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Introduction

Let D be the Siegel domain of the second kind in the space C¥ of N
(=n-+m) complex variables due to Pyatetski-Shapiro [6], associated with a
convex cone V in the space R™ of n real variables and a V-hermitian form
F on the space C™ of m complex variables. By an infinitesimal automorphism
of the domain D, we mean a holomorphic vector field X on D which is com-
plete, that is, generates a global one parameter group ¢, of transformations.

The main purpose of the present paper is to give the details of the results
announced in the note [8], establishing some theorems on the Lie algebra g
of all infinitesimal automorphisms of a Siegel domain D of the second kind.

Assume that the domain D is affine homogeneous. At the outset we prove
that the Lie algebra g is endowed with the structure of a graded Lie algebra

as follows: g = ‘E g? (direct sum); [g?, g?]C g?*?; g?={0} (p < —2) and the
p=—oc0
subalgebra g, =g 2+g'+g° of g is just the Lie algebra of all infinitesimal

affine automorphisms of D (Theorem 3.I). Then we prove that the graded
Lie algebra g, is prolonged to a graded Lie algebra §—=g *+g " 1+g°+ % §? and
p=1

that the graded Lie algebra g is determined as a suitable graded subalgebra
of § (Theorem 4l1). From a geometric point of view, the Lie algebra § may
be described as a Lie algebra of polynomial vector fields X on C¥ tangent to
the Silov boundary S of the domain D (See §4). In [6], Pyatetski-Shapiro
has determined the graded Lie algebra g, in terms of the cone V and the
V-hermitian form F. in turn enables us to compute the Lie
algebra g on the basis of the Lie algebra g, (See §5, Examples).

In our discussion, it is important that every infinitesimal automorphism
X on the domain D is extended to a holomorphic vector field defined on the
whole C¥ and tangent to the real submanifold S of C¥ (Proposition 3.I).
Owing to this fact, our problems can be connected, to a great extent, with
the geometry of real submanifolds of complex manifolds and hence with the
geometry of differential systems as developed by Tanaka [9].
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In §1, we study the standard Lie algebra sheaves, which we owe essen-
tially to Tanaka [9], §§5 and 6. In §2, we recall several known results about
a Siegel domain of the second kind. §3 (resp. §4) is devoted to the proof of
(resp. of [Theorem 4. 1). In §5, we above all show that, in the
case when g *=[g™ %, g°'], the Lie algebra g coincides with the prolongation
g of g, and consists of all holomorphic vector fields X on C? tangent to S
(Proposition 5.3). Finally in Appendix, we prove a uniqueness theorem

(Theorem A) for the graded Lie algebra g=—>]g? stated as follows: Let D
»

and D’ be two Siegel domains of the second kind in C¥ which are both affine

homogeneous. If the domains D and D’ are mutually isomorphic, so are the

corresponding graded Lie algebras g—= 3g? and g’ = 3}g’?. It should be noted
» »

that our uniqueness theorem reproduces the uniqueness theorem for the re-
alization of homogeneous bounded domains as Siegel domains of the second
kind which was first asserted by Pyatetski-Shapiro and later rigorously
proved by Kaneyuki [2].

Preliminary remark

R (resp. C) denotes the field of real numbers (resp. of complex numbers).
Let V be a real vector space. V, denotes the complexification of V. For
each x=V,, we denote by Re x (resp. by Im x) the real part (resp. the imagi-
nary part) of x with respect to the real form V of V, and by % the vector
in V, conjugate to x.

Throughout the present paper, we always assume the differentiability of

class C*.

§1. The algebraic prolongations and the standard Lie algebra sheaves.

1.1. The algebraic prolongations (cf. Tanaka [9], §5). Let m= Zogp be
P<

a graded (Lie) algebra with dimm < co. (We do not necessarily require that

m is fundamental in the sense of [9], i.e., m is generated by g™'.) We show

that with such a graded algebra m there is associated a graded algebra

g(m) = 3 g”?(m), called the prolongation of m, satisfying the following conditions:
»

1) m= 3 g?(m) as graded algebras;
20
2) For each p=0, the condition “ X & g?(m), [ X, m]={0}” implies X=0;
3) g(m) is maximum among the graded algebras satisfying conditions 1)
and 2). More precisely, let =37 be any graded algebra satisfying con-
»

ditions 1) and 2). Then % is imbedded in g(m) as a graded subalgebra.
We put g?(m)=g? (p<0). Let us define vector spaces g?(m) (p» =0) induc-
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tively as follows: First of all, we define g°(m) to be the Lie algebra of all
derivations of m as graded algebra. Suppose now that we have defined gP(m)
(0=<p < k) in such a way that g?(m) is a subspace of q?(m)= %} Hom (g%, g""?(m))
<0
 Hom (m, 3} ¢*?(m)). Then we define g*(m) to be the subspace of ¢*(m)=
7<0
> Hom (g7, g"*"(m)) which consists of all X*e< ¢*(m) satisfying the following
<0
equalities :
XYY WZH)—X¥ZHNY")=X¥[Y", Z*]) for all Y eg", Z:g® (r,s<0),
where we put
X¥YWZH=[X"Y",Z*] Gf r+k<0)
and
XMZHNYY=[XMZ®, Y] (f s+k<0).
Thus we have completed our inductive definition. We put g(m)= > g?(m).
Y4

Then we see easily that there is a unique bracket operation [, ] in g(m)
such that g(mm) becomes a graded algebra satisfying conditions 1) and 2) with
respect to this bracket operation and such that [ X% Y= X¥Y") for all
X*egf(m) and Y"eg” (=0, »<0). Moreover it is easy to see that the
graded algebra g(m) thus defined satisfies condition 3).

We note that the Lie algebra g°(m) contains a unique element E in its
center such that [E, X]=pX for all Xe g? and all p.

Let m and g(in) as above. Suppose that we are given a sequence (§?)o=p=x
satisfying the following conditions:

a.n 1) g? is a subspace of g?(m);
2) The family (g”)-cocp=r Satisfies [g7, ¢ g™ (r+s< k).

Then we define a sequence (g?),~; inductively as follows: [ being an integer >k,
suppose that we have defined g*+, ..., ¢! as subspaces of g¥*'(m), ---, ¢'~'(m),
respectively. Then we define g’ to be the subspace of g'(m) consisting of all
the elements X* such that [ X', ¢g"]C ¢"*" (r <0). If we put g=7>)g?, then we

can easily prove g to be a graded subalgebra of giin). The graged algebra g
is called the prolongation of (m, g° ---, g%).

Let g° be a subalgebra of g°(m). Then we clearly have [g", g*JCg¢"**
(r+s=0). Therefore we may talk about the prolongation of (m, g°.

1.2. We shall use the following lemma in §3.

LEMMA 1.1. Let g be a finite dimensional Lie algebra, L° a subalgebra of
g and (P)p<o @ family of subspaces of g. As for these things, assume the
Jfollowing conditions:

1) (g, L") is effective, i.e., L° contains no ideals (+ {0}) of g;

2) m:pZng’ (direct sum) and it is a graded algebra ;



Infinitesimal automorphisms of Siegel domains 183

3) g=m+L" (direct sum);
4y If we put L? = igW—LO, then [L?, L*JC L?;
r=p

5) L° contains an element E such that [E, X1=pX for all X< g? and p<0.
For any integer p, let n? be the subspace of ¢ consisting of all X &g such that
[E, XT=pX. Then we have:

(1) g=2>n? (direct sum) and it is a graded algebra;

b
2) gP=nu? (p<0) and L*= F n?;

p=0

(3) For each p=0, the condition “X en?, [ X, m]={0}” implies X=0.

Proor. Let us define a family (L?),-, of subspaces of L° inductively as
follows: p being an integer > 0, suppose that we have defined L?-' Then we
define L? to be the subspace of L?~* consisting of all X & L?* such that [ X, L]
cC L?* for all ¢ <0, completing our inductive definition. By 1)—4), we see
that the family (L?),>, combined with the family (L?),=, satisfies L? D LP+,
g=\UL?, "NL?={0} and [L?, L] L?*%. We put i? = LP?/L?*" and g= X n’.

p D
Then it is clear that g is a graded algebra and that, for each ng,p the
condition “ X e @?, [ X, n?]= {0} for all ¢ <0” implies X =0. Denoting by £
the image of E by the projection of L° onto n’, we prove

(1.2) [E, X1=pX

for all X< n? and all p. Indeed, (1.2) is clearly the case if p <0 (by 5). k&
being an integer =0, suppose that (1.2) holds for any p < k. Then for all
Xen* and Y en? (¢ <0), we have

[[E, X1—kX, YI=[[E, V], XJ+[E, [X, Y]]—k[X, ¥]
=q[V, X]+(+¢[X, Y1—PF[X, Y1=0, whence
[E, X]1=£kX, proving our assertion. Let us now denote by n? the subspace
of L? consisting of all X& L? such that (ad E—p)X =0 and show that
1.3 L? =n3+4 LP* (direct sum).

Indeed, let Xenj\ L?*. Since (1.2) may be interpreted as (ad E—r)L"C L™,
we have (ad E—(p+1)X=—Xe LP*? (ad E—(p+2)X=—-2Xe< L?* and so
on. Therefore we have X N L"={0} and hence ng L?* = {0}. Since n3 is

the kernel of L?> X—(ad E—p)X < L?*, we have dim (L?/n3)<dim LP+,
Thus we get (1.3). By (1.3) it is clear that n? =n% and L? = 3> n" (direct sum).

rEZp

In particular, g=n? (direct sum), which is clearly a graded algebra. Fur-
P

thermore we easily have assertions (2) and (3).
1.3. The standard Lie algebra sheaf of type m (cf.[9], §6). Let m= > g?
50

be a graded algebra with dim m <co and let g(m) = > g?(m) be the prolongation
»
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of it. Let M(m) be the simply connected Lie group whose Lie algebra (of all
left invariant vector fields) is equal to the Lie algebra m. Then we see that,

-1
for each p <0, the subspace d?= > g” of m defines a differential system 47
r=p

on M(m) which is invariant under the left translations. Let ./ denote the
sheaf of local vector fields X on M(m) leaving every differential system 4?
invariant. /4 is a transitive Lie algebra sheaf on M(m), which is called the
standard Lie algebra sheaf of type m.

Let & be the Maurer-Cartan form of the Lie group M(m) that is an m-
valued 1-form on M(m) defined by &(X,)=X (Xem and x= M(m)) and let &7

be the g?-component of £ in the decomposition m= 3} g?. Then the differential
p<0

system 4? is defined by the equations & =0 (» <p) and we can prove the
following fact:

A local vector fields X defined on an open set U of M(m) is a local cross-
section of 4 if and only if there is a g°(m)-valued function f° on U such that

Lyg?=[/%§&"] (mod & (r<p)),
where Ly denotes the Lie derivation with respect to the vector field X. It
should be noted that Lemmas 6.1—6.5 in [9] remain true without any modifi-
cation for the sheaf (4. In particular we have: For any local cross-section
X of A defined on an open set U of M(m), there is a unique family (/Bp=z
satisfying the following conditions:

1.4 1) f% is a g?(m)-valued function on U;
2) [E=87X);
3) dfpzr;o[f%'ﬁ §1.

Let us now confine ourselves to the case where ¢g?={0} (p <-—2), i.e.,
m=g?4g% Let er? .-, ;% (resp. e}, .-+ , e;) be a base of g% (resp. of g%
and let x,, -+, x,, ¥, -+ , Y be the normal coordinate system of the Lie group
M(m) corresponding to the base e7?, ---, 3% et -+, e of m.

Since exp:m— M(m) is a real analytic homeomorphism of m onto M(m),
this coordinate system is defined on the whole M(m). We put x= 3> x;¢;* and

y=2y;e;', which are g% and g~'-valued functions on M(m), respectively. Let
J

cegl(m). By [9] Lemma 6.3, there is a global cross-section X of I such
that f2(e)=0 (p <), f¥(e)=c and f2=0 (p > 1), e being the identity of the
Lie group M(m).

LEMMA 1.2.
(L) f2=HP(x, y)e,
__1\r+s
where Hp(x, )= 2 —(ml)—,—(ad x)(ad y)°.

27 +8=l—p rls!
7,820
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) 1
(@) Lyx=Hpx, et [y, Hox, 3)cl,
Lyy=H7'(x, y)c.
Proor. We easily find E‘szx——%[y, dy] and & *'=dy. By (1.4), we
have

1.5) dfg=L/%" E71+L/% €71

We put g? = H?(x, y)c, which is a g?(m)-valued function on M(m). We have
g7(e)=0 (p <), gie)=c and g?=0 (p>1).
By using the equalities

d{ad x)"¢’ =r ad(dx)(ad x)™1c’,

d(ad yy'c' = s ad(dy)(ad y)'~'¢'+ ,§§$§;zad([y, dyl)ad y)'~*c’

for all ¢/ € g(im), we find
(1.6) dg?=[g?** & 1+Lg", &1].

We have fg=g?=0 (p>1). k being an integer </, suppose that f2=g? for
all p>Fk. Then by (1.5) and (1.6), we have fEi—g¥*=constant. Since f(e)
=g™e), it follows that ff=g* Thus we have proved (1). (2) follows from
(1) and the equalities
1
JR=E8X)=Lyx——1y Lyy] and f3=E"(X)=Lyxy.
Let us return to the general case and suppose that we are given a

sequence (gP)p<p< satisfying (1.1). Let g=73 g be the prolongation of (m, g°
»

-+, 6. We denote by £ the sheaf of local vector fields X on M(m) such that
X is a local cross-section of .4 and such that the g?(m)-valued function f2 is
reduced to a g?-valued function for all p (0=p=<k).

Then we see that Lemma 6.9 in [9] remains true for the sheaf . It
follows that £ is a transitive Lie algebra sheaf on M(m), which is called the
standard Lie algebra sheaf of type (m, g° ---, g¥). The formal algebra L of £
may be identified with the formal algebra g =T[g? associated with the prolon-
gation g of (m, g° ---, g®). !

§ 2. Siegel domains of the second kind.

Let W-2 (resp. W™Y) be a real (resp. complex) vector space of finite dimen-
sion. We say that an open set V of W2 is a convex cone in W~? if it satis-
fies the following conditions:

1) For any x=V and any positive number 4, ixeV;

2) For any x,x’ €V, x+x'€V;
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3) V contains no entire straight lines.
Given a convex cone V in W%, we say that a mapping F of W=xW-! to W;*
(=the complexification of W2 is a V-hermitian form on W-! if it satisfies
the following conditions:

1) F(y,y") is complex linear with respect to the variable vy, and F(y, V")

=F',;

2) F(y,y <V, where V denotes the closure of V in w-2;

3) F(3,3»+0if y=+0.

In what follows, we shall consider a fixed convex cone V in W% and a
fixed V-hermitian form F on W-.

We put W=W;*+W-! and denote by z (resp. by u) the projection of W
onto W;% (resp. onto W-%). We define a mapping @ of W to W-? by

O(p) =Im 2(p)—Fu(p), w(p))  (peW).

Then the domain D =@~ (V) (=the inverse image of V by @) of W is called
the Siegel domain of second Kkind associated with the cone V and the V-
hermitian form F (Pyatetski-Shapiro [6]). We have DV —1W2=+—1V.

2.2. It is easy to see (cf. [3] that the closure D of D in W is given by
@-(V) and the boundary 0D of D by @-43V), where 9V denotes the boundary
of V.

Let S denote the real submanifold of W defined by the equation @ =0,
e, S=@10). S is a subset of 0D. Let & be the ring of all functions f
satisfying the following conditions:

1) f is defined and holomorphic on a neighborhood of D;

2) f is equal to zero at the infinity.

Lemma 2.1 ([6]).

(1) For any fe &, there is a p& S such that the maximum of |f| on D is
attained at p.

(2) At any p S, there is an f& & such that the maximum of |f| on D is
attained at only one point p.

We owe the present formulation of this lemma to Kaneyuki-Sudo [3].
It follows from that S is just the Silov boundary of the domain
D with respect to the ring & of holomorphic functions on D.

2.3. We denote by AF(D) the closed subgroup of the complex affine
transformation group AF(W) of W which consists of all affine transformations
leaving D invariant, and denote by GL(D) the closed subgroup of the general
linear group GL(W) of W which consists of all linear transformations a
satisfying the following conditions:

) aW?P=W? (p=—-2, —1);

2) aF(y,y)=Flay, ay’);

3) avV=V.
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It is clear that GL(D) is a closed subgroup of AF(D).
We put W=W=2+W-. For any we W, we define an affine transformation
Sw) of W by

Swyp = 2(p)+w 242+ =1 F(u(p), w™)
v =T Fw Y, w)+u(p)+w(pe W), where w?eW?

and w=w"?+w"'. Then it is easy to see that S(w) is in AF (D) and that the
totality of S(w) forms a closed subgroup M(D) of AF(D). Moreover we can
see that the group M(D) leaves the Silov boundary S of D invariant and acts
simply transitively on it (cf. [3]).

LEmMA 2.2 ([6]).

AF(D)=M(D) - GL(D) (semi-direct),
GL(D)=GL(W) AF(D) .

The group AF(D) (resp. GL(D)) is called the affine automorphism group
(resp. the linear automorphism group) of the domain D and the group M(D)
is called the group of parallel translations of D. We say that the domain D
is affine homogeneous if the group AF(D) acts transitively on D. It is easy
to see that D is affine homogeneous if and only if the group GL(D) acts
transitively on the cone V.

2.4. We denote by H(D) the automorphism group of D, i.e., the group
of all holomorphic transformations of D. It is known that D is holomor-
phically equivalent to a bounded domain of W ([6]). Therefore there exists
a volume element £ on D, due to Bergmann, that is invariant by H(D). The
volume element £ may be expressed, with respect to any local coordinate
system w,, --- , wy 0f D, as:

VW =D¥Kdw, A\ - Ndwy ANdiv, A -+ A\ diTy,

where K is a positive function of w,, ---, wy. Then the hermitian differential

form
Y o*log K

i,j=1 awz 6@%

is positive definite and defines a global kdhlerian metric g on D, the Bergmann
metric, which is invariant by H(D). In particular it follows that H(D) is a
Lie group. We note that the Lie group AF(D) is a closed subgroup of H(D).

LEMMA 2.3. Assume that D is ajffine homogeneous. Let X be a holo-
morphic vector field on D. Then X is an infinitesimal automorphism of D, 1. e.,
generates a global one parameter group of automorphisms of D, if and only
if X leaves the volume element 2 invariant, i.e., Ly =0.

Proor. If X is an infinitesimal automorphism of D, then we clearly have



188 N. TaANAKA

Ly2=0. Conversely, suppose that LyQ2=0. Then we can easily verify
Lyg=0. Since D is a Riemannian homogeneous space with respect to the
Riemannian metric g, we see that g is a complete Riemannian metric. There-
fore by Kobayashi [4], X is a complete vector field, that is, generates a
global one parameter group ¢, of transformations. Since each ¢, is holomor-
phic, it follows that X is an infinitesimal automorphism of D.

Let e, -+, ;2 (resp. efl, .-+, ¢;) be a base of W;? (resp. of W) and let
Zyy v Zpy Uy -+ , Uy, be the coordinate system of W corresponding to the base
et -+, e;% erl, -+, ¢;? of W. Then the projection z (resp. u) of W onto W;?

(resp. onto W-1), considered as a W;2-(resp. a W-'-) valued function on ¥,
may be expressed as 3 z;e;? (resp. as X ue;t).
@ i
LEMMA 24 ([6]). There is a unique positive function 2 on the cone V such
that
Q=W-D"20@QdzNduNdz A du,
where

dzNdu=dz, N\ - Ndz, Ndu, A\ -+ N\ duy,.

Moreover the function 2 satisfies
Alax) |det a|? = A(x) (asGLWD), xe V),

where det a denotes the determinant of a as an endomorphism of W.
Proor. There is a positive function K on D such that

Q=W —1"Kdz Ndu Ndz N du .
Let weW and put ¢ =S(w). Then we have
zop=2z+w4+2¢/—1F(u, w D)+ —1Fw, w™)
and uocp=u+w"'. It follows that ¢*(dz A du)=dz A du and hence Koo =K.
We have p=Sw)v/—1@(p) (p € D), where w=Re z(p)-+u(p). Taking account

of the fact that ~/—1V D, we define a positive function 2 on V by
A(x)=K® —1x) (x= V). Then we find from the above argument that K=20®.
Let a = GL(D). Then we have a*(dz A du)=deta dz A du and a*Q =, from
which follows that 2o@oa-|deta|?=20@. Since @(~/—1x)=x and P(av/—1x)
=ax (xeV), we get A(ax)|det a|®>= A(x). Uniqueness of 2 is clear.

2.5. We denote by G, the connected component of the identity of AF(D)
and by g, the Lie algebra of G, that is a Lie algebra of infinitesimal affine
transformations of W. For any we W, define an infinitesimal affine trans-
formation s(w) of W by

sW)p =w+2v/ =T Fu(p), wH+w? (peW).

Then we see that s(w) is in g,, S(w)=exp s(w) and that the following equalities
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hold :
@2.1) D [sw), sw)]=0 weW™ weW);
2) [sw), sw)]=4s(Im Flw, w’)) (w, w'eW1);
3) Ada s(w)=s(aw) (aesGLWD), weW).
We denote by. G° the connected component of the identity of GL(D), by

g° the Lie algebra of G° and by g?(p= —2, —1) the subspace of g, consisting
of all s(w) (weW?). Then we have

g, =8 %+g '+g° (direct sum),
which is a graded algebra by (2.1). By Lemma 2.2, we have
G,—exp (g 2+g™ -G (semi-direct).
The group G° contains the one parameter group E¥ (resp. [§) definediby
E#(p)=ez(p)+e u(p) (resp. IF(p)=2(p)+e’Tu(p) (R, peW).
Let E (resp. I) denote the element of g° induced by E# (resp. [§):

E(p)=—2z(p)—u(p) (resp. I(p)=~'—1u(p)).

Then we have:
(2.2) D [E swl=psw) (weW?;
2) [Lswyl=0 (weW™?,
[ sw)]=sv—1w) (WweW).

Finally we note that the condition “ Xeg!, [[, X], X]=0” implies X=0,
from which follows that the graded algebra m—g-2-4-g-! is non-degenerate,
i.e., the condition “ Xecg™?, [X, g ']=0"” implies X=0.

2.6. From now on we assume that the domain D is affine homogeneous
and fix a point v of the cone V. Let K, denote the isotropy group of G, at
~—~lve D. Then we have D=G,/K,. It is easy to see that the isotropy
group of G° at v coincides with K,. Since G° acts transitively on V, we have
V=GK,. Letf, denote the Lie algebra of K, and let us consider a fixed
complementary subspace t° of ¥, in g°: g°=1"+¥, (direct sum). We put

t=g7"+¢7 1",
Then we have
g, =141, (direct sum).

We denote by G the connected component of the identity of H(D) and by
K the isotropy group of G at v/ —1v. Then we have D=G/K and

K,=G,NK=G"NnK,
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G=G, K.
Let g and t denote the Lie algebras of G and K, respectively. Then we have

b=g8.Nt=g¢"Nt,
g=1t+t (direct sum).

The tangent space T.,=,(D) to D at ~/—1v is endowed with the structure
of complex vector space, and it may be identified, as usual, with the factor
space g/f. Hence we can find an endomorphism j of g such that jfct and
such that ;j induces the complex structure on T ,=,(D)=1g/f. Then we clearly
have j°X= —X (mod f) (X =g). G acting holomorphically on D, we have:

23 b JIX, Y]I=[X,jY]@modf) (Xet Yeg);
2) X jY1-[X, Y]=j{JjX, YI+[X,jY]) (mod f) (X,Y eq).
Since g =1+t (direct sum), we may further assume that jt=t.
LEMMA 2.5 (cf. Vinberg, Gindikin and Pyatetski-Shapiro [107]).
Q) If Xeg7? then j Xet® and [ X, s@)]=X.
2 If Xeg™, then jX=g™! and jX=[I, X].
(3) If X, then jXeg? and jX=—[X, s@w)].
Proor. We first remark that the condition “4 1%, Av=0” implies A=0.

Take any Xet. Then jXet. Since t=g 24g¢ *+1° (direct sum), X and ;X
may be expressed, respectively, as:

s(w 4w )+ A w?re W?, A=t
s(w’ 24w "D+ A’ (wreWwp, A’ e1Y.

and

Since j is compatible with the complex structure on Tv=,(D), we see easily
that (X)W —1v)=+—1X(+v/—1v), whence w'?=—Av, w''=+—1w™' and
Av=w"2 If Xeg? then it follows that w/?2=w'"'=0. Hence jJ X=A' 1’
and [jX, s ]=s(Av)=s(w?=X. If Xeg-!, then it follows that w’ 2= A’=0.
Hence jX=s(w' ) =[I s(wH]=[1, X]eg’ If X<t then it follows that
wr=A"=0. Hence jX=s(w'?=—[A4, sw)]=—[X, sw)]ecg?

Finally we state the following

LEMMA 2.6 ([5] or [10])). The Lie algebra g is centreless.

§ 3. Infinitesimal automorphisms of a Siegel domain, 1.

3.1. Let D be the Siegel domain of the second kind associated with a con-
vex cone V (in W% and a V-hermitian form F (on W-'). We assume that the
domain D is affine homogeneous and preserve the notations in §2. (We fix,
once for all, a complementary subspace ® of ¥, in g° and an endomorphism j
of g having the properties in 2.6.)
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Let us consider the complexification g, of the Lie algebra g, and define
operators P and P on g, by -

P=LA—v=Ij), P=3a+v=Ij,

where j should be confounded with its complexification. We have jt=t and
72X=—-X (X<t), whence P(X)=+—1P(X), P(iX)=—~—1P(X) (Xet).
Therefore we have P({)= P(,), P(t)=P(t) and

GRY t,=P{®)+P(t) (direct sum).

By we have jg*=1" and jg-'=g"', whence P(g72+1°) = P(g;?,
P ) =P(g;"), P@*+t)=PFP(g;% and P(g"")=P(g;"). Since t=g?+g'+1°
(direct sum), it follows that
3.2) 1) PU)=P(e;H+P(@ ") (direct sum),

2) P{)=P(g;)+P(g"?) (direct sum).
By (2.3), 1), we have

(3.3) D [t POIC PO+,

2 [f, POIC PO+,
and by (2.3), 2),

(3.4) 1) [P, PO]C PO+,
2) [BW), Pa)IC PO+,

By using the fixed element v in V, we define an automorphism @ of the
Lie algebra g, by

Q = exp ad(—v/ =T s@)) = ;%md(—«/:n(v)))k .

By (3.3), 2) and [(3.4), 2), we see that P)-+1, is a subalgebra of g,. It follows
that® b= QP {#)+Q(%,) is also a subalgebra of g..

LEmma 3.1.

(1) b=P(g~H)+104+Q(t,) (direct sum).

@) g.=g¢2+P(@ )+b (direct sum).

@) g’ch.

1) The subalgebra P(t)+1t, of g, does not depend on the choice of j and t, but
depends on the choice of v. The subalgebra b of g, does not depend on the choice of
v (cf. §4, Remark 2).



192 N. TaNnaKA

PrOOF. (1) By (3.2), 2), 6=0QP(g;)+QP (g )+Q(t,) (direct sum). Since
s@yeg7? [¢% ¢ 2]cg? and [g72 g %]= {0}, it follows from Lemma 2.5, (1) that
QiX=jX—~—1[sw), j X]=jX+vV—1X (X=g?. We clearly have QX=X.
Therefore Qﬁ(X):—i;—l ‘X, whence QP(g;?) =1 Since [g72 g']= {0}, we
have QP(Y)=P(Y) (Yeg!) and hence QP(g")=P(g™?).

(2) Since g=1+* (direct sum), it follows from (3.1) that g,= P()+P 1)+,
(direct sum). Hence g,=QP{®)+b (direct sum). Furthermore by (3.2), 1),
8. =QP(g;H)+QP(g7*)+0b (direct sum). We have QP(g™") = P(g™*) as above, and
by using the equality QjX=jX++—1X (X g2, we find QP(X)= X (mod {J.
Thus we get (2).

(3) The Lie algebra ¥, consists of all Xeg° such that [X, s(»)]=0,
whence f,C Q(,). Therefore g°=1"+%,Cb.

3.2. We denote by G, the adjoint group of the complex Lie algebra g,.
Since g. is centreless (Lemma 2.6), G, may be characterized as a connected
(complex) Lie group whose Lie algebra is given by g, and whose adjoint
representation on g, is faithful.

Let B denote the closed subgroup of G, consisting of all a € G, such that
Adab—="%. Since b is a complex subalgebra of g, B is a complex Lie subgroup
of G,. We now assert that the Lie algebra of B coincides with b. For this
purpose, it is sufficient to show that the condition “X < g, [ X, 6]Cb” implies
Xe<b. Indeed, let Xeg, be such that [X,6]cb. Then by Lemma 3.1, (2),
we can find a Yeg;? and a Z< P(g™") such that X=Y+Z (mod b). Since
Eeg’ChH (Lemma 3.1, (3)), we have [V, E]+[Z, E1=0 (mod b), and by (2.2),
1), wehave [V, E]=2Y and [Z, E]1=_Z. It follows that Y=72=0, i.e., X&b.

Let us now consider the homogeneous space M=G,/B of the complex
Lie group G, by the closed complex Lie subgroup B, and denote by = the
projection of G, onto M. We put n=g;>+P(g"*) and define a holomorphic
mapping A’ of n to M by h'/(x)=moexp (x) (x=n).

LEMMA 3.2. The mapping h’ is a holomorphic imbedding of n onto an open
set of M.

PrROOF. We first prove that n is a (complex) abelian subalgebra of g,.
Indeed, we have jX=[I, X] (Xeg™!) by Lemma 2.5, (2), and [[[, X1, [, Y]]
=[X,Y] (X, Yeg™) by (21), 2) and (2.2), 2), whence [P(g™), P(¢”")]={0}.
We clearly have [g;?% n]={0}. Hence [n, n]= {0}, proving our assertion. Let
N be the connected (complex) Lie subgroup of G, generated by n, i.e.,
N=expn. Then it is clear from Lemma 3.1, (2) that A’/(n)==(N) is an open
set of M. Let us now show that the mapping A’ is injective. Indeed, let
X en be such that exp X B. If we express X as Y+Z (Yeg.% Z< P(g™h),
then we have Ad(exp X)E=E+[X, E]=E+2Y+Z<%. It follows that Y=27
=0, i.e,, X=0, which proves our assertion. Finally it is easy to see that A’
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is a holomorphic homeomorphism of n onto A’(n).

3.3. G, being the adjoint group of g,, there is a unique homomorphism p of
the Lie group G into the Lie group G, such that Ad a X=Ad p(a)X (a€G, X<9),
where Ad in the left (resp. right) hand side means the adjoint representation
of G (resp. of G,) on g (resp. on g,). We clearly have p(exp X)=exp X (Xeg),
where exp in the left (resp. right) hand side means the exponential mapping
of g (resp. of g,) to G (resp. G,). Let us now define a mapping h” of W to

n by N
R7(D)= s(z(p)+P(s(u(p)) (pe W),

where

s()=s(Re2)++v—1sImz) (ze W7).
Since

P(s(V/=Tw) =PI sw))=~—=1P(sw) (ue WY,

we see that h” is a (complex) linear isomorphism of W onto n. By
3.2, the mapping h=~h’oh” is clearly a holomorphic imbedding of M onto an
open set of M.

LEMMA 3.3.

D) oA —=1v)=h(~v—=1v) (k& K).
@ oOh(vV=Tv)=hEt(V=1v) (e Gy).

Proor. (1) Since K is connected, (1) is clear from the fact that
Ad(exp (—V —1TsNf=QH CH.

(2) Every te G, may be expressed as exp (X 2-+X Dt (X? e g?, t°< G).
Since g,=g %+g¢ '+¢° is a graded algebra,

p(®) exp (v —1s()) = exp (X~ 2+~ —1 Adt’ s)+ X Hp@") .
We have

X1=P(X")+P(X and exp X '=exp (—% [P(X™Y), P(X—l)])
exp P(X-) exp P(X-1) .2

2) Let A’ be the simply connected complex Lie group whose Lie algebra is equal
to m, (=the complexification of m). Since m,=g;?+g;! is a graded Lie algebra, we can
prove the following equality:

1
5 [Z, Y] -exp’ Y-exp’' Z for all Y, Zeg;?,

where exp’ denotes the exponential mapping of w, to A’. Let A be the connected
complex Lie subgroup of G, generated by m,. A’ being simply connected, there is a
unique holomorphic homomorphism # of A’ onto A. We have g(exp’ X) = exp X for all
Xem, Hence we get

exp’ (Y+Z) =exp’

1
exp (Y+Z)=exp 7[Z, Y]-expY-expZ forall Y,Zeg!.
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Since exp P(X 9ot € B (Lemma 31, (1) and (3)), it follows that
(3.5 p(Oh(V=1v)
=roexp (X-*4+/ =L Ads" s(v)—l—%m [P(X3), P(X)1H+P(X).

Now X? may be expressed as sw?) (wP<=W?). Since expsw?2+w)=
S(w-2-4+w-1), then we have

Hence
3.6) (v —=1v)

=moexp (v —1s@v)+sw 5+ —1s(Fw, w))+P(sw ).
We have Ad1°s@)=s(’v) and by (2.1), 2)

Vb rixe, x07= L0 s, s
\/Z:T [s(v—1w™), s(w ] =~+—1s(F(w™?, w).

S LP(XY, PX)]=

Thus we get p(Hh(v/—1v)=h(t(~—1v)) by (3.5) and [3.6).

LEMMA 34. The holomorphic imbedding h: W—M is compatible with the
respective actions of G on D and M. More precisely hap) = p(a)h(p) (e =G,
pe D).

Proor. Let pe D. Since G, acts transitively on D, there is a tG,
such that #(+/—1v)=p. Hence by Lemma 3.3, (2), h(p)=p()h(~/—1v). Let
a<G. Then there is a t/ =G, such that #“!at= K. Hence ap=1t'(~/—1v).
It follows from Lemma 3.3 that

p(@h(D) = p(@)p(t) h(v/ —1v) = p(t (v —Tv) = h(t'(v/ —Tv)) = h(ap) .

As an immediate corollary of Lemma 3.4, we have

COROLLARY (Kaneyuki [2]). The homomorphism p:G—G, is injective or
equivalently the group G is centreless.

In what follows, we shall identify G with a Lie subgroup of G, by the
injective homomorphism p.

34. LEMMA 35. Let acG and p< S, where S is the Silov boundary of
the domain D. If ah(p)e MW, then we have ah(p) < h(S).

Proor. Let 7(D) be the closure of A(D) in M. Then we have (D) N A(W)
=nD), D being the closure of D in W. Since G leaves A(D) invariant
(Lemma 3.4), it also leaves h(D) invariant. Let e G and peScD and
suppose that ah(p) e h(W). Then we find ah(p)<= h(D). Hence there is a
g e D such that ah(p)=h(g). Since D=@ V), we have
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O(q) =1Im 2(q)—F (u(g), u(g) € V.
It follows that

a(t) = Re 2(qQ)+v—1 F(u(q), u(@)+u(q)+t@(q)e D  for all t=C

with Im#=0. Since a'Ala(~/—1)) = a~'h(g) =h(p) = (W), we can find a con-
nected neighbourhood U of +/—1 in the Gaussian plane C such that JB(¢)
=hYa*h(a(®))) e D for all t< U. By Lemma 2.1, (2), there is a holomorphic
function f on D such that the maximum of |f| on D is attained at only one
point p. The function fi()=/f(B() (¢t=U) is holomorphic and satisfies
FoW/—=1)=f(p). Hence | f,| takes its maximum on U at t=+/—1. Therefore
by the maximum principle, we find that f(f)=constant and hence B(t)=
constant (t< U). It follows that a(f)=constant, whence &(q)=0, i.e., g S.
Thus we have proved ah(p)=h(q) € h(S).

By Lemmas B4 and B, we easily have

PROPOSITION 3.1. Every infinitesimal automorphism of D is extended to a
(unique) holomorphic vector field which is defined on the whole W and which is
tangent to the Silov boundary S of the domain D.

3.5. In the homogeneous space M = G,/B, let us consider the orbit M of
G through the origin 0 =h(0) of M: M=G/GB. M being a real submanifold
of the complex manifold M, there is defined a pseudo-complex structure (4, I)
on M in a natural manner (9], §10), which we shall explain from now on.
At each p = M, the tangent space Tp(]\7[) to M at p is a complex vector space
and the tangent space T,(M) to M at p is a real subspace of Tp(AZI). Let 4(p)
denote the maximum complex subspace of Tp(]\Z/) contained in T,(M), i.e.,
A(D)y=Ty(M)N~ —1T,(M). Since G acts transitively on M, dim 4(p)=con-
stant and hence the assignment p— 4(p) defines a differential system 4 on M.
Let I, denote the complex structure on 4(p). Then the differential system
4 together with the assignment p—/, defines the pseudo-complex structure
(4,I) on M. It is clear that (4, I) is invariant by G.

It is easy to see that S is the orbit of AF(D) through the origin 0 of i
and its isotropy group at 0 is given by GL(D). By it follows
that A(S) is the orbit of G, through the origin o= h(0) of M and its isotropy
group at o is given by G°: A(S)=G,/G°. Therefore by we see that
h(S) is an open submanifold of M and hence g =g?4g~*-+L° (direct sum), where
L*=gnb. If we identify g, with T.(G,), then we have TO(M):n*(g;2+P(g‘l))
@Cemma 31, (2). We have Ty (M)=rug2+g) and Y—P(Y)=P¥)eh
(Ye g (Cemma 3.1, (1)). Therefore it follows that T,(M)=mx(g 2-+P (™),
4(0) =m4« P(¢7") = n4¢™" and

(3.7 dim M = dim, M+dim, 4(0).



196 N. TANAKA

Since PCLYD=+vV—1P(Y) (Yeg?) and Ieg’CL’ we have my[l,Y]=
V Iz, Y (Yelt=g 1+
LEMMA 3.6.

(1) G acts effectively on M.

(2) Putting L°=gN\b, we have g=g 2+g '+ L° (direct sum).

@) Putting L-'=g*+L° we have AdaL*C L™ (as G B).

(4) Ada[l, Y1=[I, AdaY] (mod L°) (a G\ B, YeL™Y.

PRrROOF. (2) has been already proved. (3) and (4) follow from the fact
that G leaves invariant the pseudo-complex structure (4, I). It remains to
prove (1). By Lemma 3.4, we know that G acts effectively on M. Since (4, I)
satisfies (3.7), it follows from [97, Proposition 10.3 that G acts effectively on M.

By Lemma 3.6, we see that the Lie algebra g, the subalgebra L° and the
family (g?),-0, where g?={0} (p < —2), together satisfy the conditions in
Lemma 1.1. Therefore by using the notations in Lemma 1.1, we have the
followings: 1) g:%n?’ (direct sum); ii) n?=g? (p <0) and L°:§np; iii)

=0

For any p=0, the condition “ Xen?, [X, g 2+g']1={0}” implies X=0. Let
us now prove g’=n’. We clearly have g°Cn’. Take any Xen® and put
a,=exptX. Since[X,g']cgtand [X,[Y]]1=[[X, Y]] (Yeg?) (Lemma
3.6, (4)), we have Ada,g-'=g*' and Ada,[I, Y]=[I, Ada,Y]. It follows that
there isa ¢, = GL(W™) such that Ada,s(u)=s(e,u) (uesW-1). We clearly have
Ada,P(s(u)) = P(s(p,u)). Since Ada,g~2=g"* as above, there is a ¢;= GL(W™%)
such that Ada,s(z)=s(pjz) (zW;?). Let peW. Since a,= G B, we find
a;h(p) = moexp (s(pz(pP)+P(s(p.u(p)))). Since ah(p)=h(a,p) (Lemma 3.4), it
follows that a,p=@z(p)+@u(p), whence a,= GL(W)~G. Therefore by
Lemma 2.1, we get a, = GL(D) and hence X < g°.

We have thereby proved the following

THEOREM 3.1. Let D be the Siegel domain of the second kind associated with
a convex cone V (in W-% and a V-hermitian form F (on W™Y). Assume that
the domain D 1is affine homogeneous. Let g be the Lie algebra of the auto-
morphism group H(D) of D and let E be the element of g induced by the one
parameter group EF of linear automorphisms:

Ef(p)=e*z(p)+e‘u(p) (pe D).
For any integer p, let g? be the subspace of g consisting of all X< g such that
[E, X]=pX. Then we have:
1) ¢=2>g? (direct sum), and it is a graded algebra.
»
2) ¢?={0} (p<—2), and g,=g 2+g '+g° is the Lie algebra of the affine
automorphism group AF(D) of D; More precisely, ¢° is the Lie algebra of the

linear automorphism group GL(D) of D and m=g"%4g ! is the Lie algebra of
the group M(D) of all parallel translations of D.
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) g being identified with a Lie algebra of holomorphic vector fields on

W (Proposition 3.1), L°= X g? is characterized as the isotropy algebra of g at
~ =0
the origin 0 of W. !
4) For any p=0, the condition “ X< g?, [ X, m]={0}” implies X=0.

§4. Infinitesimal automorphisms of a Siegel domain, II.

4.1. Let g=3g” be the graded algebra given in [Theorem 3.1. Since the

y4
condition “ X e g, [ X, m]={0}” implies X =0, ¢° may be regarded as a sub-

algebra of the Lie algebra g°(m) of all derivations of m=g"2+4g~*' (as graded
algebra). This being said, we denote by §= >}§? the prolongation of (m, g°.

14

By [Theorem 3.1, (4), g may be identified with a graded subalgebra of . Now
consider the element [ in the centre of g° given in 2.5. Then by (2.2), 2),
we clearly have:
4.1 Ig 2= {0}, I’X=-X (Xeg™,

X, 1Y ]=[X,Y] (X, Yeg™?).

LEMMA 4.1.

Q) For any p>0, the condition “X < §?, [ X, g ¥]={0}" implies X=0.

@ [, 8*]1=1{0}.

@) [LILX]]=—X (Xe§¥).

@ L XLILYIl=[X, Y] (Xeg® "', Yeig*).

Proor. (1) ForanyY,Zeg™!, we put <Y,Z)>=[1Y,Z]. Then we have
Y, Z>=<(Z,Y) and (IY,1Z>=<Y,Z>. Since m is non-degenerate (cf. 2.5),
the condition “Yeg™, (Y, g *>=1{0}” implies Y=0. Thus <{ , >, so to speak,
is a g %valued hermitian inner product on g-!. For any p=0, let )? denote
the subspace of §? consisting of all Y= §? such that [V, g72]={0}. Then we
have [§?, g-*]CH?"Y, and the condition “Ye§h?, [V, g7*]={0} ” implies Y=0.
Moreover from the definition of the prolongation of (m, g°), we see that, }°
being identified with a subalgebra of gi(g™?), )? may be identified with the
p-th prolongation of §° in the usual sense. Therefore we have only to prove
that §* vanishes. But this can be verified by using the equalities (AY, Z>
Y, AZ>=0, [X,Y1Z=[X,Z]Y (A}’ Xh') and by the method in the
proof of the fact that the first prolongation o(n)’ of the orthogonal algebra
o(n) vanishes.

(2) We have [1,g°2]=[1, ¢°1=1{0}. s being an integer > 0, suppose that
[1,§**]1=1{0}. Then we have [[[,8*], g >]C [/, [§*, ¢ %]]1= {0}, whence [I, §**]
= {0} by ().

(B We have [[,[I, X]]=—X (X=g""). s being an integer > 0, suppose
that [, [[, X1]1=—X (X=§*?*). Then we have [[,[I, X]]+X,Y]=
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[LILIX, Y]II+[X, Y ]=0 (X e§* ', Ye g2, whence [[,[I, X]]+X=0 by (1).
Finally (4) is clear from (2) and (3).
Let us consider the complexification §,= 291’ of §. For each integer s,

define operators P and P on g-1 respectwely, by
P(Y)= 5 (Y—v/~I[L YD, P¥)= 5 ¥+v=I[LY¥Y]) (Yeg.

(In the case when s=0, these operators coincide, respectively, with the operators.
P and P, restricted to g;!, which was defined in 3.1.) It is clear that P@* 1
and P(§*-%) are complex subspaces of §%-! (Lemma 4.1, (3)) and that §»-*
= P(* )+ P(§>*"Y) (direct sum).

LEMMA 4.2.

Q) [PE=D, PE1H]=[P@""), P@*)]1={0}.

@ [P@E™ Y, &I P@er,

[P, ¥ P (g,

(3) [ﬁ(@Zs—l)’ P(@th)] ng(s-l-t—l).

This is easy from [Lemma 4.1l

REMARK 1. Put ﬁp:F(@“"%—i—@%"—l—P(@“’“}. Then we can easily prove
the followings:

@ g,= §‘_‘ fi? (direct sum) and it is a graded algebra;
p=—1

(2) For any integer p=0, the condition “X e fi?, [ X, # ']= {0} ” implies
X=0.

(3) Putting E4= %(E—{—\/:—TI), we have [Ey, X]1=pX (Xefi?). (For
the proof of this fact, we note that [F, X]=pX (X §?).)

REMARK 2. We have [E,, g.] C g., showing that g, is a graded subalgebra

of §,= 3} #%: g,= 3 n?, where n?=0?g,. It is easy to see that n? =P (g??- 1)
p=-1 p—-—l

+g21’+P(g“’+1) Let b be the subalgebra of g, given in Lemma 3.1, (1). Then
we have g,=g;?-+P(@g )+b= n‘1+6 (direct sum). Since E,<glC¥b, we have

[Ey 67C6. It follows that b= >\ n®.

p=0

42. We define a mapping f of M(D) to n (=g;2+P(@ H=n"'=n1") by
f@=h"@0) (ac M(D))),

0 being the origin of . Since the mapping a—a0 is a real analytic homeo-
morphism of M(D) onto S, f is an imbedding and f(M(D))="n"(S). M(D) is
a simply connected Lie group whose Lie algebra is given by m, i.e., M(D)
= M(m), and the mapping X—exp X is a real analytic homeomorphism of m
onto M(D). This being said, we have

“2) flexp X)= Xt [P(X-1), P(X-)4+-P(X7) .
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Indeed, this is clear from the equalities:
(exp sw)0=w 2+ —1Fw, wH+w?,

(P, W) = 5 S TP, P )] FE@ew).

Hereafter we identify W with n by the isomorphism 4”. Then we have
g t=W"% P(gH=W"? and

1 s -1
F(Y,Y)= 517, Y] (YePE™,
from which follows that the mapping @ of n to g~? may be described as
1 _
I —_— .
m z v —1 (i, u]

Let us now define a pseudo-complex structure (4, /) on the Lie group
M(D)==M(m) in the following manner (cf. [9], §10): The subspace g~* of m
yields a left-invariant differential system 4 on M(m), the standard differential
system of type m, and then the mapping g 'Y —-IYesg! yields a left-
invariant cross-section I of the vector bundle Hom (4, 4). By [4.I), it is clear
that the pair (4, I) defines a pseudo-complex structure on M(m). Now let .
be the standard Lie algebra sheaf of type (m, g¢°. Then it can be shown?®
that every local cross-section X of £ is necessarily a local infinitesimal auto-
morphism of (4, I).

We show that the imbedding f is an imbedding of the pseudo-complex
structure (4, I) in the complex manifold n, that is, (4, I) coincides with the
pseudo-complex structure induced by f. Indeed, we identify T, (M(m)) and
T with m and n, respectively. Then we have 4(¢) =g, [,=the restriction
of I to ¢7* and, by [(4.2), /uX=X"+P(X"Y) (Xem). It follows that fid(e) is
the maximum complex subspace of T (n) contained in f,T.(M(m)) and f,I.Y=
v —=1fY (Y 4(e)). Since (4,I) is left-invariant and since f(ax)=af(x)
(a, x = M(m)), we know that f is an imbedding of (4, I) in n, proving our
assertion. Finally we remark that the following equality holds:

(4.3) dim M(m) = dim, n-+-dim, (4(e), I,) -

3) The differential system 4 is defined by the equation &2=0 and we have
E1(JY)=16"1(Y) for all tangent vectors Y to M(m). (For the notation, see 1.3.)
Let g be the subalgebra of g°(m) consisting of all A& g®(m) such that AIY=IAY for
all Yegt. In view of the above remark, we can prove the following: A local vector
field X defined on an open set U of M(m) is a local infinitesimal automorphism of
(4, Iy if and only if there is a g'-valued function f° on U such that Ly&2=[f0, &-2]
and Ly&1=[f9 &1] (mod £-2). Let X be a local cross-section of L. We have Ly&-2
=[f &2] and Lx&1=[fQ, £&1] (mod &-2). Since g® g and since fQ is a g-valued
function, it follows that X is a local infinitesimal automorphism of (4, I').
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43. Let c=g® Then by [9], Lemma 6.3, there is a (unique) global cross-
section X of £ such that f2(e)=0 (p <k), fe)=c and f£=0 (p> k). Since
X is an infinitesimal automorphism of (4, I) and since (4, I) satisfies [(4.3), it
follows from [9], Proposition 10.4 that there is a (unique) holomorphic vector
field X defined on a neighborhood of f(M(m)) such that X and X are f-related.

LEmMMA 4.3.
Lzz= H;*z, u)c,
Lzu= PH;Y(z, u)c,
where
(—1)r+e
Hi(z,wy= 3 -7 5—(adz)’(adu)? (l=-2, -1).
wrg=k— Plq!
P,q=0
ProOF. We take a base ¢ .-+, ;% (resp. %, -+, e51) of g7% (resp. of g7%)
and denote by x, -+, X, Y1, - , Yo the normal coordinate system of the Lie

group M(m) corresponding to the base &%, -+, &;% e, -+, e55 of m. We put
x=x;¢;7* and y=>)y,;%. Then in terms of x and y, (4.2) may be described
7 j

as
44 2o f=x+3LPO), PG,

uof="P(y).

Let us now consider the simply connected complex Lie group M(m, whose
Lie algebra is given by the complexification m, of m. We denote by «x§, ---, x£,
9%, -+, ¥5, the normal coordinate system of the complex Lie group M(m,)
corresponding to the base ¢? -+, &;% e, -+, & Of m, and put xc=;x25ﬁ

and y,= 31¥%;!. M(m) being considered as a real Lie subgroup of M(m,),
7

the mapping fof M(m) to nis extended to a holomorphic mapping f, of M(m,)

to n. Since x, and y, are the holomorphic extensions of x and y, respectively,

it follows from (4.4) that
(45) 2o f= k5 TP, P31,
uofe=P(y.)-

The vector field X on M(m) is extended to a holomorphic vector field X, on
M(@m,). By Lemma 1.2, then we have

“6) Lxgte= Hi(xo 33+ 5 [ Hi'r 361

Lchc - lel(xcr yc)c .

We now define a holomorphic mapping £ of n to M(m,) by the requirement
that z=x,0& and u=7y,0£. Since P(w)=u and P(u)=0, we have f,o&=
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identity. As is easily observed, the two vector fields X, and X are fo-related
(cf. [9] Proof of Proposition 10.3). Hence, X,= fixXew (x=mn). Therefore
by and [(4.6), we have

Lyu=(Lx(uof))o&=P((Lx,Yo)o&)=PH' (2, u)c,
Lzz=(Lxzof))o§

= (L1 6+ 5 [P (L, 3908, oo §1+ 5 [P(3,08), (L, 3)0&]
= H;%(z, u)c+—%—[u, H'(z, u)c]

+";*[15H,;1(z, u)c, u]—}——%“[ﬁ(u), Hi'z, wye].

Since P(u)=0, P+P=1 and [P(g"!), P(g")]={0}, it follows that Lyz=
Hi*(z, w)c. Thus we have proved
LEMMA 4.4. Let ¢, X and X be as in Lemma 4.3. Then we have

Lyz=F"%*z, u)c,
Lyu—=PF-(z, u)c,

where F~*(z, u) and F~'(z, u) are defined as follows:
i) The case k is odd (k=2s—1).

F(z, u) = (;sl!)i(ad 2ad u,
1 —1)° s 1 —1) s-1 2
Fi(z, u)= (51) (ad 2) +T—E—S—j—)1)—!(ad 2 ad uy .
ii) The case k is even (k= 2s).
— 1)1
F~%z,u)= %ﬂ—)l)—!(ad z)*,
Pz wy=""N"(ad zyad u.

PrROOF. This lemma follows easily from Lemma 4.2. Indeed, suppose that
k is odd (k=2s—1). Then (ad )c is a §**>valued function. u being a P(g~")-
valued function, it follows from Lemma 4.2 that (ad w)’c=0. Suppose now
that % is even (k=2s). Then we have (ad w)’c=90 as above.

REMARK 3. (ad 2)**(ad w)?c (for the case k=2s—1) and (ad 2z)*(ad u)c (for
the case £ —2s) are P(g~!)-valued functions. Hence we have:

i) The case & is odd (k=2s—1).

., (=1 . 1 (—1y
Lyu= ~—S‘—P(ad 2) C+—2— _(g—:]j_r

ii) The case k is even (k=2s).

(ad 2)*~Yad w)’c .
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Lyu= -(Zsl?s—ﬂ(ad 2)(ad u)c .

From Lemma 4.3 (or Cemma 44), we know that X is a polynomial vector
field with respect to the linear coordinate system z,, -+, 2y, Uy, ==+ , Uy Let

{
ce§ and express it as > ¢®. Then there is a (unique) global cross-section
k=—2

X of £ such that ffe)=c* (—2=k=<I) and fE=0 (>1) (9] Lemma 6.3),
and there is a (unique) polynomial vector field ¢(¢) on n such that X and ¢(c)
are f-related and [9], Proposition 10.4). By [9], Lemma 6.4, it is
clear that the assignment ¢ — —¢(c¢) is an injective homomorphism of § into
the Lie algebra of all polynomial vector fields on n.

44. LEMMA 45. Let ceg. Then the vector field ¢(c), restricted to D,
coincides with the wvector field X on D induced by the one parameter group
D=sx—(exptoxe D.

ProorF. We may assume that c=g®. Let us consider the holomorphic
imbedding A=~h’ of W=n in G,/B. Then we have h((expf ¢)x) = (exp ¢ c)h(x)
(teR, xe D) (Lemma 3.4). If we set ¢(t)=(expt ¢)x, it follows that

w(exp (—x) - exp o)) =n(exp (—x) - exp t c- exp x).

We have exp (%x) - exp ¢(f) =exp (¢(f)—x), because n is an abelian subalgebra
of g, and we have exp(—x)-exptc-expx=expt Ad(exp (—x))c. Therefore
we get

.7 exp (o(H)—x) =exp t Ad(exp (—x))c (mod B).
We have

Ad(exp (—x))c =exp (—ad x)c= Té (;!1)7 (ad(z(x)+u(x)) ¢

= 3 Hi(0), u(@)e.

Since b= §)np (Remark 2), this implies
=0
4.8) Ad(exp (—x))c = Hg%(2(x), u(x))c+PH ;Y (z(x), u(x))c (mod b).

We have ¢(0)=x and ¢(t) = z(o())+u(e(t)), whence —daf—(O) = (L x2)(x)+(L xu)(x).

Therefore it follows from (4.7), (4.8) that Lyz= Hz*z, u)c, Lyu=PH;(z, u)c
and hence from Lemma 4.3 that X=¢(c).

LEMMA 4.6. g* consists of all ¢ € §* such that L,,2 =0, where 2 is the
mvariant volume element on D.

Proor. This is clear from Lemmas 2.3 and 4.5.

LEMMA 4.7. Let c € §* be such that [c, g ?]C ¢*2 and [c, g *]Cg* . Then
there is a unique function p(c) on the cone V such that
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L2 = p(c)o® - 2.

Proor. There is a function f on D such that L2 =ff2. We show that
foeo=Ff (p = M(D)) or equivalently L.,,/=0 (y=m). Indeed, we put X=(c)
and Y=¢(y). Then by the assumption, both Y and [ X, Y ]=—¢({c, y]) are
infinitesimal automorphisms of D, whence Ly =Ly y#2=0. Since Ly
=LyLy—LyLy, it follows that L, f=0, proving our assertion. Therefore we
can find a function p(c) on V such that f= u(c)o® (cf. Proof of Lemma 2.4).
Thus we have proved L,,2 = pu(c)o® - 2. Uniqueness of u(c) is clear.

45. LEMMA 4.8. Let c=§® Then there is a glvalued function A on n
satisfying the following conditions:

1) L.dz=[A, dz] (mod du),

L.ndu=[A, du] (mod dz).

2) i) The case k is odd.

ANV =1x=0 (xeV).
il) The case k is even (k=25).
A(ij)—ﬁ \/ 1> (ad x)*c (x& V).
ProoF. This is easy from and the following equality :
d((ad 2)?(ad u)c) = pldz, (ad 2)?~*(ad w)%c]+q[du, (ad 2)?(ad u)? 'c].
Indeed, suppose that £ is odd (k=2s—1). Since L, dz=d(L..z), it follows
from and the above equality that

Liydz= "D 10z (ad 29 4ad we]  (mod du).

(s—h!
Analogously,
841
Leoydut = E D), [du, (ad 2°-Y(ad w)e]  (mod dz).
Therefore the function A:((S%ll);-,f(ad z)*"'(ad uw)c satisfies 1). Furthermore

it clearly satisfies 2). The case %k is even (k= 2s) can be similarly dealt with
and it can be shown that the function A:%,Di(ad z)°c satisfies 1) and 2).

LEMMA 4.9. Let c=8§% Then there is a g*-valued function B on n satis-
fying the following conditions:

1) Lg((;)@ - [B, @]-

2) 1) The case k is odd.

BW=1x=0 (xeV).
ii) The case k is even (k= 2s)

B(V—=1x)= 1 (=v=1 (?_;Jlr)('\/ 1) (ad x)’c (x€V).




204 N. TANAKA

PrROOF. We have @ = ~-2'\-/l;_ (z—z—[#, u]) and hence

L.,® **(La(wz L,(C)Z [L,(c)u, ul—[a, Lieu]).
T o=

Therefore by Lemma 4.4, we have L.@ =T(z, u, Z, #)c, where

T(z, u, 2, 1) = ~27~{F Yz, wy—F%(z, a)+(ad w)F'(Z, #)—(ad #)F'(z, w)} .

Setting (D/:—;—(z—kf—l—[ﬁ, u]), we have z=+/—1@04@’. Since the vector field

¢(¢) is tangent to the Silov boundary S of D and since S is defined by @ =0,
it follows that T(@’, u, @, @)c=0. Thus we have proved

4.9 L@ ={T(z, u, z, ))—T(@’, u, @, @)}c .
Suppose first that £ is odd (¢=2s—1). By Lemma 4.4, then we have

F2z, w)—F (@', wy= (7?%!)“1 ad u((ad z’—(ad 9')") .
Since
(ad 2 —(ad @'Y = ad(z— ") sil(ad 2P(ad @'y 1-P,
p-0

it follows that

(4.10) F2z, uy—F @', uy=—+'—1lad ® F*z, u, 9'),
where
Fi¥z, u, @)= D LG Z}(ad 2P(ad @Y1
Analogously,
(4.11) FYz, )= F Y@, w)=—+—1ad @ F3\(z, u, @),
where
F3'(z, u, @)= =D ‘*2 (ad 2)"(ad 'y-1-?

4 % (( 11))‘ (ad u)* 2 (ad 2)?(ad @')*~%-?.

By (4.9), then we see that the function
B= —é—{F;&(z, u, @NV+F32E, #, ®)—ad u F3(Z, @, ')—ad @t F3(z, u, ®)}c

satisfies 1). Furthermore it is clear that B also satisfies 2). Suppose now
that %2 is even (k=2s). We put
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Pz, u, 07) = ((S +11>)‘ z(ad 2P(ad O'y-?

F3'(z, u, @) —~(~ —1)- ad u Z (ad 2)*(ad @")*~'-?

-

and define a function B by the same equality as above. Then as above it
can be shown that equalities [(4.10) and (4.11) hold and that B satisfles 1)
and 2).

4.6. For each A< gl we denote by T7r A the trace of the (complex)
endomorphism n=>y—-[A4,y]en, i.e, Tr A is the trace of A as an endo-
morphism of .

LEMMA 4.10. Let c<8® be such that [c, g ?]Cg*? and [c, g t]Cgb L
Then the function p(c) in Lemma 4.7 is computed as follows:

i) The case k is odd.

m(e) =
ii) The case k is even and k. 1s odd (—;:21‘—1)

2
pe)(x) = (22(7,‘ 1f)| Im 7Tr((ad x)*7'c) (x=V).

. k. kR
iiiy The case k is even and o~ 1S even (T—-Zt).

1(6)(x) = é’;&r 11)), Re Tr((ad D¥0) (x& V).

Proor. By Lemma 2.4, we have
(4.12) L@ = (V=1 (L.(Ao ®))dz A du A dz N du
+ (V=120 O(Lee(dz A du)) A dz N du
+(V=1)¥20® dz A du A Li(dz N du) -

For each x= D, let u(f) (—e <t <e¢) be an integral curve of ¢(c) with u(0)=x.
G° being (identified with) a Lie subgroup of GL(n), we see that there is a

(unique) curve b(t) (—e <t <¢) in G° such that db(t) 2b(H)~! = B(u(?)) and b(0)=1,
where B is the function given in By then we have

ﬂfﬁiﬁ = (Lo ®)u(t)) = [ Bu(D), @u(®)].

Furthermore we clearly have

i@%%@ = Bu(t)b(t)@(x) = [LBu), b()P(x)] .

Since @u(0)) = @(x) =b(0)P(x), it follows that D(u(t))=>b(F)P(x). Therefore,.
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@) = |det b(t)| 22A(@(x)) by which implies

(4.13) Lip(Ao®)=—2ReTrB-Ac®.
By we have
“@.14 Li(dzNdu)y=TrA-dz N\ du.

From [4.12), and (4.14), it follows that L,,2 =2ReTr(A—B)-£. Hence,
2O =2Re Tr(AW—1x—BK~—1%x) (x&V).

now follows from this equality and Lemmas and 49

We are now in a position to prove the following

THEOREM 4.1. Let D be the Siegel domain of the second kind associated with
a convex cone V (in W% and a V-hermitian form F (on W%). Assume that

the domain D is affine homogeneous. Let g = § g? be the graded algebra given
p=—2

in Theorem 3.1 and let §= 3] 8P be the prolongation of (g"2+¢7?, g%). For each

p=—2

Xeg® denote by Tr(X) the trace of X as an endomorphism of W. Then g is
a graded subalgebra of § and the subspaces g? C§? (p>0) are inductively
determined as follows:

O ¢'=8"

(2) g? consists of all X< §* such that ImTr((X, Y ) =0 for all Y=g

3 ¢® consists of all X< §® such that [ X, g"*]C g%

4) g* consists of all X §* such that [ X, ¢ JCg¢* and Tr([X,Y ], Y D=0
Jor all Yeg 2

(5) For each k>4, g* consists of all X< §® such that [ X, g"*]Cg*? and
[X, g ]Cg

Proor. From Lemmas 4.6 and 4.7, we see that ¢* consists of all X<§*
such that [X, g ®]Cg*? [X,¢g']JCg*?* and u(X)=0. Theorem 4.1 follows
easily from this fact and Lemma 4.10.

§5. Infinitesimal automorphisms of a Siegel domain, III.

5.1. In this paragraph, we shall investigate the special case where W-!
= {0}, i.e., the domain D is a Siegel domain of the first kind. In this case, we
clearly have the followings:

(1) The group GL(D) is identical with the linear automorphism group of
the cone V, i.e., consists of all a € GL(W-*)C GL(W;? such that aV=V.

(2) §*'={0} and, for each s>0, §* is the s-th prolongation of the linear
Lie algebra g°C gli(W~2).

PROPOSITION 5.1. g®=@§% i.e., g® is the first prolongation of the linear Lie
algebra ¢° C gl(W~2).
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This is clear from [Theorem 4.1

5.2. Let us now investigate the case where the vector space W-?% is
generated by the vectors of the form F(y,y) (yveW™), i.e., g *=[g7%, g1

ProposiTIiON 5.2 ([3]). The group GL(D) consists of all a e GL(W') satis-
fyving the following conditions:

1) aWw?=Ww? (p=-2,—1);

2) aF(y,y)=F(ay, ay’).

ProroOSITION 5.3. (1) The graded algebra g coincides with the prolongation
§ of (m, g°.

(2) The Lie algebra ¢ may be identified with the Lie algebra of all holo-
morphic vector fields X on W which are tangent to the Silov boundary S of the
domain D.

The proof of this proposition is preceded by the following two lemmas.

LEMMA 5.1. § is finite dimensional.

Proor. We have [’X=—-X (Xeg™) and [IX, IV ]=[X, Y] (X, Yeg™).
Furthermore Proposition 5.2 implies that g° is identical with the subalgebra
g°(m, I) of g°(m) consisting of all Aeg(m) such that JAX=AIX (Xeg™).
Since g7*=[g™, ¢"*] and since m=g~*+4g"* is non-degenerate, it follows from
[9], Corollary 3 to Theorem 11.1 that (m, g% is of finite type, i.e., dim § < co.
(For each p=0, let §? be the subspace of §? defined in the proof of Lemma
4.1, (1). Then H* is the p-th prolongation of §°gl(g™*) and %' = {0}. Hence
by [9], Corollary 2 to Theorem 11.1 we find that (m, g°) is of finite type.)

LEMMA 5.2. Let g=3¢? be a graded algebra, where dimg <oco. We

D

assume that g? = {0} (p < —2) and that g is semi-simple. Then we have:

(1) dimg? =dimg~?. In particular, g?» ={0} (p > 2).

) If g7*=[g"" g7"], then g*=[g", g'].

Proor. (1) Let B be the Killing form of g. Then it is easy to see that
B(g?, g9 = {0} if p-+q+0. Since B is non-degenerate, it follows that, for each
p>0, the bilinear mapping ¢?xg ?2(X,Y)—B(X,Y)e R gives a duality
between the two vector spaces g? and g ?. Hence dim g?=dim g~?.

(2) Assume that g 2=[g"% ¢ !]. Then it can be easily verified that
a=g ?}g *+[g% g*]+g*+[g% ¢'] is a (graded) ideal of g. Since a is semi-
simple, it follows from (1) that dim [g%, ¢*]=dim g 2>=dim g®.. Hence g*=[g’, g'J.

PROOF OF PROPOSITION 5.3. (1) § is finite dimensional by Lemma 5.1.
This being said, let v denote the radical of §. Since [E,r]C?t, we see that t
is a graded ideal of §:r= izrf’, where t? =t ¢?. If we put §?=g?/t?, then

»

g/t = f} g? is endowed with the structure of graded algebra. g/t is semi-
p=—2

simple and §2=[g"% §']. Hence by Lemma 5.2, §? = {0}, i.e., §? =t (p > 2)
and §*=1[g%, §'], i.e., §2=[4", §']+r% t being the radical of §, it is known
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that ad A is a nilpotent endomorphism of § for all A< [r, §] (Bourbaki [1]).
It follows that T7(A) (=the trace of n=>Z—-[A, Z]en=0 for all A=g’N
[t, 8]. Therefore by [Theorem 4.1, we find t*C g%, because [12, g 2] ¢° A\[t, 8.
Since g'=4§! and §*=[§" §*]+% we have g>=3%. Hence we also
have g°=9® by [Theorem 4.1. Furthermore g*=1* and [[t%, g72], g2]Cg’ N [t, §].
Therefore by [Theorem 4.1, it follows that g*=§* and hence g*=§* (k> 4).

(2) Let us consider the pseudo-complex structure (4, I) on M(m) defined
in 4.2. Since ¢°=g°(m, I), the standard Lie algebra sheaf . of type (m, g%
coincides with the sheaf of all local infinitesimal automorphisms of (4, I)
9] §10). By [9], Theorem 6.2, the formal algebra of .£ may be identified
with the prolongation § of (m, g°). Since g=4§ (by (1)), it follows that the
mapping ¢— —¢(c) gives an isomorphism of the Lie algebra g onto the Lie
algebra of all holomorphic vector fields on 1= W which are tangent to S. We
have thereby proved (2) and hence [Proposition 5.3

53. ExampLES. Let K be a field. We denote by M(m, n, K) the space
of all mxn matrices over K and by H(m, K) the space of all symmetric
matrices over K of degree m. Furthermore we denote by H*(m, R) the set
of all X e H(m, R) which are positive definite. It is well known that H*(m, R)
is a homogeneous convex cone in H(m, R) and that the linear automorphism
group of the cone H*(m, R) consists of all linear transformations of the form
H*(m, R)> X— AX'A < H*(m, R), where A< GL(m, R) [(6)).

Let us consider the case where W-2= H(m-+n, R), W '=C™= M(m, 1, C),
V=Ht*(m+n, R) and the V-hermitian form F:C™"XC™— H(m-+n, C)=W;* is
defined by

FY,Y)= 7;~(Y‘Y”+ YY) Y, vyrecm,

where A= F(Y, Y’) should be identified with an element of H(m-+n,C) as
follows :
0 0
A=y 4
Indeed, it can be verified that the mapping F thus defined is a H*(m-+n, R)-
hermitian form on C™ and that the corresponding Siegel domain D is affine
homogeneous ([6).

(A) The case m=0. In this case, the Siegel domain D is of first kind
and is a symmetric domain. And we have the natural isomorphisms as
follows: g *=H(n, R); ¢°=gl(n, R). If n=1, then we have: dim§*=1,
g=g¢"%4+g¢°+8* and g=sap(l, R)=28l(2, R). If n>1, then we can prove the
followings :

(1) §*= H(n, R) and §*={0} (s> 1.

@ g=8.
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3) g=ap(n, R).
(B) The case m>0. In this case, the group GL(D) consists of all linear
transformations ¢ of W= H(m-+n, C)+C™ defined by

o(X+Y)=AX'A+BY (Xe Hm+n,C), YelC™,
where

a O
A_(C b)), B=2b
and

asGL(n,R), beGL(m,R), ceMim,n R), i1eC (2|=1.

And we have the natural isomorphisms as follows: ¢g?= H(m-+n, R) is the
direct sum of two vector spaces t~% and §°%, where t2= H(m, R)+M(m, n, R)
and §2= Hn, R); g*=C™; ¢° is the direct sum of two subalgebras 1 and &°,
where = M(m, n, R)-+-C (as vector spaces) and &° = gl(n, R)+28l(m, R) (as Lie
algebras). If m=1 and n =0, then the domain D is symmetric and we have:

dimg?=dim§=1, dimg'=dim§' =2, dimg’ =2

and §*={0} (k>3); g=4§; g=5u(2,1). Suppose now that n>0 or m>1 and
n=0. Then we can prove the followings:

(1) 3'={0}, = H(n, R) and §*={0} (k>2).

2) g=i.

B t=t"?4tr 41" is the radical of g.

(4) 8=5"?%48"}4? is a semi-simple part of g and is isomorphic with the
direct sum &p(n, R)+38l(m, R).

Finally we note that g-*=[g™*, ¢~'] if and only if n=0.

Appendix

Let V (resp. V/) be a convex cone in a real vector space W-2 (resp. W’~%)
and let F (resp. ) be a V-(resp. V’-) hermitian form on a complex vector
space W~ (resp. W/-1). Assume that the corresponding Siegel domain D (resp.
D" in W=W7*+W-" (resp. in W'=W/,2+W’"") is affine homogeneous. Given
an object A such as a space or a mapping or--- with respect to the domain
D, we write as A’ the corresponding object with respect to the domain D’.
For the domain D, we use the notations given in §3.

Let us identify the space W with an open submanifold of the complex
manifold M= G,/B by the imbedding h. Then the open submanifold W of M
is characterized as the orbit of the complex Lie group N (=expn) through
the origin o of M, and the domain D as the orbit of the Lie group G through
the point do, where 6=exp v/—1s@). Furthermore the Silov boundary S of
the domain D is an open submanifold of the orbit M of G through the origin o.
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LEMMA A. Suppose that there is given a holomorphic homeomorphism ¢
of D onto D’.

M) ¢ is extended to a (unique) holomorphic homeomorphism, denoted by the
same letter @, of M onto M’ and there is a (unique) complex isomorphism @
of G, onto G} such that @(G)=G" and ¢(ax)=0@)e(x) (a < G, x< M).

@ eM)=M".

Proor. (1) Since D’ and M’ are orbits of G/, we may assume that
©(00)=0"0’. The holomorphic homeomorphism ¢ gives rise to an isomorphism
@ of H(D) onto H(D’) such that ¢(ax)=@(a)p(x) (a € G, x D). We clearly
have @(G)=G’. The isomorphism @ of G onto G’ is extended to a (complex)
isomorphism, denoted by the same letter @, of G, onto G. Let @ be the
(complex) isomorphism of G, onto G, defined by @(a)=6'"'@(dad")d" (a € Gy).
We show that @(B):B’. Indeed, @(K) = K’, because ¢(do)=0"0’. Since ¢ is
a holomorphic homeomorphism of D=G/K onto D’=G’/K’, we find @.(jX)
=7 0«(X) (mod¥) for all X =g, where @, denotes the (complex) isomorphism
of g, onto g, induced by @. It follows that @ (P(g)+%,)=P/(g)+t b=
Ad 5'1(P-(gc)+fc). Therefore @*(b):f)’ and hence @(B):B/, proving our asser-
tion. Since @(B)=B’, & induces a holomorphic homeomorphism & of M onto
M’ such that for=n'od. Let x=adoec D (a € G). Then ¢(x)=D(a)p(d0)
= @(a)d'0’ = n'(D(a)d’) = ' (5’ B(3-1ad)) = 6'D(6-*)@(x). This implies that ¢ is
extended to a holomorphic homeomorphism of A onto M’. It is clear that
o(ax) = D(a)p(x) (a <G, x< M.

(2) Let us consider the holomorphic transformation group of the complex
Lie group N’=expn’ on the complex manifold M’. Since dim N’=dim M’
and since W’ is an open orbit (=a regular orbit) of N/, the union 7’ of all
singular orbits of N’ forms a proper analytic set of M’ which is locally defined
by a single equation. Furthermore 7’ = M’— W', because M’—T" is connected.
Suppose now that ¢(S)c T’. Take any p < S and let f/=0 be a local equation
of T’ at ¢(p). Then the function f'o¢ is holomorphic and vanishes on a
neighborhood of p in S M. Therefore by (3.7), f/o¢ vanishes on a neigh-
borhood of p in M. Hence 7" contains an open set of M, contradicting to the
fact that 7 is a proper analytic set. We have thereby shown that there is
a peS such that o(p)eW’ (cf. [9], Proposition 10.1). Analogously to the
proof of Lemma 3.5, then we can prove that ¢(p)= S’. Both ¢(M) and M’
are orbits of G’ and ¢(p) (S)NS' Ce(M)NM’. Hence o(M)=M".

THEOREM A. Let D (resp. D') be the Siegel domain of the second kind
associated with a convex cone V (resp. V') in W2 (resp. in W'=%) and a V-
(resp. V'-) hermitian form F (resp. F’) on W=* (resp. on W'™*). Assume that
the domain D (resp. D) is affine homogeneous. Let g=21g® (vesp. ¢’ =226'7)

» »
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be the corresponding graded algebra given in Theorem 3.1. If the domain D
is isomorphic with the domain D', then there is an isomorphism 0 of g onto ¢’
as graded algebras such that (I)=1" and 6(V)=V', where I is the element in
the centre of g° defined in 2.5 and V should be identified with a convex cone
in g7% by the linear isomorphism W22 x—s(x) =g >

ProOOF. Assume that D is isomorphic with D’. By Lemma A, we can
find a holomorphic homeomorphism ¢ of Al onto M’ and a complex isomor-
phism @ of G, onto G satisfying the followings: ¢(D)=D’, o(M)= M’', ®(G)
=G’ and ¢(ax)=0(@)e(x) (a <G, x<M). Moreover we may assume that
¢(0)=0’. The mapping M=G/GNB>x—¢x)e M'=G'/G' "B’ maps the
pseudo-complex structure (M, 4, I) isomorphically onto (M’, 4/, I’). Therefore
the argument in 3.5 proves:

D @(LP)=L"* (p=—1,0);

2) O, XD=[I,0(X)] (mod L®) (X< L.
As we have observed in the proof of Lemma 1.1, the subspaces L~! and L° of
g yield a family (LP) of subspaces of g and then a graded algebra §g=>)g?,

gP=L?/L?+, By 1), then we have @,(L?)=L’? for all p. Hence @, indlplces
an isomorphism 6, of g onto 3’ as graded algebras. By 2), we find 8,(/)=1,
where [ denotes the image of [< L° by the projection of L° onto g®=L°/L".
Since L? = ¥ ¢", there is a natural isomorphism 8, (resp. 8] of g (resp. of g’)

TZD

onto g (resp. onto g’) as graded algebras such that 6,(J)=17 (resp. 0,1 =1").
Therefore § =60;"*cf,00, is an isomorphism of g onto g’ as graded algebras
and satisfies 0(I) = I".

Let us now prove that there are X?=g’? (1 <p<k) such that Ad ¢ '@.(E)
=FE’, where c=exp X!.--exp X*. Indeed, @(E)=60(E) (mod L’*) and §(E)=E".
Therefore @4 (F)=E’ (mod L’Y). Suppose that there are X?<g’? (1<p<r)
such that Ad ¢;}@(E)=E’ (mod L’"), where ¢, ,=exp X'---exp X"'. Then
there is an X"=g’" such that Ad ¢;},@(E)=E’—r X" (mod L'"*1). Ad(exp X")E’
=FE'—rX" and Ad(exp(—X7")L'™' =L It follows that Adc;'Q(E)=E’
{(mod L’"*Y), where c¢,=c,_,exp X"=exp X'.-exp X". Since g¢'?={0} for
sufficiently large p, this argument proves our assertion. ¢ is in the group
G' N\ B’. By considering ¢ !¢ instead of ¢, we may thereby assume that
@ (EY=F’. Then we have @,(g?)=g¢’? and hence @,=0.

The points ¢(do) = @()o’ and 8’0’ are in the domain D’. Therefore there
isa g=exp (X2 +XNDN.aeG, (X?2cg? X ey, ac G such that @(d)o’
—=gd’0’. Since a € B’, we have t=@()'gd’a* € B’. d=exp+/ —1v and hence

t=exp (—v—1041))-exp (X *+X 1) -exp (v —1Ad av’)
=exp (—v/ =104 ()++v—-1Ada v+ X2+ X).
Since Adt E’ €V, it follows that
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Therefore we get 0(v) = @,(v)= Ad av’. Since V is the orbit of G° through
the point v, this shows #( V)= V".

REMARK. Assume that g~ 2={g"!, ¢7']. Then it can be proved that every
isomorphism ¢ of (M, d,I) onto (M’, 4’,I') is extended to a holomorphic
homeomorphism, denoted by the same letter ¢, of M onto M’ such that
oD)y=2D".

Kyoto University
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