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The theory of (commutative) formal groups was initiated by M. Lazard
and J. Dieudonne around 1954. Lazard [11], [12] studied commutative formal
groups over an arbitrary commutative ring by treating the coefficients of
power series explicitly. Whereas Dieudonn\’e investigated formal groups over
a field of characteristic $p>0$ exclusively. He reduced in [4] the study of com-
mutative formal groups over a perfect field of characteristic $p>0$ to that of
modules over a certain non-commutative ring, so-called Dieudonn\’e modules,
and obtained in [5] a complete classification of isogeny classes of commutative
formal groups over an algebraically closed field of characteristic $p>0$ . Later
Manin [16] studied isomorphism classes of simple formal groups. The study
of Xone-dimensional formal groups over $\mathfrak{p}$ -adic integer rings was begun by
Lubin [13] and a number of interesting results were obtained by him and
Tate.

In this paper we first construct a certain general family of commutative
formal groups of arbitrary dimension over a p-adic integer ring. Over the ring
$W(k)$ of Witt vectors over a perfect field of characteristic $p>0$ , this exhausts
all the commutative formal groups. These are attached to a certain type of
matrices with elements in the ring $W(k).[[T]]$ of non-commutative power
series, where $\sigma$ is the Frobenius of $W(k)$ , and homomorphisms of these formal
groups are described in terms of matrices over $W(k)_{\sigma}[[T]]$ . By reducing
the coefficients of formal groups over $W(k)mod pW(k)$ we get formal groups
over $k$ . lt is shown that all the commutative formal groups over $k$ are ob-
tained in this manner. Moreover homomorphisms of commutative formal
groups over $k$ are also described in terms of $W(k)_{\sigma}[[T]]$ -modules by lifting

these homomorphisms to power series over $W(k)$ . Thus we get the main
results of Dieudonn\’e [4] again by the method quite different from his. In
[4] he used tools peculiar to characteristic $p>0$ and his construction of formal
groups was indirect, whereas in our method the relation between formal
groups over $W(k)$ and those over $k$ is transparent and the construction of
formal groups is explicit and elementary.

We now explain briefly how to construct commutative formal groups over
$W(k)$ in case of dimension one. Take an element $u$ of $W(k)_{\sigma}[[T]]$ of the
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form $p+\sum_{\nu=1}^{\infty}c_{\nu}T(c_{\nu}\in W(k))$ and put $ pu- 1=\sum_{\nu-0}^{\infty}b_{\nu}T^{\prime}\lrcorner$ The $b_{v}$ are elements of

the fraction field of $W(k)$ and $b_{0}=1$ . Form $f(x)=\sum_{\nu=0}^{\infty}b_{\nu}x^{p^{\mu}}$ and $F(x, y)=$

$f^{-1}(f(x)+f(y))$ . Then $F$ is a formal group over $W(k)$ . In some special case
this fact can be proved by using the basic lemma of Lubin-Tate [14] (cf. [10]).

In general case we have to adopt another idea. Any formal group over $ W(k\rangle$

is isomorphic to one obtained in this manner. Let $v$ be another element of
$W(k)_{\sigma}[[T]]$ of the form mentioned above and let $g(x)$ and $G(x, y)$ be the
corresponding power series and the formal group, respectively. It is known
that any homomorphism of $F$ to $G$ is of the form $g^{-1}(cf(x))$ with $c\in W(k)$ .
We assert that $g^{-1}(cf(x))$ is in reality a homomorphism over $W(k)$ , if and
only if there is $t\in W(k)_{\sigma}[[T]]$ such that $vc=tu$ . All these results will be
generalized and proved for an arbitrary dimension and for more general
coefficient rings of characteristic $0$ with discrete valuation.

Our results can be applied to construct and characterize formal groups
over $Z$ corresponding to a certain type of Dirichlet series with matrix co-
efficients, thus generalizing the results of the last half of our previous paper
[10]. In particular we get an interesting interpretation of the Dirichlet series
obtained from a representation of Hecke operators in the space of cusp forms
of dimension $-2$ with respect to a congruence unit group $\Gamma_{N}$ of a maximal
order of an indefinite quaternion algebra over $Q$ (Shimura [19]). There is
an intimate connection between this Dirichlet series and a formal completion
of the Jacobian $J_{N}$ .

\S 1. Invariant differential forms on a formal group.

1.1. Let $S$ be a ring. We denote by $S^{m}$ the module consisting of all the
column vectors of dimension $m$ with components in $S$ and by $M_{m}(S)$ the full
matrix ring of order $m$ with elements in S. $I_{m}$ denotes the indentity matrix
of order $m$ . For $a={}^{t}(a_{1}, \cdots , a_{m})\in S^{m}$ we write $a^{\nu}$ for ${}^{t}(a_{1}^{\nu}, \cdots , a_{m}^{\nu})$ .

Let $R$ be a commutative ring with the identity. Let $x$ be the set of $n$

variables $\chi_{)},$
$\cdots$ , $x_{n}$ . We denote by $R[[x]]$ the ring of formal power series

on $x_{1},$ $\cdots$ , $x_{n}$ . For basic properties of $R[[x]]$ we refer to Bourbaki [3]. We
shall often regard $x$ as the column vector ${}^{t}(x_{1}$ , $\cdot$ .. , $x_{n})$ in $R[[x]]^{n}$ . Let $f$ and
$g$ be power series in $R[[x]]$ . We shall say that $f$ is congruent to $g$ modulo
degree $r,$ $f\equiv g$ mod $\deg r$ , if $f$ and $g$ differ only in terms of total degree $\geqq r$ .
Let $I$ be a submodule of R. $f$ is said to be congruent to $g$ modulo $I,$ $f\equiv g$

$mod I$, if all the coefficients of $f-g$ belong to $I$ . We shall write $f\equiv g$ mod $\deg r$,
$mod I$, if there are $\varphi,$ $\psi\in R[[x]]$ such that $f-g=\varphi+\psi,$ $\varphi\equiv 0$ mod $\deg r$ and
$\psi\equiv 0mod I$. These definitions extend to $R[[x]]^{m}$ . If $f={}^{t}(f_{1}, \cdots , f_{m})$ and
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$g={}^{t}(g_{1}$ , $\cdot$ .. , $g_{m})$ are elements of $R[[x]]^{m},$ $f\equiv g$ mod $*will$ mean $f_{i}\equiv g_{i}mod *$

for $1\leqq i\leqq n$ . We write $R[[x]]_{0}^{m}=$ { $f\in R[[x]]^{m}|f\equiv 0$ mod deg l}.
Let $x^{\prime}={}^{t}(x_{1}^{\prime}, \cdots, x_{m}^{\prime})$ be another set of variables. If $f(x^{\prime})={}^{t}(f_{1}(x^{\prime}), \cdots, f_{\iota}(x^{\prime}))$

$(f_{i}(x^{\prime})=f_{i}(x_{1}^{\prime}, \cdots , \chi_{m}^{\prime}))$ is in $R[[x^{\prime}]]^{l}$ and $\varphi(x)={}^{t}(\varphi_{1}(x), \cdots , \varphi_{m}(x))$ is in $R[[x]]_{0}^{m}$ ,

the power series $f_{i}(\varphi(x))=f_{i}(\varphi_{1}(x), \cdots , \varphi_{n},(x))$ is well-defined and ${}^{t}(f_{1}(\varphi(x)),$ $\cdots$ ,
$f_{t}(\varphi(x)))$ is an element of $R[[x]]^{l}$ . We denote it by $f(\varphi(x))$ or simply by $ f\circ\varphi$ ,
if there is no fear of ambiguity. Define the identity function $i$ of $R[[x]]_{0^{n}}$

by $i(x)=x$ . If $\varphi(x)$ is an element of $R[[x]]_{0}^{n}$ such that $\varphi(x)\equiv Px$ mod $\deg 2$

with an invertible matrix $P$ in $M_{n}(R)$ , there is a unique element $\psi(x)$ in
$R[[x]]0$ satisfying $\varphi\circ\psi=\psi\circ\varphi=i$ . We shall call this $\psi$ the inverse function
of $\varphi$ and denote it by $\varphi^{-1}$ .

We adopt the classical definition of formal group.
DEFINITION. Let $x$ and $y$ be sets (or vectors) of $n$ variables. An n-

dimensional formal group over $R$ is an element $F(x, y)$ of $R[[x, y]]_{0}^{n}$ satisfying:

i) $F(x, y)\equiv x+y$ mod $\deg 2$ ,

ii) $F(F(x, y),$ $z$) $=F(x, F(y, z))$ .

If $F$ satisfies $F(x, y)=F(y, x)$ moreover, $F$ is said to be commutative.
It follows from (i) that there is a unique $i_{F}(x)\in R[[x]]_{0}^{n}$ such that

$F(x, i_{F}(x))=F(i_{F}(x), x)=0$ . Part (ii) shows that $F(x, 0)=x$ and $F(O, y)=y$ .
DEFINITION. Let $F$ and $G$ be formal groups over $R$ , of dimension $n$ and

$m$ , respectively. An element $\varphi$ of $R[[x]]_{0}^{m}$ , where $\chi={}^{t}(x_{1}, \cdots , x_{n})$ , is said to
be a homomorphism of $F$ to $G$ , if $\varphi$ satisfies $\varphi\circ F=G\circ\varphi$ , where $(G\circ\varphi)(x, y)$

stands for $G(\varphi(x), \varphi(y))$ . If $m=n$ and $\varphi$ is invertible, $\varphi^{-1}$ is also a homo-
morphism of $G$ to $F$. Such $\varphi$ is called an isomorphism and $G$ is said to be
(weakly) isomorphic to $F,$

$\varphi$ : $F\sim G$ over $R$ . If there is an isomorphism $\varphi$ of
$F$ to $G$ such that $\varphi(x)\equiv x$ mod $\deg 2$ , we shall say that $G$ is strongly isomorphic
to $F$ and write $\varphi$ : $F\approx G$ over $R$ .

If $G$ is commutative, the set $Hom_{R}(F, G)$ of all homomorphisms of $F$ to
$G$ over $R$ forms a module by defining $(\varphi_{1}+\varphi_{2})(x)=G(\varphi_{1}(x), \varphi_{2}(x))$ for $\varphi_{1},$ $\varphi_{z}$

$\in Hom_{R}(F, G)$ . In particular $End_{R}G(=Hom_{R}(G, G))$ becomes a ring by
defining the multiplication by composition of functions.

1.2. Let $A=R[[x]]$ be as in 1.1. We denote by $\mathfrak{D}(A;R)$ the space of
derivations of $A$ over $R$ . It is a free left A-module with a base $D_{1},$ $\cdots$ . $D_{n}$ ,

where $D_{i}=\partial/\partial x_{i}$ (cf. [3]). Denote by $\mathfrak{D}^{*}(A;R)$ the dual A-module of $\mathfrak{D}(A;R)$ ,
the space of differentials of $A$ over $R$ . For $f\in A$ the map $D\mapsto Df$ of $\mathfrak{D}(A;R\rangle$

into $A$ defines a differential, which we denote by $df$. A differential of this
form is called exact. It is well-known that $dx={}^{t}(dx_{1}, \cdots , dx_{n})$ is an A-base

of $\mathfrak{D}^{*}(A;R)$ and $df=\sum_{\iota=1}^{n}(D_{i}f)dx_{i}$ for any $f\in A$ .
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Let $B=R[[x^{\prime}]]$ be another ring of power series on $m$ variables and let

to $=\sum_{j=1}^{m}\psi_{j}(x^{\prime})dx_{j^{\prime}}$ be a differential in $\mathfrak{D}^{*}(B;R)$ . If $\varphi\in R[[x]]_{0}^{m},\sum_{j=1}^{m}\psi_{j}(\varphi(x))d\varphi_{j}(x)$

is a differential in $\mathfrak{D}^{*}(A;R)$ . We denote it by $\varphi^{*}(\omega)$ . $\varphi^{*}$ is an R-homo-
morphism of $\mathfrak{D}^{*}(B;R)$ into $\mathfrak{D}^{*}(A;R)$ .

Let $F$ be an n-dimensional formal group over $R$ . Introducing a new set
$l=$ $(t_{1}, \cdots , t_{n})$ of variables we may consider that $F$ is also defined over $R_{t}$

$=R[[t]]$ .
DEFINITION. The right translation $T_{t}$ on $F$ is an element of $R_{t}[[x]]^{m}$

defined by $T_{t}(x)=F(x, t)$ . A differential ru in $\mathfrak{D}^{*}(A;R)$ is said to be a right
invariant differential on $F$ if $ T_{t}^{*}(\omega)=\omega$ .

We denote by $\mathfrak{D}^{*}(F;R)$ the space consisting of all right invariant dif-
ferentials on $F$. As in the case of a Lie group or an algebraic group, we
have:

PROPOSITION 1.1. If $F$ is an n-dimensional formal group over $R,$ $\mathfrak{D}^{*}(F;R)$

is a free R-module of rank $n$ . More precisely, $(\psi_{ij}(z))$ denoting the inverse

matrix of $((\partial/\partial x_{j})F_{i}(0, z))$ , we have $\psi_{ij}(0)=\delta_{ij}$ and $\omega_{i}=\sum_{j=1}^{n}\psi_{ij}(x)dx_{j}(1\leqq i\leqq n)$

form an R-basis of $\mathfrak{D}^{*}(F;R)$ . Moreover the base $\{\omega_{1}, \cdots , \omega_{n}\}$ is characterized
by these two properties.

PROOF. Differentiating $F_{i}(u, F(v, w))=F_{i}(F(u, v),$ $w$) relative to $u_{j}$, we get

$(\partial/\partial x_{j})F_{i}(u, F(v, w))=\sum_{k=1}^{n}(\partial/\partial x_{k})F_{i}(F(u, v),$ $w$) $(\partial/\partial x_{j})F_{k}(u, v)$ ,

so that

$(\partial/\partial x_{j})F_{i}(0, F(v, w))=\sum_{k=1}^{n}(\partial/\partial x_{k})F_{i}(v, w)(\partial/\partial x_{j})F_{k}(0, v)$

or by matrix notation

(1.1) $((\partial/\partial x_{j})F_{i}(0, F(v, w)))=((\partial/\partial x_{j})F_{i}(v, w))((\partial/\partial x_{j})F_{i}(0, v))$ .

Since $(\partial/\partial x_{j})F_{i}(0, z)\equiv\delta_{ij}$ mod $\deg 1$ , the matrix $((\partial/\partial x_{j})F_{i}(0, z))$ is invertible,
$\psi_{ij}(z)\in R[[z]]$ and $\psi_{ij}(0)=\delta_{ij}$ . Hence (1.1) is equivalent to

(1.2) $(T_{t}\psi_{ij}(z))((\partial/\partial x_{j})F_{i}(z, t))=(\psi_{ij}(z))$ .

Now a differential $\omega=\sum_{i=1}^{n}\psi_{i}(x)dx_{i}$ in $\mathfrak{D}^{*}(A ; R)$ is right invariant on $F$, if and
only if

(1.3) $\psi_{j}(x)=\sum_{k=1}^{n}\psi_{k}(F(x, t))(\partial/\partial x_{j})F_{k}(x, t)$ .

This shows $\omega_{1}$ , $\cdot$ .. , $\omega_{n}\in \mathfrak{D}^{*}(F;R)$ by (1.2). On the other hand we get from
(1.3)

$\psi_{j}(0)=\sum_{k=1}^{n}\psi_{k}(t)(\partial/\partial x_{j})F_{k}(0, t)$ ,



The theory of commutative formal groups 217

which implies that, if $\omega\in \mathfrak{D}^{*}(F;R),$ $\omega=0\Leftrightarrow\psi_{i}(0)=0$ for $1\leqq i\leqq n$ . Therefore
the map $\Phi:\omega->{}^{t}(\psi_{1}(0), \cdot.. , \psi_{n}(0))$ defines an R-isomorphism of $\mathfrak{D}^{*}(F;R)$ into
$R^{n}$ . Since the $\Phi(\omega_{i})(1\leqq i\leqq n)$ are the unit vectors of $R^{n}$ , the map $\Phi$ is sur-
jective and $\{\omega_{1}, \cdots , \omega_{n}\}$ is a base of $\mathfrak{D}^{*}(F;R)$ .

We shall call this $\{\omega_{1}$ , $\cdot$ .. , $\omega_{n}\}$ the canonical base of $\mathfrak{D}^{*}(F;R)$ .
PROPOSITION 1.2. Let $F,$ $G$ be formal groups over $R$ and $\varphi\in Hom_{R}(F, G)$ .

If $\eta\in \mathfrak{D}^{*}(G;R)$ , then $\varphi^{*}(\eta)\in \mathfrak{D}^{*}(F;R)$ .
PROOF. Write $\eta=\sum_{i=1}^{m}\psi_{i}(x^{\prime})dx_{i}^{\prime}$ where $m$ is the dimension of $G$ . Then

$T_{t}(\varphi^{*}(\eta))=T_{t}(\sum_{i=1}^{m}\psi_{i}(\varphi(x))d\varphi_{i}(x))$

$=\sum_{i=1}^{m}\psi_{i}(\varphi(F(x, t)))d\varphi_{i}(F(x, t))$

$=\sum_{i=1}^{m}\psi_{i}(G(\varphi(x), \varphi(t)))dG(\varphi_{i}(x), \varphi_{i}(t))$

$=\sum_{i=1}^{m}\psi_{i}(\varphi(x))d\varphi_{i}(x)$

$=\varphi^{*}(\eta)$ .
1.3. We now study invariant differential forms on a commutative formal

group.
PROPOSITION 1.3. Let $F$ be a commutative formal group over R. Then

every differential in $\mathfrak{D}^{*}(F;R)$ is closed.

PROOF. Let $\omega_{i}=\sum_{j=1}\psi_{ij}(x)dx_{j}n(1\leqq i\leqq n)$ be the canonical base of $\mathfrak{D}^{*}(F;R)$ .
We shall prove $d\omega_{i}=0$ for $1\leqq i\leqq n$ . First $d\omega_{i}$ is a right invariant 2-form,
since

$T_{t}^{*}(d\omega_{i})=T_{t}^{\star}(\sum_{=j1}^{n}d\psi_{ij}(x)$ A $dx_{j})$

$=\sum_{j}d\psi_{ij}(F(x, t))\wedge dF_{j}(x, t)$

$=d(T_{t}^{\star}(\omega_{i}))$

$=d\omega_{i}$ .
Now differentiating

$\sum_{k=1}^{n}(\partial/\partial x_{k})F_{i}(0, z)\psi_{kj}(z)=\delta_{ij}$

relative to $z_{\iota}$ and putting $z=0$ , we get

$\sum_{k}(\partial^{2}/\partial x_{k}\partial y_{\iota})F_{i}(0,0)\psi_{kj}(0)+\sum_{k}(\partial/\partial x_{k})F_{i}(0,0)(\partial/\partial x_{\iota})\psi_{kj}(0)=0$ ,

which is reduced to



218 T. HONDA

$(\partial^{2}/\partial x_{j}\partial y_{l})F_{i}(0,0)+(\partial/\partial x_{\iota})\psi_{ij}(0)=0$ ,
since

$\psi_{kj}(0)=\delta_{kj}$ and $(\partial/\partial x_{k})F_{i}(0,0)=\delta_{ik}$ .

Hence, by the commutativity of $F$ we get

$(\partial/\partial x_{\iota})\psi_{ij}(0)=-(\partial^{2}/\partial x_{j}\partial y_{l})F_{i}(0,0)$

$=-(\partial^{2}/\partial x_{\iota}\partial y_{j})F_{i}(0,0)$

$=(\partial/\partial x_{j})\psi_{il}(0)$ .
Since

$d\omega_{i}=\sum_{f.l}(\partial/\partial x_{\iota})\psi_{ij}(x)dx_{l}$ A $dx_{j}$

$=\sum_{j<l}((\partial/\partial x_{l})\psi_{ij}(x)-(\partial/\partial x_{j})\psi_{il}(x))dx_{\iota}\wedge dx_{j}$ ,

the coefficients of $dx_{\iota}$ A $dx_{j}$ in $d\omega_{i}$ have no constant term. So we have only
to prove that, if $\eta=\sum_{i<j}\lambda_{ij}(x)dx_{i}\wedge dx_{j}$ is right invariant on $F$ and $\lambda_{ij}(0)=0$

for all $1\leqq i<j\leqq n,$
$\eta$ must be equal to $0$ . An easy computation shows that

$ T_{t}^{*}(\eta)=\eta$ is equivalent to

$\lambda_{kl}(x)=\sum_{i<j}\lambda_{ij}(F(x, t))\left|\begin{array}{lll}(\partial/\partial x_{k})F_{i}(x,t) & (\partial/\partial x_{l})F_{i}(x, & t)\\(\partial/\partial x_{k})F_{j}(x,t) & (\partial/\partial x_{\iota})F_{j}(x,t) & \end{array}\right|$

,
which implies

$\lambda_{kl}(0)=\sum_{Kj}\lambda_{ij}(t)\left|\begin{array}{ll}(\partial/\partial x_{k})F_{i}(0,t) & (\partial/\partial x_{\iota})F_{i}(0,t)\\(\partial/\partial x_{k})F_{j}(0,t) & (\partial/\partial x_{\iota})F_{j}(0,t)\end{array}\right|$

for $1\leqq k<l\leqq n$ . Since the matrix $((\partial/\partial x_{j})F_{i}(0, t))$ is regular, this shows in
fact $\lambda_{ij}(0)=0$ for all $i<j\Rightarrow\lambda_{ij}(t)=0$ for all $i<j$ .

We now consider the case where $R$ is a Q-algebra. In this case every
power series in $R[[x]]$ is termwise integrable with respect to $x_{i}$ . The fol-
lowing lemma is essentially well-known in elementary analysis and the proof
is easy.

LEMMA 1.4. If $R$ is a Q-algebra, a closed differential in $\mathfrak{D}^{*}(A;R)$ is exact.
The following theorem, mentioned in [10], was also proved in [7] in a

slightly different manner.
THEOREM 1. Let $F$ be an n-dimensional commutative formal group over a

Q-algebra $R$ and let $\omega={}^{t}(\omega_{1}, \cdots , \omega_{n})$ be the canonical base of $\mathfrak{D}^{*}(F;R)$ . Then
there exists a unique element $f$ of $R[[x]]_{0}^{n}$ such that $\omega=df$. This $f$ satisfies

$f(x)\equiv x$ mod $\deg 2$

and
$F(x, y)=f^{-1}(f(x)+f(y))$ .

In particular $F(x, y)\approx x+y$ over $R$ .
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PROOF. The existence of $f$ follows from Proposition 1.3 and Lemma 1.4.
The uniqueness follows from the fact that $d\varphi=0$ for $\varphi\in R[[x]]$ , if and only
if $\varphi$ is a constant. Since $\psi_{ij}(0)=\delta_{ij}$ , we have $f(x)\equiv x$ mod $\deg 2$ . Now, $df(x)$

being right invariant, we have

$df(F(x, t))=df(x)$ ,

which implies
$f(F(x, t))-f(x)\in R[[t]]$ .

Writing $g(t)=f(F(x, t))-f(x)$ and putting $x=0$ we get

$g(t)=f(t)$ .
Thus we have

$f(F(x, t))=f(x)+f(t)$

or
$F(x, t)=f^{-1}(f(x)+f(t))$ .

This completes the proof of our theorem.
1.4. Let $R$ be an integral domain of characteristic $0$ and $K$ its fraction field.
LEMMA 1.5. Let $x={}^{t}(x_{1}, \cdots , x_{n})$ and $y={}^{t}(y_{1}, \cdots , y_{n})$ be sets of $n$ variables.

If $\psi\in K[[x]]^{m}$ satisfies
$\psi(x+y)=\psi(x)+\psi(y)$ ,

$\psi$ must be linear, $i$ . $e$ . there is an $m\times n$ matrix $C$ over $K$ such that $\psi(x)=Cx$ .
PROOF. We have only to consider the case where $m=1$ and $\psi$ is a

homogeneous polynomial. Then our assertion is verified by a simple com-
putation. (See the proof of Lemma 3.2)

Let $F$ be a commutative formal group over $R$ , of dimension $n$ . By Theorem
1 there is $f(x)\in K[[x]]_{0}^{n}$ such that $f\equiv i$ mod $\deg 2$ and $F(x, y)=f^{-1}(f(x)+f(y))$ .
If there is another element $h$ of $K[[x]]_{0}^{n}$ satisfying $h\equiv i$ mod $\deg 2$ and
$F(x, y)=h^{-1}(h(x)+h(y))$ , we have

$f\circ h^{-1}\equiv i$ mod $\deg 2$ ,

$(f\circ h^{-1})(x+y)=(f\circ h^{-1})(x)+(f\circ h^{-1})(y)$ .
Hence we get $f\circ h^{-1}=i$ or $f=h$ by Lemma 1.5.

DEFINITION. Let $R$ and $K$ be as above; let $F$ be an n-dimensional com-
mutative formal group over $R$ . The unique element $f$ of $K[[x]]_{0}^{n}$ , such that
$f\equiv i$ mod $\deg 2$ and $F(x, y)=f^{-1}(f(x)+f(y))$ , is called the transformer of $F$.

Let $G$ be another commutative formal group over $R$ , of dimension $m$ and
with the transformer $g$ . If $\varphi\in Hom_{R}(F, G)$ , we have

$\varphi(f^{-1}(f(x)+f(y)))=g^{-1}(g(\varphi(x)+g(\varphi(y))))$ .
Substituting $x,$ $y$ by $f^{-1}(x),$ $f^{-1}(y)$ , respectively, we get

$(g\circ\varphi\circ f^{-1})(x+y)=(g\circ\varphi\circ f^{-1})(x)+(g\circ\varphi\circ f^{-1})(y)$ .
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Hence by Lemma 1.5 there is an $m\times n$ matrix $C$ over $K$ such that $(g\circ\varphi\circ f^{-1})(x)$

$=Cx$. This implies $\varphi(x)=g^{-1}(Cf(x))$ . As $\varphi(x)\equiv Cx$ mod deg2, $C$ is a matrix
with elements in $R$ .

PROPOSITION 1.6. Let $F,$ $f,$ $G,$ $g$ be as above. Every element $\varphi$ of $Hom_{R}(F, G)$

has the form $g^{-1}\circ(Cf)$ , where $C$ is an $m\times n$ matrix over R. Conversely, $C$

being an $m\times n$ matrix over $R,$ $g^{-1}\circ(Cf)\in Hom_{R}(F, G)$ , if and only if $g^{-1}\circ(Cf)$

has coefficients in R. The map $\varphi-\div C$ yields an isomorphism of $Hom_{R}(F, G)$

into the module of $mXn$ matrices over R. If $F=G$ in particular, this map is
a ring isomorphism of $End_{R}F$ into $M_{n}(R)$ .

PROOF, The first assertion has already been proved. The second follows
from

$(g^{-1}\circ(Cf))\circ F=G\circ(g^{-1}\circ(Cf))$ .
The rests follow from the definitions.

\S 2. Formal groups over a $\mathfrak{p}$-adic integer ring.

Throughout the rest of this paper we exclusively deal with commutative
formal groups. By a formal group we always mean a commutative one.

Let $K$ be a discrete valuation field of characteristic $0$ and let $0$ and $\mathfrak{p}$ be the
ring of integers in $K$ and the maximal ideal of $0$ , respectively. We assume
that the residue class field $k=0/\mathfrak{p}$ is of characteristic $p>0$ . Consider the
following condition on $K$ :

$(F)$ There are an endomorphism $\sigma$ of $K$ and a power $q$ of $p$ such that

$\alpha^{\sigma}\equiv\alpha^{q}$ $mod \mathfrak{p}$ for any $\alpha\in 0$ .

We note $\mathfrak{p}^{\sigma}=\mathfrak{p}$ , since $\sigma$ sends a unit of $0$ to $0$ and $p^{\sigma}=p$ . In this section
we study formal groups over $0$ , when $K$ satisfies $(F)$ . We do not assume the
completeness of $K$.

Let $K_{0}$ be a finite extension of the $p$-adic number field $Q_{p}$ and let $q$ be
the cardinal of its residue field. Then it is well-known that an unramified
extension of $K_{0}$ (of finite or infinite degree) or its completion satisfies $(F)$

with a Frobenius $\sigma$ .
2.1. Let $K_{\sigma}[[T]]$ be the non-commutative power series ring on $T$ with

the multiplication rule: $T\alpha=\alpha^{\sigma}T$ for $\alpha\in K$. We denote by $\mathfrak{B}_{m,n}$ (resp. $\mathfrak{A}_{m_{J}n}$)

the module consisting of all $m\times n$ matrices over $K_{\sigma}[[T]]$ (resp. $0_{\sigma}[[T]]$).

Let $x={}^{t}(x_{1}, \cdots , x_{n})$ be a set of $n$ variables. For $f\in K[[x]]_{0}^{m}$ and

$u=\sum_{\nu-- 0}^{\infty}C_{\nu}T^{\nu}\in \mathfrak{B}_{l,m}$ (where the C. are matrices over $K$), we define an element

$u*f$ of $K[[x]]_{0}^{l}$ by

$(u*f)(x)=\sum_{\nu=0}^{\infty}C_{\nu}f^{\sigma^{\nu}}(x^{q^{\mathcal{V}}})$ .
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This is well-defined, since $f(x)$ has no constant term. If $v=\sum_{\nu=0}^{\infty}D_{\nu}T$
“ is in $\mathfrak{B}_{k,l}$ ,

we have

(2.1) $(vu)*f=v*(u*f)$ ,

since

$(v*(u*f))(x)=\sum_{\nu=0}^{\infty}D_{\nu}\sum_{\mu=0}^{\infty}C_{\mu}^{\sigma^{v}}f^{\sigma\mu+\nu}(x^{q\mu+\nu})$

$=\sum_{\lambda=0}^{\infty}\sum_{\mu+\nu=\lambda}D_{\nu}C_{\mu}^{\sigma^{\mathcal{V}}}f^{\sigma^{\lambda}}(x^{q^{\lambda}})$

$=((vu)*f)(x)$ .
From now on we fix a prime element $\pi$ of $0$ .
LEMMA 2.1. For any rational integers }) $\geqq 0,$ $a\geqq 1$ and $m\geqq 1$ we have

$\pi^{-\nu}(X+\pi Y)^{mp^{a\nu}}\equiv\pi^{-\nu}X^{mp^{av}}$ $mod \mathfrak{p}$ .
In particular we have

$m^{-1}(X+pY)^{m}\equiv m^{-1}X^{m}$ $mod pZ_{p}$

for $m\geqq 1$ .
This is Lemma 4 of [10]. As the proof is elementary and easy, we omit

it here.
We write $\mathfrak{A}_{n}$ (resp. $\mathfrak{B}_{n}$) for $\mathfrak{A}_{n,n}$ (resp. $\mathfrak{B}_{n,n}$).
DEFINITION. An element $u$ of $\mathfrak{A}_{n}$ is said to be special, if $u\equiv\pi I_{n}$ mod $\deg 1$ .

Let $P$ be an invertible matrix in $M_{n}(0)$ and let $u$ be a special element of $\mathfrak{A}_{n}$ .
An element $f$ of $K[[x]]_{0}^{n}$ is said to be of type $(P;u)$ , if fsatisfies the folloN-
ing two conditions:

i) $f(x)\equiv Px$ mod $\deg 2$ ,

ii) $(u*f)(x)\equiv 0$ $mod \mathfrak{p}$ .

If $f$ is of type $(I_{n} ; u)$ , we shall simply say that $f$ is of type $u$ .
Let $u\in \mathfrak{A}_{n}$ be special and put $w=u^{-1}\pi(\in \mathfrak{B}_{n})$ . Then, $i$ being the identity

function,
$(u*(w*i))(x)=((uw)*i)(x)=\pi x\equiv 0$ $mod \mathfrak{p}$ .

This implies that $(u^{-1}\pi)*i$ is of type $u$ .
LEMMA 2.2. Let $u\in \mathfrak{A}_{n}$ be special and put $u^{-1}\pi=I_{n}+\sum_{\nu=1}^{\infty}B_{v}T^{\nu}$ . Then we

have $\pi^{\nu}B_{\nu}\in M_{n}(0)$ for $\nu\geqq 0$ .
PROOF. Write $u=\pi I_{n}+\sum_{\nu=I}^{\infty}C_{\nu}T^{\nu}$ and replace $T$ by $\pi T$ in the equality

$(\pi I_{n}+\sum_{\nu=I}^{\infty}C_{\nu}T^{\nu})(I_{n}+\sum_{\nu=1}^{\infty}B_{\nu}T^{\nu})=\pi I_{n}$ .

Then we get
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$(’\llcorner$

This implies $\pi^{v}B_{\nu}\in M_{n}(0)$ , since $\pi^{\sigma\mu}$ is also a prime element of $0$ .
2.2. The following two lemmas play crucial roles in our further inves-

tigation and will be used repeatedly.
LEMMA 2.3. Let $f\in K[[x]]_{0}^{n}$ be of type $(P;u)$ and let $v$ be an element of

$\mathfrak{A}_{m,n}$ . Let $\psi$ be an element of $K[[x^{\prime}]]_{0}^{n}$ , $x^{\prime}$ being a finite set of variables. If
the coef7cients (of components) of $\psi,$ of terms of (total) degree $\leqq r-1$ , belong
$lo\mathfrak{v}$ for some $r\geqq 2$ , we have

$ v*(f\circ\psi)\equiv(v*f)\circ\psi$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ .
If $\psi\in \mathfrak{o}[[x^{\prime}]]_{0}^{n}$ in particular, we have

$ v*(f\circ\psi)\equiv(v*f)\circ\psi$ $mod \mathfrak{p}$ .
LEMMA 2.4. If $f$ (resp. $g$ ) $\in K[[x]]_{0}^{n}$ is of type $(P;u)$ (resp. of type ($Q$ ; $u$)),

then $g^{-1}\circ f\in 0[[x]]_{0}^{n}$ .
Put $h=(u^{-1}\pi)*i$ . First we will prove the first assertion of Lemma 2.3 for

$f=h$ . Write
$u^{-1}\pi=I_{n}+\sum_{\nu=1}^{\infty}B_{v}T^{\nu}$ , $v=\sum_{\nu=0}^{\infty}A_{\nu}T^{\nu}$

We have

(2.2) $((v*h)\circ\psi)(x^{\prime})=(((vu^{-1}\pi)*i)\circ\psi)(x^{\prime})$

$=\sum_{\mu’\nu}A_{\nu}B_{u}^{\sigma^{\nu}}\psi(x^{\prime})^{q^{\alpha+\nu}}$

Now
(2.3) $B_{\mu}^{\sigma^{\nu}}\psi(x^{\prime})^{q\mu+\nu}=\pi^{\mu}B_{\mu}^{\sigma^{\nu}}\pi^{-\mu}\psi(x^{\prime})^{q\mu+\nu}$

and $\pi^{\mu}B_{u}^{\sigma^{\nu}}\in M_{n}(0)$ by Lemma 2.2. We will prove

(2.4) $\pi^{-\mu}\psi(x^{\prime})^{q\mu+\nu}\equiv\pi^{-\mu}(\psi^{\sigma^{y}}(x^{\prime q^{\nu}}))^{q\mu}$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ .

If $\mu=\nu=0,$ $(2.4)$ is trivial. If $\mu=0$ and $\nu\geqq 1$ , we have

$\psi(x^{\prime})^{q^{\mathcal{V}}}\equiv\psi^{\sigma^{\nu}}(x^{\prime q^{\nu}})$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ ,

since terms of $\psi$ of degree $\geqq r$ do not affect this congruence. (Note $\psi(0)=0.$)

Assume $\mu\geqq 1$ . Because

$\psi(x^{\prime})^{q^{\nu}}\equiv\psi^{\sigma^{\nu}}(x^{\gamma q^{v}})$ mod $\deg r$ , $mod \mathfrak{p}$ ,

we get (2.4) by Lemma 2.1 and by the fact $\psi(0)=0$ . This completes the proof
of (2.4). Thus we get from (2.2), (2.3) and (2.4)

$((v*h)\circ\psi)(x^{\prime})\equiv\sum_{\mu\nu}A_{\nu}B_{\mu}^{\sigma^{\nu}}(\psi^{\sigma\nu}(x^{\prime q^{\nu}}))^{q\mu}$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=(v*(h\circ\psi))(x^{\prime})$ .
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PROOF OF LEMMA 2.4. Since $g^{-1}\circ f=(g^{-1}\circ h)\circ(h^{-1}\circ f)=(h^{-1}\circ g)^{-1}\circ(h^{-1}\circ f)$

and $(h^{-1}\circ g)(x)\equiv Qx$ mod deg2, we have only to prove $h^{-1}\circ f\in 0[[\chi]]_{0}^{n}$ . Put
$ h^{-1}\circ f=\varphi$ or $ f=h\circ\varphi$ . The first-degree coefficients of $\varphi$ are in $0$ . Assume
that the coefficients of $\varphi$ , of (total) degree $\leqq r-1$ , are integers for some $r\geqq 2$ .
By Lemma 2.3 for $f=h$ we have

$\pi\varphi=(u*h)\circ\varphi\equiv u*(h\circ\varphi)$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=u*f\equiv 0$ $mod \mathfrak{p}$ .

This implies that the r-th degree coefficients of $\varphi$ are also integers. This
completes our proof by induction.

PROOF OF LEMMA 2.3. We have only to prove the first assertion. Nota-
tions being as above,

$v*(f\circ\psi)=v*((h\circ\varphi)\circ\psi)=v*(h\circ(\varphi\circ\psi))$

$\equiv(v*h)\circ(\varphi\circ\psi)$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=((v*h)\circ\varphi)\circ\psi$ .

Since $\varphi(x)\equiv Px$ mod $\deg 2$ , we have

$((v*h)\circ\varphi)(x)\equiv A{}_{0}Px\equiv(v*(h\circ\varphi))(x)$ mod $\deg 2$ .
Put $\lambda_{1}(x)=((v*h)\circ\varphi)(x)-A{}_{0}Px$ and $\lambda_{2}(x)=(v*(h\circ\varphi))(x)-A{}_{0}Px$ . Then $\lambda_{1}\equiv\lambda_{2}\equiv 0$

mod $\deg 2$ and $\lambda_{1}\equiv\lambda_{2}mod \mathfrak{p}$ by what we have proved. It follows from this

$\lambda_{1}\circ\psi\equiv\lambda_{2}\circ\psi$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ ,

since the terms of $\psi$ of degree $r$ do not affect this congruence. Hence we get

$ v*(f\circ\psi)\equiv((v*h)\circ\varphi)\circ\psi$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=A{}_{0}P\psi+\lambda_{1}\circ\psi$

$\equiv A{}_{0}P\psi+\lambda_{2}\circ\psi$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=(v*(h\circ\varphi))\circ\psi$

$=(v*f)\circ\psi$ .

This completes the proof of our lemma.
2.3. The results of 2.2 first allow us to construct certain formal groups

over $0$ .
THEOREM 2. Assume $K$ satisfies $(F)$ . Let $P$ be an invertible matrix in

$M_{n}(0)$ and let $u$ be a special element of $\mathfrak{A}_{n}$ . If $f\in K[[x]]_{0}^{n}$ is of type $(P;u)$ ,

$F(x, y)=f^{-1}(f(x)+f(y))$ is a formal group over $\mathfrak{o}$ . Let $g\in K[[x]]_{0}^{n}$ be of type
($Q$ ; u) for an invertible matrix $Q$ and put $G(x, y)=g^{-1}(g(x)+g(y))$ . Then we
have $G\sim F$ over $0$ . If $P=Q$ in particular, we have $G\approx F$ over $\mathfrak{o}$ .

PROOF. Form $h=(u^{-1}\pi)*i$ and $H(x, y)=h^{-1}(h(x)+h(y))$ . It is clear that
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$H(x, y)\equiv x+y$ mod $\deg 2$ .
Assume that the coefficients of $H$, of terms of degree $\leqq r-1$ , are integers for
some $r\geqq 2$ . By Lemma 2.3 we have

$\pi H(x, y)=((u*h)\circ H)(x, y)$

$\equiv(u*(h\circ H))(x, y)$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=(u*h)(x)+(u*h)(y)$

$=\pi x+\pi y\equiv 0$ $mod \mathfrak{p}$ .
This implies that the r-th degree coefficients of $H$ are also integers. This
proves $H(x, y)\in 0[[x, y]]$ by induction. All the assertions of our theorem
follow from this and from Lemma 2.4, because $ F=\varphi^{-1}\circ H\circ\varphi$ if $ f=h\circ\varphi$ .

As for examples, see \S 5.
PROPOSITION 2.5. Let $P$ be an invertible matrix in $M_{n}(0)$ and let $u$ be a

special element of $\mathfrak{A}_{n}$ . Then $f\in K[[x]]_{0}^{n}$ is of type $(P;u)$ , if and only if $f$ is
of the form $((u^{-1}\pi)*i)\circ\varphi$ with $\varphi\in 0[[x]]_{0}^{n}$ such that $\varphi(x)\equiv Px$ mod deg2.

PROOF. ” Only if ‘’ part is Lemma 2.4. Conversely, if $\varphi\in\circ[[x]]_{0}^{n}$ and
$\varphi(x)\equiv Px$ mod $\deg 2$ , we have, writing $h=(u^{-1}\pi)*i$ ,

$(h\circ\varphi)(x)\equiv Px$ mod $\deg 2$

and by Lemma 2.3
$u*(h\circ\varphi)\equiv(u*h)\circ\varphi=\pi\varphi\equiv 0$ $mod \mathfrak{p}$ .

This completes our proof.
Dually to Proposition 2.5 we have
PROPOSITION 2.6. Let $f\in K[[x]]_{0}^{n}$ be of type $(P;u)$ for an invertible matrix

$P$ of $M_{n}(0)$ and a special element $u$ of $\mathfrak{A}_{n}$ ; Let $v$ be a matrix in $\mathfrak{A}_{m,n}$ . Then

$v*f\equiv 0$ $mod \mathfrak{p}$ ,

if and only if there exists $t\in \mathfrak{A}_{m,n}$ such that $v=tu$ .
PROOF. If $v=tu$ with $t\in \mathfrak{A}_{m,n}$ , then

$v*f=t*(u*f)\equiv 0$ $mod \mathfrak{p}$ .
Conversely, assume $v*f\equiv 0mod \mathfrak{p}$ for $v\in \mathfrak{A}_{m,n}$ . Put $h=(u^{-1}\pi)*i$ and $\varphi=h^{-1}\circ f$.
Since $\varphi$ is an invertible element of $\mathfrak{v}[[x]]_{0}^{n}$ by Lemma 2.4, we have

$(\nu*h)\circ\varphi\equiv v*(h\circ\varphi)=v*f\equiv 0$ $mod \mathfrak{p}$

by Lemma 2.3, so that

(2.5) $v*h=((v*h)\circ\varphi)\circ\varphi^{-1}\equiv 0$ modp.

Put $vu^{-1}\pi=\sum_{\nu=0}^{\infty}A_{\nu}T^{\nu}$ . Since

$v*h=v*((u^{-1}\pi)*i)=(vu^{-1}\pi)*i$ ,
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we have from (2.5)

$\sum_{\nu=0}^{\infty}A_{\nu}x^{q^{\nu}}\equiv 0$ $mod \mathfrak{p}$ ,

which implies $vu^{-1}=(vu^{-1}\pi)\pi^{-1}\in \mathfrak{A}_{m,n}$ . This completes our proof.
2.4. We now study homomorphisms of formal groups constructed in

Theorem 2. $M_{m,n}(0)$ denotes the module of all the $m\times n$ matrices with elements
in $0$ .

THEOREM 3. Assume $K$ satisfies $(F)$ . Let $u\in \mathfrak{A}_{n}$ and $v\in \mathfrak{A}_{m}$ be special and
let $f\in K[[x]]_{0}^{n}$ (resp. $g\in K[[x]]_{0}^{m}$) be of type $u$ (resp. of type $v$). Form $F(x,$ $ y\rangle$

$=f^{-1}(f(x)+f(y))$ and $G(x, y)=g^{-1}(g(x)+g(y))$ . Then $g^{-1}\circ(Cf)\in Hom_{0}(F, G)$

for $C\in M_{m,n}(0)$ , if and only if there exists $t\in \mathfrak{A}_{m,n}$ such that $vC=tu$ .
PROOF. Put $\varphi=g^{-1}\circ(Cf)$ . By Proposition 1.6 $\varphi\in Hom_{0}(F, G)$ if and only

if $\varphi\in \mathfrak{o}[[x]]_{0}^{m}$ . In view of Lemma 2.4 we may assume $f=(u^{-1}\pi)*i$ and
$g=(v^{-1}\pi)*i$ . If $\varphi\in 0[[x]]_{0}^{m}$ , we have by Lemma 2.3

$(vC)*f=v*(Cf)=v*(g\circ\varphi)$

$\equiv(v*g)\circ\varphi=\pi\varphi\equiv 0$ modp.

Hence, by Proposition 2.6, there exists $t\in \mathfrak{A}_{m,n}$ such that $vC=tu$ . Conversely,
suppose that there is $t\in \mathfrak{A}_{m,n}$ such that $vC=tu$ . As $\varphi(x)\equiv Cx$ mod $\deg 2$ , the
first-degree coefficients of $\varphi$ are integral. Assume that i-th degree coefficients
of $\varphi$ are integral for $i\leqq r-1(r\geqq 2)$ . By Lemma 2.3 we have then

$\pi\varphi=(v*g)\circ\varphi$

$\equiv v*(g\circ\varphi)$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=\nu*(Cf)=(vC)*f$

$=(tu)*f=t*(u*f)$

$\equiv 0$ $mod \mathfrak{p}$ .

This shows that the r-th degree coefficients of $\varphi$ are integral. Hence we get
$\varphi\in \mathfrak{o}[[x]]_{0}^{m}$ by induction.

$CoROLLARY$ . Let $F,$ $G$ be as in Theorem 3. The module $Hom_{0}(F, G)$ is
canonically isomorphic to $M_{m,n}(0)\cap v^{-1}\mathfrak{A}_{m,n}u$ .

By Theorem 3 $g^{-1}\circ(Cf)\in Hom_{0}(F, G)$ for $C\in M_{m,n}(\mathfrak{o})$ , if and only if
$C\in\nu^{-1}\mathfrak{A}_{m,n}u$ . Our assertion follows from this and from Proposition 1.6.

\S 3. The non-ramified case.

Let $K$, o, p and $k$ be as in \S 2. In \S 3 we assume moreover that:
$(F_{1})$ The valuation of $K$ is unramified and $(F)$ is satisfied with $q=p$ .
The ring $W(k^{\prime})$ of Witt vectors over a perfect field $k^{\prime}$ of characteristic
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$p>0$ satisfies $(F_{1})$ (cf. [22]). Under $(F_{1})$ we can take $p$ as the fixed prime
element of $0$ .

3.1. Let $x$ be the set of $n$ variables as usual. Let $N$ be the set of all
the non-negative rational integers. For $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n})\in N^{n}$ we write $x^{\alpha}$ for
$x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ . Then $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ is the degree of $x^{\alpha}$ . For $1\leqq i\leqq n$ , let $\epsilon_{i}$

denote the vector of $N^{n}$ whose j-th component is $\delta_{ij}(1\leqq j\leqq n)$ . Then $x^{r\epsilon_{i}}=x_{i}^{r}$

for $r\in N$. Every element of $K[[x]]$ is written in the form $\sum_{\alpha\in N^{n}}a_{\alpha}x^{\alpha}(a_{\alpha}\in K)$ .
LEMMA 3.1. For $r\geqq 2$ define the form $\Lambda_{r}(X, Y)$ in $Z[X, Y]$ as follows:

If $r$ is not a power of a prime number, we put $\Lambda_{r}(X, Y)=(X+Y)^{r}-X^{r}-Y^{r}$ .
If $r$ is a power of a prime number $l$ , we put $\Lambda_{r}(X, Y)=l^{-1}((X+Y)^{r}-X^{-r}-Y^{r})$ .
Then $\Lambda_{r}$ is a primitive polynomial in $Z[X, Y]$ .

PROOF. Easy. See also [11], III.
For any commutative ring $R,$ $\Lambda_{r}$ is considered a polynomial in $R[X, Y]$ .
LEMMA 3.2. Let $\lambda(x)=\sum_{|\alpha|=r}a_{\alpha}x^{\alpha}(a_{\alpha}\in K)$ be a form of degree $r$ satisfying

(3.1) $\lambda(x+y)\equiv\lambda(x)+\lambda(y)$ $mod \mathfrak{p}$ .
Then, if $r$ is not a power of $p,$ $a_{\alpha}\in \mathfrak{p}$ for all $\alpha$ . If $r$ is a power of $p,$ $a_{\alpha}\in 0$

for all $\alpha$ and $a_{\alpha}\in \mathfrak{p}$ for $\alpha\neq r\epsilon_{i}(1\leqq i\leqq n)$ .
PROOF. Take $\alpha\in N^{n}$ such that $|\alpha|=r$ . If two of $\alpha_{1}$ , $\cdot$ .. , $\alpha_{n}$ , say $\alpha_{1}$ and

$\alpha_{2}$ , are not equal to $0$ , the coefficient of $x_{1}^{a_{1}}y_{2}^{\alpha_{2}}$ $y_{n}^{\alpha_{n}}$ on the left side of (3.1)
is $a_{\alpha}$ and no term of this form appears on the right. Hence we have $a_{\alpha}\in \mathfrak{p}$

for such $\alpha$ . If $\alpha=r\epsilon_{i}$ , we have

$a_{\alpha}\{(x_{i}+y_{i})^{r}-x_{i}^{r}-y_{i^{r}}\}\equiv 0$ $mod \mathfrak{p}$

from (3.1). Then our assertion is a direct consequence of Lemma 3.1.
PROPOSITION 3.3. Let $F$ be an n-dimensional formal group over $0$ and let

$f$ be its transformer. Then there exists a special element $u$ of $\mathfrak{A}_{n}$ such that $f$

is of type $u$ .
PROOF. As $f(x)\equiv x$ mod $\deg 2$ , we have $pf(x)\equiv 0$ mod $\deg 2,$ $mod \mathfrak{p}$ . Sup-

pose that for $\mu\geqq 0$ there are matrices $C_{1},$ $\cdots$ , $C_{\mu}$ in $M_{n}(0)$ satisfying

(3.2) $pf(x)+\sum_{\nu=1}^{\mu}C_{\nu}f^{\sigma^{\nu}}(x^{p^{\nu}})\equiv 0$ mod $\deg(p^{\mu}+1)$ , $mod \mathfrak{p}$ .

Write $f_{i}(x)=\sum_{\alpha}a_{\alpha,i}x^{\alpha}$ for $1\leqq i\leqq n$ . Since $df_{i}(x)\in \mathfrak{D}^{*}(F;0)$ by the results of

\S 1, the $(\partial/\partial x_{j})f_{i}(x)$ have integral coefficients. In particular we have $\alpha_{j}a_{\alpha,i}\in 0$

for $1\leqq j\leqq n$ . Hence by Lemma 2.1 we get

$a_{\alpha,i}(x+py)^{\alpha}=\alpha_{1}a_{\alpha,i}\alpha_{1}^{-1}(x_{1}+py_{1})^{\alpha_{1}}\prod_{j=2}^{n}(x_{j}+py_{j})^{\alpha_{j}}$

$\equiv\alpha_{1}a_{\alpha,i}\alpha_{1}^{-1}x_{1}^{a_{1}}\prod_{J=2}^{n}(x_{j}+py_{j})^{\alpha_{j}}$ $mod \mathfrak{p}$
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$=x_{1^{y_{1}}}(a_{\alpha,i}\prod_{j=2}^{n}(x_{j}+py_{j})^{\alpha_{j}}$ .

By repeating the same argument we have

(3.3) $a_{\alpha,i}(x+py)^{\alpha}\equiv a_{\alpha,i}x^{\alpha}$ $mod \mathfrak{p}$ .
Put now

(3.4) $pf(x)+\sum_{\nu=1}^{\mu}f^{\sigma^{\rho}}(x^{P^{\nu}})\equiv\sum_{|\beta|\geqq p^{\mu+1}}b_{\beta}x^{\beta}$
$mod \mathfrak{p}$ $(b_{\beta}\in K^{n})$ .

Substituting $x$ by $F(x, y)$ in (3.4) we get

(3.5) $pf(F(x, y))+\sum_{\nu=I}^{\mu}f^{\sigma^{v}}(F(x, y)^{P^{\nu}})\equiv\sum_{|\beta|\geqq p^{\mu+1}}b_{\beta}F(x, y)^{\beta}$
$mod \mathfrak{p}$ .

By (3.3) the left side of (3.5) is congruent $mod \mathfrak{p}$ to

$pf(F(x, y))+\sum_{\nu=1}^{\mu}C_{\nu}f^{\sigma^{\nu}}(F^{\sigma^{\nu}}(x^{p^{\nu}}, y^{P^{\nu}}))$

$=pf(x)+\sum_{\nu=1}^{\mu}C_{\nu}f^{\sigma^{\nu}}(x^{p^{\nu}})+pf(y)+\sum_{\nu=1}^{\mu}C_{\nu}f^{\sigma^{\nu}}(y^{p^{\nu}})$

$\equiv\sum_{|\beta|\geqq p^{\mu}+1}b_{\beta}(x^{\beta}+y^{\beta})$
.

Thus, denoting by $b_{\beta,i}$ the i-th component of $b_{\beta}$ , we get

(3.6)
$\sum_{|\beta|\geqq p^{\mu}+1}b_{\beta,i}\{F(x, y)^{\beta}-x^{\beta}-y^{\beta}\}\equiv 0$

$mod \mathfrak{p}$

for $1\leqq i\leqq n$ . Let $r$ be the minimum value of $|\beta|$ such that $b_{\beta,i}\not\in \mathfrak{p}$ for some $i$ .
Then (3.6) implies

$\sum_{|\beta|=r}b_{\beta,i}\{(x+y)^{\beta}-x^{\beta}-y^{\beta}\}\equiv 0$
$mod \mathfrak{p}$ .

Applying Lemma 3.2 to this we see $r\geqq p^{\mu+1}$ . At any rate we have

$\sum_{|\beta|=p^{\mu+1}}b_{\beta,i}\{(x+y)^{\beta}-x^{\beta}-y^{\beta}\}\equiv 0$
$mod \mathfrak{p}$ .

Hence, by Lemma 3.2, $b_{\beta,i}\in 0$ for $\beta=p^{\mu+1}\epsilon_{j}(1\leqq j\leqq n)$ and $b_{\beta,i}\in \mathfrak{p}$ for other $\beta$

such that $|\beta|=p^{\mu+1}$ . Therefore we can find a matrix $C_{\mu+1}$ in $M_{n}(0)$ satisfying

$pf(x)+\sum_{\nu=1}^{\mu}C_{\nu}f^{\sigma^{\nu}}(x^{P^{\nu}})\equiv-C_{\mu+1}x^{p\mu+1}$ mod $\deg(p^{\mu+1}+1)$ , $mod \mathfrak{p}$ ,

from which follows

(3.7) $pf(x)+\sum_{\nu=1}^{\mu+1}C_{\nu}f^{\sigma^{\nu}}(x^{p^{\nu}})\equiv 0$ mod $\deg(p^{\mu+1}+1)$ , $mod \mathfrak{p}$ .
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Thus we have been able to replace $\mu$ by $\mu+1$ in (3.2). This implies the
existence of $C_{1},$ $C_{2},$ $\cdots$ , $C_{\nu},$ $\cdots\in M_{n}(0)$ satisfying

(3.8) $pf(x)+\sum_{\nu\approx 1}^{\infty}$ C. $f^{\sigma^{\nu}}(x^{p\nu})\equiv 0$ $mod \mathfrak{p}$ .

This means that $f$ is of type $u$ , where $u=pI_{n}+\sum_{\nu=1}^{\infty}C_{\nu}T^{\nu}$ .
3.2. By Theorem 2 and Proposition 3.3 every n-dimensional formal group

over $0$ is obtained from a special element of $\mathfrak{A}_{n}$ . Let $F$ and $G$ be n-dimensional
formal groups over $0$ , with the transformers $f$ and $g$. By Proposition 3.3
there exist special elements $u,$ $v$ of $\mathfrak{A}_{n}$ such that $f$ (resp. g) is of type $u$ (resp.
of type $v$). By the uniqueness of transformer $F\approx G$ over $\mathfrak{o}$ if and only if
$g^{-1}\circ f\in 0[[x]]_{0}^{n}$ . By Theorem 3 this happens if and only if there is $t\in \mathfrak{A}_{n}$

such that $v=tu$ . It is clear that such $t$ is a unit in $\mathfrak{A}_{n}$ . Let $u^{\prime}$ and $v^{\prime}$ be
elements of $\mathfrak{A}_{n}$ . We shall say that $v^{\prime}$ is left associate with $u^{\gamma}$ , if there is a
unit $t^{\prime}$ in $\mathfrak{A}_{n}$ such that $v^{\prime}=t^{\prime}u^{\prime}$ . We have proved the following theorem :

THEOREM 4. Assume $K$ satisfies $(F_{1})$ . Then every n-dimensional formal
group over $\mathfrak{o}$ is obtained from a special element of $\mathfrak{A}_{n}$ by the method of Theorem
2. The strong isomorphism classes of n-dimensional groups over $0$ correspond
bijectively to the left associate classes of special elements of $\mathfrak{A}_{n}$ .

COROLLARY. Let $M$ be a complete system of representatives of $0mod \mathfrak{p}$ .
Then the strong isomorphism classes of n-dimensional formal groups over $\mathfrak{v}$

correspond bijectively to the special elements of $\mathfrak{A}_{n}$ whose coeffcient matrices
have elements in $M$.

PROOF. Let $u=pI_{n}+\sum_{\nu=1}^{\infty}C_{\nu}T^{\nu}$ be a fixed special element of $Qt_{n}$ and let

$t=I_{n}+\sum_{\nu=1}^{\infty}A_{J}\backslash T^{\nu}$ be a unit in $\mathfrak{A}_{n}$ . Then we have

$tu=pI_{n}+\sum_{\nu=1}^{\infty}(pA_{\nu}+\sum_{\mu\backslash \nu}A_{\mu}C_{\nu-\mu}^{\sigma}\mu)T^{\nu}$ .

Therefore we can choose $A_{1},$ $ A_{2}\cdots$ successively and uniquely so that the
coefficients of the $T$“ in $tu$ have all their elements in $M$. Our assertion follows
from this and from Theorem 4.

3.3. As for the classification of (strong) isomorphism classes of n-dimen-
sional groups over $0$ , it is preferable to construct a module space over $0$ . In
the following we will perform it in case $n=1$ and $\mathfrak{o}$ is complete.

The following lemma is a slight modification of Lemma 2.1 of [16].

LEMMA 3.4. In addition to the condition $(F_{1})$ , suppose that $0$ is complete.

Let $u=p+\sum_{\nu=1}^{\infty}c_{\nu}T^{\nu}(c_{\nu}\in \mathfrak{o})$ be a special element of $0_{\sigma}[[T]]$ . If all the $c_{\nu}$ are in
$\mathfrak{p}$ , there is a unit $t$ in $0_{\sigma}[[T]]$ such that $tu=p$ . If $c_{1},$ $\cdots$ , $c_{h-1}\in \mathfrak{p}$ but $c_{h}\not\in \mathfrak{p}$,

then there is a unit $t$ in $0.[[T]]$ such that tu is of the form $p+\sum_{\nu=1}^{h}b_{\nu}T^{\nu}$ where
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$b_{1},$ $\cdots$ , $b_{h-1}\in \mathfrak{p}$ and $b_{h}\not\in \mathfrak{p}$ .
PROOF. If all the $c_{\nu}$ are in $\mathfrak{p}$ , it suffices to put $t=pu^{-1}$ . Assume $c_{1}$ , $\cdot$ .. , $c_{h- 1}$

$\in \mathfrak{p}$ but $c_{h}\in E\mathfrak{p}$ . We will show that for every $i\geqq 1$ we can choose $b_{1}^{(i)}$ , $\cdot$ .. , $b_{h^{f)}}^{(}\in 0$

and a unit $t_{i}$ of $0_{\sigma}[[T]]$ satisfying

(3.9)
$\left\{\begin{array}{l}b_{\nu}^{(i+1)}\equiv b_{\nu}^{(i)} mod\mathfrak{p}^{i}, b_{\nu}^{(1)}\equiv c_{\nu}\\t_{i}\equiv l moddeg1, t_{i+1}\equiv t_{i}\\t_{i}u\equiv p+\Sigma b_{\nu}^{(i)}Th mod\mathfrak{p}^{i}.\end{array}\right.$

$mod \mathfrak{p}^{l}mod \mathfrak{p}$

$(1\leqq\nu\leqq h)$ ,

First put $b_{1}^{(1)}=\ldots=b_{h-1}^{(1)}=0,$ $b_{h}^{(1)}=c_{h}$ and $t_{1}=c_{h}(.\sum_{=,Jn}^{\infty}c_{h}T^{\nu-h})^{-1}$ As $c_{h}$ is a unit,
$t_{1}\in 0_{\sigma}[[T]]$ . Since

$t_{1}u\equiv c_{h}T^{h}$ $mod \mathfrak{p}$ ,

(3.9) is $satisfi^{\mathfrak{Q}}.d$ by $\{b_{\nu}^{(1)} ; t_{1}\}$ with $i=1$ . Suppose that we have already found
$\{b_{\nu^{j)}}^{(} ; t_{j}\}$ for $1\leqq j\leqq i$ satisfying (3.9). We try to determine $b_{\nu}^{(i+1)}=b_{\nu^{i)}}^{\dot{\iota}}+p^{i}d_{\nu}^{(i)}$

$(1\leqq\nu\leqq h)$ and $t_{i-\vdash 1}=r_{i}+p^{i}v_{i}$ so that

(3.10)
$(t_{i}+p^{i}v_{i})u\equiv p+\sum_{\nu\propto 1}(b_{\nu}^{(i)}+p{}^{t}d_{\nu}^{(7)})T^{\nu}$

$mod \mathfrak{p}^{i+1}$

Put $w_{i}=p^{-i}\{t_{i}u-(p+\sum_{\nu=1}^{h}b_{\nu}^{(j)}T^{\nu})\}(\in 0_{\sigma}[[T]])$ . Since $p^{i}u\equiv p^{i}(\sum_{\nu=h}c_{\nu}T^{\nu})mod \mathfrak{p}^{i+1}$ ,

(3.10) is reduced to

(3.11) $v_{i}\sum_{\nu--h}^{\infty}c_{\nu}T^{\nu}\equiv\sum_{/=1}^{h}d_{\nu}^{(?)}T‘‘-w_{i}$ $mod \mathfrak{p}$ .

As $w_{i}$ has no constant term, we can choose $d_{1}^{(i)}$ , $\cdot$ .. , $d_{h}^{(i)}\in 0$ so that the right
hand side of (3.11) has no term of degree $\leqq h$ . Hence we can find a series
$v_{i}\in 0_{\sigma}[[T]]$ , without constant term and satisfying (3.11). By induction this
proves the existence of $\{b_{\nu}^{(i)} ; t_{i}\}$ for all $i$ . Put $f=\varliminf t_{i}$ and $b_{\nu}=\varliminf_{i}b_{\nu}^{(i)}$ for
$1\leqq v\leqq h$ . Then $\{b_{v} ; t\}$ satisfy the requirement of our lemma.

Let $F$ be a l-dimensional formal group over $0$ . We shall say that $F$ is of
height $h$ if the reduction of $F$ modulo $\mathfrak{p}$ is of height $h$ (cf. [11]).

PROPOSITION 3.5. Let $K$ be a complete discrete valuation field satisfying
$(F_{1})$ . The strong isomorphism classes of l-dimensional formal groups over $0$ ,

of height $h(1\leqq h<\infty)$ , correspond bijectively to the special elements of the form
$u=p+\sum_{\nu=1}^{h}b_{\nu}T^{\nu}$ where $b_{1},$ $\cdots$ , $b_{h-1}\in \mathfrak{p}$ but $b_{h}$ is a unit of $0$ . Let $v=p+\sum_{\nu=1}^{h}c_{\nu}T^{\nu}$

be another special element of this form. Then the formal group obtained from
$u$ is weakly isomorphic to the one obtained from $v$ , if and only if there exists
a unit $c$ of $0$ such that $c_{\nu}=c^{1-\sigma^{\nu}}b_{\nu}$ for $1\leqq\nu\leqq h$ .

PROOF. Let $F$ be a l-dimensional formal group over $\mathfrak{o}$ . Then its trans-
former $f$ is of type $u^{\prime}$ for a s-oecial element $u^{\prime}$ . If all the coefficients of $u^{\prime}$
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are in $\mathfrak{p}$ , then $F(x, y)\approx x+y$ by Lemma 3.4 and Theorem 2. If not, $f$ is also

of type $u$ , where $u$ is a special element of the form $p+\sum_{\nu-I}^{h}b_{\nu}T^{\nu}(b_{1}$ , $\cdot$ .. $b_{h- 1}\in \mathfrak{p}$,
$b_{h}\not\in \mathfrak{p})$ . We will prove that $F$ is of height $h$ . Since

$(1+p^{-1}\sum_{\nu=1}^{h-1}b_{\nu}T^{\nu})^{-1}u=p+b_{h}T^{h}+\cdots$ ,

it suffices to prove that a formal group obtained from a special element $u^{\prime/\prime}$

of the form $p+b_{h}T^{h}+\cdots(b_{h}\not\in \mathfrak{p})$ is of height $h$ . Put $(pu^{r\gamma-1})*i=h$ . Then

$ h(x)=\chi-p^{-1}b_{h}x^{p^{h}}+\cdots$

and so
$ h^{-1}(ph(x))=px-b_{h}x^{P^{h}}+\cdots+p^{-1}b_{h}(px-\cdots)^{ph}+\cdots$

$\equiv-b_{h}x^{P^{h}}+\cdots$ $mod \mathfrak{p}$ ,

which prove that $h^{-1}(h(x)+h(y))$ is of height $h$ .
Now suppose that there exist a unit $c$ in $0$ and a unit $t=\sum_{\nu=0}^{\infty}a_{\nu}T^{\nu}$ in $ 0_{\sigma}[[T]\sum$

such that $vc=tu$ . Comparing the $(\nu+h)$ -th degree coefficients of both mem-
bers of

$(\sum_{\psi=0}^{\infty}a_{\nu}T^{\nu})(p+\sum_{\nu=1}^{h}b_{\nu}T^{\nu})=(p+\sum_{\nu=1}^{h}c_{v}T^{\nu})c$

for $v>0$ , we get

(3.12) $a_{\nu}b_{h}^{\sigma^{\nu}}+\sum_{\mu=1}^{h-1}a_{\nu+\mu}b_{h-\mu}^{\sigma^{v+\mu}}+pa_{\nu+h}=0$ .

Since $b_{h}$ is a unit, it follows from (3.12) that $a_{\nu}\in \mathfrak{p}$ for $\nu\geqq 1$ . Hence we get
$a_{\nu}\in \mathfrak{p}^{2}$ for $\nu\geqq 1$ again by (3.12). Repeating the same argument we see $a_{\nu}\in \mathfrak{p}^{1}$

for every $\nu\geqq 1$ and for every $i\geqq 1$ . This implies $a_{\nu}=0$ for $\nu\geqq 1$ , and $t=a_{0}=c_{-}$

Our proposition follows from this, from Theorem 3 and from Theorem 4.
In the above proof we proved that $vc=tu$ implied $t=c$ . Thereby we dick

not use the fact that $c$ (resp. t) is a unit. Therefore we get by Theorem $3_{j}$

PROPOSITION 3.6. Let $u,$ $v$ be as in Proposition 3.5 and let $F,$ $G$ be format
groups attached to them. Then the module $Hom_{0}(F, G)$ is canonically isomorphic
to $\{c\in 0|vc=cu\}$ .

\S 4. Formal groups over a field of characteristic $p>0$ .
Let $K$ be a discrete valuation field satisfying $(F)$ of \S 2. For a power

series $f\in 0[[x]]^{m},$ $f*denotes$ the power series in $k[[x]]^{m}$ obtained by reducing
the coefficients of $f$ modulo $\mathfrak{p}$ . In \S 4 we will study the reductions of formal
groups over $0$ and their homomorphisms.

4.1. Our first task is to prove two lemmas.
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LEMMA 4.1. Let $f\in K[[x]_{0}^{n}$ be of type $(P;u)$ and let $\psi(x^{\prime})\in 0[[x^{\prime}]]_{0}^{n}$ where
$x^{\prime}$ is a finite set of variables. Then we have

$f^{-1}(\pi\psi(x^{\prime}))\equiv 0$ $mod \mathfrak{p}$ .

PROOF. Put $h=(u^{-1}\pi)*i$ . By Lemma 2.4 it suffices to prove

$h^{- 1}(\pi x)\equiv 0$ $mod \mathfrak{p}$ .
Write $h(x)=\sum_{\nu}B_{\nu}x^{q^{\nu}}$ and $h^{-1}(\pi x)=l(x)$ . Since $1(x)\equiv\pi x$ mod deg2, the first-

degree coefficients of $l$ are in $\mathfrak{p}$ . Assume for $r\geqq 2$ that the i-th degree
coefficients of $l$ are in $\mathfrak{p}$ for all $i\leqq r-1$ . Write $1(x)=\pi l^{(r)}(x)+\Delta^{(\gamma)}(x)$ where
$l^{(\gamma)}(x)\in 0[[x]]_{0}^{n}$ and $\Delta^{(r)}(x)\equiv 0$ mod $\deg r$ . Then it follows from $h(l(x))=\pi x$

(4.1) $l(x)+\sum_{\nu=1}^{r-1}\pi^{q^{\nu}}B_{\nu}l^{(r)}(x)^{q^{\nu}}\equiv\pi x$ mod $\deg(r+1)$ .

Since $\pi^{q^{v}}B_{\nu}\in\pi M_{n}(0)$ for $\nu\geqq 1$ by Lemma 2.2, it follows from (4.1)

1 $(x)\equiv 0$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ .
Hence the r-th degree coefficients of 1 are also in $\mathfrak{p}$ . Thus we get $l\equiv 0mod \mathfrak{p}$

by induction.
LEMMA 4.2. Let $u\in \mathfrak{A}_{n}$ be special and let $f\in K[[x]]_{0}^{n}$ be of type $u$ . Let

$\psi_{1}\in K[[x^{\prime}]]_{0}^{n}$ and $\psi_{2}\in 0[[x^{\prime}]]_{0}^{n}$ . Then $f\circ\psi_{1}\equiv f\circ\psi_{2}$ mod p, if and only if
$\psi_{1}\equiv\psi_{2}mod \mathfrak{p}$ .

PROOF. Suppose $\psi_{1}\equiv\psi_{2}mod \mathfrak{p}$ . Then we have clearly $\psi_{1}\in 0[[x]]_{0}^{n}$ . Put
$h=(u^{-1}\pi)*i$ and $ h^{-1}\circ f=\varphi$ . Since $\varphi\in 0[[x]]_{0}^{n}$ by Lemma 2.4 and $\varphi\circ\psi_{1}\equiv\varphi\circ\psi_{2}$

mod p, we obtain by Lemma 2.1 and 2.2
$h\circ(\varphi\circ\psi_{1})\equiv h\circ(\varphi\circ\psi_{2})$ $mod \mathfrak{p}$

i. e. $f\circ\psi_{1}\equiv f\circ\psi_{2}$ mod p. Conversely assume $f\circ\psi_{1}\equiv f\circ\psi_{2}$ modp and put
$\pi\lambda=f^{-1}(f\circ\psi_{1}-f\circ\psi_{2})$ . Then $\lambda\in \mathfrak{o}[[x]]_{0}^{n}$ by Lemma 4.1. Since $F(x, y)=\Gamma^{1}(f(x)$

$+f(y))$ has coefficients in $\mathfrak{v}$, it follows from

$f\circ\psi_{1}=f\circ\psi_{2}+f\circ(\pi\lambda)$

$i$ . $e$ . $\psi_{1}=F(\psi_{2}, \pi\lambda)$ that $\psi_{1}\equiv\psi_{2}mod \mathfrak{p}$ .
4.2. We now study a certain type of homomorphisms of $F^{*}$ to $c*$ for

formal groups $F,$ $G$ over $0$ .
THEOREM 5. Suppose $K$ satisfies $(F)$ . Let $F$ and $G$ be formal groups over

$0$ , of dimension $n$ and $m$ and with transformers $f$ and $g$, respectively. Suppose
that $f$ (resp. g) is of type $u$ (resp. of type v) for special elements $u\in \mathfrak{A}_{n}$ and
$v\in \mathfrak{A}_{m}$ .

(i) Put $\varphi=\varphi_{w}=g^{-1}\circ(w*f)$ for $w\in \mathfrak{A}_{m,n}$ . Then $\varphi(x)\in 0[[x]]_{0}^{m}$ if and only
if there exists $t\in \mathfrak{A}_{m,n}$ such that $vw=tu$ .

(ii) If $\varphi_{w}\in 0[[\chi]]_{0}^{m}$ , then $\varphi_{w}^{\star}\in Hom_{k}(F^{*}, G^{*})$ .
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(iii) Let $h$ be of type $v^{\prime}$ for a special element $v^{\prime}\in \mathfrak{A}_{l}$ . If $\varphi_{w^{\prime}}=h^{-1}\circ(w^{\prime}*g)$

has integral coefficients for $w^{\prime}\in \mathfrak{A}_{l,m}$ , then $\varphi_{w}^{*},$ $\circ\varphi_{w}^{\star}=\varphi_{w’ w}^{*}$ .
PROOF. In order to prove (i) we may assume $g=(v^{-1}\pi)*i$ . Suppose there

is $t\in \mathfrak{A}_{m,n}$ such that $vw=tu$ . Clearly the first-degree coefficients of $\varphi$ are
integers. Assume for $r\geqq 2$ that the i-th degree coefficients of $\varphi$ are integers
for $i\leqq r-1$ . By Lemma 2.3 we have

$\pi\varphi=(v*g)\circ\varphi\equiv v*(g\circ\varphi)$ mod $\deg(r+1)$ , $mod \mathfrak{p}$

$=v*(w*f)=(vw)*f=(tu)*f$

$=t*(u*f)\equiv 0$ modp.

This implies that the r-th degree coefficients of $\varphi$ are also integers. This
shows $\varphi(x)\in 0[[\chi]]_{0}^{m}$ by induction. Conversely, suppose $\varphi=\varphi_{w}\in 0[[x]]_{0}^{m}$ . By
Lemma 2.3 we get

$(vw)*f=v*(w*f)=v*(g\circ\varphi)$

$\equiv(v*g)\circ\varphi=\pi\varphi\equiv 0$ modp.

Hence, by Proposition 2.6 we can find $t\in \mathfrak{A}_{m,n}$ such that $vw=tu$ . This proves
(i). Now we have

go $(\varphi\circ F)=(g\circ\varphi)\circ F=(w*f)\circ F$

and by Lemma 2.3
$((w*f)\circ F)(x, y)\equiv(w*(f\circ F))(x, y)$ $mod \mathfrak{p}$

$=(w*f)(x)+(w*f)(y)$

$=(g\circ\varphi)(x)+(g\circ\varphi)(y)$

$=g(G(\varphi(x), \varphi(y)))$ .
Thus we get $g\circ(\varphi\circ F)\equiv g\circ(G\circ\varphi)$ mod p. By Lemma 4.2 it follows from this
that $\varphi\circ F\equiv G\circ\varphi mod \mathfrak{p}$ . This implies $\varphi^{*}\in Hom_{k}(F^{*}, G^{*})$ . Let us prove (iii).
By Lemma 2.3 we have

$h\circ(\varphi_{w’}\circ\varphi_{w})=(h\circ\varphi_{w^{\prime}})\circ\varphi_{w}=(w^{\prime}*g)\circ\varphi_{w}$

$\equiv w^{\prime}*(g\circ\varphi_{w})$ mod p
$=w^{\prime}*(w*f)=(w^{\prime}w)*f$ .

By (i) there is $t^{\prime}\in \mathfrak{A}_{l,m}$ such that $v^{\prime}w^{\prime}=t^{\prime}v$ . Since $v^{\prime}w^{\prime}w=t^{\prime}vw=t^{\prime}tu,$ $\varphi_{w^{\prime}w}$

$=h^{-1}\circ((w^{\prime}w)*f)$ has integral coefficients by (i). Since
$h\circ(\varphi_{w^{\prime}}\circ\varphi_{w})\equiv h\circ\varphi_{w’ w}$ $mod \mathfrak{p}$

as we have shown, it follows from Lemma 4.2 that

$\varphi_{w},$ $\circ\varphi_{w}\equiv\varphi_{ww}$ modp.
This proves (iii).
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COROLLARY. Put $E=0.[[T]]$ . The submodule of $Hom_{k}(F^{*}, G^{*})$ , consisting

of homomorphisms of the form $\varphi_{w}^{*}(w\in \mathfrak{A}_{m,n})$ , is canonically isomorphic to the
module of all right E-homomorphisms of $E^{n}/uE^{n}$ into $E^{m}/vE^{m}$ . In particular
the subring of $End_{k}F^{*}$ , consisting of homomorphisms of the form $(f^{-1}\circ(w*f))^{*}$

$(w\in \mathfrak{A}_{n})$ , is canonically isomorphic to the right E-endomorphism ring of $E^{n}/uE^{n}$ .
PROOF. If $tu=vw$ , then

$t(uE^{n})=vwE^{n}\subset vE^{m}$ .
Thus $t$ induces a right E-homomorphism $\Phi_{t}$ of $E^{n}/uE^{n}$ into $E^{m}/vE^{m}$ . Con-
versely, as is easily verified, every right E-homomorphism of $E^{n}/uE^{n}$ into
$E^{m}/t)E^{m}$ is of the form $\Phi_{t}$ with $t\in \mathfrak{A}_{m,n}$ such that $tu\in v^{\backslash }?I_{m,n}$ . We will show
that $\varphi_{w}^{\star}=0$ if and only if $\Phi_{t}=0:\varphi_{w}^{*}=0\Leftrightarrow g^{-1}\circ(w*f)\equiv 0mod \mathfrak{p}\Leftrightarrow w*f\equiv 0mod \mathfrak{p}$

(by Lemma $4.2$) $\Leftrightarrow w\in \mathfrak{A}_{m,n}u$ (by Proposition $2.6$) $\Leftrightarrow tu\in v_{\backslash }^{\backslash )}Y_{m,n}u\Leftrightarrow t\in v\mathfrak{A}_{m,n}\Leftrightarrow tE^{n}$

$\subset vE^{m}\{\Rightarrow\Phi_{t}=0$ . This implies that $\varphi_{w}^{*}$ and $\Phi_{t}$ correspond bijectively. The
second assertion follows from this and from Theorem 5, (iii).

4.3. If $K$ satisfies $(F_{1})$ , every element of $Hom_{k}(F^{*}, G^{*})$ is of the form $\varphi_{w}^{*}$

with $w\in \mathfrak{A}_{m,n}$ . To prove it we need the following lemma.
LEMMA 4.3. Suppose $K$ satisfies $(F_{1})$ . Let $F$ be an n-dimensional formal

group over $0$ and let $f$ be its transformer. Put $M=\{\psi\in K[[x]]|(\psi\circ F)(x, y)$

$\equiv\psi(x)+\psi(y)$ mod p}. Then $M$ is topologically generated by $\mathfrak{p}[[x]]$ and by
$\{f_{t}^{\sigma^{\nu}}(x^{v^{\nu}})|1\leqq i\leqq n, \nu\geqq 0\}$ as o-module. (We define the topology of $K[[x]]$ by
taking $I_{\nu}=$ { $f\in K[[x]]|f\equiv 0$ mod $\deg(\nu+1)(\nu\geqq 1)$ } as a base of neigh-
borhoods of $0.$)

PROOF. It is clear that $\mathfrak{p}[[x]]\subset M$. By Lemma 2.3 and by Proposition
3.3 we have

$f^{\sigma^{\nu}}(F(x, y)^{p^{\nu}})=((T^{\nu}*f)\circ F)(x, y)$

$=(T^{\nu}*(f\circ F))(x, y)$ mod $p$

$=(T^{\nu}*f)(x)+(T^{\nu}*f)(y)$

$=f^{\sigma^{\nu}}(x^{p^{\lrcorner}}\backslash )+f^{\sigma^{\nu}}(y^{p^{\nu}})$ .

This implies $f_{i}^{\sigma^{\nu}}(x^{p\nu})\in M$ for $1\leqq i\leqq n,$ $\nu\geqq 0$ . Let $\psi$ be any element of Mand
let $r$ be the lowest degree such that $\psi\not\equiv 0$ mod $\deg(r+1),$ $mod \mathfrak{p}$ . Then $\psi\in M$

implies that the r-th degree homogeneous part $\psi^{(r)}$ of $\psi$ satisfies

(4.2) $\psi^{(r)}(x+y)\equiv\psi^{(r)}(x)+\psi^{(r)}(y)$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ .

By Lemma 3.2 (4.2) implies that $r$ is a power of $p,$ $sayp^{h}$ (if $ r<\infty$) and that
there exist $c_{1},$ $\cdots$ , $c_{n}\in 0$ satisfying

$\psi(x)-\sum_{i=1}^{n}c_{i}x\mathscr{S}^{\hslash}\equiv 0$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ .

Hence we get
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(4.3) $\psi(x)-\sum_{i=1}^{n}c_{i}f_{i}^{\sigma^{h}}(x^{p^{h}})\equiv 0$ mod $\deg(r+1)$ , $mod \mathfrak{p}$ .

Applying the same argument to the left side of (4.3) in place of $\psi$ and re-
peating this procedure we see in fact that $p[[x]]$ and the $f_{i}^{\sigma^{\nu}}(x^{p\nu})(1\leqq i\leqq n, \nu\geqq 0)$

generate a dense o-submodule of $M$.
THEOREM 6. Suppose $K$ satisfies $(F_{1})$ . The map: $\Phi_{t}-\rangle$ $\varphi_{w}^{*}$ , defined in

Theorem 5, is a bijection of $Hom_{E}(E^{n}/uE^{n}, E^{m}/vE^{m})$ onto $Hom_{k}(F^{*}, G^{*})$ . In
particular $End_{k}F^{*}$ is canonically isomorphic to $End_{E}(E^{n}/uE^{n})$ .

PROOF. It suffices to prove the surjectivity. We may assume $f=(u^{-1}\pi)*i$

and $g=(v^{-1}\pi)*i$ . For $\varphi_{*}\in Hom_{k}(F^{*}, G^{*})$ , take $\varphi\in 0[[x]]_{0}^{m}$ such that $\varphi^{*}=\varphi_{*}$ .
Since $\varphi\circ F\equiv G\circ\varphi mod \mathfrak{p}$ , we get by Lemma 4.2

(4.4) $ g\circ\varphi\circ F\equiv g\circ G\circ\varphi$ $mod \mathfrak{p}$ .

Put $\psi=g\circ\varphi$ . Then (4.4) implies

(4.5) $\psi(F(x, y))\equiv\psi(x)+\psi(y)$ $mod \mathfrak{p}$ .
By Lemma 4.3 it follows from (4.5) that there exists $w\in \mathfrak{A}_{m,n}$ satisfying

$\psi\equiv w*f$ modp,
or

$g\circ\varphi\equiv w*f$ $mod \mathfrak{p}$ .
By Lemma 4.2 this implies that $g^{-1}\circ(w*f)\in 0[[x]]_{0}^{m}$ and $\varphi\equiv g^{-1}\circ(w*f)mod \mathfrak{p}$ .
Thus we have $\varphi_{w}^{*}=\varphi^{*}=\varphi_{*}$ , which was to be proved.

4.4. Now we will show that, if $K$ satisfies $(F_{1})$ , any formal group over $k$

is obtained by reducing a formal group over $0$ .
The following lemma is due to [12].

LEMMA 4.4. Let $R$ be a commutative ring and let $X=$ $(X_{1}, \cdots , X_{n})$ and
$Y=$ $(Y_{1}, \cdots , Y_{n})$ be systems of $n$ variables. Suppose that a form $\Delta(X, Y)$ of
degree $r$ in $R[X, Y]$ is a commutative 2-cocycle, $i$ . $e$ .

$\Delta(X, Y)=\Delta(Y, X)$ ,

(4.6) $\Delta(Y, Z)-\Delta(X+Y, Z)+\Delta(X, Y+Z)-\Delta(X, Y)=0$ .

Then, if $r$ is not a power of a prime number, $\Delta$ is a 2-coboundary, $i$ . $e$ . there
is a form $\Gamma(X)$ of degree $r$ such that

$\Delta(X, Y)=\Gamma(X)-\Gamma(X+Y)+\Gamma(Y)$ .

If $r$ is a power of a prime, $\Delta$ is cohomologous to a linear combination of
$\Lambda_{r}(X_{i}, Y_{i})(1\leqq i\leqq n)$ with coefficients in $R$ .

PROOF. In case $n=1$ this is Lemma 3 of [11]. (For the proof of this
case see also [7], p. 62.) In general we can reduce the case $n=m$ to the
case $n=m-1$ by making use of the result of Lyndon [15] on normal co-
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homology groups. (See also [12]). For the convenience of the reader we will
perform this reduction in the following. We first note $\Delta(X, 0)=0=\Delta(0, X)$ .
(Put $Y=Z=0$ in (4.6)). Let us write $X^{\prime}=(X_{1}, \cdots , X_{m- 1}),$ $Y^{\prime}=(Y_{1}, \cdots , Y_{m- 1})$ ,
$i$ . $e$ . $X=(X^{\prime}, X_{m}),$ $Y=(Y^{\prime}, Y_{m})$ and $\Delta(X, Y)=\Delta(X^{\prime}, X_{m}, Y^{\prime}, Y_{m})$ . Define $\Delta_{1}$ by

(4.7) $\Delta_{1}(X, Y)=\Delta(X, Y)$

$-\{\Delta(0, X_{m}, X^{\prime}, 0)-\Delta(0, X_{m}+Y_{m}, X^{\prime}+Y^{\prime}, 0)+\Delta(0, Y_{m}, Y^{\prime}, 0)\}$ .

Then $\Delta_{1}$ is also a commutative 2-cocycle cohomologous to $\Delta$ . Putting $X^{\prime}=0$ ,

$Y_{m}=0$ in (4.7) we get

(4.8) $\Delta_{1}(0, X_{m}, Y^{\prime}, 0)=0$

and by commutativity

(4.8) $\Delta_{1}(X^{\prime}, 0,0, Y_{m})=0$ .

Now putting $X^{\prime}=0,$ $Y_{m}=Z_{m}=0$ in (4.6) for $\Delta=\Delta_{1}$ we get

$\Delta_{1}(Y^{\prime}, 0, Z^{\prime}, 0)-\Delta_{1}(Y^{\prime}, X_{m}, Z^{\prime}, 0)+\Delta_{1}(0, X_{m}, Y^{\prime}+Z^{\prime}, 0)-\Delta_{1}(0, X_{m}, Y^{\prime}, 0)=0$ .

By (4.8) this implies

(4.9) $\Delta_{1}(Y^{\prime}, X_{m}, Z^{\prime}, 0)=\Delta_{1}(Y^{\prime}, 0, Z^{\prime}, 0)$ .

In the same way we obtain

(4.10) $\Delta_{1}(X^{\prime}, Y_{m}, 0, Z_{m})=\Delta_{1}(0, Y_{m}, 0, Z_{m})$ .

Putting $Y^{\prime}=Z_{m}=0$ in (4.6) for $\Delta_{1}=\Delta$ we get

$\Delta_{1}(0, Y_{m}, Z^{\prime}, 0)-\Delta_{1}(X^{\prime}, X_{m}+Y_{m}, Z^{\prime}, 0)$

$+\Delta_{1}(X^{\prime}, X_{m}, Z^{\prime}, Y_{m})-\Delta_{1}(X^{\prime}, X_{m}, 0, Y_{m})=0$ .
By (4.8), (4.9) and (4.10) this implies

$\Delta_{1}(X^{\prime}, X_{m}, Z^{\prime}, Y_{m})=\Delta_{1}(X^{\prime}, 0, Z^{\prime}, 0)+\Delta_{1}(0, X_{m}, 0, Y_{m})$ ,

which completes the reduction: the case $ n=m\Rightarrow$ the case $n=m-1$ .
THEOREM 7. Suppose $K$ satisfies $(F_{1})$ of \S 3. For any formal group $F_{*}$

over $k$ there exists a formal group $F$ over $\mathfrak{o}$ such that $F^{*}=F_{*}$ .
PROOF. Let $n$ be the dimension of $F_{*}$ . Take $\varphi(x)\in 0[[x]]_{0}^{n}$ such that

$\varphi(x)\equiv x$ mod deg2 and $u(T)=pI_{n}+\sum_{\nu=1}^{\infty}C_{\nu}T^{\nu}\in \mathfrak{A}_{n}$ and form $ f=((pu^{-1})*i)\circ\varphi$ .
Then $F(x, y)=f^{-1}(f(x)+f(y))$ is a formal group over $0$ . We will prove that
we can choose the coefficients of $\varphi$ and $C_{1}$ , $C_{2},$ $\cdots$ successively so that $F^{*}=F_{*}$ .
Suppose that we have already chosen the i-th degree coefficients of $\varphi$ for
$i\leqq r-1$ and the $C_{\nu}$ for $p^{\nu}<r$ so that

(4.11) $F^{*}\equiv F_{*}$ mod $\deg r$ .
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Letting the other coefficients of $\varphi$ be equal to $0$ and the $C_{\nu}$ for $p^{\nu}\geqq r$ be equal
to O-matrix for example, form $ g=((pu^{-1})*i)\circ\varphi$ and $G(x, y)=g^{-1}(g(x)+g(y))$ .
Then $G$ is a formal group over $\mathfrak{o}$ and we have

(4.12) $G^{*}\equiv F_{*}$ mod $\deg r$ .
It follows from (4.12) and from the associative law of formal group that the
r-th degree homogeneous part $\Delta$ of $G^{*}-F_{*}$ is a commutative 2-cocycle in
$k[x]^{n}$ (cf. [11], [12]). If $r$ is not a power of $p$ , we can find by Lemma 4.4
$\psi\in \mathfrak{o}[x]^{n}$ whose components are forms of degree $r$ and satisfy

(4.13) $G^{*}(x, y)-F_{*}(x, y)\equiv\psi^{*}(x)-\psi^{*}(x+y)+\psi^{*}(y)$ mod $\deg(r+1)$ .
Let $h$ be the element of $\mathfrak{o}[[x]]_{0}^{n}$ , obtained by replacing $\varphi$ by $\varphi-\psi$ in the
definition of $g$ and put $H(x, y)=h^{-1}(h(x)+h(y))$ . Since $ h\equiv g-\psi$ mod $\deg(r+1)$ ,

we get

$H(x, y)=h^{-1}(h(x)+h(y))$

$\equiv g^{-1}(g(x)+g(y))-\{\psi(x)+\psi(y)-\psi(x+y)\}$ mod $\deg(r+1)$ .
This implies

$H^{*}(x, y)\equiv G^{*}(x, y)-\{\psi^{*}(x)+\psi^{*}(y)-\psi^{*}(x+y)\}$ mod $\deg(r+1)$

$\equiv F_{*}(x, y)$ mod $\deg(r+1)$ .

Thus we have been able to replace $r$ by $r+1$ in (4.11). If $r$ is a power of $p$ ,
say $r=p^{h}$ , we can find by Lemma 4.4 $\psi\in \mathfrak{o}[x]^{n}$ whose components are forms
of degree $r$ and $D\in M_{n}(0)$ such that

(4.14) $G^{*}(x, y)-F_{*}(x, y)\equiv\psi^{*}(x)-\psi^{*}(x+y)+\psi^{*}(y)-D^{*}\Lambda_{r}(x, y)$

mod $\deg(r+1)$ ,

$wh^{\alpha}.re$ we have written $\Lambda_{r}(x, y)={}^{t}(\Lambda_{r}(x_{1}, y_{1})$ , $\cdot$
., , $\Lambda_{r}(x_{n}, y_{n}))$ . Replacing $\varphi$ by

$\varphi-\psi$ and $u$ by $u+DT^{h}$ in the definition of $g$, we get an element $h$ of $0[[x]]_{0}^{n}$ .
Since

$p(pI_{n}+\sum_{\nu=\iota}^{h-1}C_{\nu}T^{\nu}+DT^{h})^{-1}\equiv p(pI_{n}+\sum_{v=1}^{h-1}$ C. $T^{\nu})^{-1}-p^{-1}DT^{h}$ mod $\deg(h+1)$ ,

we have

(4.15) $h(x)\equiv g(x)-\psi(x)-p^{-1}Dx^{r}$ mod $\deg(r+1)$ .
Put $H(x, y)=h^{-1}(h(x)+h(y))$ . Then we get from (4.15)

(4.16) $H(x, y)\equiv G(x, y)-\{\psi(x)+\psi(y)-\psi(x+y)\}+D\Lambda_{r}(x, y)$ mod $\deg(r+1)$ .
$lt$ follows from (4.14) and (4.16) that

$H^{*}(x, y)\equiv G^{*}(x, y)-\{\psi^{*}(x)+\psi^{*}(y)-\psi^{*}(x+y)\}+D^{*}\Lambda_{r}(x, y)$

$\equiv F_{*}(x, y)$ mod $\deg(r+1)$ .
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Thus we have been able to replace $r$ by $r+1$ in (4.11) in this case too. This
proves the existence of $u$ and $\varphi$ satisfying $F^{*}=F_{*}$ .

When $K$ satisfies $(F_{1})$ , all the formal groups over $k$ are obtained from
special elements by Theorem 7 and homomorphisms of these groups are
described in Theorem 6 and its corollary. In case where $0$ is the ring of Witt
vectors over a perfect field $k^{\prime}$ of characteristic $p>0$ , these results are nothing
other than the main results of Dieudonn\’e [4]. Using these results Dieudonn\’e
[5] gave a complete classification of isogeny classes of formal groups over
$k^{\prime}$ when $k^{\prime}$ is algebraically closed. For this see also [2], [8] and [16].

\S 5. Examples and applications.

5.1. The group of Witt vectors of length $n$ .
Let $k$ be a perfect field of characteristic $p>0$ and let $0=W(k)$ be the ring of

Witt vectors over $k$ . Put $u=pI_{n}-C_{1}T$ where
$C_{1}=\left(\begin{array}{lll}0 & 1. & 0\\\vdots & & 1\\0 & \cdots & .0\end{array}\right)\in M_{n}(0)$

. Then

it is easily verified that the reduction of the formal group with the transformer
$(pu^{-1})*i$ is the group of Witt vectors of length $n$ (cf. [5], p. 120).

5.2. The group $G_{n,m}$ for $n\geqq 2,$ $m\geqq 1$ .
Let $k,$ $0$ and $C_{1}$ be as in 5.1. Put $u=pI_{n}-C_{1}T-C_{m+1}T^{m+1}$ with

$C_{m+1}=\left(\begin{array}{llll}0 & \cdots & \cdots & 0\\\vdots & & & \vdots\\ 0 & \cdots & \cdots & 0\\1 & 0 & \cdots & 0\end{array}\right)$

and form $h=(pu^{-1})*i$ and $H(x, y)=h^{-1}(h(x)+h(y))$ .

Then, as is seen from [5], $H^{*}$ is the group $G_{n,m}(=G_{n,0,m}$ by the notation of
[5]). Suppose that $\zeta$) contains a primitive $(p^{m+n}-1)$ -th root $w$ of unity. Put

$W=\left(\begin{array}{ll}w^{p^{n- 1}} & 0\\0 & w^{p}w\end{array}\right)$

. Then as $w^{\sigma}=w^{p}$ , we have $WC_{1}=C_{1}W^{\sigma}$ and $WC_{m+1}=$

$C_{m+1}W^{\sigma^{m+1}}$ , so that $Wu=uW$. By Theorem 3 this implies $ h^{-1}(Wh(x))\in$ End. $H$.
On the other hand $(T*i)(x)=x^{p}\in End_{k}H^{*}$ , since $H$ is defined over $Z_{p}$ . Let
$E$ be the $Z_{p}$ -subalgebra of $End_{k}H^{*}$ generated by $(h^{-1}\circ(Wh))^{*}$ and $T*i$ . The
coefficients of components of $h^{-1}\circ(Wh)$ are polynomials in $Q_{p}[w]$ . Since
$h^{-1_{O}}(Wh)\in \mathfrak{o}[[x]]_{0}^{n}$ , these polynomials belong to $Z_{p}[w]$ , the ring of integers
in $Q_{p}(w)$ . Therefore we have

(5.1) $(T*i)\circ(h^{-1}\circ(Wh))^{*}=(h^{-1}\circ(W^{\sigma}h))^{*}\circ(T*i)$ .
If $(m, n)=1$ and $k$ is algebraically closed, $End_{k}H^{*}$ is isomorphic to the (unique)

maximal order in the central division algebra of rank $(m+n)^{2}$ over $Q_{p}$ , and
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invariant $n/(m+n)$ ([5], p. 129-130). Since $Q_{p}(w)$ is the unramified extension
of degree $m+n$ of $Q_{p}$ and $T*i$ is clearly a prime element in $End_{k}H^{*},$ $(5.1)$

implies $E=End_{k}H^{*}$ when $(m, n)=1$ .
5.3. The Lubin-Tate group $(n=1)$ .
Suppose $K$ satisfies $(F)$ of \S 2. For $\alpha\in \mathfrak{o},$ $\alpha\neq 0,$ $u_{\alpha}=\pi-\alpha^{\sigma- 1}T$ is a special

element. Put $f_{a}=((u_{\alpha}^{-1}\pi)*i)$ . An easy computation shows

(5.2) $f_{\alpha}(x)=\sum_{\nu=0}^{\infty}\pi^{-(1+\sigma+\cdots+\sigma^{\nu- 1})}\alpha^{\sigma^{\nu}- 1}x^{q^{\nu}}$

By Theorem 2, $F_{\alpha}(x, y)=f_{\overline{\alpha}^{1}}(f_{\alpha}(x)+f_{\alpha}(y))$ is a formal group over $0$ . Since $\alpha u_{\alpha}$

$=u_{1}\alpha,$ $f_{1}^{-1}(\alpha f_{\alpha}(x))$ has integral coefficients by Theorem 3. When $\pi^{\sigma}=\pi$ and
$\alpha=1,$ $F_{\alpha}$ coincides with the group constructed in [10], Theorem 2. (Theorem
2 of [10] can be reduced to the case $a=1$ by replacing $K$ by its unramified
extension of degree $a.$)

5.4. Interpretation of the Artin-Hasse function.
Suppose $K$ satisfies $(F_{1})$ of \S 3. Put $g(x)=-\log(1-x)=\sum_{?n=1}^{\infty}m^{-1}x^{m}$. It is

easily verified that $g$ is of type $ p-\tau$ . Put now

$L(\alpha, x)=\sum_{\nu=0}^{\infty}p^{-\nu}\alpha^{\sigma^{\nu}}x^{p}$
“ for $\alpha\in 0$ .

Then $g^{-1}(L(\alpha, x))$ has integral coefficients by the result of 5.3. This is a
$homomorphismofF_{\alpha}$ tog $(g(x)+g(y))=x+y-xy$ . Sinceg $(x)=1-\exp(-x)$ ,
$\exp(-L(\alpha, x))$ has coefficients in $0$ . This is nothing other than the Artin-Hasse
exponential function ([1]).

5.5. The characteristic equation for the Frobenius endomorphism.
Suppose $K$ satisfies $(F)$ . Assume $\pi^{\sigma}=\pi$ and let $u$ be a special element

of $\mathfrak{A}_{n}$ such that $uT=Tu$ . This implies that all coefficients of $u$ are $\sigma$-invariant.
Since the elements of $u$ and $T$ generate a commutative subring of $\mathfrak{o}_{\sigma}[[T]]$ ,

we can consider the cofactor matrix $w$ of $u$ :
(5.3) $uw=wu=(\det u)I_{n}$ .
Form $f=(u^{-1}\pi)*i$ and $F(x, y)=f^{-1}(f(x)+f(y))$ . By (5.3) and by Theorem 5,
(i) $(f^{-1}\circ(w*f))^{*}\in End_{k}F^{*}$ . Then by Theorem 5, (iii) and by Lemma 4.1,

(5.4) $f^{-1}\circ((\det u)*f)\equiv(f^{-1}\circ(u*f))\circ(f^{-1}\circ(w*f))$ $mod \mathfrak{p}$

$\equiv 0$ .
Write $\det u=\pi^{n}+\sum_{\nu=1}^{\infty}c_{\nu}T^{\nu},$ $c_{\nu}\in 0$ . Since $c_{\nu}^{\sigma}=c_{\nu},$ $f^{-1}\circ(c_{\nu}f)\in End_{o}F$ for $\nu\geqq 1$ by

Theorem 3. Put $[c_{\nu}]^{*}=(f^{-1}\circ(c_{\nu}f))^{*}$ and $\xi(x)=x^{q}$ . Since $f^{\sigma}=f,$ $(5.4)$ implies
that $\xi$ satisfies the equation

$[\pi^{n}]^{*}+\sum_{\nu=1}^{\infty}[c_{\nu}]^{*}\xi^{\nu}=0$

in $End_{k}F^{*}$ .
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\S 6. Formal groups over $Z$. Applications to zeta functions.

6.1. Suppose that for every prime number $p$ and for every $\nu\geqq 1$ there
is given a matrix $C_{p^{\nu}}$ in $M_{n}(Z)$ and that $C_{p^{\nu}}$ commutes with $C_{l^{\mu}}$ if $p$ and $l$

are distinct primes. Let $s$ be a complex variable and consider the (formal)

Dirichlet series

$(I_{n}+C_{p}p^{-s}+\cdots+c_{p^{\nu}}p^{\nu-1-\nu S}+ )^{-1}=\sum_{p=0}^{\infty}A_{p^{\nu}}p^{-\nu s}$ .

Since $A_{p^{\nu}}$ is expressed by $C_{p},$ $\cdots$ , $C_{p^{\nu}}$ with coefficients in $Z,$ $A_{p^{\nu}}$ commutes
with $A_{\iota^{\mu}}$ if $p\neq l$ . Hence we can consider the global Dirichlet series

(6.1) $\prod_{p}(I_{n}+C_{p}p^{-s}+\cdots+c_{p^{\nu}}p^{\nu-1-\nu s}+ )^{-1}=\sum_{m=1}^{\infty}A_{m}m^{-s}$ ,

where $A_{mm},$ $=A_{m}A_{m^{\prime}}=A_{m},A_{m}$ if $(m, m^{\prime})=1$ .
THEOREM 8. Let $\{C_{p^{\mu}}\}$ and $\{A_{m}\}$ be as above and form $f(x)=\sum_{m=1}^{\infty}m^{-1}A_{m}x^{m}$

$\in Q[[x]]_{0}^{n}$ . Then

(6.2) $pf(x)+\sum_{\nu=1}^{\infty}$ C. $f(x^{p^{\nu}})\equiv 0$ $mod pz_{p}$

for every $p$ and $F(x, y)=f^{-1}(f(x)+f(y))$ is a formal group over $Z$.
PROOF. Put

(6.3) $p(pI_{n}+\sum_{\nu=1}^{\infty}C_{p^{\nu}}T^{\nu})^{-1}=\sum_{\nu=0}^{\infty}B_{p^{\nu}}T^{\nu}$ .

Replacing $T$ by $ p\tau$ in (6.3) we get $B_{p^{\nu}}=p^{-\nu}A_{p^{\nu}}$ . Now

(6.4) $pf(x)+\sum_{\nu=1}^{\infty}C_{p^{\nu}}f(x^{p^{\nu}})=p\sum_{m=1}^{\infty}m^{-1}A_{m}x^{m}+\sum_{\nu=1}^{\infty}C_{p^{\nu}}\sum_{m=1}^{\infty}m^{-1}A_{m}x^{mp^{\nu}}$

For $p+k$ let $D_{kp^{\nu}}$ be the coefficient of $x^{kp^{\nu}}$ on the right side of (6.4). If $\nu=0$ ,

then
$D_{kp^{\nu}}=pk^{-1}A_{k}\equiv 0$ $mod pz_{p}$ .

If $\nu\geqq 1$ , then

$D_{kp^{\nu}}=pk^{- 1}p^{-\nu}A_{kp^{\nu}}+\sum_{\mu=1}^{\nu}C_{p^{\mu}}(kp^{\nu-f^{J}})^{-1}A_{kp^{\nu-\mu}}$

$=k^{- 1}A_{k}(p^{-(\nu-1)}A_{p^{\nu}}+\sum_{\mu=1}^{\nu}C_{p^{\mu}}p^{-(\nu-\mu)}A_{p^{\nu-\alpha}})$

$=k^{-1}A_{k}(pB_{p^{\nu}}+\sum_{\mu=1}^{\nu}C_{p^{\mu}}B_{p^{\nu-\mu}})$

$=0$ .

Thus (6.2) is proved. Moreover, by Theorem 2 the coefficients of $F$ are
$p$-integral for every $p$ . Hence $F(x, y)\in Z[[x, y]]$ . This completes our proof.

COROLLARY 1. Any l-dimensional formal group over $Z$ is strongly iso-
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morphic to one obtained in Theorem 8. The strong isomorphism classes cor-
respond bijectively to Dirichlet series of the form (6.1) with $n=1$ such that
$0\leqq C_{p^{\nu}}<p$ .

PROOF. Let $F$ be a l-dimensional formal group over $Z$ and let $f$ be its
transformer. By Theorem 4 we can find $C_{p}$ , $C_{p^{2}}$ , $\cdot..\in Z$ for every $p$ satisfying

$pf(x)+\sum_{\nu=1}^{\infty}C_{\nu}f(x^{p\nu})\equiv 0$ $mod pz_{p}$ .

Let $G$ be the formal group over $Z$ obtained from the Dirichlet series
$\prod_{p}(1+\sum_{\nu=1}^{\infty}C_{p^{\nu}}p^{\nu-1-\nu s})^{-I}$ By Theorem 8 and Theorem 2 $F\approx G$ over $Z_{p}$ for every

$p$ . Since the strong isomorphism of $F$ to $G$ is unique, this implies $F\approx G$ over
$Z$. The second assertion is a consequence of the Corollary of Theorem 4.

COROLLARY 2. Notations and assumptions being as in Theorem 8, assume
moreover that the $C_{p^{\nu}}$ commute with each other for a fixed prime $p$ . Put $[C_{p^{\nu}}]$

$=f^{-1}\circ(C_{p^{\nu}}f)$ and $\xi(x)=x^{p}$ . Then $[C_{p^{\nu}}]\in End_{Z}F$ for $\nu\geqq 1$ and $\xi$ satisfies the
equation

(6.5) $[pI_{n}]^{*}+\sum_{\nu=1}^{\infty}[C_{p^{\nu}}]^{*}\xi^{\nu}=0$

in $End_{k}F^{*}$ , where $k=Z/pZ$.
PROOF. Since $C_{p^{\nu}}$ commutes with $lI_{n}+\sum_{\mu=1}^{\infty}C_{\iota^{\mu}}T^{\mu}$ for any $l,$ $[C_{p^{\nu}}]$ is 1-

integral by Theorem 3. Hence $[C_{p^{\nu}}]\in End_{Z}F$ by Proposition 1.6. The equa-
tion (6.5) is a direct consequence of (6.2) and of Lemma 4.1.

6.2. The results of 6.1 can be applied to zeta functions of the following
types:

(a) Dirichlet L-functions.
(b) Zeta functions of elliptic curves over $Q$ .
(c) Dirichlet series obtained from a rational representation of Hecke

operators in the space of cusp forms of dimension $-2$ with respect to a
congruence unit group of an indefinite quaternion algebra over $Q$ (cf. [19]).

We have already studied (a) and (b) in [10]. We note that we can remove
the assumption on $S$ in [10], Theorem 5:

THEOREM 9. Let $C$ be a l-dimensional abelian variety over $Q$ and let $F$ be
a formal minimal model for $C$ over $Z$ (cf. [10]). Let $L_{p}(s)$ be the p-factor of
the $L$ function of $C$ and put $L_{s}(s)=\prod_{p\in S}L_{p}(s)$ for any set $S$ of prime numbers.

Then the formal group obtained from $L_{s}(s)$ is strongly isomorphic to $F$ over
$\bigcap_{p\frac{\prime}{\sim}S}(Z_{p}\cap Q)$ .

PROOF. Let $G$ be the formal group obtained from $L_{s}(s)$ . Since $L_{p}(s)=1$ ,
$(1\pm p^{-S})^{-1}$ or of the form $(1-a_{p}p^{-S}+p^{1-ZS})^{-1},$ $G$ is a formal group over $Z$ by
Theorem 8. As a strong isomorphism of $G$ to $F$ is unique if it exists, it
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suffices to prove $F\approx G$ over $Z_{p}$ for every $p\in S$ . Let $C_{p}$ be the reduction of
$C$ modulo $p$ . The cases where $C_{p}$ has a singular point were treated in [10].

Suppose that $C_{p}$ is an abelian variety with $L_{p}(s)=(1-a_{p}p^{-s}+p^{1-2S})^{-1}$ . Since
the Frobenius $\xi$ of $C_{p}$ satisfies

$\xi^{2}-a_{p}\xi+p=0$ ,

the transformer $f$ of $F$ satisfies

(6.6) $f^{-1}(pf(x)-a_{p}f(x^{p})+f(x^{P^{2}}))\equiv 0$ $mod pZ_{p}$ .

By Lemma 4.2 it follows from (6.6)

(6.7) $pf(x)-a_{p}f(x^{p})+f(x^{p^{2}})\equiv 0$ $mod pz_{p}$ .

The fact $F\approx G$ over $Z_{p}$ follows from (6.7), Theorem 8 and Theorem 2. This
completes the proof of our theorem.

Notations being as above, put $L_{c}(s)=\prod_{p}L_{p}(s)$ and let $G$ be the formal

group attached to it. Then there is $\varphi(x)\in Z[[x]]$ such that $\varphi(x)\equiv\chi$ mod $\deg 2$

and $F\circ\varphi=\varphi\circ G$ . If the conjecture of Weil [21] on $L_{c}(s)$ is true, the power
series $\varphi$ would be the “ q-expansion “ of a suitable automorphic function with
respect to $\Gamma_{0}(N)$ where $N$ is the conductor of $C$ .

It would be interesting to see that our results yield a simple proof of a
special case of the main result of Eichler [6] and Shimura [18]. Let $j(z)$ be
the elliptic modular function and put $L=Q(j(z), j(Nz))$ for $N\geqq 2$ . Then $L$ is
a field of algebraic function over $Q$ and $LC$ is the field of automorphic func-
tions with respect to the subgroup $\Gamma_{0}(N)$ of SL $(2, Z)$ . We shall consider
the case where the genus of $L$ is equal to 1. Let $C$ be a complete non-singular
model for $L$ over $Q$ . Since $j(z)$ has q-expansion

(6.8) $ j(z)=q^{-1}+744+\cdots$

with coefficients in $Z$ where $q=\exp(2\pi\sqrt{-1}z)$ , the infinite point $ z=i\infty$

corresponds to a rational point $\mathfrak{B}$ on $C$ and $C$ can be considered an abelian
variety over $Q$ , with the origin $\mathfrak{P}$ . Expanding the group law of $C$ by means
of the local parameter $j(z)^{-1}$ at $\mathfrak{P}$ we get a formal group $F$ over $Q$ . By the
theory of reduction there exists a finite set $S^{\prime}$ of prime numbers such that
for $p\not\in S^{\prime}$ the reduction $C_{p}$ of $Cmod p$ is non-singular and $j(z)^{-1}$ is a local
parameter at the origin of $C_{p}$ . Then, for $p\not\in S^{\prime}F$ has $p$ -integral coefficients
and the p-th power endomorphism of the reduction $F_{p}$ of $Fmod p$ satisfies
the same characteristic equation as that of $C_{p}$ . Let $f$ be the transformer of
$F$. Then $df(x)$ is the canonical invariant differential on $F,$ $i$ . $e$ . the $j(z)^{-1}-$

expansion of a differential of the first kind on $C$ . Let $\varphi(q)$ be the q-expansion
of $j(z)^{-1}$ . Then $\varphi(x)\in Z[[x]]$ and $\varphi(x)\equiv\chi$ mod $\deg 2$ by (6.8). Put
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$df(\varphi(x))=\sum_{m=1}^{\infty}a_{m}x^{m- 1}dx$ $(a_{1}=1)$ .

Then, as is well-known, $\sum_{m=1}^{\infty}a_{m}q^{m}$ is the q-expansion of a cusp form of dimen-

sion $-2$ with respect to $\Gamma_{0}(N)$ and by Hecke [9] the Dirichlet series $\sum_{m=1}^{\infty}a_{m}m^{-s}$

has an Euler product of the form

$\prod_{p|N}(1-a_{p}p^{-s})^{-1}\prod_{v+N}(1-a_{p}p^{-s}+p^{1- 2s})^{-1}$ , $a_{p}\in Z$ .

Form $G(x, y)=g^{-1}(g(x)+g(y))$ with $ g=f\circ\varphi$ . By Theorem 8 $G$ is a formal
group over $Z$, so that $F$ is also a formal group over $Z$. Let $p$ be a prime
number such that $p\not\in S^{\prime}$ and $p+N$. Then, by Corollary 2 of Theorem 8 the
Frobenius of $G_{p}$ is a root of the equation

(6.9) $p-a_{p}X+X^{2}=0$ .

Since $F\approx G$ over $Z,$ $(6.9)$ is also the characteristic equation for the Frobenius
of $F_{p}$ , and then of $C_{p}$ . Therefore $(1-a_{p}p^{-S}+p^{1-2s})^{-1}$ coincides with the $L$

function of $C_{p}$ . This proves the principal theorem of [18] in this case.
REMARK. By considering N\’eron’s minimal model for $L$ , we can prove

that the $p$-factor of the Hecke Dirichlet series coincides with that of the zeta
function of $L$ , assuming only that $j(z)^{-1}$ is a local parameter at the origin of
$C_{p}$ . See [10] as for the case $C_{p}$ is singular. In view of the conjecture of
Weil it is plausible that $F$ is a formal minimal model for $C$ .

6.3. We now deal with (c). We use the terminology, notations and results
of Shimura [19]. Let $\Phi$ be an indefinite quaternion algebra over $Q$ and let
$0$ be a maximal order in $\Phi$ . For a natural number $N$ prime to the discriminant
of $\Phi,$ $\Gamma_{N}$ denotes the group consisting of units $\gamma$ in $0$ such that $N(\gamma)=1$ and
$\gamma\equiv 1mod$ No. $\Gamma_{N}$ is a discontinuous group operating on the upper half plane.
Let $ff_{N}$ be the field of automorphic functions relative to $\Gamma_{N}$ and let $n$ be its
genus. Take $\mathfrak{L}_{N},$ $\mathfrak{C}_{N}$ and JN as in [19]. $\mathfrak{L}_{N}$ is a function field over $Q$ such
that $\mathfrak{L}{}_{N}C=ff_{N},$ $\mathfrak{C}_{N}$ is its complete non-singular model and JN is a Jacobian of
$\mathfrak{C}_{N}$ , each defined over $Q$ . Let $\mathfrak{D}_{0}(\mathfrak{C}_{N})$ and $\mathfrak{D}_{0}(J_{N})$ be the spaces of differentials
of the first kind on $\mathfrak{C}_{N}$ and $J_{N}$ , respectively. For $f,$ $g\in \mathfrak{L}_{N},$ $gdf\in \mathfrak{D}_{0}(\mathfrak{C}_{N})$ if
and only if $gf^{\prime}\in S_{2}(\Gamma_{N})$ . Let $\omega=\{\omega_{1}, \cdots , \omega_{n}\}$ be a base of $\mathfrak{D}_{0}(\mathfrak{C}_{N})$ , defined
over $Q$ . Fixing a canonical map $\mathfrak{C}_{N}\rightarrow J_{N}$ (which may not be defined over $Q$),

let $tt$) and $\eta$ be the corresponding bases of $S_{2}(\Gamma_{N})$ and $\mathfrak{D}_{0}(J_{N})$ , respectively.
For $\alpha\in \mathfrak{o}$ such that $N\alpha>0,$ $(N, \alpha)=1,$ $\Gamma_{N}\alpha\Gamma_{N}$ operates on $S_{2}(\Gamma_{N})$ on the one
hand. Let $\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})$ denote its representation matrix relative to $\mathfrak{w}$ . On the
other hand $\Gamma_{N}\alpha\Gamma_{N}$ yields a correspondence $X_{\eta}$ of $\mathfrak{C}_{N}$ over $Q$ where $q=\alpha 0$

and then induces an endomorphism $\xi$ of $J_{N}$ . This $\xi$ is defined over $Q$ ([19],
p. 325). Denoting by $M^{a}(\xi)$ the representation matrix of $\xi$ with respect to $\eta$ ,



The theory of commutative formal groups 243

we have

(6.10) $M^{a}(\xi)=\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})$

([19], p. 327), where $M^{a}(\xi)\in M_{n}(Q)$ . By [19] the $\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})$ are semi-simple
and commute with each other, and their eigenvalues are algebraic integers.
Hence there is a regular matrix $P$ in $M_{n}(Q)$ such that the $P^{-1}\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})P$

are all in $M_{n}(Z)$ . By changing the bases if necessary, we may assume that
the $\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})$ are already in $M_{n}(Z)$ .

Let $S_{1}$ be the set of prime numbers which fail to satisfy at least one of
P. $1$) $\sim 10$) in [19]. Then $S_{1}$ is a finite set. Let $S_{2}$ be the set of prime divisors
of $d(\Phi)$ . By Theorem 4 of [19] we have for $peS_{1}VS_{2}$

(6.11) $\tilde{X}_{\mathfrak{q}}=\Pi+\Pi_{0}^{\prime}\tilde{Y}_{p}$ ,

where $q$ is an integral left o-ideal such that $N(q)=p,$ $\Pi$ is the Frobenius of
$\tilde{\mathfrak{C}}_{N}$ and $Y_{p}$ is defined on p. 315 of [19]. Correspondingly we have

(6.12) $\tilde{\xi}_{p}=\pi+\pi^{\prime}\circ\tilde{\eta}_{p}$ .
Now let $t=\{t_{1}$ , $\cdot$ .. , $t_{n}\}$ be a system of local parameters $(\in Q(J_{N}))$ at the

origin of $J_{N}$ . Expanding the group law of JN into power series relative to $t$ ,

we get an n-dimensional formal group $F$ over $Q$ . We shall call this formal
group a formal model for $J_{N}$ . (A formal model is also obtained from the t-
expansion of a base of $\mathfrak{D}_{0}(J_{N})$ , defined over $Q$). By the theory of reduction
([20], Chapter III) there is a finite set $S_{3}$ of prime numbers such that for
$p\not\in S_{3}$ :

(i) $t$ is a system of local parameters at the origin of $\tilde{J}_{N}=the$ reduction
of JN $mod p$ .

(ii) The differentials $\eta_{1},$
$\cdots$ , $\eta_{n}$ have good reductions $mod p$ and yield a

base of $\mathfrak{D}_{0}(\tilde{J}_{N})$ .
Assume $p\not\in S_{1}US_{2}US_{3}$ . Then $F$ has coefficients in $Z_{p}$ and an endomorphism
of $\xi$ of $J_{N}$ , corresponding to some $\Gamma_{N}\alpha\Gamma_{N}$ , induces an endomorphism of $F$

over $Z_{p}$ . Let $f$ be the transformer of $F$ and let $f^{-1}\circ(C(\xi)f)(C(\xi)\in M_{n}(Z_{p}))$

denote this endomorphism of $F$. Since $\xi^{\prime}$ is also defined over $Q$ , it induces
the endomorphism $f^{-1}\circ(C(\xi^{\prime})f)$ of $F$ over $Z_{p}$ . Now it follows from (6.12) that

$\tilde{\xi}_{p}^{\prime}=\pi^{\prime}+\tilde{\eta}_{p}^{\prime}\circ\pi$

and then

\langle 6.13) $p-\tilde{\xi}_{p}^{\prime}\circ\pi+\tilde{\eta}_{p}^{\prime}\circ\pi^{2}=0$ .

This implies

$f^{-1}(pf(x)-C(\xi_{p}^{\prime})f(x^{p})+C(\eta_{p}^{\prime})f(x^{p^{2}}))\equiv 0$ $mod pz_{p}$ ,

or by Lemma 4.2
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(6.14) $pf(x)-C(\xi_{p}^{\prime})f(x^{p})+C(\eta_{p}^{\prime})f(x^{p^{2}})\equiv 0$ $mod pZ_{p}$ .
Let $E$ be the subring of $End_{Q}J_{N}$ generated by endomorphisms corresponding

to $\{\Gamma_{N}\alpha\Gamma_{N}|\alpha\in 0, N(\alpha)>0, (\alpha, N)=1\}$ . Then, as $E\otimes Q$ is a commutative
semi-simple algebra over $Q$ , the map $\xi-\rangle$ $\xi^{\prime}$ yields an isomorphism of $E$ into
$End_{Q}J_{N}$ . Now $J_{N}$ is self-dual and $M^{a}({}^{t}\xi)$ is the transposed matrix of $M^{(}{}^{t}(\xi)$ ,

since $M^{l}((\xi)\in M_{n}(Q)$ . (For example see [20], p. 25). As $M^{a}(\xi^{\prime})$ is conjugate
with $M^{a}({}^{t}\xi),$ $M^{a}(\xi)$ and $M^{a}(\xi^{\prime})$ have the same trace. Therefore there is an
invertible matrix $P_{1}\in M_{n}(Q)$ such that

(6.15) $M^{a}(\xi^{\prime})=P_{1}^{-1}M^{a}(\xi)P_{1}$ for all $\xi\in E$ .
Now since the t-expansion of $\eta$ is a base of $\mathfrak{D}^{*}(F;Q)$ and $C(\xi^{\prime})(\xi\in E)$ is the
representation matrix of $\xi^{\prime}$ relative to the canonical base $df(x)$ of $\mathfrak{D}^{*}(F ; Q)$ , we
can find an invertible matrix $P_{2}\in M_{n}(Q)$ such that

(6.16) $C(\xi^{\prime})=P_{2}^{-1}M^{a}(\xi^{\prime})P_{2}$ for all $\xi\in E$ .
Putting $P_{8}=P_{1}P_{2}$ , we get from (6.15), (6.16)

(6.17) $C(\xi^{\prime})=P_{3}^{-1}M^{a}(\xi)P_{3}$ for all $\xi\in E$ .
Let $S_{4}$ be the set of prime numbers $p$ such that $P_{3}$ or $P_{3}^{-1}$ is not $p$ -integral,

and put $S=\bigcup_{i=1}^{4}S_{i}$ . $S$ is a finite set. For $p\in ES$ we get from (6.14) and (6.17)

(6.18) $pP_{\theta}f(x)-M^{a}(\xi_{p})P_{3}f(x^{p})+M^{a}(\eta_{p})P_{8}f(x^{p^{2}})\equiv 0$ $mod pZ_{p}$ .
Now replacing the parameters $t={}^{t}(t_{1}, \cdots , t_{n})$ by $u=P_{3}t$ , we obtain the

formal model $H(x, y)=P_{3}F(P_{3}^{-1}x, P_{3}^{-1}y)$ of $J_{N}$ , with the transformer $h(x)$

$=P_{3}f(P_{3}^{-1}x)$ . For $p\not\in S$ we have

$(P_{3}^{-1}x)^{p^{\nu}}\equiv P_{3^{-1}}x^{p^{\nu}}$ $mod pz_{p}$

and then by Lemma 4.2

(6.19) $f((P_{3}^{-1}x)^{p^{\nu}})\equiv f(P_{3}^{-1}x^{p^{v}})$ $mod pz_{p}$ .

By (6.18) and (6.19) we get finally

(6.20) $ph(x)-M^{l}(\xi_{p})h(x^{P})+M^{tl}(\eta_{p})h(x^{p^{2}})\equiv 0$ $mod pz_{p}$

for $peS$ .
Now we have

(6.21) $M^{a}(\xi_{p})=\mathfrak{T}_{2}$( $p$ ; No) and $M^{a}(\eta_{p})=R_{2}$( $p$ ; No)

([19], p. 327). Let $M$ be the product of all primes in $S$ and put $Z_{s}^{\prime}=\bigcap_{pfS}(Z_{p}\cap Q)_{-}$

The Dirichlet series

$\prod_{pIMN}[I_{n}-\mathfrak{T}_{2}(p;No)p^{-s}+R_{2}(p;N\mathfrak{o})p^{1- 2s}]^{-1}=\sum_{(m,MI\eta=1}\mathfrak{T}_{2}(m;No)m^{-S}$
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is a main part of the one defined in [19]. Let $G$ be the formal group over
$Z$ corresponding to it by Theorem 8. By Theorem 2 it follows from (6.20)

and (6.21) that $G\approx H$ over $Z_{p}$ for every $peS$ . Hence $G\approx H$ over $Z_{s}^{\prime}$ by the
uniqueness of strong isomorphism. We have proved the following theorem:

THEOREM 10. Let notations be as in [19] and let $\mathfrak{T}_{2}$ be an integral rep-
resentation as above. Then there is a finite set $S$ of prime numbers such that
the formal group obtained from the Dirichlet series $\sum_{(m,\ovalbox{\tt\small REJECT} N)=1}\mathfrak{T}_{2}(m;No)m^{-s}$ is
strongly isomorphic over $Z_{S}^{\prime}$ to a formal model for $J_{N}$ .

Thus the matrix Dirichlet series $\sum \mathfrak{T}_{2}(m;No)m^{-\$}$ itself (not only its
determinant) has important significance for $J_{N}$ . What kind of curve over $Q$

has a Jacobian whose formal completion is isomorphic to a formal group
corresponding to a matrix Dirichlet series with Euler product ?

6.4. All zeta functions, which we studied in 6.2 and 6.3, are of the form
$I_{p}I(I_{n}+C_{p}p^{-s}+C_{\mathcal{D}^{2}}p^{1-2S})^{-1}$ . Do there exist number-theoretic Dirichlet series of

the form (6.1) such that not all $C_{p^{\nu}}$ are equal to $0$ for $\nu\geqq 3$ ? If such ones
exist, formal groups over $Z$ obtained from them would be non-algebroid.
Their transformers would be obtained from analytic functions, perhaps satis-
fying suitable kinds of differential equations.

Osaka University
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