bmod \mathfrak{p}$.

Proof. Suppose $\psi_{1} \equiv \psi_{2} \operatorname{modp}$. Then we have clearly $\psi_{1} \in \mathfrak{p}[[x]]_{0}^{n}$. Put $h=\left(u^{-1} \pi\right) * i$ and $h^{-1} \circ f=\varphi$. Since $\varphi \in \mathbb{D}[[x]]_{0}^{n}$ by Lemma 2.4 and $\varphi \circ \psi_{1} \equiv \varphi \circ \psi_{2}$ $\bmod \mathfrak{p}$, we obtain by Lemma 2.1 and 2.2

$$
h \circ\left(\varphi \circ \psi_{1}\right) \equiv h \circ\left(\varphi \circ \psi_{2}\right) \quad \bmod \mathfrak{p}
$$

i. e. $f \circ \psi_{1} \equiv f \circ \psi_{2} \bmod \mathfrak{p}$. Conversely assume $f \circ \psi_{1} \equiv f \circ \psi_{2} \bmod \mathfrak{p}$ and put $\pi \lambda=f^{-1}\left(f \circ \psi_{1}-f \circ \psi_{2}\right)$. Then $\lambda \in \mathbb{D}[[x]]_{0}^{n}$ by Lemma 4.1. Since $F(x, y)=f^{-1}(f(x)$ $+f(y)$) has coefficients in $\mathfrak{0}$, it follows from

$$
f \circ \psi_{1}=f \circ \psi_{2}+f \circ(\pi \lambda)
$$

i. e. $\psi_{1}=F\left(\psi_{2}, \pi \lambda\right)$ that $\psi_{1} \equiv \psi_{2} \bmod \mathfrak{p}$.
4.2. We now study a certain type of homomorphisms of F^{*} to G^{*} for formal groups F, G over \mathfrak{o}.

Theorem 5. Suppose K satisfies (F). Let F and G be formal groups over \mathfrak{D}, of dimension n and m and with transformers f and g, respectively. Suppose that f (resp. g) is of type u (resp. of type v) for special elements $u \in \mathfrak{N}_{n}$ and $v \in \mathfrak{N}_{m}$.
(i) Put $\varphi=\varphi_{w}=g^{-1} \circ(w * f)$ for $w \in \mathfrak{A}_{m, n}$. Then $\varphi(x) \in \mathfrak{D}[[x]]_{0}^{m}$ if and only if there exists $t \in \mathfrak{U}_{m, n}$ such that $v w=t u$.
(ii) If $\varphi_{w} \in \mathfrak{D}[[x]]_{0}^{m}$, then $\varphi_{w}^{*} \in \operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$.
(iii) Let h be of type v^{\prime} for a special element $v^{\prime} \in \mathfrak{A}_{l}$. If $\varphi_{w^{\prime}}=h^{-1} \circ\left(w^{\prime} * g\right)$ has integral coefficients for $w^{\prime} \in \mathfrak{A}_{l, m}$, then $\varphi_{w^{\prime}}^{*} \circ \varphi_{w}^{*}=\varphi_{w^{\prime}}^{*}{ }^{\prime}$.

Proof. In order to prove (i) we may assume $g=\left(v^{-1} \pi\right) * i$. Suppose there is $t \in \mathfrak{U}_{m, n}$ such that $v w=t u$. Clearly the first-degree coefficients of φ are integers. Assume for $r \geqq 2$ that the i-th degree coefficients of φ are integers for $i \leqq r-1$. By Lemma 2.3 we have

$$
\begin{aligned}
\pi \varphi & =(v * g) \circ \varphi \equiv v *(g \circ \varphi) \quad \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p} \\
& =v *(w * f)=(v w) * f=(t u) * f \\
& =t *(u * f) \equiv 0 \quad \bmod \mathfrak{p} .
\end{aligned}
$$

This implies that the r-th degree coefficients of φ are also integers. This shows $\varphi(x) \in \mathfrak{D}[[x]]_{0}^{m}$ by induction. Conversely, suppose $\varphi=\varphi_{w} \in \mathbb{D}[[x]]_{0}^{m}$. By Lemma 2, 3 we get

$$
\begin{aligned}
(v w) * f & =v *(w * f)=v *(g \circ \varphi) \\
& \equiv(v * g) \circ \varphi=\pi \varphi \equiv 0 \quad \bmod \mathfrak{p} .
\end{aligned}
$$

Hence, by Proposition 2.6 we can find $t \in \mathfrak{A}_{m, n}$ such that $v w=t u$. This proves (i). Now we have

$$
g \circ(\varphi \circ F)=(g \circ \varphi) \circ F=(w * f) \circ F
$$

and by Lemma 2,3

$$
\begin{aligned}
((w * f) \circ F)(x, y) & \equiv(w *(f \circ F))(x, y) \quad \bmod \mathfrak{p} \\
& =(w * f)(x)+(w * f)(y) \\
& =(g \circ \varphi)(x)+(g \circ \varphi)(y) \\
& =g(G(\varphi(x), \varphi(y))) .
\end{aligned}
$$

Thus we get $g \circ(\varphi \circ F) \equiv g \circ(G \circ \varphi) \bmod \mathfrak{p}$. By Lemma 4.2 it follows from this that $\varphi \circ F \equiv G \circ \varphi \bmod p$. This implies $\varphi^{*} \in \operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$. Let us prove (iii). By Lemma 2.3 we have

$$
\begin{aligned}
h \circ\left(\varphi_{w^{\prime}} \circ \varphi_{w}\right) & =\left(h \circ \varphi_{w^{\prime}}\right) \circ \varphi_{w}=\left(w^{\prime} * g\right) \circ \varphi_{w} \\
& \equiv w^{\prime} *\left(g \circ \varphi_{w}\right) \quad \bmod \mathfrak{p} \\
& =w^{\prime} *(w * f)=\left(w^{\prime} w\right) * f
\end{aligned}
$$

By (i) there is $t^{\prime} \in \mathfrak{A}_{l, m}$ such that $v^{\prime} w^{\prime}=t^{\prime} v$. Since $v^{\prime} w^{\prime} w=t^{\prime} v w=t^{\prime} t u$, $\varphi_{w^{\prime} w}$ $=h^{-1} \circ\left(\left(w^{\prime} w\right) * f\right)$ has integral coefficients by (i). Since

$$
h \circ\left(\varphi_{w^{\prime}} \circ \varphi_{w}\right) \equiv h \circ \varphi_{w^{\prime} w} \quad \bmod \mathfrak{p}
$$

as we have shown, it follows from Lemma 4.2 that

$$
\varphi_{w^{\prime}} \circ \varphi_{w} \equiv \varphi_{w^{\prime} w} \quad \bmod \mathfrak{p}
$$

This proves (iii).

Corollary. Put $E=\mathrm{o}_{\sigma}[[T]]$. The submodule of $\operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$, consisting of homomorphisms of the form $\varphi_{w}^{*}\left(w \in \mathfrak{A}_{m, n}\right)$, is canonically isomorphic to the module of all right E-homomorphisms of $E^{n} / u E^{n}$ into $E^{m} / v E^{m}$. In particular the subring of $\operatorname{End}_{k} F^{*}$, consisting of homomorphisms of the form $\left(f^{-1} \circ(w * f)\right)^{*}$ $\left(w \in \mathfrak{U}_{n}\right)$, is canonically isomorphic to the right E-endomorphism ring of $E^{n} / u E^{n}$.

Proof. If $t u=v w$, then

$$
t\left(u E^{n}\right)=v w E^{n} \subset v E^{m} .
$$

Thus t induces a right E-homomorphism Φ_{t} of $E^{n} / u E^{n}$ into $E^{m} / v E^{m}$. Conversely, as is easily verified, every right E-homomorphism of $E^{n} / u E^{n}$ into $E^{m} / v E^{m}$ is of the form Φ_{t} with $t \in \mathfrak{U}_{m, n}$ such that $t u \in v \mathfrak{U}_{m, n}$. We will show that $\varphi_{w}^{*}=0$ if and only if $\Phi_{t}=0: \varphi_{w}^{*}=0 \Leftrightarrow g^{-1} \circ(w * f) \equiv 0 \bmod \mathfrak{p} \Leftrightarrow w * f \equiv 0 \bmod \mathfrak{p}$ (by Lemma 4.2) $\Leftrightarrow w \in \mathfrak{A}_{m, n} u$ (by Proposition 2.6) $\Leftrightarrow t u \in v \mathfrak{l}_{m, n} u \Leftrightarrow t \in v \mathfrak{H}_{m, n} \Leftrightarrow t E^{n}$ $\subset v E^{m} \Leftrightarrow \Phi_{t}=0$. This implies that φ_{w}^{*} and Φ_{t} correspond bijectively. The second assertion follows from this and from Theorem 5, (iii).
4.3. If K satisfies $\left(F_{1}\right)$, every element of $\operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$ is of the form φ_{w}^{*} with $w \in \mathfrak{U l}_{m, n}$. To prove it we need the following lemma.

Lemma 4.3. Suppose K satisfies $\left(F_{1}\right)$. Let F be an n-dimensional formal group over \mathcal{D} and let f be its transformer. Put $M=\{\psi \in K[[x]] \mid(\psi \circ F)(x, y)$ $\equiv \psi(x)+\psi(y) \bmod \mathfrak{p}\}$. Then M is topologically generated by $\mathfrak{p}[[x]]$ and by $\left\{f_{i}^{\sigma^{\nu}}\left(x^{p \nu}\right) \mid 1 \leqq i \leqq n, \nu \geqq 0\right\}$ as $\mathfrak{0}$-module. (We define the topology of $K[[x]]$ by taking $I_{\nu}=\{f \in K[[x]] \mid f \equiv 0 \bmod \operatorname{deg}(\nu+1)(\nu \geqq 1)\}$ as a base of neighborhoods of 0 .)

Proof. It is clear that $\mathfrak{p}[[x]] \subset M$. By Lemma 2.3 and by Proposition 3.3 we have

$$
\begin{aligned}
f^{\sigma^{\nu}}\left(F(x, y)^{p^{\nu}}\right) & =\left(\left(T^{\nu} * f\right) \circ F\right)(x, y) \\
& =\left(T^{\nu} *(f \circ F)\right)(x, y) \quad \bmod p \\
& =\left(T^{\nu} * f\right)(x)+\left(T^{\nu} * f\right)(y) \\
& =f^{\sigma^{\nu}}\left(x^{p^{\nu}}\right)+f^{\sigma \nu}\left(y^{p^{\nu}}\right) .
\end{aligned}
$$

This implies $f_{i}^{\sigma^{\nu}}\left(x^{p \nu}\right) \in M$ for $1 \leqq i \leqq n, \nu \geqq 0$. Let ψ be any element of M and let r be the lowest degree such that $\psi \equiv 0 \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p}$. Then $\psi \in M$ implies that the r-th degree homogeneous part $\psi^{(r)}$ of ψ satisfies

$$
\begin{equation*}
\psi^{(r)}(x+y) \equiv \psi^{(r)}(x)+\psi^{(r)}(y) \bmod \operatorname{deg}(r+1), \quad \bmod \mathfrak{p} \tag{4.2}
\end{equation*}
$$

By Lemma 3.2 (4.2) implies that r is a power of p, say p^{h} (if $r<\infty$) and that there exist $c_{1}, \cdots, c_{n} \in \mathfrak{D}$ satisfying

$$
\psi(x)-\sum_{i=1}^{n} c_{i} x_{i}^{p^{h}} \equiv 0 \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} .
$$

Hence we get

$$
\begin{equation*}
\psi(x)-\sum_{i=1}^{n} c_{i} f_{i}^{g^{h}}\left(x^{p h}\right) \equiv 0 \bmod \operatorname{deg}(r+1), \bmod \mathfrak{p} \tag{4.3}
\end{equation*}
$$

Applying the same argument to the left side of (4.3) in place of ψ and repeating this procedure we see in fact that $\mathfrak{p}[[x]]$ and the $f_{i}^{\nu \nu}\left(x^{p \nu}\right)(1 \leqq i \leqq n, \nu \geqq 0)$ generate a dense \mathfrak{d}-submodule of M.

Theorem 6. Suppose K satisfies (F_{1}). The map: $\Phi_{t} \mapsto \varphi_{w}^{*}$, defined in Theorem 5, is a bijection of $\operatorname{Hom}_{E}\left(E^{n} / u E^{n}, E^{m} / v E^{m}\right)$ onto $\operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$. In particular $\operatorname{End}_{k} F^{*}$ is canonically isomorphic to $\operatorname{End}_{E}\left(E^{n} / u E^{n}\right)$.

Proof. It suffices to prove the surjectivity. We may assume $f=\left(u^{-1} \pi\right) * i$ and $g=\left(v^{-1} \pi\right) * i$. For $\varphi_{*} \in \operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$, take $\varphi \in \mathrm{D}[[x]]_{0}^{m}$ such that $\varphi^{*}=\varphi_{*}$. Since $\varphi \circ F \equiv G \circ \varphi \bmod p$, we get by Lemma 4.2

$$
\begin{equation*}
g \circ \varphi \circ F \equiv g \circ G \circ \varphi \quad \bmod \mathfrak{p} \tag{4.4}
\end{equation*}
$$

Put $\psi=g \circ \varphi$. Then (4.4) implies

$$
\begin{equation*}
\psi(F(x, y)) \equiv \psi(x)+\psi(y) \quad \bmod p . \tag{4.5}
\end{equation*}
$$

By Lemma 4.3 it follows from (4.5) that there exists $w \in \mathfrak{A}_{m, n}$ satisfying

$$
\psi \equiv w * f \bmod \mathfrak{p}
$$

or

$$
g \circ \varphi \equiv w * f \quad \bmod p
$$

By Lemma 4.2 this implies that $g^{-1} \circ(w * f) \in \mathfrak{D}[[x]]_{0}^{m}$ and $\varphi \equiv g^{-1} \circ(w * f) \bmod \mathfrak{p}$. Thus we have $\varphi_{w}^{*}=\varphi^{*}=\varphi_{*}$, which was to be proved.
4.4. Now we will show that, if K satisfies (F_{1}), any formal group over k is obtained by reducing a formal group over \mathfrak{o}.

The following lemma is due to [12].
Lemma 4.4. Let R be a commutative ring and let $X=\left(X_{1}, \cdots, X_{n}\right)$ and $Y=\left(Y_{1}, \cdots, Y_{n}\right)$ be systems of n variables. Suppose that a form $\Delta(X, Y)$ of degree r in $R[X, Y]$ is a commutative 2-cocycle, i.e.

$$
\begin{align*}
& \Delta(X, Y)=\Delta(Y, X) \\
& \Delta(Y, Z)-\Delta(X+Y, Z)+\Delta(X, Y+Z)-\Delta(X, Y)=0 \tag{4.6}
\end{align*}
$$

Then, if r is not a power of a prime number, Δ is a 2-coboundary, i.e. there is a form $\Gamma(X)$ of degree r such that

$$
\Delta(X, Y)=\Gamma(X)-\Gamma(X+Y)+\Gamma(Y)
$$

If r is a power of a prime, Δ is cohomologous to a linear combination of $\Lambda_{r}\left(X_{i}, Y_{i}\right)(1 \leqq i \leqq n)$ with coefficients in R.

Proof. In case $n=1$ this is Lemma 3 of [11]. (For the proof of this case see also [7], p. 62.) In general we can reduce the case $n=m$ to the case $n=m-1$ by making use of the result of Lyndon [15] on normal co-
homology groups. (See also [12]). For the convenience of the reader we will perform this reduction in the following. We first note $\Delta(X, 0)=0=\Delta(0, X)$. (Put $Y=Z=0$ in (4.6)). Let us write $X^{\prime}=\left(X_{1}, \cdots, X_{m-1}\right), Y^{\prime}=\left(Y_{1}, \cdots, Y_{m-1}\right)$, i. e. $X=\left(X^{\prime}, X_{m}\right), Y=\left(Y^{\prime}, Y_{m}\right)$ and $\Delta(X, Y)=\Delta\left(X^{\prime}, X_{m}, Y^{\prime}, Y_{m}\right)$. Define Δ_{1} by

$$
\begin{align*}
\Delta_{1}(X, Y) & =\Delta(X, Y) \tag{4.7}\\
& -\left\{\Delta\left(0, X_{m}, X^{\prime}, 0\right)-\Delta\left(0, X_{m}+Y_{m}, X^{\prime}+Y^{\prime}, 0\right)+\Delta\left(0, Y_{m}, Y^{\prime}, 0\right)\right\}
\end{align*}
$$

Then Δ_{1} is also a commutative 2 -cocycle cohomologous to Δ. Putting $X^{\prime}=0$, $Y_{m}=0$ in (4.7) we get

$$
\begin{equation*}
\Delta_{1}\left(0, X_{m}, Y^{\prime}, 0\right)=0 \tag{4.8}
\end{equation*}
$$

and by commutativity

$$
\begin{equation*}
\Delta_{1}\left(X^{\prime}, 0,0, Y_{m}\right)=0 \tag{4.8'}
\end{equation*}
$$

Now putting $X^{\prime}=0, Y_{m}=Z_{m}=0$ in (4.6) for $\Delta=\Delta_{1}$ we get

$$
\Delta_{1}\left(Y^{\prime}, 0, Z^{\prime}, 0\right)-\Delta_{1}\left(Y^{\prime}, X_{m}, Z^{\prime}, 0\right)+\Delta_{1}\left(0, X_{m}, Y^{\prime}+Z^{\prime}, 0\right)-\Delta_{1}\left(0, X_{m}, Y^{\prime}, 0\right)=0 .
$$

By (4.8) this implies

$$
\begin{equation*}
\Delta_{1}\left(Y^{\prime}, X_{m}, Z^{\prime}, 0\right)=\Delta_{1}\left(Y^{\prime}, 0, Z^{\prime}, 0\right) \tag{4.9}
\end{equation*}
$$

In the same way we obtain

$$
\begin{equation*}
\Delta_{1}\left(X^{\prime}, Y_{m}, 0, Z_{m}\right)=\Delta_{1}\left(0, Y_{m}, 0, Z_{m}\right) \tag{4.10}
\end{equation*}
$$

Putting $Y^{\prime}=Z_{m}=0$ in (4.6) for $\Delta_{1}=\Delta$ we get

$$
\begin{aligned}
\Delta_{1}\left(0, Y_{m}, Z^{\prime}, 0\right) & -\Delta_{1}\left(X^{\prime}, X_{m}+Y_{m}, Z^{\prime}, 0\right) \\
& +\Delta_{1}\left(X^{\prime}, X_{m}, Z^{\prime}, Y_{m}\right)-\Delta_{1}\left(X^{\prime}, X_{m}, 0, Y_{m}\right)=0 .
\end{aligned}
$$

By (4.8), (4.9) and (4.10) this implies

$$
\Delta_{1}\left(X^{\prime}, X_{m}, Z^{\prime}, Y_{m}\right)=\Delta_{1}\left(X^{\prime}, 0, Z^{\prime}, 0\right)+\Delta_{1}\left(0, X_{m}, 0, Y_{m}\right)
$$

which completes the reduction: the case $n=m \Rightarrow$ the case $n=m-1$.
Theorem 7. Suppose K satisfies $\left(F_{1}\right)$ of §3. For any formal group F_{*} over k there exists a formal group F over 0 such that $F^{*}=F_{*}$.

Proof. Let n be the dimension of F_{*}. Take $\varphi(x) \in \mathrm{p}[[x]]_{0}^{n}$ such that $\varphi(x) \equiv x \bmod \operatorname{deg} 2$ and $u(T)=p I_{n}+\sum_{\nu=1}^{\infty} C_{\nu} T^{\nu} \in \mathfrak{A}_{n}$ and form $f=\left(\left(p u^{-1}\right) * i\right) \circ \varphi$. Then $F(x, y)=f^{-1}(f(x)+f(y))$ is a formal group over \mathfrak{o}. We will prove that we can choose the coefficients of φ and C_{1}, C_{2}, \cdots successively so that $F^{*}=F_{*}$. Suppose that we have already chosen the i-th degree coefficients of φ for $i \leqq r-1$ and the C_{ν} for $p^{\nu}<r$ so that

$$
\begin{equation*}
F^{*} \equiv F_{*} \quad \bmod \operatorname{deg} r . \tag{4.11}
\end{equation*}
$$

Letting the other coefficients of φ be equal to 0 and the C_{ν} for $p^{\nu} \geqq r$ be equal to 0 -matrix for example, form $g=\left(\left(p u^{-1}\right) * i\right) \circ \varphi$ and $G(x, y)=g^{-1}(g(x)+g(y))$. Then G is a formal group over 0 and we have

$$
\begin{equation*}
G^{*} \equiv F_{*} \bmod \operatorname{deg} r . \tag{4.12}
\end{equation*}
$$

It follows from (4.12) and from the associative law of formal group that the r-th degree homogeneous part Δ of $G^{*}-F_{*}$ is a commutative 2-cocycle in $k[x]^{n}$ (cf. [11], [12]). If r is not a power of p, we can find by Lemma 4.4 $\psi \in \mathrm{D}[x]^{n}$ whose components are forms of degree r and satisfy

$$
\begin{equation*}
G^{*}(x, y)-F_{*}(x, y) \equiv \psi^{*}(x)-\psi^{*}(x+y)+\psi^{*}(y) \bmod \operatorname{deg}(r+1) . \tag{4.13}
\end{equation*}
$$

Let h be the element of $\mathrm{D}[[x]]_{0}^{n}$, obtained by replacing φ by $\varphi-\psi$ in the definition of g and put $H(x, y)=h^{-1}(h(x)+h(y))$. Since $h \equiv g-\psi \bmod \operatorname{deg}(r+1)$, we get

$$
\begin{aligned}
H(x, y) & =h^{-1}(h(x)+h(y)) \\
& \equiv g^{-1}(g(x)+g(y))-\{\psi(x)+\psi(y)-\psi(x+y)\} \quad \bmod \operatorname{deg}(r+1) .
\end{aligned}
$$

This implies

$$
\begin{aligned}
H^{*}(x, y) & \equiv G^{*}(x, y)-\left\{\psi^{*}(x)+\psi^{*}(y)-\psi^{*}(x+y)\right\} \bmod \operatorname{deg}(r+1) \\
& \equiv F_{*}(x, y) \bmod \operatorname{deg}(r+1)
\end{aligned}
$$

Thus we have been able to replace r by $r+1$ in (4.11). If r is a power of p, say $r=p^{n}$, we can find by Lemma $4.4 \psi \in \mathrm{D}[x]^{n}$ whose components are forms of degree r and $D \in M_{n}(0)$ such that

$$
\begin{array}{r}
G^{*}(x, y)-F_{*}(x, y) \equiv \psi^{*}(x)-\psi^{*}(x+y)+\psi^{*}(y)-D^{*} \Lambda_{r}(x, y) \tag{4.14}\\
\bmod \operatorname{deg}(r+1),
\end{array}
$$

where we have written $\Lambda_{r}(x, y)=^{l}\left(\Lambda_{r}\left(x_{1}, y_{1}\right), \cdots, \Lambda_{r}\left(x_{n}, y_{n}\right)\right)$. Replacing φ by $\varphi-\psi$ and u by $u+D T^{h}$ in the definition of g, we get an element h of $\mathbb{D}[[x]]_{0}^{n}$. Since

$$
p\left(p I_{n}+\sum_{\nu=1}^{n-1} C_{\nu} T^{\nu}+D T^{h}\right)^{-1} \equiv p\left(p I_{n}+\sum_{\nu=1}^{h-1} C_{\nu} T^{\nu}\right)^{-1}-p^{-1} D T^{h} \bmod \operatorname{deg}(h+1),
$$

we have

$$
\begin{equation*}
h(x) \equiv g(x)-\psi(x)-p^{-1} D x^{r} \bmod \operatorname{deg}(r+1) . \tag{4.15}
\end{equation*}
$$

Put $H(x, y)=h^{-1}(h(x)+h(y))$. Then we get from (4.15)

$$
\begin{equation*}
H(x, y) \equiv G(x, y)-\{\psi(x)+\psi(y)-\psi(x+y)\}+D \Lambda_{r}(x, y) \bmod \operatorname{deg}(r+1) . \tag{4.16}
\end{equation*}
$$

It follows from (4.14) and (4.16) that

$$
\begin{aligned}
H^{*}(x, y) & \equiv G^{*}(x, y)-\left\{\phi^{*}(x)+\psi^{*}(y)-\phi^{*}(x+y)\right\}+D^{*} \Lambda_{r}(x, y) \\
& \equiv F_{*}(x, y) \quad \bmod \operatorname{deg}(r+1) .
\end{aligned}
$$

Thus we have been able to replace r by $r+1$ in (4.11) in this case too. This proves the existence of u and φ satisfying $F^{*}=F_{*}$.

When K satisfies (F_{1}), all the formal groups over k are obtained from special elements by Theorem 7 and homomorphisms of these groups are described in Theorem 6 and its corollary. In case where \mathfrak{o} is the ring of Witt vectors over a perfect field k^{\prime} of characteristic $p>0$, these results are nothing other than the main results of Dieudonné [4]. Using these results Dieudonné [5] gave a complete classification of isogeny classes of formal groups over k^{\prime} when k^{\prime} is algebraically closed. For this see also [2], [8] and [16].

§5. Examples and applications.

5.1. The group of Witt vectors of length n.

Let k be a perfect field of characteristic $p>0$ and let $\mathrm{D}=W(k)$ be the ring of Witt vectors over k. Put $u=p I_{n}-C_{1} T$ where $C_{1}=\left(\begin{array}{cccc}0 & 1 & & 0 \\ \vdots & \ddots & \ddots & 1 \\ \vdots & \ddots & 1 \\ 0 & \ldots & \ldots & 0\end{array}\right) \in M_{n}(\mathrm{o})$. Then it is easily verified that the reduction of the formal group with the transformer ($p u^{-1}$) $* i$ is the group of Witt vectors of length n (cf. [5], p. 120).
5.2. The group $G_{n, m}$ for $n \geqq 2, m \geqq 1$.

Let k, 0 and C_{1} be as in 5.1. Put $u=p I_{n}-C_{1} T-C_{m+1} T^{m+1}$ with $C_{m+1}=\left(\begin{array}{lll}0 & \cdots & \cdots \\ \vdots & & 0 \\ 0 & \cdots & \cdots \\ 0 & 0 \\ 1 & 0 & \cdots\end{array}\right)$. 0.0 and form $h=\left(p u^{-1}\right) * i$ and $H(x, y)=h^{-1}(h(x)+h(y))$.
Then, as is seen from [5], H^{*} is the group $G_{n, m}\left(=G_{n, 0, m}\right.$ by the notation of [5]). Suppose that 0 contains a primitive $\left(p^{m+n}-1\right)$-th root w of unity. Put $W=\left(\begin{array}{cc}w^{p n-1} & 0 \\ \ddots & \\ 0 & \end{array}\right)$. Then as $w^{\sigma}=w^{p}$, we have $W C_{1}=C_{1} W^{\sigma}$ and $W C_{m+1}=$ $\left(\begin{array}{lll}0 & w^{p} \\ w\end{array}\right)$
$C_{m+1} W^{\sigma m+1}$, so that $W u=u W$. By Theorem 3 this implies $h^{-1}(W h(x)) \in$ End $_{0} H$. On the other hand $(T * i)(x)=x^{p} \in \operatorname{End}_{k} H^{*}$, since H is defined over \boldsymbol{Z}_{p}. Let E be the \boldsymbol{Z}_{p}-subalgebra of $\operatorname{End}_{k} H^{*}$ generated by $\left(h^{-1} \circ(W h)\right)^{*}$ and $T * i$. The coefficients of components of $h^{-1} \circ(W h)$ are polynomials in $\boldsymbol{Q}_{p}[w]$. Since $h^{-1} \circ(W h) \in \mathfrak{n}[[x]]_{0}^{n}$, these polynomials belong to $\boldsymbol{Z}_{p}[w]$, the ring of integers in $\boldsymbol{Q}_{p}(w)$. Therefore we have

$$
\begin{equation*}
(T * i) \circ\left(h^{-1} \circ(W h)\right)^{*}=\left(h^{-1} \circ\left(W^{\sigma} h\right)\right)^{*} \circ(T * i) . \tag{5.1}
\end{equation*}
$$

If (m, n) $=1$ and k is algebraically closed, $\operatorname{End}_{k} H^{*}$ is isomorphic to the (unique) maximal order in the central division algebra of rank $(m+n)^{2}$ over \boldsymbol{Q}_{p}, and
invariant $n /(m+n)\left([5]\right.$, p. 129-130). Since $\boldsymbol{Q}_{p}(w)$ is the unramified extension of degree $m+n$ of \boldsymbol{Q}_{p} and $T * i$ is clearly a prime element in $\operatorname{End}_{k} H^{*}$, (5.1) implies $E=\operatorname{End}_{k} H^{*}$ when $(m, n)=1$.
5.3. The Lubin-Tate group $(n=1)$.

Suppose K satisfies (F) of $\S 2$. For $\alpha \in \mathfrak{o}, \alpha \neq 0, u_{\alpha}=\pi-\alpha^{\sigma-1} T$ is a special element. Put $f_{\alpha}=\left(\left(u_{\alpha}^{-1} \pi\right) * i\right)$. An easy computation shows

$$
\begin{equation*}
f_{\alpha}(x)=\sum_{\nu=0}^{\infty} \pi^{-\left(1+\sigma+\cdots+\sigma^{\nu-1)}\right.} \alpha^{\sigma^{\nu-1}} x^{q^{\nu}} \tag{5.2}
\end{equation*}
$$

By Theorem 2, $F_{\alpha}(x, y)=f_{\alpha}^{-1}\left(f_{\alpha}(x)+f_{\alpha}(y)\right)$ is a formal group over \mathfrak{p}. Since αu_{α} $=u_{1} \alpha, f_{1}^{-1}\left(\alpha f_{\alpha}(x)\right)$ has integral coefficients by Theorem 3. When $\pi^{\sigma}=\pi$ and $\alpha=1, F_{\alpha}$ coincides with the group constructed in [10], Theorem 2. Theorem 2 of [10] can be reduced to the case $a=1$ by replacing K by its unramified extension of degree a.)

5.4. Interpretation of the Artin-Hasse function.

Suppose K satisfies $\left(F_{1}\right)$ of $\S 3$. Put $g(x)=-\log (1-x)=\sum_{m=1}^{\infty} m^{-1} x^{m}$. It is easily verified that g is of type $p-T$. Put now

$$
L(\alpha, x)=\sum_{\nu=0}^{\infty} p^{-\nu} \alpha^{\sigma \nu} x^{p^{\nu}} \quad \text { for } \quad \alpha \in \mathcal{D}
$$

Then $g^{-1}(L(\alpha, x))$ has integral coefficients by the result of 5.3 . This is a homomorphism of F_{α} to $g^{-1}(g(x)+g(y))=x+y-x y$. Since $g^{-1}(x)=1-\exp (-x)$, $\exp (-L(\alpha, x))$ has coefficients in \mathfrak{o}. This is nothing other than the Artin-Hasse exponential function ([1]).
5.5. The characteristic equation for the Frobenius endomorphism.

Suppose K satisfies (F). Assume $\pi^{\sigma}=\pi$ and let u be a special element of \mathfrak{A}_{n} such that $u T=T u$. This implies that all coefficients of u are σ-invariant. Since the elements of u and T generate a commutative subring of $v_{o}[[T]]$, we can consider the cofactor matrix w of u :

$$
\begin{equation*}
u w=w u=(\operatorname{det} u) I_{n} \tag{5.3}
\end{equation*}
$$

Form $f=\left(u^{-1} \pi\right) * i$ and $F(x, y)=f^{-1}(f(x)+f(y)) . \quad$ By (5.3) and by Theorem 5, (i) $\left(f^{-1} \circ(w * f)\right)^{*} \in \operatorname{End}_{k} F^{*}$. Then by Theorem 5, (iii) and by Lemma 4.1,

$$
\begin{align*}
f^{-1} \circ((\operatorname{det} u) * f) & \equiv\left(f^{-1} \circ(u * f)\right) \circ\left(f^{-1} \circ(w * f)\right) \quad \bmod \mathfrak{p} \tag{5.4}\\
& \equiv 0 .
\end{align*}
$$

Write $\operatorname{det} u=\pi^{n}+\sum_{\nu=1}^{\infty} c_{\nu} T^{\nu}, c_{\nu} \in \mathfrak{D}$. Since $c_{\nu}^{\sigma}=c_{\nu}, f^{-1} \circ\left(c_{\nu} f\right) \in \operatorname{End}_{0} F$ for $\nu \geqq 1$ by Theorem 3. Put $\left[c_{\nu}\right]^{*}=\left(f^{-1} \circ\left(c_{\nu} f\right)\right)^{*}$ and $\xi(x)=x^{q}$. Since $f^{\sigma}=f$, (5.4) implies that ξ satisfies the equation

$$
\left[\pi^{n}\right]^{*}+\sum_{\nu=1}^{\infty}\left[c_{\nu}\right]^{*} \xi^{\nu}=0
$$

in $\operatorname{End}_{k} F^{*}$.

§ 6. Formal groups over Z. Applications to zeta functions.

6.1. Suppose that for every prime number p and for every $\nu \geqq 1$ there is given a matrix $C_{p^{\nu}}$ in $M_{n}(\boldsymbol{Z})$ and that $C_{p^{\nu}}$ commutes with $C_{l^{\prime}}$ if p and l are distinct primes. Let s be a complex variable and consider the (formal) Dirichlet series

$$
\left(I_{n}+C_{p} p^{-s}+\cdots+C_{p \nu} \nu^{\nu-1-\nu s}+\cdots\right)^{-1}=\sum_{\nu=0}^{\infty} A_{p^{\nu}} p^{-\nu s} .
$$

Since $A_{p^{\nu}}$ is expressed by $C_{p}, \cdots, C_{p^{\nu}}$ with coefficients in $\boldsymbol{Z}, A_{p^{\nu}}$ commutes with $A_{\nu^{\mu}}$ if $p \neq l$. Hence we can consider the global Dirichlet series

$$
\begin{equation*}
\prod_{p}\left(I_{n}+C_{p} p^{-s}+\cdots+C_{p} \nu p^{\nu-1-\nu s}+\cdots\right)^{-1}=\sum_{m=1}^{\infty} A_{m} m^{-s}, \tag{6.1}
\end{equation*}
$$

where $A_{m m^{\prime}}=A_{m} A_{m^{\prime}}=A_{m^{\prime}} A_{m}$ if $\left(m, m^{\prime}\right)=1$.
Theorem 8. Let $\left\{C_{p \nu} v\right.$ and $\left\{A_{m}\right\}$ be as above and form $f(x)=\sum_{m=1}^{\infty} m^{-1} A_{m} x^{m}$ $\in \boldsymbol{Q}[[x]]_{0}^{n}$. Then

$$
\begin{equation*}
p f(x)+\sum_{\nu=1}^{\infty} C_{\nu} f\left(x^{p^{\nu}}\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} \tag{6.2}
\end{equation*}
$$

for every p and $F(x, y)=f^{-1}(f(x)+f(y))$ is a formal group over \boldsymbol{Z}.
Proof. Put

$$
\begin{equation*}
p\left(p I_{n}+\sum_{\nu=1}^{\infty} C_{p \nu} T^{\nu}\right)^{-1}=\sum_{\nu=0}^{\infty} B_{p \nu} T^{\nu} . \tag{6.3}
\end{equation*}
$$

Replacing T by $p T$ in (6.3) we get $B_{p \nu}=p^{-\nu} A_{p \nu}$. Now

$$
\begin{equation*}
p f(x)+\sum_{\nu=1}^{\infty} C_{p^{\nu}} f\left(x^{p \nu}\right)=p \sum_{m=1}^{\infty} m^{-1} A_{m} x^{m}+\sum_{\nu=1}^{\infty} C_{p^{\nu}} \sum_{m=1}^{\infty} m^{-1} A_{m} x^{m p^{\nu}} . \tag{6.4}
\end{equation*}
$$

For $p+k$ let $D_{k p^{\nu}}$ be the coefficient of $x^{k p \nu}$ on the right side of (6.4). If $\nu=0$, then

$$
D_{k p \nu}=p k^{-1} A_{k} \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} .
$$

If $\nu \geqq 1$, then

$$
\begin{aligned}
D_{k p^{\nu}} & =p k^{-1} p^{-\nu} A_{k p \nu}+\sum_{\mu=1}^{\nu} C_{p \mu}\left(k p^{\nu-\mu}\right)^{-1} A_{k p^{\nu-\mu}} \\
& =k^{-1} A_{k}\left(p^{-(\nu-1)} A_{p \nu}+\sum_{\mu=1}^{\nu} C_{p \mu} p^{-(\nu-\mu)} A_{p^{\nu-\mu}}\right) \\
& =k^{-1} A_{k}\left(p B_{p \nu}+\sum_{\mu=1}^{\nu} C_{p^{\mu}} B_{p^{\nu}-\mu}\right) \\
& =0 .
\end{aligned}
$$

Thus (6.2) is proved. Moreover, by Theorem 2 the coefficients of F are p-integral for every p. Hence $F(x, y) \in \boldsymbol{Z}[[x, y]]$. This completes our proof.

Corollary 1. Any 1-dimensional formal group over \boldsymbol{Z} is strongly iso-
morphic to one obtained in Theorem 8. The strong isomorphism classes correspond bijectively to Dirichlet series of the form (6.1) with $n=1$ such that $0 \leqq C_{p \nu}<p$.

Proof. Let F be a 1 -dimensional formal group over Z and let f be its transformer. By Theorem 4 we can find $C_{p}, C_{p^{2}}, \cdots \in \boldsymbol{Z}$ for every p satisfying

$$
p f(x)+\sum_{\nu=1}^{\infty} C_{\nu} f\left(x^{p \nu}\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} .
$$

Let G be the formal group over \boldsymbol{Z} obtained from the Dirichlet series $\prod_{p}\left(1+\sum_{\nu=1}^{\infty} C_{p} \nu p^{\nu-1-\nu s}\right)^{-1}$. By Theorem 8 and Theorem $2 F \approx G$ over \boldsymbol{Z}_{p} for every p. Since the strong isomorphism of F to G is unique, this implies $F \approx G$ over Z. The second assertion is a consequence of the Corollary of Theorem 4.

Corollary 2. Notations and assumptions being as in Theorem 8, assume moreover that the $C_{p^{\nu}}$ commute with each other for a fixed prime p. Put [$C_{p^{\nu}}$] $=f^{-1} \circ\left(C_{p^{\nu}} f\right)$ and $\xi(x)=x^{p}$. Then $\left[C_{p^{\nu}}\right] \in \operatorname{End}_{\boldsymbol{Z}} F$ for $\nu \geqq 1$ and ξ satisfies the equation

$$
\begin{equation*}
\left[p I_{n}\right]^{*}+\sum_{\nu=1}^{\infty}\left[C_{p^{\nu}}\right]^{*} \xi^{\nu}=0 \tag{6.5}
\end{equation*}
$$

in $\operatorname{End}_{k} F^{*}$, where $k=\boldsymbol{Z} / p \boldsymbol{Z}$.
Proof. Since $C_{p^{\nu}}$ commutes with $l I_{n}+\sum_{\mu=1}^{\infty} C_{l^{\mu}} T^{\mu}$ for any $l,\left[C_{p \nu}\right]$ is l integral by Theorem 3. Hence $\left[C_{p \nu}\right] \in \operatorname{End}_{\boldsymbol{z}} F$ by Proposition 1.6. The equation (6.5) is a direct consequence of (6.2) and of Lemma 4.1.
6.2. The results of 6.1 can be applied to zeta functions of the following types:
(a) Dirichlet L-functions.
(b) Zeta functions of elliptic curves over \boldsymbol{Q}.
(c) Dirichlet series obtained from a rational representation of Hecke operators in the space of cusp forms of dimension -2 with respect to a congruence unit group of an indefinite quaternion algebra over \boldsymbol{Q} (cf. [19]).

We have already studied (a) and (b) in [10]. We note that we can remove the assumption on S in [10], Theorem 5:

Theorem 9. Let C be a 1-dimensional abelian variety over \boldsymbol{Q} and let F be a formal minimal model for C over $\boldsymbol{Z}(c f .[10])$. Let $L_{p}(s)$ be the p-factor of the L function of C and put $L_{S}(s)=\prod_{p \in S} L_{p}(s)$ for any set S of prime numbers. Then the formal group obtained from $L_{S}(s)$ is strongly isomorphic to F over $\bigcap_{p \in S}\left(\boldsymbol{Z}_{p} \cap \boldsymbol{Q}\right)$.

Proof. Let G be the formal group obtained from $L_{S}(s)$. Since $L_{p}(s)=1$, $\left(1 \pm p^{-s}\right)^{-1}$ or of the form $\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}, G$ is a formal group over \boldsymbol{Z} by Theorem 8. As a strong isomorphism of G to F is unique if it exists, it
suffices to prove $F \approx G$ over \boldsymbol{Z}_{p} for every $p \in S$. Let C_{p} be the reduction of C modulo p. The cases where C_{p} has a singular point were treated in [10]. Suppose that C_{p} is an abelian variety with $L_{p}(s)=\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}$. Since the Frobenius ξ of C_{p} satisfies

$$
\xi^{2}-a_{p} \xi+p=0,
$$

the transformer f of F satisfies

$$
\begin{equation*}
f^{-1}\left(p f(x)-a_{p} f\left(x^{p}\right)+f\left(x^{p 2}\right)\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} . \tag{6.6}
\end{equation*}
$$

By Lemma 4.2 it follows from (6.6)

$$
\begin{equation*}
p f(x)-a_{p} f\left(x^{p}\right)+f\left(x^{p^{2}}\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} . \tag{6.7}
\end{equation*}
$$

The fact $F \approx G$ over \boldsymbol{Z}_{p} follows from (6.7), Theorem 8 and Theorem 2. This completes the proof of our theorem.

Notations being as above, put $L_{C}(s)=\prod_{p} L_{p}(s)$ and let G be the formal group attached to it. Then there is $\varphi(x) \in \boldsymbol{Z}[[x]]$ such that $\varphi(x) \equiv x \bmod \operatorname{deg} 2$ and $F \circ \varphi=\varphi \circ G$. If the conjecture of Weil [21] on $L_{C}(s)$ is true, the power series φ would be the " q-expansion" of a suitable automorphic function with respect to $\Gamma_{0}(N)$ where N is the conductor of C.

It would be interesting to see that our results yield a simple proof of a special case of the main result of Eichler [6] and Shimura [18]. Let $j(z)$ be the elliptic modular function and put $L=\boldsymbol{Q}(j(z), j(N z))$ for $N \geqq 2$. Then L is a field of algebraic function over \boldsymbol{Q} and $L \boldsymbol{C}$ is the field of automorphic functions with respect to the subgroup $\Gamma_{0}(N)$ of $\operatorname{SL}(2, \boldsymbol{Z})$. We shall consider the case where the genus of L is equal to 1 . Let C be a complete non-singular model for L over \boldsymbol{Q}. Since $j(z)$ has q-expansion

$$
\begin{equation*}
j(z)=q^{-1}+744+\cdots \tag{6.8}
\end{equation*}
$$

with coefficients in \boldsymbol{Z} where $q=\exp (2 \pi \sqrt{-1} z)$, the infinite point $z=i \infty$ corresponds to a rational point \mathfrak{F} on C and C can be considered an abelian variety over \boldsymbol{Q}, with the origin \mathfrak{B}. Expanding the group law of C by means of the local parameter $j(z)^{-1}$ at \mathfrak{F}, we get a formal group F over \boldsymbol{Q}. By the theory of reduction there exists a finite set S^{\prime} of prime numbers such that for $p \notin S^{\prime}$ the reduction C_{p} of $C \bmod p$ is non-singular and $j(z)^{-1}$ is a local parameter at the origin of C_{p}. Then, for $p \notin S^{\prime} F$ has p-integral coefficients and the p-th power endomorphism of the reduction F_{p} of $F \bmod p$ satisfies the same characteristic equation as that of C_{p}. Let f be the transformer of F. Then $d f(x)$ is the canonical invariant differential on F, i. e. the $j(z)^{-1}-$ expansion of a differential of the first kind on C. Let $\varphi(q)$ be the q-expansion of $j(z)^{-1}$. Then $\varphi(x) \in \boldsymbol{Z}[[x]]$ and $\varphi(x) \equiv x \bmod \operatorname{deg} 2$ by (6.8). Put

$$
d f(\varphi(x))=\sum_{m=1}^{\infty} a_{m} x^{m-1} d x \quad\left(a_{1}=1\right)
$$

Then, as is well-known, $\sum_{m=1}^{\infty} a_{m} q^{m}$ is the q-expansion of a cusp form of dimension -2 with respect to $\Gamma_{0}(N)$ and by Hecke [9] the Dirichlet series $\sum_{m=1}^{\infty} a_{m} m^{-s}$ has an Euler product of the form

$$
\prod_{p \backslash N}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{p \nmid N}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}, \quad a_{p} \in Z
$$

Form $G(x, y)=g^{-1}(g(x)+g(y))$ with $g=f \circ \varphi$. By Theorem 8 is a formal group over \boldsymbol{Z}, so that F is also a formal group over \boldsymbol{Z}. Let p be a prime number such that $p \in S^{\prime}$ and $p+N$. Then, by Corollary 2 of Theorem 8 the Frobenius of G_{p} is a root of the equation

$$
\begin{equation*}
p-a_{p} X+X^{2}=0 \tag{6.9}
\end{equation*}
$$

Since $F \approx G$ over \boldsymbol{Z}, (6.9) is also the characteristic equation for the Frobenius of F_{p}, and then of C_{p}. Therefore $\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}$ coincides with the L function of C_{p}. This proves the principal theorem of [18] in this case.

REMARK. By considering Néron's minimal model for L, we can prove that the p-factor of the Hecke Dirichlet series coincides with that of the zeta function of L, assuming only that $j(z)^{-1}$ is a local parameter at the origin of C_{p}. See [10] as for the case C_{p} is singular. In view of the conjecture of Weil it is plausible that F is a formal minimal model for C.
6.3. We now deal with (c). We use the terminology, notations and results of Shimura [19]. Let Φ be an indefinite quaternion algebra over \boldsymbol{Q} and let o be a maximal order in Φ. For a natural number N prime to the discriminant of Φ, Γ_{N} denotes the group consisting of units γ in 0 such that $N(\gamma)=1$ and $\gamma \equiv 1 \bmod N \mathrm{D} . \quad \Gamma_{N}$ is a discontinuous group operating on the upper half plane. Let \Re_{N} be the field of automorphic functions relative to Γ_{N} and let n be its genus. Take $\mathfrak{R}_{N}, \mathfrak{๒}_{N}$ and J_{N} as in [19]. \mathfrak{Z}_{N} is a function field over \boldsymbol{Q} such that $\mathfrak{Z}_{N} \boldsymbol{C}=\mathscr{R}_{N}, \mathfrak{C}_{N}$ is its complete non-singular model and J_{N} is a Jacobian of \mathfrak{S}_{N}, each defined over \boldsymbol{Q}. Let $\mathfrak{D}_{0}\left(\mathfrak{S}_{N}\right)$ and $\mathfrak{D}_{0}\left(J_{N}\right)$ be the spaces of differentials of the first kind on \mathfrak{C}_{N} and J_{N}, respectively. For $f, g \in \mathfrak{Z}_{N}, g d f \in \mathfrak{D}_{0}\left(\mathfrak{C}_{N}\right)$ if and only if $g f^{\prime} \in S_{2}\left(\Gamma_{N}\right)$. Let $\omega=\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ be a base of $\mathfrak{D}_{0}\left(\wp_{N}\right)$, defined over \boldsymbol{Q}. Fixing a canonical map $\boldsymbol{\xi}_{N} \rightarrow J_{N}$ (which may not be defined over \boldsymbol{Q}), let \mathfrak{w} and η be the corresponding bases of $S_{2}\left(\Gamma_{N}\right)$ and $\mathfrak{D}_{0}\left(J_{N}\right)$, respectively. For $\alpha \in \mathfrak{0}$ such that $N \alpha>0,(N, \alpha)=1, \Gamma_{N} \alpha \Gamma_{N}$ operates on $S_{2}\left(\Gamma_{N}\right)$ on the one hand. Let $\mathfrak{I}_{2}\left(\Gamma_{N} \alpha \Gamma_{N}\right)$ denote its representation matrix relative to \mathfrak{w}. On the other hand $\Gamma_{N} \alpha \Gamma_{N}$ yields a correspondence $X_{\mathfrak{q}}$ of $\widehat{\aleph}_{N}$ over \boldsymbol{Q} where $\mathfrak{q}=\alpha \mathfrak{0}$ and then induces an endomorphism ξ of J_{N}. This ξ is defined over \boldsymbol{Q} ([19], p. 325). Denoting by $M^{d}(\xi)$ the representation matrix of ξ with respect to η,
we have

$$
\begin{equation*}
M^{d}(\xi)=\mathfrak{I}_{2}\left(\Gamma_{N} \alpha \Gamma_{N}\right) \tag{6.10}
\end{equation*}
$$

(19], p. 327), where $M^{d}(\xi) \in M_{n}(\boldsymbol{Q})$. By [19] the $\mathscr{I}_{2}\left(\Gamma_{N} \alpha \Gamma_{N}\right)$ are semi-simple and commute with each other, and their eigenvalues are algebraic integers. Hence there is a regular matrix P in $M_{n}(\boldsymbol{Q})$ such that the $P^{-1 \mathfrak{I}_{2}}\left(\Gamma_{N} \alpha \Gamma_{N}\right) P$ are all in $M_{n}(\boldsymbol{Z})$. By changing the bases if necessary, we may assume that the $\mathfrak{I}_{2}\left(\Gamma_{N} \alpha \Gamma_{N}\right)$ are already in $M_{n}(\boldsymbol{Z})$.

Let S_{1} be the set of prime numbers which fail to satisfy at least one of P. 1)~10) in [19]. Then S_{1} is a finite set. Let S_{2} be the set of prime divisors of $d(\Phi)$. By Theorem 4 of [19] we have for $p \notin S_{1} \cup S_{2}$

$$
\begin{equation*}
\tilde{X}_{q}=\Pi+\Pi^{\prime} \circ \tilde{Y}_{p} \tag{6.11}
\end{equation*}
$$

where \mathfrak{q} is an integral left \mathfrak{D}-ideal such that $N(\mathfrak{q})=p, \Pi$ is the Frobenius of $\widetilde{\mathfrak{E}}_{N}$ and Y_{p} is defined on p. 315 of [19]. Correspondingly we have

$$
\begin{equation*}
\tilde{\xi}_{p}=\pi+\pi^{\prime} \circ \tilde{\eta}_{p} \tag{6.12}
\end{equation*}
$$

Now let $t=\left\{t_{1}, \cdots, t_{n}\right\}$ be a system of local parameters $\left(\in \boldsymbol{Q}\left(J_{N}\right)\right)$ at the origin of J_{N}. Expanding the group law of J_{N} into power series relative to t, we get an n-dimensional formal group F over \boldsymbol{Q}. We shall call this formal group a formal model for J_{N}. (A formal model is also obtained from the t expansion of a base of $\mathfrak{D}_{0}\left(J_{N}\right)$, defined over $\left.\boldsymbol{Q}\right)$. By the theory of reduction (20], Chapter III) there is a finite set S_{3} of prime numbers such that for $p \notin S_{3}$:
(i) t is a system of local parameters at the origin of $\tilde{J}_{N}=$ the reduction of $J_{N} \bmod p$.
(ii) The differentials $\eta_{1}, \cdots, \eta_{n}$ have good reductions $\bmod p$ and yield a base of $\mathfrak{D}_{0}\left(\tilde{J}_{N}\right)$.
Assume $p \notin S_{1} \cup S_{2} \cup S_{3}$. Then F has coefficients in \boldsymbol{Z}_{p} and an endomorphism of ξ of J_{N}, corresponding to some $\Gamma_{N} \alpha \Gamma_{N}$, induces an endomorphism of F over \boldsymbol{Z}_{p}. Let f be the transformer of F and let $f^{-1} \circ(C(\xi) f)\left(C(\xi) \in M_{n}\left(\boldsymbol{Z}_{p}\right)\right)$ denote this endomorphism of F. Since ξ^{\prime} is also defined over \boldsymbol{Q}, it induces the endomorphism $f^{-1} \circ\left(C\left(\xi^{\prime}\right) f\right)$ of F over \boldsymbol{Z}_{p}. Now it follows from (6.12) that

$$
\tilde{\xi}_{p}^{\prime}=\pi^{\prime}+\tilde{\eta}_{p}^{\prime} \circ \pi
$$

and then

$$
\begin{equation*}
p-\tilde{\xi}_{p}^{\prime} \circ \pi+\tilde{\eta}_{p}^{\prime} \circ \pi^{2}=0 . \tag{6.13}
\end{equation*}
$$

This implies

$$
f^{-1}\left(p f(x)-C\left(\xi_{p}^{\prime}\right) f\left(x^{p}\right)+C\left(\eta_{p}^{\prime}\right) f\left(x^{p^{2}}\right)\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p}
$$

or by Lemma 4.2

$$
\begin{equation*}
p f(x)-C\left(\xi_{p}^{\prime}\right) f\left(x^{p}\right)+C\left(\eta_{p}^{\prime}\right) f\left(x^{p^{2}}\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} \tag{6.14}
\end{equation*}
$$

Let E be the subring of $E \operatorname{End}_{\boldsymbol{Q}} J_{N}$ generated by endomorphisms corresponding to $\left\{\Gamma_{N} \alpha \Gamma_{N} \mid \alpha \in \mathfrak{D}, N(\alpha)>0,(\alpha, N)=1\right\}$. Then, as $E \otimes \boldsymbol{Q}$ is a commutative semi-simple algebra over \boldsymbol{Q}, the $\operatorname{map} \xi \mapsto \xi^{\prime}$ yields an isomorphism of E into $\operatorname{End}_{Q} J_{N}$. Now J_{N} is self-dual and $M^{d}\left({ }^{t} \xi\right)$ is the transposed matrix of $M^{d}(\xi)$, since $M^{d}(\xi) \in M_{n}(\boldsymbol{Q})$. (For example see [20], p. 25). As $M^{d}\left(\xi^{\prime}\right)$ is conjugate with $M^{d}\left({ }^{t} \xi\right), M^{d}(\xi)$ and $M^{d}\left(\xi^{\prime}\right)$ have the same trace. Therefore there is an invertible matrix $P_{1} \in M_{n}(\boldsymbol{Q})$ such that

$$
\begin{equation*}
M^{d}\left(\xi^{\prime}\right)=P_{1}^{-1} M^{d}(\xi) P_{1} \quad \text { for all } \quad \xi \in E \tag{6.15}
\end{equation*}
$$

Now since the t-expansion of \Rightarrow is a base of $\mathfrak{D}^{*}(F ; \boldsymbol{Q})$ and $C\left(\xi^{\prime}\right)(\xi \in E)$ is the representation matrix of ξ^{\prime} relative to the canonical base $d f(x)$ of $\mathfrak{D}^{*}(F ; \boldsymbol{Q})$, we can find an invertible matrix $P_{2} \in M_{n}(\boldsymbol{Q})$ such that

$$
\begin{equation*}
C\left(\xi^{\prime}\right)=P_{2}^{-1} M^{d}\left(\xi^{\prime}\right) P_{2} \quad \text { for all } \quad \xi \in E . \tag{6.16}
\end{equation*}
$$

Putting $P_{3}=P_{1} P_{2}$, we get from (6.15), (6.16)

$$
\begin{equation*}
C\left(\xi^{\prime}\right)=P_{3}^{-1} M^{a}(\xi) P_{3} \quad \text { for all } \quad \xi \in E \tag{6.17}
\end{equation*}
$$

Let S_{4} be the set of prime numbers p such that P_{3} or P_{3}^{-1} is not p-integral, and put $S=\bigcup_{i=1}^{4} S_{i}$. S is a finite set. For $p \notin S$ we get from (6.14) and (6.17)

$$
\begin{equation*}
p P_{3} f(x)-M^{d}\left(\xi_{p}\right) P_{3} f\left(x^{p}\right)+M^{d}\left(\eta_{p}\right) P_{3} f\left(x^{p^{2}}\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} \tag{6.18}
\end{equation*}
$$

Now replacing the parameters $t={ }^{t}\left(t_{1}, \cdots, t_{n}\right)$ by $u=P_{3} t$, we obtain the formal model $H(x, y)=P_{3} F\left(P_{3}^{-1} x, P_{3}^{-1} y\right)$ of J_{N}, with the transformer $h(x)$ $=P_{3} f\left(P_{3}^{-1} x\right)$. For $p \in S$ we have

$$
\left(P_{3}^{-1} x\right)^{p \nu} \equiv P_{3}^{-1} x^{p \nu} \quad \bmod p \boldsymbol{Z}_{p}
$$

and then by Lemma 4.2

$$
\begin{equation*}
f\left(\left(P_{3}^{-1} x\right)^{p \nu}\right) \equiv f\left(P_{3}^{-1} x^{p \nu}\right) \quad \bmod p \boldsymbol{Z}_{p} \tag{6.19}
\end{equation*}
$$

By (6.18) and (6.19) we get finally

$$
\begin{equation*}
p h(x)-M^{d}\left(\xi_{p}\right) h\left(x^{p}\right)+M^{d}\left(\eta_{p}\right) h\left(x^{p^{2}}\right) \equiv 0 \quad \bmod p \boldsymbol{Z}_{p} \tag{6.20}
\end{equation*}
$$

for $p \notin S$.
Now we have

$$
\begin{equation*}
M^{d}\left(\xi_{p}\right)=\mathfrak{I}_{2}(p ; N \mathrm{D}) \quad \text { and } \quad M^{d}\left(\eta_{p}\right)=R_{2}(p ; N \mathfrak{n}) \tag{6.21}
\end{equation*}
$$

([19], p. 327). Let M be the product of all primes in S and put $\boldsymbol{Z}_{S}^{\prime}=\bigcap_{p \neq S}\left(\boldsymbol{Z}_{p} \cap \boldsymbol{Q}\right)$. The Dirichlet series

$$
\prod_{p \nmid M N}\left[I_{n}-\mathscr{I}_{2}(p ; N \mathrm{D}) p^{-s}+R_{2}(p ; N \mathrm{D}) p^{1-2 s}\right]^{-1}=\sum_{(m, M N)=1} \mathfrak{I}_{2}(m ; N \mathrm{D}) m^{-s}
$$

is a main part of the one defined in [19]. Let G be the formal group over \boldsymbol{Z} corresponding to it by Theorem 8, By Theorem 2 it follows from (6.20) and (6.21) that $G \approx H$ over \boldsymbol{Z}_{p} for every $p \notin S$. Hence $G \approx H$ over $\boldsymbol{Z}_{s}^{\prime}$ by the uniqueness of strong isomorphism. We have proved the following theorem:

Theorem 10. Let notations be as in [19] and let \mathfrak{I}_{2} be an integral representation as above. Then there is a finite set S of prime numbers such that the förmal group obtained from the Dirichlet series $\sum_{(m, M N)=1} \mathfrak{I}_{2}(m ; N 0) m^{-s}$ is strongly isomorphic over $\boldsymbol{Z}_{S}^{\prime}$ to a formal model for J_{N}.

Thus the matrix Dirichlet series $\Sigma \mathfrak{I}_{2}\left(m ; N_{\mathfrak{D}}\right) m^{-s}$ itself (not only its determinant) has important significance for J_{N}. What kind of curve over \boldsymbol{Q} has a Jacobian whose formal completion is isomorphic to a formal group corresponding to a matrix Dirichlet series with Euler product?
6.4. All zeta functions, which we studied in 6.2 and 6.3 , are of the form $\prod_{p}\left(I_{n}+C_{p} p^{-s}+C_{p^{2}} p^{1-2 s}\right)^{-1}$. Do there exist number-theoretic Dirichlet series of the form (6.1) such that not all $C_{p^{\nu}}$ are equal to 0 for $\nu \geqq 3$? If such ones exist, formal groups over Z obtained from them would be non-algebroid. Their transformers would be obtained from analytic functions, perhaps satisfying suitable kinds of differential equations.

Osaka University

References

[1] E. Artin and H. Hasse, Die beiden Ergänzungssätze zum Reziprozitätsgesetz der l^{n}-ten Potenzreste im Körper der l^{n}-ten Einheitswurzeln, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 146-162.
[2] I. Barsotti, Moduli canonici e gruppi analitici commutativi, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 303-372.
[3] N. Bourbaki, Algèbre, Chapitre IV., 2^{e} éd., Hermann, Paris, 1959.
[4] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $p>0$ (IV), Amer. J. Math., 77 (1955), 429-452.
[5] J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $p>0$ (VII), Math. Ann., 134 (1957), 114-133.
[6] M. Eichler, Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Arch. Math., 5 (1954), 355-366.
[7] A. Fröhlich, Formal groups, Lecture Notes in Mathematics, Springer, Berlin-Heidelberg-New York, 1968.
[8] P. Gabriel, Sur les catégories localement noethériennes et leurs applications aux algèbres étudiées par Dieudonné, Séminaire J. P. Serre, (1960).
[9] E. Hecke, Über Modulfunktionen und die Dirichletscher Reihen mit Eulersher Produktentwickelung II, Math. Ann., 114 (1937), 316-351; Mathematische Werke, 672-707.
[10] T. Honda, Formal groups and zeta-functions, Osaka J. Math., 5 (1968), 199-213.
[11] M. Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math.

France, 83 (1955), 251-274.
[12] M. Lazard, Lois de groupes et analyseurs, Ann. Sci. École Norm. Sup., (3) 72 (1955), 299-400.
[13] J. Lubin, One-parameter formal Lie groups over \mathfrak{p}-adic integer rings, Ann. of Math., 80 (1964), 464-484.
[14] J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387.
[15] R. Lyndon, The cohomology theory of group extensions, Duke Math. J., 15 (1948), 271-292.
[16] Y. Manin, The theory of commutative formal groups over fields of finite characteristic, Russian Math. Surveys, 18 (1963), 1-81.
[17] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I. H. E. S., 21 (1964).
[18] G. Shimura, Correspondances modulaires et les fonctions ζ de courbes algébriques, J. Math. Soc. Japan, 10 (1958), 1-28.
[19] G. Shimura, On the zeta-functions of the algebraic curves uniformized by certain automorphic functions, J. Math. Soc. Japan, 13 (1961), 275-331.
[20] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publ. Math. Soc. Japan, No. 6, 1961.
[21] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 168 (1967), 149-156.
[22] E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad p^{n}, J. Reine Angew. Math., 176 (1936), 126-140.

