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On Toeplitz operators
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Let $L^{2}$ and $L^{\infty}$ denote the Lebesgue spaces of square integrable and
essentially bounded functions with respect to normalized Lebesgue measure
on the unit circle in the complex plane. Let $H^{2}$ and $H^{\infty}$ denote the corres-
ponding Hardy spaces. For $\psi$ in $L^{\infty}$, the Toeplitz operator induced by $\psi$ is the
operator $T_{\phi}$ on $H^{2}$ defined by $T_{\psi}f=P(\psi f)$ ; here $P$ stands for the orthogonal
projection in $L^{2}$ with range $H^{2}$ .

The purpose of this paper is to prove an inversion theorem (Theorem 2)
of $T_{f}$ for $f$ in a class of subalgebras $A_{\phi}$ of $H^{\infty}+C$, and then we can determine
\langle Theorem 3) the spectrum of $T_{f}$ , for any unitary function $f$ in $A_{\phi}$ . We recall
that the linear span $H^{\infty}+C$ of $H^{\infty}$ and $C$ is a closed subalgebra of $L^{\infty}[4$ ,

Theorem 2], where $C$ stands for the space of continuous complex valued
functions on the unit circle. This algebra can also be characterized as the
subalgebra of $L^{\infty}$ generated by $H^{\infty}$ and the function $\overline{z}$. Let $\mathcal{B}$ denote the
.algebra of bounded operators on $H^{2},$ $\chi$ the uniformly closed two-sided ideal
of compact operators in $\mathcal{B}$ , and $\pi$ the homomorphism of $\mathcal{B}$ onto $\mathcal{B}/JC$ . An
eperator $B$ in $\mathcal{B}$ is said to be a Fredholm operator if $B$ has a closed range
and both a finite dimensional kernel and cokernel. It is known [1] that this
is equivalent to $\pi(B)$ being an invertible element of $\mathcal{B}/JC$ . If $B$ is a Fredholm
operator, then the index ind $(B)$ is defined ind $(B)=\dim[kerB]-\dim$ [coker $B$].

In general for a Fredholm operator $B$ the statement ind $(B)=0$ does not imply
that $B$ is invertible. For Toeplitz operators, however, the situation is simpler
as was shown by Coburn [2].

LEMMA 1. If $\psi$ is in $L^{\infty}$ such that $T_{\psi}$ is a Fredholm operator and $ind(T_{\psi})$

$=0$ , then $T_{\psi}$ is invertible.
Stampfli observed in [5] that $T_{\psi}T_{z}-T_{z}T_{\psi}$ is at most one dimensional for

any $\psi$ in $L^{\infty}$ and hence compact. Therefore, $T_{f}T_{g}-T_{g}T_{f}$ is a compact operator

for any $f$ and $g$ in $H^{\infty}+C$ and $T_{f}T_{\psi}-T_{\psi}T_{f}$ is a compact operator for any $\psi$

in $L^{\infty}$ if $f$ is in $C$.
LEMMA 2. Let $f$ be in $H^{\infty}+C$, then $T_{h}T_{f}-T_{hf}$ is a compact operator for

every $h$ in $L^{\infty}$ .
PROOF. Since $f$ is in $H^{\infty}+C$, we can write $f=f_{1}+f_{2}$ where $f_{1}$ in $H^{\infty}$ and

$f_{2}$ in $C$. Consider
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$T_{h}T_{f}=T_{h}T_{f_{1}+f_{2}}=T_{\hslash}T_{f_{1}}+T_{h}T_{f_{2}}=T_{hf_{1}}+T_{hf_{2}}+K$ ,

where $K$ is a compact operator, since $f_{1}$ is in $H^{\infty}$ and $f_{2}$ is in $C$.
Hence

$T_{h}T_{f}=T_{h(f_{1}+f_{2})}+K=T_{hf}+K$ ,
for any $h$ in $L^{\infty}$ .

The proof is complete.
If $f$ is a conformal map of the open unit disk onto a simply connected

domain such that $f$ is not continuous on the closed unit disk and real part
of $f$ is continuous everywhere in the closed unit disk, therefore $\overline{f}=2{\rm Re} f-f$

is in $H^{\infty}+C$ but $\overline{f}$ is not continuous, so there are many discontinuous conjugate
analytic functions in $H^{\infty}+C$, hence by Lemma 2, it is easily seen that $T_{h}T_{g}$

$-T_{g}T_{h}$ is compact for every $h$ in $L^{\infty}$ does not imply that $g$ is in $C$ . Let $D$

be the collection of all discontinuous conjugate analytic functions in $H^{\infty}+C$.
For each $\phi$ in $D$ , let $A_{\phi}$ be the uniformly closed subalgebra of $L^{\infty}$ generated

by $C$ and $\phi$ , hence $C\subseteqq A_{\phi}\subseteqq H^{\infty}+C$. Let $\Psi_{\phi}$ denote the $c*$-subalgebra of 9
generated by the operators $T_{f}$ with $f$ in $A_{\phi}$ . Then we have the following
theorem.

THEOREM 1. $\Psi_{\phi}$ contains $JC$ as a two-sided ideal and $\Psi_{\phi}/e\chi$ is isometrically
isomorphic to $A_{\phi}$ .

PROOF. Since $\Psi_{\phi}$ contains the $c*$-algebra generated by the unilateraI
shift of multiplicity one, it follows from [3] that $\Psi_{\phi}$ contains $\prime X$ and $\sigma\chi$ is an
ideal in any algebra of $\mathcal{B}$ containing it. Since the commutator of $T_{f}$ and $T_{g}$

for $f$ and $g$ in $\Psi_{\phi}$ is a compact operator by Lemma 2. Thus the linear span
of the operators of the form $T_{f}+K$, where $f$ is in $A_{\phi}$ and $K$ is in $X$ , is an
algebra. In fact, it is a $c*$-algebra which follows from Coburn’s observation
that $\Vert T_{f}+K\Vert\geqq\Vert T_{f}\Vert$ for any Toeplitz operator $T_{f}$ . Therefore, $\Psi_{\phi}/JC$ is com-
mutative and the mapping $T_{f}+K\leftrightarrow f$ is an isometrical isomorphism of $\Psi_{\phi}/X$

onto $A_{\phi}$ . The proof is complete.
COROLLARY. If $f$ is in $A_{\phi}$ , then $T_{f}$ is a Fredholm operator if and only if

$f$ is invertible in $A_{\phi}$ .
PROOF. If $f$ is invertible in $A_{\phi}$ , then $\pi(T_{f})$ is invertible in $\Psi_{\phi}/JC$ and

hence $T_{\phi}$ is a Fredholm operator.
If $T_{f}$ is a Fredholm operator, then $\pi(T_{f})$ is invertible in $\mathcal{B}/JC$ , so is $\pi(T_{f})_{r}^{*}$

and so $\pi(T_{f})^{*}\pi(T_{f})$ is invertible in $\mathcal{B}/JC$ . Since $\pi(T_{f})^{-1}=(\pi(T_{f})^{*}\pi(T_{f}))^{-1}\pi(T_{f})^{*}$ ,
it suffices to show that $(\pi(T_{f})^{*}\pi(T_{f}))^{-1}$ belongs to $\Psi_{\phi}/JC$ .

Since the Gelfand transform of $\pi(T_{f})^{*}\pi(T_{f})$ is $\pi(T_{f})\pi(T_{J})\bigwedge_{*}=|\pi(T_{J})\wedge|^{2}\geqq 0$

on the maximal ideal space of $\Psi_{\phi}/JC,$ $(\lambda-\pi(T_{f})^{*}\pi(T_{f}))^{-1}$ belongs to $\Psi_{\phi}/JC$ for
$\lambda<0$ . Since $(\lambda-\pi(T_{f})^{*}\pi(T_{f}))^{-1}$ converges to $-(\pi(T_{f})^{*}\pi(T_{f}))^{-1}$ in $\mathcal{B}/JC$ as $\lambda\rightarrow 0_{-}$ ,
we obtain $(\pi(T_{f})^{*}\pi(T_{f}))^{-1}$ belongs to $\Psi_{\phi}/JC$ . This completes the proof.

From Lemma 1 and Corollary to Theorem 1, we obtain our main theorem.
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THEOREM 2. $1ff$ is in $A_{\phi}$ , then $T_{f}$ is invertible if and only if $f$ is invertible
in $A_{\phi}$ and ind $(T_{f})=0$ .

From Corollary to Theorem 1 and Theorem 2, we can determine the
spectrum of $T_{f},$ $\sigma(T_{f})$ , if $f$ is a unitary function in $A_{\phi}$ .

THEOREM 3. Iff is in $A_{\phi}$ and $|f|=1$ a. e., then
(i) if $T_{f}$ is not invertible, $\sigma(T_{f})$ is the closed unit disk, and
(ii) if $T_{f}$ is invertible, $\sigma(T_{f})$ is the essential range of f
PROOF OF (i). Case 1. Suppose that $f^{-1}$ is in $A_{\phi}$ , that is, $0$ does not

belong to $a_{A\phi}(f)$ , where $\sigma_{A\phi}(f)$ denotes the spectrum of $f$ as an element of
the subalgebra $A_{\phi}$ . It is well known that the boundary of $\sigma_{A\phi}(f)$ equals the
boundary of $\sigma_{L^{\infty}}(f)$ . Since $\sigma_{L^{\infty}}(f)$ is contained in the unit circle, no point in
the open unit disk belongs to $\sigma_{A\phi}(f)$ . This implies that $ f-\lambda$ is invertible in
$A_{\phi}$ for every $|\lambda|<1$ . Therefore $T_{f-\lambda}$ is a Fredholm operator by Corollary to
Theorem 1. Since $T_{f}$ is not invertible, $ind(T_{f})\neq 0$ by Lemma 1, hence
ind $(T_{f-\lambda})\neq 0$ . Therefore $T_{f-\lambda}$ fails to be invertible for all $\lambda$ such that $|\lambda|<1$ ,
and it follows that $\sigma(T_{f})$ is the closed unit disk.

Case 2. Suppose that $f^{-1}$ is not in $A_{\phi}$ , that is, $0$ is in $\sigma_{A\phi}(f)$ . Hence by

the same argument as in Case 1, we have $\sigma_{A\phi}(f)$ is the closed unit disk.
Therefore $\sigma(T_{f})$ is the closed unit disk by Theorem 2.

PROOF OF (ii). $f^{-1}$ is in $A_{\phi}$, since $T_{f}$ is invertible by assumption. Hence
by the same argument as in Case 1 of (i), we have $T_{f-\lambda}$ is a Fredholm operator
for every $\lambda$ such that $|\lambda|<1$ . Since ind $(T_{f-\lambda})=ind(T_{f})=0$ by assumption,
$T_{f-\lambda}$ is invertible by Theorem 2. Therefore $\sigma(T_{f})$ is contained in the unit
circle and by the same argument as in Case 1 of (i) again, we have $\sigma(T_{f})$ is the
essential range of $f$. The proof is thus complete.
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