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The theory of (commutative) formal groups was initiated by M. Lazard
and J. Dieudonné around 1954. Lazard [11], studied commutative formal
groups over an arbitrary commutative ring by treating the coefficients of
power series explicitly. Whereas Dieudonné investigated formal groups over
a field of characteristic p >0 exclusively. He reduced in the study of com-
mutative formal groups over a perfect field of characteristic p >0 to that of
modules over a certain non-commutative ring, so-called Dieudonné modules,
and obtained in [5] a complete classification of isogeny classes of commutative
formal groups over an algebraically closed field of characteristic p > 0. Later
Manin [16] studied isomorphism classes of simple formal groups. The study
of .one-dimensional formal groups over p-adic integer rings was begun by
Lubin [13] and a number of interesting results were obtained by him and
Tate.

In this paper we first construct a certain general family of commutative
formal groups of arbitrary dimension over a p-adic integer ring. Over the ring
W(k) of Witt vectors over a perfect field of characteristic p > 0, this exhausts
all the commutative formal groups. These are attached to a certain type of
matrices with elements in the ring W(&),[[T]] of non-commutative power
series, where ¢ is the Frobenius of W(k), and homomorphisms of these formal
groups are described in terms of matrices over W(k),[[T]]. By reducing
the coefficients of formal groups over W(k) mod pW(k) we get formal groups
over k. It is shown that all the commutative formal groups over % are ob-
tained in this manner. Moreover homomorphisms of commutative formal
groups over k are also described in terms of W(k),[[T J]-modules by lifting
these homomorphisms to power series over W(k). Thus we get the main
results of Dieudonné again by the method quite different from his. In
he used tools peculiar to characteristic p > 0 and his construction of formal
groups was indirect, whereas in our method the relation between formal
groups over W(k) and those over %k is transparent and the construction of
formal groups is explicit and elementary.

We now explain briefly how to construct commutative formal groups over
W(k) in case of dimension one. Take an element u of W(k),[[T]] of the
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form p+ i ¢, T* (¢, e W(k)) and put pu~'= f}va”. The b, are elements of
y=1 v—=0
the fraction field of W(k) and b,=1. Form f{(x)= 3 b,x?" and F(x,3)=
y==0

FYUSf(x)+f(»). Then F is a formal group over W(k). In some special case
this fact can be proved by using the basic lemma of Lubin-Tate (ct. [10].
In general case we have to adopt another idea. Any formal group over W(k)
is isomorphic to one obtained in this manner. Let v be another element of
W(RJ[T]1] of the form mentioned above and let g(x) and G(x, y) be the
corresponding power series and the formal group, respectively. It is known
that any homomorphism of F to G is of the form g (¢ f(x)) with ¢ = W(k).
We assert that g~!(c f(x)) is in reality a homomorphism over W(k), if and
only if there is teW(k),[[T]1] such that vc=tu. All these results will be
generalized and proved for an arbitrary dimension and for more general
coefficient rings of characteristic 0 with discrete valuation.

Our results can be applied to construct and characterize formal groups
over Z corresponding to a certain type of Dirichlet series with matrix co-
efficients, thus generalizing the results of the last half of our previous paper
[10]. In particular we get an interesting interpretation of the Dirichlet series
obtained from a representation of Hecke operators in the space of cusp forms
of dimension —2 with respect to a congruence unit group /'y of a maximal
order of an indefinite quaternion algebra over Q (Shimura [19]). There is
an intimate connection between this Dirichlet series and a formal completion
of the Jacobian Jy.

§1. Invariant differential forms on a formal group.

1.1. Let S be a ring. We denote by S™ the module consisting of all the
column vectors of dimension m with components in S and by M,(S) the full
matrix ring of order m with elements in S. [,, denotes the indentity matrix
of order m. For a=%a,, -, a,) S™ we write a* for “(a?, --- , a%).

Let R be a commutative ring with the identity. Let x be the set of n
variables x,, -+, x,. We denote by R[[x]] the ring of formal power series
on x, -, ¥, For basic properties of R[[x]] we refer to Bourbaki [3]. We
shall often regard x as the column vector “(x,, ---, x,) in R[[x]]* Let f and
g be power series in R[[x]]. We shall say that f is congruent to g modulo
degree 7, f=g mod deg r, if fand g differ only in terms of total degree=r.
Let I be a submodule of R. f is said to be congruent to g modulo I, f=g
mod I, if all the coefficients of f—g belong to /. We shall write f= g mod deg r,
mod [, if there are ¢, ¢ € R[[x]] such that f—g=¢+¢, ¢ =0 mod deg » and
¢ =0 mod I. These definitions extend to R[[x]1™ If f=%f, -, fm) and
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g="%g, -+, gn) are elements of R[[x]]™, f=g mod * will mean f;=g; mod =
for 1<i<n. We write R[[x]1={fe R[[x]J]™|f=0 mod deg 1}.

Let x'=%x{, -+, x,,) be another set of variables. If f(x")="(f,(x"), -+, f,(x")
(filx?y= fi(xhy -, x4) is in R[[x/]1T and @(x) ="@,(2), - , pu(®) is in RI[xTTF,
the power series fi(o(x) = fi(¢,(x), .-+, o (x)) is well-defined and *(f,(¢(x)), -+,
Ji(e(x))) is an element of R[[x]]. We denote it by f(¢(x)) or simply by foe,
if there is no fear of ambiguity. Define the identity function i of R[[x]]¢
by i(x)=x. If ¢(x) is an element of R[[x]J¢ such that ¢(x)= Px mod deg 2
with an invertible matrix P in M,(R), there is a unique element ¢(x) in
R[[x]]; satisfying po¢p=¢op=1. We shall call this ¢ the inverse function
of ¢ and denote it by ¢~

We adopt the classical definition of formal group.

DEFINITION. Let x and y be sets (or vectors) of n variables. An n-
dimensional formal group over R is an element F'(x,y) of R[[x, y]1? satisfying:

1) F(x,=x+y mod deg 2,
ii) F(F(x, ), 2)=F(x, F(y, 2)).

If F satisfies F(x, ¥) = F(y, x) moreover, I is said to be commutative.

it follows from (i) that there is a unique ip(x)= R[[x]]¢ such that
F(x, ip(x)) = F(r(x), x)=0. Part (ii) shows that F(x, 0)=x and F(0, y)=2y.

DEFINITION. Let F and G be formal groups over R, of dimension n and
m, respectively. An element ¢ of R[[x]]7, where x="%x, -+, x,), is said to
be a homomorphism of F to G, if ¢ satisfies o F=Go¢, where (Go¢)(x, y)
stands for G(o(x), (). If m=n and ¢ is invertible, ¢! is also a homo-
morphism of G to F. Such ¢ is called an isomorphism and G is said to be
(weakly) isomorphic to F, ¢ : F~G over R. If there is an isomorphism ¢ of
F to G such that ¢(x)=x mod deg 2, we shall say that G is strongly isomorphic
to F and write ¢ : F= G over K.

If G is commutative, the set Hompy (F, G) of all homomorphisms of F to
G over R forms a module by defining (p,4+¢,)(x) = G(@,(x), p.(x)) for ¢,, ¢,
e Homy (F, G). In particular Endgp G(=Homg (G, G)) becomes a ring by
defining the multiplication by composition of functions.

1.2. Let A=FR[[x]] be as in 1.1. We denote by ®©(A4; R) the space of
derivations of A over R. It is a free left A-module with a base D, ---, D,,
where D;=0d/0dx; (cf.[3]). Denote by D*(A; R) the dual A-module of ®(A4; R),
the space of differentials of A over R. For fe A the map D—Df of D(A; R)
into A defines a differential, which we denote by df. A differential of this
form is called exact. It is well-known that dx=7%dx,, ---, dx,) is an A-base

of DX(A; R) and df = 3)(D, f)dx; for any fe< A.
=1
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Let B=R[[x’]] be another ring of power series on m variables and let
w= _§1¢j(x’)dx; be a differential in DXB; R). If ¢ = R[[xT12, ﬁl & (@) de (%)
is a] differential in ©*(A4; R). We denote it by ¢*w). ¢* ]is an R-homo-
morphism of D*(B; R) into D*(A4; R).

Let F be an n-dimensional formal group over R. Introducing a new set
¢{=(t, -+, t,) of variables we may consider that F is also defined over R,

= R[[t]].

DEFINITION. The right translation T, on F is an element of R,[[x]]™
defined by Ty(x)=F(x,t). A differential w in ®*(A4; R) is said to be a right
invariant differential on F if THw)=w.

We denote by ©*(F'; R) the space consisting of all right invariant dif-
ferentials on F. As in the case of a Lie group or an algebraic group, we
have:

PROPOSITION 1.1. [f F is an n-dimensional formal group over R, D*(F; R)
is a free R-module of rank n. More precisely, (¢;;(2)) denoting the inverse

matrix of (8/0x)Fy0, 2)), we have ¢;;(0)=4;; and wi:ilgbij(x)dxj A<i<n)
J——-
form an R-basis of O*(F; R). Moreover the base {w,, -+, w,} is characterized
by these two properties.
Proor. Differentiating F,(u, F(v, w)) = F,(F (4, v), w) relative to u;, we get

@/0x)F i, F (v, w) = 33 0/ Fi(F(w, 0), w)@/3x)Fiu, v),

so that
(a/axJ)Fz(O) F('l/', 'LU)) = él(a/axk)Fz(v, W)(a/ax])Fk(o, U)

or by matrix notation

(L) (0/0x)F 0, F(v, w)) = ((9/0x)F (v, w)((9/0x)F:(0, v)).

Since (9/0x,)F;(0, 2) =0;; mod deg 1, the matrix ((0/0x;)F0, 2)) is invertible,
¢:i(z)e R[[2z]] and ¢;;(0)=0,;. Hence (1.1) is equivalent to

1.2 (T s (2N(0/0x)Fi(z, 1)) = (¢:5(2)) .
Now a differential wzi%(x)dxi in ®*(A; R) is right invariant on F, if and
only if "
L3) 610 = 2 gu(F (x, )O/0x)Filx, 1.
This shows w,, -+, w, € D¥F; R) by (1.2). On the other hand we get from
(1.3)

610 = 2 $O@/0x)F0, 1),
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which implies that, if @ € D*(F; R), =0 & ¢,0)=0 for 1 <i<n. Therefore
the map @ :w—4¢,0), -+, ¢,(0)) defines an R-isomorphism of ®*(F'; R) into
R™. Since the @(w,) (1 <i<n) are the unit vectors of R®, the map @ is sur-
jective and {w,, -, w,} is a base of D*(F; R).
We shall call this {w,, -+, w,} the canonical base of D*(F; R).
PROPOSITION 1.2. Let F, G be formal groups over R and ¢ € Hompg (F, G).
If € DG ; R), then ¢*(n) € D*(F; R).

PROOF. Write 7 = é ¢i(x")dx}, where m is the dimension of G. Then
U =T Eulede(n)
= S 9ol (x, NP x, D)
= 536G, $ONIG@ ), i)

= B iet)de )

= ")
1.3. We now study invariant differential forms on a commutative formal

group.
PRrROPOSITION 1.3. Let F be a commutative formal group over R. Then

every differential in D*(F'; R) is closed.
PROOF. Let w;= 3¢y (x)dx; (1=<i=n) be the canonical base of D*(F; R).
Jj=1
We shall prove dw; =0 for 1<i<n. First dw; is a right invariant 2-form,
since

TH(dw) = TH( 3 dy(0) A dx;)
= SV dghi (F(x, ) A dF(x, 1)

= d(T¥wy))
= da)z .
Now differentiating

3 @/0x0F0, DD = by

relative to z;, and putting z=0, we get

Zk (0%/0x,0y,) F3(0, O)Sij(O)‘l'Ek (0/0x)F;(0, O)(a/axz)¢kj(0) =0,

which is reduced to
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(0%/0x,;0y)F;(0, 0)+(a/axl)¢ij(0) =0,
since

Sljk](o) == 5]“' and (a/axk)FL(O, 0) = 5116 .
Hence, by the commutativity of F we get

(0/0x)¢:50) = —(0°/0x,;05)F 0, 0)
= —(0%/0x,0y)F (0, 0)
= (a/axj)¢iz(0) .

Since
dwi o !El (a/axl)gbij(x)dxl VAN de-

= EZ ((9/0x)¢:(x)—(0/0x)pu(x)dx, N dx;,

the coefficients of dx, A dx; in dw; have no constant term. So we have only
to prove that, if 7= 3] 2;;(x)dx; A dx; is right invariant on F and 4;;(0)=0
i<

for all 1=i<j=<n, y» must be equal to 0. An easy computation shows that
T¥(m)=mn is equivalent to

ZM(X)=%RU(F (x, )| (0/0x)Fi(x, ©) (9/0x)F(x, 1)
(0/0x)F(x, 1) (9/0x)F(x, 1) |,
which implies

A(0) = Z; 2:5@) | (0/0x)F3(0, 1) (8/0x)F:(0, 1)
' @/3x)F 40, t) (3/8x)F,0, D)

for 1<k <I=<n. Since the matrix ((0/0x;)F(0, ?)) is regular, this shows in
fact 2,;(0)=0 for all i <j = 2;;(t)=0 for all 1 <.

We now consider the case where R is a Q-algebra. In this case every
power series in R[[x]] is termwise integrable with respect to x,. The fol-
lowing lemma is essentially well-known in elementary analysis and the proof
is easy.

LEMMA 14. If R is a Q-algebra, a closed differential in D*(A; R) is exacl.

The following theorem, mentioned in [10], was also proved in in a
slightly different manner.

THEOREM 1. Let F be an n-dimensional commutative formal group over a
Q-algebra R and let w =%w,, -+, w,) be the canonical base of D*(F; R). Then
there exists a unique element f of R[[x]1¢ such that w=df. This f satisfies

f(x)=x mod deg?2
and

F(x, y)=F*(f0+750)).
In particular F(x,y) =~ x+y over R.
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PRrOOF. The existence of f follows from Proposition 1.3 and Lemma 1.4.
The uniqueness follows from the fact that do=0 for ¢ €R[[x]], if and only
if ¢ is a constant. Since ¢,;(0)=J,;, we have f(x)=x mod deg 2. Now, df(x)
being right invariant, we have

df(F(x, ) =df(x),
which implies

SF &, )—f(x) e RLLD].
Writing g(t) = f(F(x, £))—f(x) and putting x=0 we get

g=r.
Thus we have

J(F(x, ) =0+

or

Fx, =(f()+/@).

This completes the proof of cur theorem.

1.4. Let R be an integral domain of characteristic 0 and K its fraction field.

LEmMMA 15. Let x=%x, -+, x,) and y="%v,, ---, ¥,) be sets of n variables.
If ¢ € K[[x]1™ satisfies

Px+2) = PpD)+P(),

¢ must be linear, i.e. there is an mXxn matrix C over K such that ¢(x)==Cx.

PrROOF. We have only to consider the case where m=1 and ¢ is a
homogeneous polynomial. Then our assertion is verified by a simple com-
putation. (See the proof of Lemma 3.2)

Let F be a commutative formal group over R, of dimension n. By Theorem
1 there is f(x) € K[[x]]¢ such that f=17 mod deg 2 and F(x, y)=f(f(x)-+/(I).
If there is another element A of K[[x]7? satisfying h=1¢ mod deg2 and
F(x, y)=h ' (h(x)+h(y)), we have

foh'=1 mod deg2,
(foh™H)(x+y) = (foh )x)+(foh™)()).

Hence we get foh™'=1i or f=h by Lemma 1.5.

DEFINITION. Let R and K be as above; let I be an n-dimensional com-
mutative formal group over K. The unique element f of K[[x]1?, such that
S=1 mod deg 2 and F(x, ¥)=f" /(xX)+f(»), is called the transformer of F.

Let G be another commutative formal group over R, of dimension m and
with the transformer g. 1f ¢ € Homg (F, G), we have

o(S NSO+ () =g (glepx)+g(@(N) .
Substituting x, y by f~'(x), f (), respectively, we get

(gogof Na+y)=(gopof HX)+(gopof V).
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Hence by [Lemma 1.5 there is an mXn matrix C over K such that (go@of~)(x)
= Cx. This implies ¢(x) =g (Cf(x)). As ¢(x)=Cx mod deg 2, C is a matrix
with elements in R.

PROPOSITION 1.6. Let F, f, G, g be as above. Every element ¢ of Homg (F, G)
has the form g'o(Cf), where C is an mxXn matrix over R. Conversely, C
being an mXn matrix over R, g7'o(Cf) € Homg (F, G), if and only if g *o(Cf)
has coefficients in R. The map ¢—C yields an isomorphism of Homg (F, G)
into the module of mxXn matrices over R. If F=G in particular, this map 1is
a ring isomorvphism of Endg F into M,(R).

Proor. The first assertion has already been proved. The second follows
from

(g71o(C)oF=Go(g™o(Cr).

The rests follow from the definitions.

§2. Formal groups over a p-adic integer ring.

Throughout the rest of this paper we exclusively deal with commutative
formal groups. By a formal group we always mean a commutative one.

Let K be a discrete valuation field of characteristic 0 and let o and p be the
ring of integers in K and the maximal ideal of 5, respectively. We assume
that the residue class field 2=o/p is of characteristic p>0. Consider the
following condition on K:

(F) There are an endomorphism ¢ of K and a power ¢ of p such that

a’=a? mod?y for any aevp.

We note p“ =19, since ¢ sends a unit of o to 0 and p=p. In this section
we study formal groups over o, when K satisfies (F). We do not assume the
completeness of K.

Let K, be a finite extension of the p-adic number field @, and let g be
the cardinal of its residue field. Then it is well-known that an unramified
extension of K, (of finite or infinite degree) or its completion satisfies (F)
with a Frobenius o.

2.1. Let K,[7T]] be the non-commutative power series ring on 7 with
the multiplication rule: Ta =a°T for « = K. We denote by B, , (resp. Up,n»)
the module consisting of all mxn matrices over K,[[T1] (resp. o,L{T1D.

Let x=%x, -, x,) be a set of n variables. For fe K[[x]]® and
U= § C, T %, (where the C, are matrices over K), we define an element
u=0

uxf of K[[x]]} by
(u f)(x) = % C.fo(x?).
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This is well-defined, since f(x) has no constant term. If v= % D,T” is in By,
v=0
we have

@.n ww)yx f=vx(uxf),

since

(vx (u *f))(x) = éoD” goclzvfgfu-u(x q{H_y)

I

S B DCrSE)

A=0 p+y= )
= ((vu) = /)(x) .

From now on we fix a prime element = of o.
LEMMA 2.1. For any rational integers y=0, a=1 and m=1 we have

Y ( X+nY)"?” =7* X™* modp.
In particular we have
m I X+pY)"=m'X™ modpZ,
for m=1.

This is Lemma 4 of [10]. As the proof is elementary and easy, we omit
it here.

We write A, (resp. B,) for A, , (resp. B, ).

DEFINITION. An element u of U, is said to be special, if u=r=l, mod deg 1.
Let P be an invertible matrix in M,(o) and let u be a special element of U,.
An element f of K[[x]77 is said to be of type (P; u), if f satisfies the follow-
ing two conditions:

i) f(x)=Px mod deg?2,
ii) (uxHx)=0 modyp.
If fis of type (I,; u), we shall simply say that f is of type u.
Let u =9, be special and put w=u"'7(€®B,). Then, ¢ being the identity
function,
wr(w*)x) =((uw)*1)x)=zx=0 modyp.
This implies that (u™'z)*: is of type u.
LEMMA 2.2. Let ues, be special and put u?r=1,+> B,/ T*. Then we
y=1
have n*B, € M,(0) for v=0.
PrRoOOF. Write u=xl,+ 3 C,T* and replace T by =T in the equality
y=1

(Lt é C.1) (It VZOZ)IB,T”) =xl,.
Then we get
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(In‘l' 1}2:17{0+~-+0V~1CUT1J><1”_{_ §1ﬂ1~ra+~-+ov—leTu) =1, .

This implies #*B, € M,(0), since n°* is also a prime element of o.

2.2. The following two lemmas play crucial roles in our further inves-
tigation and will be used repeatedly.

LEMMA 2.3. Let f= K[[x]]} be of type (P; u) and let v be an element of
Wn,n- Let ¢ be an element of K[[x']]¢, x’ being a finite set of variables. If
the coefficients (of components) of ¢, of terms of (total) degree <r—1, belong
to o for some r=2, we have

vie(foh)=@*[f)o¢p mod deg (*+1), modp.
If ¢ =o[[x’]]; in particular, we have
ve(fod)=wxf)og mody.

LEMMA 2.4. If f (resp. g) e K[[x]12 is of type (P; u) (resp. of type (Q ; w)),
then g-lofeo[x]]12.

Put h=(u"'r)*xi. First we will prove the first assertion of for
f=h. Write

wir=I,+N BT, v= SioAyTv .
y=1 =

We have
(2.2) ((wxh)oh)(x) = (((vu'm)*1) o h)(x")
=3 ABEp(x )@
Now "
23) By d(x /)i = g By mtp(x )
and n#Bg” € M,(0) by We will prove
2.4) TGN = (P (2PN mod deg (r4+1), modyp.

If p=v=0, (24) is trivial. If =0 and v=1, we have
P(xN?” = ¢ (x’?) mod deg (r+1), modyp,

since terms of ¢ of degree =r do not affect this congruence. (Note ¢(0)=0.)
Assume p=>1. Because

¢<x/)qv = ¢av(x/qv) mOd deg r, mOd p ,

we get (2.4) by Lemma 2.1 and by the fact ¢(0)=0. This completes the proof
of [2.4). Thus we get from [2.2), and

(wxh)yod)(x) = 2 ABL(¢7(x'?))¥* mod deg (r+1), modp
Y

=W (hod)(x").
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PROOF OF LEMMA 2.4. Since glof=(g'oh)o(hrof)=(h"tog) to(h o))
and (h™'og)(x¥) = Qx mod deg 2, we have only to prove h~'ofeo[[x]]f. Put
h-‘of=¢ or f=hoe. The first-degree coefficients of ¢ are in o. Assume
that the coefficients of ¢, of (total) degree <r—1, are integers for some r = 2.
By Lemma 2.3 for f=~h we have

o= wxh)op=u*(hop) mod deg (r+1), modyp
=u*xf=0 modyp.
This implies that the r-th degree coefficients of ¢ are also integers. This
completes our proof by induction.

PrOOF OF LEMMA 2.3. We have only to prove the first assertion. Nota-

tions being as above,
vx(fod)y=v*((hop)od)=vx(ho(pog))

= (vxh)o(po¢) mod deg (r+1), modp

=(xh)op)og.
Since ¢(x)= Px mod deg 2, we have

((wxh)op)(x) = APx=(v*(ho@))(x) mod deg 2.
Put 2,(x) = ((w*h)o )(x)— APx and A,(x) = *(ho@))(x)— APx. Then 4,=2,=0
mod deg 2 and A, =4, mod p by what we have proved. It follows from this
Ajogp=2A,0¢ mod deg(r+1), modyp,

since the terms of ¢ of degree » do not affect this congruence. Hence we get

ve(fo)=(wxh)op)o¢p mod deg (r+1), modp
= APp+A,0¢
= APp+2,0¢ mod deg (r+1), modp
=x(hog)ogd
=Wx*f)og.

This completes the proof of our lemma.

2.3. The results of 2.2 first allow us to construct certain formal groups
over p.

THEOREM 2. Assume K satisfies (F). Let P be an invertible matrix in
M,(0) and let u be a special element of W,. If fe K[[x]J7 is of type (P; u),
Flx, )= SO+ (y) ts a formal group over o. Let g K[[x]]§ be of type
(Q; uw) for an invertible matrix Q and put G(x,y)=g ' (gx)+g(»). Then we
have G~F over o. If P=Q in particular, we have G = F over ».

PROOF. Form A= (u"'zm)*i and H(x, y)=h"'(h(x)+h(y)). It is clear that
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H(x, )= x+y mod deg2.

Assume that the coefficients of H, of terms of degree <r—1, are integers for
some »=2. By we have

TH(x, y) = ((u*h)o H)(x, )
=(ux(ho H))(x,y) mod deg(r+1), modp
= (u* ) () +(uxh)(y)
=nx+ny=0 modyp.

This implies that the r-th degree coefficients of H are also integers. This
proves H(x,y)<o[[x, y]] by induction. All the assertions of our theorem
follow from this and from [Lemma 2.4, because F=¢ 'ocHog if f=hoe.

As for examples, see §5.

PROPOSITION 2.5. Let P be an invertible matrix in M,(0) and let u be a
special element of W,. Then fe K[[x]]7 is of type (P;w), if and only if [ is
of the form (u™'zm)x1)oe with ¢ €o[[x]]7 such that ¢(x)= Px mod deg 2.

PrROOF. “Only if” part is Lemma 2.4. Conversely, if ¢ <o[[x]]; and
o(x) = Px mod deg 2, we have, writing h = (u™'n)*1,

(hop)(x)=Px mod deg 2
and by Lemma 2.3

uxlho)=wxh)op=nre=0 modyp.
This completes our proof.

Dually to [Proposition 2.5 we have

PROPOSITION 2.6. Let fe K[[x]12 be of type (P; u) for an invertible matrix
P of M,(v) and a special element u of W,; Let v be a matrix in N, ,. Then

v¥f=0 modp,

if and only if theve exists t &N, , such that v=tu.
Proor. If v=tu with t =%, ,, then

vef=tx(uxf)=0 modp.

Conversely, assume v* f=0mod p for ve A, ,. Put A= 'z)*iand p=h"1of.
Since ¢ is an invertible element of o[[x]]7 by Lemma 2.4, we have

(veh)op=vx(hop)=v*f=0 modp
by Lemma 2.3, so that
(2.5 vkh=(*h)op)op =0 modyp.
Put vu-'z = 3} A,T”. Since

y=0

veh=vx((uz)*1) =@u n)*1,
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we have from
§ Ax?¥=0 modp,
v=0

which implies vu™ = (wu'n)r"* € A,,. This completes our proof.

2.4. We now study homomorphisms of formal groups constructed in
Theorem 2. M, .(0) denotes the module of all the mXn matrices with elements
in o,

THEOREM 3. Assume K satisfies (F). Let ue N, and ve A, be special and
let fe K[[x]¢ (resp. g K[[x]IP) be of type u (resp. of type v). Form F(x, y)
= f)+7() and Glx, y)=g ' (g(x)+g(y). Then g *o(Cf)< Hom, (F, G)
for Ce M, ,(0), if and only if there exists t &N, , such that vC=tu.

ProoF. Put ¢=g*o(Cf). By Proposition 1.6 ¢ € Hom, (F, G) if and only
if oeo[x]1r. In view of Lemma 24 we may assume f=(u 'n)xi and
g=@"m)xi. If op=o[[x]], we have by Lemma 2.3

WO * f=vx(Cf)=v*(go¢)
=@wxg)op=mnp=0 modyp.
Hence, by Proposition 2.6, there exists ¢ =%, , such that vC=tu. Conversely,
suppose that there is t €%, , such that vC=tu. As ¢(x)=Cx mod deg 2, the
first-degree coefficients of ¢ are integral. Assume that i-th degree coefficients
of ¢ are integral for 1<7—1 (*=2). By Lemma 2.3 we have then
ne=(v*g)oy
=vx(goy) mod deg (r+1), mod}p
=v*(CN=@C)xf
=(u)xf=txuxf)
=0 mod p.
This shows that the »-th degree coefficients of ¢ are integral. Hence we get
¢ o[[x]]* by induction.
COROLLARY. Let F,G be as in Theorem 3. The module Hom, (F, G) is
canonically isomorphic to M, ,(0) NV Wy, U.

By Theorem 3 g 'o(Cf)e Hom, (F,G) for Ce& M,,(0), if and only if
Cev U, u. Our assertion follows from this and from Proposition 1.6.

§3. The non-ramified case.

Let K,o0,p and k be as in §2. In §3 we assume moreover that:
(F) The valuation of K is unramified and (F') is satisfied with ¢=p.
The ring W(k’) of Witt vectors over a perfect field &/ of characteristic
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p> 0 satisfies (Fy) (cf. [22]). Under (F,) we can take p as the fixed prime
element of o.

3.1. Let x be the set of n variables as usual. Let N be the set of all
the non-negative rational inte'gers. For a=(ay, -+, a,) € N™ we write x* for
xf1-.e xgn, Then |a|=a;+ --- +a, is the degree of x*. For 1<i<n, let ¢
denote the vector of N* whose j-th component is §;; 1 <j<n). Then x"i=x/

for r& N. Every element of K[[x]] is written in the form X a,x* (a, <€ K).
aENT

LEMMA 3.1. For r =2 define the form A(X,Y) in Z[X,Y] as follows:
If v is not a power of a prime number, we put A(X,Y)=(X+Y)Y—-X"—Y".
If r is a power of a prime number I, we put A(X, V)= ({(X+Y)—-X"-Y").
Then A, is a primitive polynomial in Z[ X, Y ].

PrROOF. Easy. See also [11], IIIL

For any commutative ring R, 4, is considered a polynomial in R[ X, Y.

LemmMmA 3.2, Let l(x):' > a.x* (a, = K) be a form of degree r satisfying

a|=r

3.1) A(x+y) = A(x)+(y) mody.
Then, if r is not a power of p, agep for all a. If r is a power of p, a, <0
Jor all a and a, €9 for a+re; 1<i< n).

Proor. Take a = N™ such that |a|=7r. If two of ay, ---, a,, say a; and
a,, are not equal to 0, the coefficient of x#1y$2 ... y%» on the left side of (3.1)
is a, and no term of this form appears on the right. Hence we have a,=p
for such a. If a=re;, we have

e {(x;+y) —x{—yf} =0 modyp

from (3.1). Then our assertion is a direct consequence of Lemma 3.1.
ProrOSITION 3.3. Let F be an n-dimensional formal group over o and let
f be its transformer. Then there exists a special element u of N, such that f

is of type u.
PROOF. As f(x)=x mod deg 2, we have pf(x)=0 mod deg 2, mod p. Sup-
pose that for ¢ =0 there are matrices C,, ---, C, in M,(0) satisfying

(3.2) PO+ 2 Cf¥(x?)=0 mod deg(p*+1), modyp.

Write fi(x)=3a,,x* for 1<i<n. Since dfy(x) e D*F ;o) by the results of

§1, the (0/0x;) f,(x) have integral coefficients. In particular we have a;a, ;€0
for 1=<;7<n. Hence by Lemma 2.1 we get

Ao, (X+DY)* = a,Qq, 07 (X + Dy )™ jI:IZ (x;4+-py ™

n
= alaa,iar‘xf“,ﬂz (x;+py;»* mod p
. L
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=x{10,,; 1—]2: (x;+Dy)% .
=

By repeating the same argument we have

3.3) QXD = Qg x® moOd P

Put now

(3.4) DI f(xP) = LI, b modp (b= KN
y=1 ZpH+1

Substituting x by F(x, ) in we get

3.5) PPz, y>>+_§1fﬂ“<F<x,yP“>z > bsF(x,y)° mody.

1 81ZpH+1

By [3.3) the left side of is congruent modp to
7
PFCR G, )+ B C P (F (57, 5)

= pfW)+ £ CI ()2 (G)+ 2 G (0™)

= X bxP+yP).

18 1ZzpF+1
Thus, denoting by bg; the i-th component of bg, we get
(3.6) 3 bp{F(x, y)P—xf—»°} =0 modp

| BlZpH+1
for 1=i=<n. Let » be the minimum value of | 3| such that bg; & p for some i.
Then implies

l‘BIzzrblg,i{(JC—H))/B——xﬁ—yﬁ} =0 modp.
Applying to this we see r=p#*l, At any rate we have
Zﬂbﬂ,i{(x—}—y)ﬁ—xﬂ—yﬂ} =0 modp.

| Bl=pt

Hence, by [Lemma 3.2, bs; €0 for f=p#'e; 1 <j=<n) and by, <p for other j3
such that |8|=p#*'. Therefore we can find a matrix C,,, in M,(v) satisfying

PI+ 2 Cof (27 = —Cpaax®* mod deg (p+1+1), mod b,
y=1
from which follows

3.7 PFGO+ S Cf(x?™) =0 mod deg (p*+1+1), modp.
v=1
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Thus we have been able to replace g by p+1 in[3.2) This implies the

existence of C,, C,, ---, C,, -~ € M,(0) satisfying
3.8) PFG)+ 3G f™(x™)=0 modp.
”=

This means that f is of type u, where u:p[n—i—%) C, 1",
y=1

3.2. By [lheorem 2 and [Proposition 3.3 every n-dimensional formal group
over o is obtained from a special element of %,. Let F and G be n-dimensional
formal groups over o, with the transformers f and g. By [Proposition 3.3
there exist special elements u, v of %, such that f(resp. g) is of type u (resp.
of type v). By the uniqueness of transformer F~G over o if and only if
glofeo[[x]];. By this happens if and only if there is t &,
such that v=1tu. It is clear that such ¢ is a unit in %,. Let u’ and v’ be
elements of ,. We shall say that v’ is left associate with u’, if there is a
unit ¢/ in A, such that v =1t'u’. We have proved the following theorem:

THEOREM 4. Assume K satisfies (F,). Then every n-dimensional formal
group over o is obtained from a special element of N, by the method of Theorem
2. The strong isomorphism classes of n-dimensional groups over o correspond
bijectively to the left associate classes of special elements of U,.

COROLLARY. Let M be a complete system of representatives of o mod p.
Then the strong isomorphism classes of n-dimensional formal groups over o
correspond bijectively to the special elements of W, whose coefficient matrices
have elements in M.

PrROOF. Let u:pln+§)ch” be a fixed special element of %, and let
v=1

t=I,4+3 AT be a unit in %,. Then we have
v=1

tu=pI4+ 3 (pAA+ 2 AL )T
v=1 Hy

Therefore we can choose A, A,--- successively and uniquely so that the
coefficients of the T* in tu have all their elements in M. Our assertion follows
from this and from Theorem 4.

3.3. As for the classification of (strong) isomorphism classes of n-dimen-
sional groups over o, it is preferable to construct a module space over o. In
the following we will perform it in case n=1 and o is complete.

The following lemma is a slight modification of Lemma 2.1 of [16].

LEMMA 3.4. In addition to the condition (F,), suppose that o is complete.

Let u—p+2 ¢,T” (¢, €0) be a special element of o, [T1]. If all the c, are in

p, there is a umt tin o,[[T]] such that tu=p. If ¢y, -, cho P but c,ey,
h

then there is a unit t in 0, [T ]] such that tu is of the form p+ > b,T* where
y=1
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by, -, byy=p and b, & .

Proor. If all the ¢, are in p, it suffices to put {=pu~'. Assume ¢, -+, ¢y,
€p but ¢, &p. We will show that for every i =1 we can choose b, .-, b’ 0
and a unit ¢; of o,[[T]] satisfying

by =bP mody’, bP=c, modp (A=v=h),
(3.9) L= 1 mod deg 1 ’ tivi=1; mod pl
tu=p-r S bPT* mod .
y-=1

- . had _‘1 . .
First put b¥ = ... =bL, =0, b® =¢, and t,=c,( c,LT”“’L> . As ¢, is a unit,
v=h
t,eo,[[T]]. Since
tu=c,T" modyp,

is satisfied by {b%;t,} with i=1. Suppose that we have already found
{9 ;t;} for 1<j<i satisfying [3.9). We try to determine bi™> = bP pidy
1=vy=<h) and t;.,=1t;+p'v, so that

(3.10) t+piv)u=p+ 2 (P +pd )T mod pi+t
y=l

, R X . e .
Put w; :p‘l{tiu—(pﬁ— bePT”)} (€0,[[T]]). Since p'u= pl<2 c,,T“) mod p**,
p=1 v="h

(3.10) is reduced to

co h
(3.11) vy e, T"=>dPT—w; modp.

v="h v=:1
As w; has no constant term, we can choose d{?, ---,d® cp so that the right
hand side of has no term of degree <h. Hence we can find a series
v; €0,[[T]], without constant term and satisfying [3.1I). By induction this
proves the existence of {b{ ;¢;} for all i. Put t=Ilim¢;, and b,=Ilim b® for

00 00

1<v=<h. Then {b,;t} satisfy the requirement of our lemma.

Let F be a 1-dimensional formal group over 0. We shall say that F is of
height 4 if the reduction of F modulo p is of height A (cf. [11]).

PROPOSITION 3.5. Let K be a complete discrete valuation field satisfying
(F). The strong isomorphism classes of l-dimensional formal groups over o,
of height h (1 = h <o), correspond bijectively to the special elements of the form
u=p+ Zh)lb,,T” where by, -+, by,_, € but b, is a unit of 0. Let v=p+ ilcuT”
be another special element of this form. Then the formal group obtained from
u 1s weakly isomorphic to the one obtained from v, if and only if there exists
a unit ¢ of o such that ¢,=c*°"b, for 1<y <h.

Proor. Let F be a 1-dimensional formal group over o. Then its trans-
former f is of type uw’ for a snecial element u’/. If all the coefficients of u’
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are in p, then F(x, y)=x+y by and If not, f is also
h

of type u, where u is a special element of the form p+ > b,T% (by, -+, bpy €,
v=1

b, e p). We will prove that F' is of height h. Since
h—1 —1
(L4 Z0T*) w=p+b I -,

it suffices to prove that a formal group obtained from a special element u”
of the form p-+b,T"+ --- (b, & p) is of height A. Put (pu”"Y)xi=~h. Then

h(x) = x—p~bpx?" 4 ...
and so
h—l(ph(x)):px—bhxph+ . _'_p—lbh(px___ “_)ph_,_ .

= —bxP"+ ... modp,

which prove that h~'(h(x)+h(y)) is of height h.
Now suppose that there exist a unit ¢ inp and a unit =3 a, 7% in o,[[ T]T
=0

such that ve=1tu. Comparing the (v+h)-th degree coefficients of both mem-

bers of
oo h h
('yzzoauT )(p+ 6.7 )= (p+y§1 e.T*)c
for v >0, we get
h—1
(3.12) a,bg’+ Elaw,lbz”.;"ﬂmm =0.
=

Since b, is a unit, it follows from that a,p for yv=1. Hence we get
a,sy® for v=1 again by [3.12). Repeating the same argument we see a,p?
for every v=1 and for every 1 =1. This implies a,=0 for y =1, and t=a,=c.
Our proposition follows from this, from and from

In the above proof we proved that vc=tu implied t=c. Thereby we did
not use the fact that ¢ (resp. f) is a unit. Therefore we get by Theorem 3;

PROPOSITION 3.6. Let u,v be as in Proposition 3.5 and let F, G be formal
groups attached to them. Then the module Hom, (F, G) is canonically isomorphic

to {c€o|vc=cu}.

§4. Formal groups over a field of characteristic p > 0.

Let K be a discrete valuation field satisfying (F) of §2. For a power
series fe o[ [x]]™, f* denotes the power series in k[[x]]™ obtained by reducing
the coefficients of f modulo . In §4 we will study the reductions of formal
groups over p and their homomorphisms.

4.1. Our first task is to prove two lemmas.
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LeEMMA 4.1. Let fe K[[x]7 be of type (P; u) and let ¢(x")=o[[x’]]; where
x’ 1s a finite set of variables. Then we have

S M mxpx)=0 modyp.
Proor. Put h=(u 'zr)*i. By Lemma 2.4 it suffices to prove
h-Y(zx)=0 modp.
Write A(x)=31B,x% and A zx)=1[(x). Since [(x)=rx mod deg?2, the first-
degree coefﬁcuients of [ are in p. Assume for r=2 that the i-th degree

coefficients of [ are in p for all i=<r—1. Write [(x) = #nl(x)+4(x) where
[P(x) eo[[x]]? and 4(x)=0 mod degr. Then it follows from A(/(x))=nxx

@1 1)+ S 2B IP()? =rx mod deg (1) .
y=1

Since #%B, € tM,(0) for y=1 by it follows from
[(x)=0 mod deg (r+1), modp.

Hence the r-th degree coefficients of [ are also in p. Thus we get /=0 mod p
by induction.

LEMMA 4.2. Let ue N, be special and let fe K[[x]1? be of type u. Let
de K[[x'1p and ¢,eol[x’]JIr. Then fo¢,=jfo¢g, mody, if and only if
¢ = ¢, modp.

PROOF. Suppose ¢, = ¢, modp. Then we have clearly ¢, eo[[x]]z. Put
h=u'm)xi and h™'of=¢. Since ¢ =o[[x]]; by Lemma 2.4 and ¢o¢,=¢o¢,
mod p, we obtain by Lemma 2.1 and 2.2

ho(pog)=ho(pody) mod p

i.e. fogd,=fo¢, modyp. Conversely assume fo¢,=jfo¢, modp and put
rd=f"fo¢,—fo¢,). Then 2= o[[x]]z by Lemma 4.1. Since F(x,)=/"(f(x)
+7(»)) has coefficients in o, it follows from

Jogy=TFogy+fo(nd)

i.e. ¢, =F(¢,, wh) that ¢, = ¢, mod p.

4.2. We now study a certain type of homomorphisms of F* to G* for
formal groups F, G over o.

THEOREM 5. Suppose K satisfies (F). Let F and G be formal groups over
o, of dimension n and m and with transformers f and g, respectively. Suppose
that f (resp. &) is of type u (resp. of type v) for special elements ueN, and
v e N,

(i) Put o=¢,=go(wxf) for weN, ,. Then ¢(x)<co[[x]1 if and only
if there exists t €W,,, such that vw = tu.

(i) If ¢, eo[x]]R, then ¢¥ < Hom, (F*, G*).
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(iii) Let h be of type v/ for a special element v/ €W, If @p=h"1o(w xg)
has integral coefficients for w' €N, ,, then @k ok =@k,

PrOOF. In order to prove (i) we may assume g= (v™'m)*i. Suppose there
is t&€W,,, such that vw=tu. Clearly the first-degree coefficients of ¢ are
integers. Assume for =2 that the i-th degree coefficients of ¢ are integers
for i<=r—1. By Lemma 2.3 we have

To=w*xQop=vx(gop) mod deg (r+1), modyp
=vx(wxf)=@w)xf=0Cw)x*f
=tx(uxf)=0 modp.

‘This implies that the »-th degree coefficients of ¢ are also integers. This
shows ¢(x) € o[[x]]p by induction. Conversely, suppose ¢ =¢, €o[[x]]". By
Lemma 213 we get

(wy* f=vxW=*f)=v*(goy)
E(y*g)og@:ﬂ:@zo mOdp.

Hence, by [Proposition 2.6 we can find ¢t %, , such that vw=1{u. This proves
(i). Now we have

go(poF)=(gop)oF=wxf)oF
and by Lemma 23
(wxf)o F)(x, )= w*(foF))(x,y) modp
= W= )(x)+@w= 1))
=(go)()+(go@)(¥)
= g(G (), e(3))) -
Thus we get go(poF)=go(Goy) modp. By it follows from this
that poF=Gog modyp. This implies ¢* & Hom, (F*, G¥*). Let us prove (iii).
By we have
ho(Puo @) =(RoPu)o @, =W *xg)op,
=w'*(go¢,) modp
=w x(w*f)=Ww)xf.
By (i) there is e, such that v'w =tv. Since v'w'w=1tvw =1tuU, Py
=h7o((w'w)*f) has integral coefficients by (i). Since

ho(QPuo@p)=ho@,, modp
as we have shown, it follows from that

o © Yoy = Py, MOA P
This proves (iii).
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COROLLARY. Put E=0,[[T]]. The submodule of Hom, (F*, G*), consisting
of homomorphisms of the form ¢} (weWN, ), is canonically isomorphic to the
module of all right E-homomorphisms of E"/uE™ into E™/vE™. In particular
the subring of Endy F*, consisting of homomorphisms of the form (f~'c(wxf))*
(weN,), is canonically isomorphic to the right E-endomorphism ring of E"/uE™.

Proor. If tu=wvw, then

t(uE")=vwE*CvE™,

Thus ¢ induces a right E-homomorphism @, of E"/uE"™ into E™/vE™. Con-
versely, as is easily verified, every right E-homomorphism of E"/uE™ into
E™/vE™ is of the form @, with t=,, , such that tu € v, ,. We will show
that o =0if and only if @;,=0: ¢ =0 @ g lo(w*H=0modp »wx*f=0modp
(by Lemma 4.2) & we, u (by Proposition 2.6) @ tucvl, u & tev, , & (E"
CvE™< @,=0. This implies that ¢} and @, correspond bijectively. The
second assertion follows from this and from Theorem 5, (iii).

4.3. 1f K satisfies (F)), every element of Hom, (F*, G*) is of the form ¢}
with weN,,.. To prove it we need the following lemma.

LEMMA 4.3. Suppose K satisfies (F,). Let F be an n-dimensional formal
group over o and let f be its transformer. Put M= {¢ < K[[x]]|(PoF)(x, y)
= p(x)+¢(y) modp}. Then M is topologically generated by p[[x]] and by
{fer(xP)|1=1=n, v=0} aso-module. (We define the topology of K[[x]] by
taking I,={/= K[[x]]|f=0 mod deg (v+1) (v=1)} as a base of neigh-
borhoods of 0.)

Proor. It is clear that p[[x]]c M. By Lemma 2.3 and by Proposition
3.3 we have

J7EQ NP =T+ f)o F)(x, 3)
=(T"*(foF))(x,y) modp
=T )x)+(T>*f)()
= f7P)+ (7).
This implies f¢'(x?)e M for 1<i<n, v=0. Let ¢ be any element of M and

let » be the lowest degree such that ¢ == 0 mod deg (r+1), modyp. Then ¢ =€ M
implies that the r-th degree homogeneous part ¢ of ¢ satisfies

4.2) PP(x+y) = PP(x)+¢P(y) mod deg (r+1), modp.

By Lemma 3.2 (4.2) implies that » is a power of p, say p”* (if » <o) and that
there exist ¢, ---, ¢, =0 satisfying

O(x)— ﬁ) c;x?"=0 mod deg (r+1), modyp.
i=1

Hence we get
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(4.3) ¢(x)-§l ¢, fe"(P")=0 mod deg (r+1), modp.

Applying the same argument to the left side of (4.3) in place of ¢ and re-
peating this procedure we see in fact that p[[x]] and the f¢*(x?”) (1<in, v=0)
generate a dense p-submodule of M.

THEOREM 6. Suppose K satisfies (F). The map: @,—¢¥, defined in
Theorem 5, is a bijection of Hompg (E*/uE"™, E™/vE™) onto Hom, (F*, G¥). In
particular End, F* is canonically isomorphic to Endg (E"/uE™).

PrOOF. It suffices to prove the surjectivity. We may assume f=—((u 'zn)*1
and g=('r)*i. For ¢, = Hom, (F*, G¥), take ¢ € o[[x]]? such that ¢*=@,.
Since po F=Gog modp, we get by Lemma 4.2

4.4 gopoF=goGoyp modp.
Put ¢ =go¢e. Then (4.4) implies
4.5) PEFx, ) =d0)+¢(3) modp.

By Lemma 4.3 it follows from (4.5) that there exists w e, , satisfying

¢g=wxf modyp,
or
gop=w+f modp.

By this implies that g *o(wx*f) € o[[x]]™ and ¢ =g 'o(w*f) mod .
Thus we have ¢f = ¢* =¢,, which was to be proved.

4.4. Now we will show that, if K satisfies (¥,), any formal group over k
is obtained by reducing a formal group over o.

The following lemma is due to [12].

LEMMA 44. Let R be a commutative ring and let X=(X,, -, X,) and
Y=, -, Y, be systems of n variables. Suppose that a form A(X,Y) of
degree v in R[X,Y ] is a commutative 2-cocycle, i.e.

AX, Y)=AY, X),
(4.6) AY, 2)—AX+Y, Z)+A4(X, Y+2)—4X, Y)=0.

Then, if v is not a power of a prime number, 4 is a 2-coboundary, i.e. there
is a form I'(X) of degree v such that

AX, V)=TI'X)—-TI'X+Y)+I'(Y).

If v is a power of a prime, 4 is cohomologous to a linear combination of
A(X,, Yy A ZiZn) with coefficients in R.

ProOF. In case n=1 this is Lemma 3 of [11]. (For the proof of this
case see also [7], p. 62) In general we can reduce the case n=m to the
case n=m—1 by making use of the result of Lyndon [15] on normal co-
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homology groups. (See also [12]). For the convenience of the reader we will
perform this reduction in the following. We first note 4(X, 0)=0=4(0, X).
(Put Y=Z=0 in [4.6)). Let us write X' =(X}, -+, Xp-1), V' =, -, Yoy,
ie. X=X, X,), Y=",Y,) and 4(X, Y)=4(X’, X, Y', Y,). Define 4, by

A7 A(X, V)=A4X,Y)
— {40, X,,, X', 0)—40, X, +Y,,, X'+Y’, 0)+40, Y,, Y, 0)} .

Then 4, is also a commutative 2-cocycle cohomologous to 4. Putting X’ =0,
Y,.=0in (4.7) we get

“4.8) 4,0, X,,, Y, 0)=0

and by commutativity

4.8) 4,(X,0,0, Y, )=0.

Now putting X' =0, ¥V, =Z2,=0 in for 4=4, we get
4,(Y,0,2,0—4,Y", Xpn, Z/, 00+ 4,0, Xy, Y'+2/, 00— 4,0, X, Y/, 0)=0.

By this implies

4.9 4.Y, X, 2,00=4,(Y",0,72,0).
In the same way we obtain
(4.10) 4,X,Y,.,0,Z2)=4,0,Y,0,Z).

Putting Y'=Z7,=0 in for 4, =4 we get
4,0,Y,,2,00—4,(X", X+ Y, Z/,0)
+A4/(X, X0, Z', Y ) —4(X', X0, 0, Y, ) =0,
By (48}, [(4.9) and [4.10) this implies
4.X, X, 2/, Y ) =4(X",0, Z, )+ 4,0, X,,, 0, Y.),

which completes the reduction: the case n=m=>the case n=m—1.
THEOREM 7. Suppose K satisfies (F) of §3. For any formal group Fi
over k there exists a formal group F over o such that F* = F,.
PROOF. Let n be the dimension of F,. Take ¢(x)=o[[x]]? such that

o(x)=x mod deg2 and w(T)=pl,+ iC,,T”e‘JIn and form f=((puH*i)oo.
v=1

Then F(x, )= f(f(x)+f(»)) is a formal group over 0. We will prove that
we can choose the coefficients of ¢ and C,, C,, --- successively so that F*=F,.
Suppose that we have already chosen the i-th degree coefficients of ¢ for
1<7r—1 and the C, for p* <# so that

“4.1D F*=F, mod degr.
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Letting the other coefficients of ¢ be equal to 0 and the C, for p* =» be equal
to O-matrix for example, form g=((pu*i)oe and G(x, y) =g (gx)+g().
Then G is a formal group over o and we have

4.12) G*=F, mod degr.

It follows from [4.12) and from the associative law of formal group that the
r-th degree homogeneous part 4 of G*—F, is a commutative 2-cocycle in

R[x]* (cf. [I1], [12]. If r is not a power of p, we can find by
¢ o[ x]" whose components are forms of degree » and satisfy

(4.13) GH*(x, )= Fy(x, 3) = P*(0)— P (x+3)+¢*(y) mod deg (r+1).

Let h be the element of o[[x]]§, obtained by replacing ¢ by ¢—¢ in the
definition of g and put H(x, ¥) =h~'(h(x)+h(»)). Since h=g—¢ mod deg (r+1),
we get

H(x, ) = h=(h(x)+h(¥))
=g (gM+gM—{¢O+P(MN—P(x+)} mod deg (r+1).
This implies
H*(x, y) = G*(x, »)—{P*(0)+¢*(0)—¢*(x+y)} mod deg (r+1)
= Fy(x,y) mod deg (r+1).

Thus we have been able to replace » by r+1 in|4.11). If » is a power of p,
say r=p" we can find by ¢ =o[x]* whose components are forms
of degree » and D < M,(0) such that

(4.14) G*(x, M)—Fi(x, ) = ¢*¥(0)—p*(x+3)+¢*(3)— D*A(x, ¥)
mod deg (*+1),
whare we have written A4,.(x, ¥)=%4,(xy, 3, ==+, 4,(x,, ¥,)). Replacing ¢ by
¢o—¢ and u by u+DT" in the definition of g, we get an element A of o[ [x]]7.
Since
h—1 —1 h—1 -1
p(pLA CT4+DT) =p(plu+ C,T*) —p*DT* mod deg (h+1),
y=1 y=1
we have
(4.15) h(x)=gx)—¢d(x)—p*Dx" mod deg (r+1).
Put H(x, y) =h*(h(x)+-h(y)). Then we get from
A16)  H(x, )= Gx, 9)— ($@D+PN)—gr+0}+DA(xr, ) mod deg (r-+1) .
It follows from and (4.16) that
H*(x, y) = G*(x, »)—{P*(®0)+ () —*(x+0)} +D*A.(x, )
= Fu(x,y) mod deg (r+1).
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Thus we have been able to replace » by r+1 in[4.1I) in this case too. This
proves the existence of u and ¢ satisfying F*= F,.

When K satisfies (F)), all the formal groups over k are obtained from
special elements by and homomorphisms of these groups are
described in and its corollary. In case where o is the ring of Witt
vectors over a perfect field k£’ of characteristic p > 0, these results are nothing
other than the main results of Dieudonné [4] Using these results Dieudonné
gave a complete classification of isogeny classes of formal groups over
k’ when k’ is algebraically closed. For this see also [2], and [16]

§5. Examples and applications.

5.1. The group of Witt vectors of length n.
Let & be a perfect field of characteristic p > 0 and let o = W(k) be the ring of
Witt vectors over k. Put u=pI,—C,T where C,=/0 1 0\ € My 0). Then

it is easily verified that the reduction of the formal group with the transformer
(pu~=*1 is the group of Witt vectors of length n (cf. [5], p. 120).

5.2. The group G, for n=2, m=1.

Let %k o and C, be as in 5.1. Put wu=pIl,—CT—Cnh.,T™ with

Coni1—= O -------- 0\ and form A=(puYH*i and H(x, y)=h"*(hx)+1)).
Onvennnn 0
1 0..... 0

Then, as is seen from [5], H* is the group G, , (=G, by the notation of
[5]. Suppose that o contains a primitive (p™™"—1)-th root w of unity. Put
W= /wP™* (\. Then as w’=w?, we have WC,=C,W° and WC,,,=

0w
w
Cps W™ so that Wu=uW. By this implies A~ (Wh(x)) € End, H.
On the other hand (Txi)(x)=x? = End, H*, since H is defined over Z,. Let
E be the Z,-subalgebra of End, H* generated by (h~'o(Wh))* and Txi. The
coefficients of components of A 'o(Wh) are polynomials in Q,[w]. Since
h~'o (Wh) e o[[x]]7, these polynomials belong to Z,[w], the ring of integers
in @,(w). Therefore we have

6.1 (Tx1)o (Ao (Wh))* = (h~*o (Woh))*o (T *1) .

If (m,n)=1 and k is algebraically closed, End; H* is isomorphic to the (unique)
maximal order in the central division algebra of rank (m+n)® over @Q,, and
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invariant n/(m-+n) (6], p. 129-130). Since @Q,(w) is the unramified extension
of degree m+n of Q, and Txi is clearly a prime element in End; H*, (5.1)
implies E=End, H* when (m, n)=1.

5.3. The Lubin-Tate group (n=1).

Suppose K satisfies (F) of §2. For aco, a #0, u,=n—a’ T is a special
element. Put f,=((uz'm)*1). An easy computation shows

(5.2) FuX) = 3 - roetod "Dgov-iy e
y=0

By F(x, ) = fZ'(fo )+ fu(¥) is a formal group over o. Since au,
=u,a, i (af(x)) has integral coefficients by [Theorem 3. When z’=x and
a=1, F, coincides with the group constructed in [107], [Theorem 2. (Theorem
2 of can be reduced to the case a=1 by replacing K by its unramified
extension of degree a.)

5.4. Interpretation of the Artin-Hasse function.

Suppose K satisfies (F;,) of §3. Put g(x)=—log(l—x) = im”xm. It is

m=1

easily verified that g is of type p—T. Put now
Lla, x)= Z‘i pra’ xP? for acso.
y=0

Then g-'(L(a, x)) has integral coefficients by the result of 5.3. This is a
homomorphism of F, to g~ (g(x)+g(¥) = x+y—xy. Since g '(x)=1—exp (—x),
exp (—L(a, x)) has coefficients in p. This is nothing other than the Artin-Hasse
exponential function [T).

5.5. The characteristic equation for the Frobenius endomorphism.

Suppose K satisfies (F). Assume n°=g7x and let u be a special element
of %, such that ¥7'=Tu. This implies that all coefficients of u are ¢-invariant.
Since the elements of w and T generate a commutative subring of o,[[7T1],
we can consider the cofactor matrix w of u:

(5.3) uw = wu = (det )/, .
Form f=(u'z)*i and F(x, )=/f"(f(N)+f(). By and by
@) (fro(wxf)* € End, F*. Then by (iii) and by Lemma 4.1,
GES) fro(detwyx = (f"ouxfo(fto(wxf)) modp

=0.
Write det u =z"-+ Zo.icDT“, ¢, 0. Since c¢f=c,, fto(c,f)€ End, F for vy=1 by
[Theorem 3. Put [»21:]* =(f"o(c, f))* and &) ==x% Since f?=f, (5.4) implies
that £ satisfies the equation

(a3 X e, 17 =0
in End, F*.
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§ 6. Formal groups over Z. Applications to zeta functions.

6.1. Suppose that for every prime number p and for every v=1 there
is given a matrix Cpv in M,(Z) and that C,» commutes with C,. if p and [
are distinct primes. Let s be a complex variable and consider the (formal)
Dirichlet series

U Cpp™ o o HCppp? ™5k ) = éoAp»p-”-

Since A,. is expressed by C,, ---, C,» with coefficients in Z, A,  commutes
with A, if p=#1. Hence we can consider the global Dirichlet series

©.1) IL (U Cyp ™™o voe F-Cppp? 7 )7 = 35 A ™,
P m=
where Amm' = AmAml = Am'Am if (m, W’l/) =1.
THEOREM 8. Let {Cp} and {A,} be as above and form f(x)=X m*A,x™
m=1
eQ[[x]Jk. Then

(6.2) PFC)+Z C.f () =0 modpZ,
Jor every p and F(x,y)=f"f(x)+f(»)) is a formal group over Z.
Proor. Put
(6.3) p(pl+ 3 cpp:rv)*1 — 3BT
p=1 y=0

Replacing T by pT in (6.3) we get By =p"A,. Now
64) PO+ ZCp [P =p Em  Apx™ 3 Cor 3 Apx™”

For p+k let Dy, be the coefficient of x*”* on the right side of (6.4). If v=0,
then

Dypo=pk*A,=0 modpZ,.
If v=1, then

Dy =Dk syt 3 Conkp* ™)™ Ay
=
= kwlAk (P_(D_I)Apv—l- i Cpllp-(u‘#)ApV‘#)
#=1

- k—lAk (pov+ Zv: Cp,quu—,u)
#=1
=0.

Thus (6.2) is proved. Moreover, by Theorem 2 the coefficients of F are
p-integral for every p. Hence F(x, y) € Z[[x, y]]. This completes our proof.
COROLLARY 1. Any l-dimensional formal group over Z 1is strongly iso-
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morphic to one obtained in Theorem 8. The strong isomorphism classes cor-
respond bijectively to Dirichlet series of the form (6.1) with n=1 such that

0=Cp<p.
PrOOF. Let F be a l-dimensional formal group over Z and let f be its
transformer. By Theorem 4 we can find C,, Cp2, --- € Z for every p satisfying

pr(0)+ é C,f(x?*)=0 modpZ,.

Let G be the formal group over Z obtained from the Dirichlet series
00 -1

H(H— > C,,d)”‘“”) . By Theorem 8 and Theorem 2 F=G over Z, for every

14 y=1

p. Since the strong isomorphism of F to G is unique, this implies F~G over
Z. The second assertion is a consequence of the Corollary of Theorem 4.

COROLLARY 2. Notations and assumptions being as in Theorem 8, assume
moreover that the C, commute with each other for a fixed prime p. Put [C,v]
=/f"o(Cpf) and E(x)=2xP. Then [C, ] Endz F for v=1 and & satisfies the
equation

(6.5) EPLJ*4—§2[CwJ*E”=:O

in End, F*, where k=Z/pZ.
Proor. Since C, commutes with lIﬁ-ZCwT/* for any [, [Cp] is [-

integral by Theorem 3. Hence [C,v] < Ensz by Proposition 1.6. The equa-
tion (6.5) is a direct consequence of (6.2) and of Lemma 4.1.

6.2. The results of 6.1 can be applied to zeta functions of the following
types:

(a) Dirichlet L-functions.

(b) Zeta functions of elliptic curves over Q.

(¢) Dirichlet series obtained from a rational representation of Hecke
operators in the space of cusp forms of dimension —2 with respect to a
congruence unit group of an indefinite quaternion algebra over @ (cf. [19]).

We have already studied (a) and (b) in [10]. We note that we can remove
the assumption on S in [107], Theorem 5:

THEOREM 9. Let C be a 1-dimensional abelian variety over Q and let F be
a formal minimal model for C over Z (cf. [10]). Let L,(s) be the p-factor of
the L function of C and put LS(S):pIe'{ng(s) Jor any set S of prime numbers.

Then the formal group obtained from Lg(s) is strongly isomorphic to F over
NZN.
Proor. Let G be the formal group obtained from Lg(s). Since L,(s)=1,

A£p=*)"* or of the form (1—a,p~*+p'"*)"", G is a formal group over Z by
Theorem 8. As a strong isomorphism of G to F is unique if it exists, it
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suffices to prove F~G over Z, for every p=S. Let C, be the reduction of
C modulo p. The cases where C, has a singular point were treated in [107]
Suppose that C, is an abelian variety with L,(s)=0—a,p *+p*"*)"". Since
the Frobenius & of C, satisfies

§—a,§+p=0,
the transformer f of F satisfies
(6.6) FHBf D) —a, [P+ (xP) =0 mod pZ, .
By Lemma 4.2 it follows from
(6.7) P~y F(P)+ f(x*) =0 mod pZ, .

The fact F=G over Z, follows from (6.7), [Theorem & and [lheorem 2. This
completes the proof of our theorem:.
Notations being as above, put Ly(s)=TIIL,(s) and let G be the formal
- h

group attached to it. Then there is ¢(x) € Z[[x]] such that ¢(x)=x mod deg 2
and Fop=¢oG. If the conjecture of Weil on Ly(s) is true, the power
series ¢ would be the “g-expansion” of a suitable automorphic function with
respect to I ,(IN) where N is the conductor of C.

It would be interesting to see that our results yield a simple proof of a
special case of the main result of Eichler [6] and Shimura [187] Let j(z) be
the elliptic modular function and put L=Q(j(2), j(Nz)) for N=2. Then L is
a field of algebraic function over @ and LC is the field of automorphic func-
tions with respect to the subgroup I'(N) of SL (2, Z). We shall consider
the case where the genus of L is equalto1l. Let C be a complete non-singular
model for L over Q. Since j(z) has g-expansion

6.8 j(2)=q ' +T44} -

with coefficients in Z where g=exp (2r+/—12), the infinite point z=1io00
corresponds to a rational point 8 on C and C can be considered an abelian
variety over @, with the origin 8. Expanding the group law of C by means
of the local parameter j(z) ' at 3, we get a formal group F over @. By the
theory of reduction there exists a finite set S’ of prime numbers such that
for p& S’ the reduction C, of C mod p is non-singular and j(z)~' is a local
parameter at the origin of C,. Then, for p& S’ F has p-integral coefficients
and the p-th power endomorphism of the reduction F, of F mod p satisfies
the same characteristic equation as that of C,. Let f be the transformer of
F. Then df(x) is the canonical invariant differential on F, i.e. the j(z)~*-
expansion of a differential of the first kind on C. Let ¢(q) be the g-expansion
of j(2)"*. Then ¢(x) e Z[[x]] and ¢(x)=x mod deg 2 by [6.8). Put
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@)= 3 anx™dx (@ =1).

Then, as is well-known, 3 a,¢™ is the g-expansion of a cusp form of dimen-
m=1

sion —2 with respect to I'W(N) and by Hecke the Dirichlet series i a,m=*

m=1

has an Euler product of the form
IIA—a,p™) ™ I A—a,p~*+p*),  a,€Z.
PIN Py N

Form G(x, ) =g *(g(x)+g(») with g=foep. By G is a formal
group over Z, so that [ is also a formal group over Z. Let p be a prime
number such that pe& S’ and p+N. Then, by Corollary 2 of [Theorem § the
Frobenius of G, is a root of the equation

(6.9) p—a,X+X?=0.

Since F=G over Z, (6.9) is also the characteristic equation for the Frobenius
of F,, and then of C,. Therefore (1—a,p~*+p*~*)"! coincides with the L
function of C,. This proves the principal theorem of in this case.

REMARK. By considering Néron’s minimal model for L, we can prove
that the p-factor of the Hecke Dirichlet series coincides with that of the zeta
function of L, assuming only that j(z)-* is a local parameter at the origin of
C,. See as for the case C, is singular. In view of the conjecture of
Weil it is plausible that F is a formal minimal model for C.

6.3. We now deal with (¢). We use the terminology, notations and results
of Shimura [19]. Let @ be an indefinite quaternion algebra over @ and let
o be a maximal order in @. For a natural number N prime to the discriminant
of @, I'y denotes the group consisting of units y in o such that N(y)=1 and
7=1 mod No. ['y is a discontinuous group operating on the upper half plane.
Let &y be the field of automorphic functions relative to 'y and let n be its
genus. Take Ly, €y and Jy as in [19] &y is a function field over Q such
that 8yC =Ry, €y is its complete non-singular model and Jy is a Jacobian of
€y, each defined over Q. Let ®,(Cy) and D,(Jy) be the spaces of differentials
of the first kind on €y and [y, respectively. For f, g8y, gdf € D(€y) if
and only if gf'eS,(I'y). Let w={w,, ---, w,} be a base of Dy(Cy), defined
over Q. Fixing a canonical map €y —/y (which may not be defined over @),
let w and » be the corresponding bases of S,(I'y) and Dy(Jy), respectively.
For a« o such that Na >0, (N, a)=1, I'yal 5 operates on S,(I"y) on the one
hand. Let T,(I'yal'y) denote its representation matrix relative to . On the
other hand ['yal'y yields a correspondence X, of €y over Q where g=apo
and then induces an endomorphism & of Jy. This & is defined over Q ([19],
p. 325). Denoting by M%&) the representation matrix of & with respect to 7,
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‘we have
(6.10) MYE)=F,I yal'y)
[19], p. 327), where M%&) e M(Q). By the I,(["yal'y) are semi-simple

and commute with each other, and their eigenvalues are algebraic integers.
Hence there is a regular matrix P in M,(Q) such that the P '%,(["yal )P
are all in M,(Z). By changing the bases if necessary, we may assume that
the ,(I'yal'y) are already in M,(Z).

Let S, be the set of prime numbers which fail to satisfy at least one of
P. )~10) in [19]. Then S, is a finite set. Let S, be the set of prime divisors
of d(@). By of we have for p& S,US,

6.11) X,=I+1I'o7,,

where ¢ is an integral left o-ideal such that N(q)=p, Il is the Frobenius of
€, and Y, is defined on p. 315 of [19]. Correspondingly we have

(6.12) §p=m+n'of,.

Now let t={t,, ---, t,} be a system of local parameters (€ Q(Jy)) at the
origin of Jy. Expanding the group law of Jy into power series relative to t,
we get an n-dimensional formal group F over Q. We shall call this formal
group a formal model for Jy. (A formal model is also obtained from the t-
expansion of a base of ®,(Jy), defined over Q). By the theory of reduction
(207, Chapter III) there is a finite set S, of prime numbers such that for
pe&ES;:

(i) t is a system of local parameters at the origin of fN:the reduction

of Jy mod p.
(ii) The differentials %y, -+, 7, have good reductions mod p and yield a
base of Dy(Jy).
Assume pe& S,\US,US,;. Then F has coefficients in Z, and an endomorphism
of & of Jy, corresponding to some I yal'y, induces an endomorphism of F
over Z, Let f be the transformer of F and let f~'o(C(8)f) (C(€) € M(Z,))
denote this endomorphism of F. Since &’ is also defined over @, it induces
the endomorphism f~*o(C(&")f) of F over Z,. Now it follows from [(6.12) that

G apon
and then
(6.13) p—ELom+ihon?=0.
This implies
FHBF—CED f(xP)+Clyp) f(xP*) =0 mod pZ,,
or by
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(6.14) PF(0)—CEN S ()4 Clpp) f(x*)=0 mod pZ, .

Let E be the subring of Endg Jy generated by endomorphisms corresponding
to {'yal'y|aso, N(a)>0, (a, N)=1}. Then, as EQRQ is a commutative
semi-simple algebra over @, the map £—¢&’ yields an isomorphism of E into
Endg/y. Now Jy is self-dual and M?%(C¢) is the transposed matrix of M%E),
since M%&) & M,(Q). (For example see [20], p. 25). As M%¢&’) is conjugate
with M9(&), M%&) and M%£&’) have the same trace. Therefore there is an
invertible matrix P, € M,(Q) such that

(6.15) M%&) = PT*M“&)P, for all L.

Now since the t-expansion of % is a base of D*(F; Q) and C(§’) (6 E) is the
representation matrix of &’ relative to the canonical base df(x) of ©*(F; Q), we
can find an invertible matrix P, € M,(Q) such that

(6.16) CEN = Py'MYEHP, for all £cE.
Putting P,= P, P,, we get from [6.15),
(6.17) CEN =Py M¥EP,  for all EcE.

Let S, be the set of prime numbers p such that P, or P;! is not p-integral,

and put S= C}Si. S is a finite set. For p & S we get from [(6.14) and (6.17)
=1

(6.18) PPs [(0)—MHEWP, f(xP)+M*(,)Ps f(x?*)=0 mod pZ, .

Now replacing the parameters ¢=¢, ---,1,) by u=P,;t, we obtain the
formal model H(x, y)=P,F(P;'x, P;'y) of Jy, with the transformer A(x)
=P, f(P;'x). For p& S we have

(P;'x)P*= P;'x?” mod pZ,
and then by [Lemma 4.2

(6.19) J(Py'0)P) = f(Py'x?") modpZ,.
By [(6.18) and [6.19) we get finally
(6.20) PR — MUEI(?)+ MU, )h(x7) =0 mod pZ,
for pe& S.
Now we have
(6.21) MYE,)=F,(p; Noy and  M%y,)=R,(p; No)

{[19], p. 327). Let M be the product of all primes in S and put Zj :IQS(ZZJ NQ)-
The Dirichlet series

L (1, —%,(p; No)p*+Ry(p; Noyp* > 1= 3 Zy(m; Noym~®
ptMN m,MN)=1

(



The theory of commutative formal groups 245

is a main part of the one defined in [19] Let G be the formal group over
Z corresponding to it by By it follows from (6.20)
and that G=H over Z, for every p& S. Hence G=H over Zg by the
uniqueness of strong isomorphism. We have proved the following theorem :

THEOREM 10. Let notations be as in [19] and let I, be an integral rep-
resentation as above. Then there is a finite set S of prime numbers such that
the formal group obtained from the Dirichlet series Y F,(m; Noym=® is
Strongly isomorphic over Z§ to a formal model for Jy. o=

Thus the matrix Dirichlet series > Z,(m; Noym ™ itself (not only its
determinant) has important significance for Jy. What kind of curve over Q
has a Jacobian whose formal completion is isomorphic to a formal group
corresponding to a matrix Dirichlet series with Euler product ?

6.4. All zeta functions, which we studied in 6.2 and 6.3, are of the form
IL (L +Cpp*+Cprp*~>)"*. Do there exist number-theoretic Dirichlet series of
V4

the form such that not all C,, are equal to 0 for v=3? If such ones
exist, formal groups over Z obtained from them would be non-algebroid.
Their transformers would be obtained from analytic functions, perhaps satis-
fying suitable kinds of differential equations.
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