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Let L* and L~ denote the Lebesgue spaces of square integrable and
essentially bounded functions with respect to normalized Lebesgue measure
on the unit circle in the complex plane. Let H? and H= denote the corres-
ponding Hardy spaces. For ¢ in L*, the Toeplitz operator induced by ¢ is the
operator T, on H? defined by Tyf= P(¢f); here P stands for the orthogonal
projection in L? with range H2.

The purpose of this paper is to prove an inversion theorem (Theorem 2)
of T, for f in a class of subalgebras As; of H*+C, and then we can determine
(Theorem 3) the spectrum of T, for any unitary function f in As. We recall
that the linear span H*+C of H™ and C is a closed subalgebra of L~ [4,
[Theorem 2], where C stands for the space of continuous complex valued
functions on the unit circle. This algebra can also be characterized as the
subalgebra of L* generated by H> and the function Z. Let # denote the
algebra of bounded operators on H? X the uniformly closed two-sided ideal
©0of compact operators in #, and =~ the homomorphism of @8 onto 8/X. An
operator B in 48 is said to be a Fredholm operator if B has a closed range
and both a finite dimensional kernel and cokernel. It is known that this
is equivalent to #(B) being an invertible element of #/x. If B is a Fredholm
operator, then the index ind (B) is defined ind (B)=dim [ker B]—dim [coker B].
In general for a Fredholm operator B the statement ind (B) =0 does not imply
that B is invertible. For Toeplitz operators, however, the situation is simpler
as was shown by Coburn [27.

LEMMA 1. If ¢ is in L™ such that Ty is a Fredholm operator and ind (Ty)
=0, then Ty is invertible.

Stampfli observed in that 7y7T,—7T,T, is at most one dimensional for
any ¢ in L= and hence compact. Therefore, T,T,—T,T, is a compact operator
for any f and g in H*+C and T,T,—T,T, is a compact operator for any ¢
in L= if fis in C.

LEMMA 2. Let f be in H*+C, then T,T;—T,,; is a compact operator for
every h in L=,

PROOF. Since f is in H*4C, we can write f= f,+f, where f; in H> and
f> in C. Consider
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TWT,= ThTf1+fz = ThTf1+ThTf2 = Thf1+Thf2+K ’

where K is a compact operator, since f; is in H* and f, is in C.

Hence

T,T,= Th(f1+f2)+K = Thf+K s
for any h in L=

The proof is complete.

If f is a conformal map of the open unit disk onto a simply connected
domain such that f is not continuous on the closed unit disk and real part
of f is continuous everywhere in the closed unit disk, therefore f=2Re f—f
is in H*+C but f is not continuous, so there are many discontinuous conjugate
analytic functions in H=+C, hence by it is easily seen that T,T,
—T,T, is compact for every h in L* does not imply that g is in C. Let D
be the collection of all discontinuous conjugate analytic functions in H*+4C.

For each ¢ in D, let A4 be the uniformly closed subalgebra of L~ generated
by C and ¢, hence C< Ag < H*+C. Let ¥4 denote the C*-subalgebra of &
generated by the operators 7, with fin As. Then we have the following
theorem. .

THEOREM 1. ¥y contains K as a two-sided ideal and ¥4/ X is isometrically
isomorphic to Ag.

PROOF. Since ¥4 contains the C*-algebra generated by the unilateral
shift of multiplicity one, it follows from [3] that ¥, contains X and X is an
ideal in any algebra of # containing it. Since the commutator of 7, and T,
for f and g in ¥4 is a compact operator by Lemma 2. Thus the linear span
of the operators of the form T,+K, where f is in As and K is in X, is an
algebra. In fact, it is a C*-algebra which follows from Coburn’s observation
that |T,4+K| =|T,| for any Toeplitz operator T,. Therefore, ¥4/ X is com-
mutative and the mapping T,+K <« f is an isometrical isomorphism of ¥4/X
onto As. The proof is complete.

COROLLARY. If fis in Ay, then T, is a Fredholm operator if and only if
S is invertible in Ag.

PROOF. If f is invertible in Ay, then #(T,) is invertible in ¥4/X and
hence Ty is a Fredholm operator.

If T, is a Fredholm operator, then n(T;) is invertible in B/X, so is (T ,)*,
and so n(Tp)*rn(T;) is invertible in /K. Since n(T,) = & (T)*x(T ) *=(Ty)*,
it suffices to show that (z(T)*z(T,)"! belongs to qus/f./\ P

Since the Gelfand transform of #n(T)*z(Ty) is #(T)*n(Tp) = |n(Ty)|?=0
on the maximal ideal space of ¥4/ K, (A—n(T)H*n(Ty))™* belongs to ¥4/ K for
2<0. Since A—n(Ty)*a(Ty) * converges to —(a(T)*n(Typ)) ! in B/ K as 1—0_,
we obtain (n(T,)*x(T,))"! belongs to ¥ys/K. This completes the proof.

From Lemma 1 and Corollary to Theorem 1, we obtain our main theorem.
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THEOREM 2. If f is in Ag, then Ty is invertible if and only if fis invertible
in Ag and ind (Ty)=0.

From [Corollary] to [Theorem 1 and we can determine the
spectrum of T, a(T)), if f is a unitary function in A,.

THEOREM 3. If fisin Ag and |f|=1 a.e., then

(i) if T, is not invertible, o(Ty) is the closed unit disk, and

(ii) if T, is invertible, a(Ty) is the essential range of f.

PROOF OF (i). Case 1. Suppose that f~! is in Ay that is, 0 does not
belong to og,4(f), where o44(f) denotes the spectrum of f as an element of
the subalgebra Ay. It is well known that the boundary of g,4(f) equals the
boundary of g:<(f). Since oy«(f) is contained in the unit circle, no point in
the open unit disk belongs to g,4(f). This implies that f—2 is invertible in
Ay for every |A|<1. Therefore T, ; is a Fredholm operator by Corollary to
Theorem 1. Since 7T, is not invertible, ind(T))#0 by Lemma 1, hence
ind (Ty_)) #0. Therefore T,_; fails to be invertible for all 2 such that |1| <1,
and it follows that o(T,) is the closed unit disk.

Case 2. Suppose that f~' is not in Ay, that is, 0 is in o,4(f). Hence by
the same argument as in Case 1, we have o,4(f) is the closed unit disk.
Therefore o(Ty) is the closed unit disk by Theorem 2.

PROOF OF (ii). f~! is in Ay, since T, is invertible by assumption. Hence
by the same argument as in Case 1 of (i), we have T,_; is a Fredholm operator
for every 4 such that |4]<1. Since ind (T, ;)=ind (T;)=0 by assumption,
T;_, is invertible by Theorem 2. Therefore o(7,) is contained in the unit
circle and by the same argument as in Case 1 of (i) again, we have a(T,) is the
essential range of f. The proof is thus complete.
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