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On the boundedness of pseudo-differential operators
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In this note we show that a bounded symbol p(x, &) with bounded deriva-
tives 080¢ p(x, &) defines a bounded pseudo-differential operator

(PA)x)=@2r)™™ [et=p(x, ) (©)dé

in L®. Symbols p(x, &) of the class S}, p>0 defined in Hérmander by
the inequality
|080&D(x, £)| = Cap(1+1&])~01%

are of this form. The result is new for p=0. Our proof makes use of a
modification of a lemma of Cotlar (see for almost orthogonal operators
in a Hilbert space.

This problem was proposed to us by Hitoshi Kumano-go who will present
shortly applications to parabolic and semi-elliptic” operators.

THEOREM. Let the symbol p(x, §) be a matrix of functions p;(x, §) defined
on RiXRE such that

|ag;‘, a§} 82-',’: a?f.bu(x, OI=Cap

Jor ay, B;=0,1,2,3 and all x and §& Then the pseudo-differential ope%ator
(PYx)=@m)™ [e=p(x, £)f()dE,  fes,

can be extended to a bounded operator from L® into L2
We state immediately the auxiliary lemma which will be proved later.
LEMMA. Let A, be a z-weakly measurable and uniformly bounded family
of operators in L% ||AJN=< M, for all z in a measure space Z with element of
measure dz. If the inequalities

IAAF S h¥(z, 2) and | A¥Ay| = h(z, 27)

hold with a nonnegative function h(z, 2") which is the kernel of a bounded integral
operator H in L* with norm M, then the operator
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A:jA,dz

is bounded in L* with norm
| A= M.

PrROOF OF THEOREM. It will be sufficient to prove the Theorem for
a single function p(x, &) of two real variables x, &, since each pair of variables
Xk, & can be considered separately. We first express p(x, £) as a convolution
of the bounded function

g(x, &) = (1+0,)°(1+0¢)°p(x, &)
with the function

-%—x%‘Jc x=0
o(x) =
0 x<0

which is the fundamental solution of the differential equation

(140,)°p(x) = 6(x) ,

namely

p(x, O = ([ 2(s, Hpx—9)pE—ds dt .
The pseudo-differential operator P becomes

Pf(x)=2m) [ ds dt g(s, ) [ = p(x—5)p(— [ (§)dE

= (2m) [[ds dt g(s, DA f ().

Since g(s, t) is a bounded function, it is enough to show that the family A,
with (s, ) =z, satisfies the hypothesis of the lemma. From max o(x)=2e¢7%,
x

we have immediately
| A =4de*=M,.

We shall show that

@) | A, A% || < 1+ | s—s![)2e -1
S+ |s—s DA 1= ])®
= h*(s—s/, t—1)

and, by a simple interchange of s and ¢,

@ | A¥ Al < U+ | t—t/[)=3e-1s-s12
S Q4= DA+ | s—s7 )
= R (s—s’, t—1t").
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Since A(s, t) is (s, t)-i ‘tegrable, will follow from the lemma with

M= fa+ieyedr] |

To derive (1) we shall estimate the L?*norm | A, A¥.|l of A,A¥., by the
Hilbert-Schmidt norm j j |k(x, ¥)|2dx dy of its kernel

k(x, 3) = [ e V0 (x —$)p(E —Dp(y— s )p(E—1')dE

= p(x—9)p(y—s") [ e = Ep(E —Dp(E—1)dE .
With
w=x—y, u=~§&—t, 4,=t—t'=20,

the last integral becomes

et j (U p(utA,)du

= 711~ elwt=4; f " ety A,yredu
0

e (R Y8 s
Since a similar expression holds with —4, when 4, <0 we thus have
| R(x, )| = ce™ 4P(1+ | x—y ) p(x—S)p(y—s") .
Squaring and integiating give
{1#x, 3)|2dx dy < cem4e! [ [+ [ x—y 1) *p*(x—9)p*(y—s)dx dy .
Now setting
utv=x—s, U—v=y—s’, 4,=s—s"=0,

the last integral becomes
2 j [+ 120+ 4,) 2wt v)p*u—v)du dv
:—%—f A+ l2v+A,l)‘“j o) I(u“’—1/2)2e""‘a.’u dv

Zc L Q-+ |2v+A3|)‘6L e *du dv

Z vl
<c[Q+|20+4,)) e "dv

and by the inequality (14 |a+b])" = C.(1+|a)"A4|0])T,
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< o+ [ 4:1) f (Lt |20 yevido

=c@Q+140)c.
Collecting the terms we get (1) in the form

| AwAful® < [ 1kCx, )|%dx dy

S A+ [s—s|) te A,
Inequality (2) follows i/nt\he same way by noting that the operator
(A%Ay,)” mapping f into AXA,, f has kernel
ky(&, )= so(é—t)w(v—t')fe‘”(“’ “Po(x—s)p(x—sdx ,

hence k&, is the complex conjugate of 2 with s and ¢ interchanged.
This completes the proof of Theoreml.
COROLLARY.

IPl=c sup [(14-05,)° -+ (14+05)°A4-0¢,)° --- A40:)°p(x, &)|

where the constant ¢ is independent of p but depends only on the dimension n
of the x and & spaces.
PrOOF Oor LEMMA. We multiply the two inequalities

T = A ABAs - ASull S 1A ARl - | Ay AR
and
Tm é HA:uH HA;‘;A23“ ot ” A;kzm—zAzzm—1” “A;I;m“

to obtain the estimate
T3 = | Ayl Ay AR AS Assll -+ | Ay 1 AR N A

which, after taking square roots and using the hypotheses »f the lemma,
becomes

Tn = Mh(zy, 2,)1(2,, 25) -+ W(Zym-1, Z2m)
Thus, if N is a set of finite measure with characteristic function Xy(2),
SN=‘f dz:jXN(z)dz, we have
N

0§, )T, 0.0 T

< [j‘ . j‘“AZIA;kZ cee A:‘Zm” de oo dzzm]llm

z;EN

é'Mo JT dz, dzzmj‘ j‘h(zl, 2,) o W(Zom 1, Zom) AZp ++ dZom -,
zZ

21,22 EN

1/m
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/m
=|my [ w0, 2o dzidzen]|

81,22mEN

1/m

= ‘ M, jf An(z)h®™ (2, 2om) X 8(2om) d23m d2,
é [MOSNM2m—1]11m .

The last estimate follows from the fact that A®™-Y(z, z’) is the kernel of the
operator H*™! and |H™ !| < M*™1,
Letting m go to infinity, the above inequalities give

2
“j A,dz“ < M.
N
Since M is independent of N, we finally obtain the desired estimate
|| {4 dzﬁ <M.
This completes the proof of the lemma.
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