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\S 0. Introduction.

Newlander and Nirenberg [12] proved that a sufficiently differentiable
almost complex manifold satisfying the complete integrability conditions is a
complex manifold. From a different point of view we may consider this
Newlander-Nirenberg theorem as an extension of the Beltrami equation to
several complex variables. Vekua [15], [16] established the theory of gener-
alized analytic functions which are solutions of the so-called generalized
Cauchy-Riemann equation $\partial_{\overline{z}}f=a(z,\overline{z})f+b(z,\overline{z})\overline{f}$, where $a(z,\overline{z})$ , $b(z,\overline{z})$ are
defined in a domain in z-plane and satisfy some conditions there, where the
differential operator $\partial_{\overline{l}}$ is used in the sense of distributions and is defined
by $(1/2)(\partial_{x}+i\partial_{y}),$ $z=x+iy$, in the case of ordinary derivations, and where we
denote the conjugate of a complex number by a bar. The generalized analytic

functions preserve a number of fundamental topological properties of analytic

functions of one complex variable (the identity theorem, the argument prin-
ciple, etc.). Moreover such analytic facts as the Taylor and Laurent expan-
sions, the Cauchy integral formula, etc. remain valid.

In the theory of generalized analytic functions the representation formulas
of the first (the reciprocal formula) and second (the generalized Cauchy integral
formula) kinds play important roles. Bers [1] called the representation
formula of the first kind the similarity principle.

Accordingly from the above-mentioned it is seen that in order to extend
the Vekua’s theory to several complex variables we shall need the analogous
representation formulas for several complex variables.

We can ask the following question: Under what conditions can we have
such formulas? Since the system of first order differential equations, with
which we want to deal in the present paper, has the conjugate $\overline{f}$ of the
unknown function $f$, so long as we have the compatibility conditions, we are
compelled to take the additional first order differential equations. Therefore
for the purpose of making full use of such additional differential equations.
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we shall impose some integrability conditions on the coefficients of our system
and then there exists a change of variables such that our system is reduced
to a single differential equation of one variable. Though the additional
differential equations still remain, the above problem is solved locally by
reducing to the case of one complex variable. Moreover for the purpose of
showing that our discussion in the present paper is not empty we shall show
examples satisfying the above integrability conditions.

We should remark that if the coefficients of our system are anti-holo-
morphic, we have a necessary and sufficient condition in order that a non-
trivial solution may exist, and remark that from this we obtain that any
solution of our system is written in the composed form $\hat{f}\{\sigma(z_{1}, \cdots, z_{n},\overline{z}_{1}, \cdots,\overline{z}_{n})\}$ ,
where $f$ is the solution of a generalized Cauchy-Riemann equation of one
complex variable and $\sigma$ is determined by the coefficients and is holomorphic.
Furthermore we shall remark that, when a domain of the definition of coef-
ficients is a simply connected domain, we obtain global solutions and the
above problem is solved.

On the contrary if the coefficients of our system have a smoothness only,
we must have several integrability conditions which are local properties.
Therefore, so long as we globally consider our system, we must check the
compatibility of conditions, but such a problem is solved. And we obtain
locally the same result as the case of the coefficients being anti-holomorphic.

Here we explain the notations used in this paper.
$C^{\infty}(U)$ is the set of all functions defined in $U$ whose partial derivatives

of all orders exist.
$C^{n}=C\times\cdots\times C$ is the Cartesian product of $n$ copies of the complex plane

$C$ which we identify with $R^{2n}$ .
For the points of $C^{n}$ we shall use the notation $z=(z_{1}, \cdots, z_{n})$ , where

$z_{j}=x_{j}+iy_{j}\in C$ and $x_{j},$ $y_{j}$ are real numbers. However, since we shall mainly
think of the functions of class $C^{\infty}$ , the function of $z$ will be denoted by $f(z,\overline{z})$

and hence in case of holomorphic functions we shall use the notation $f(z)$ .
$\Delta(a, r)$ is a polydisc defined by a subset $\{z\in C^{n}||z_{j}-a_{j}|<r, 1\leqq j\leqq n\}$ ;

the point $a\in C^{n}$ is called the center of the polydisc, and $r$ is called the
polyradius.

As a convenient notation we shall introduce the first order partial operators

$\partial_{z_{j}}=\frac{1}{2}(\partial_{x_{j}}-i\partial_{\nu_{j}})$ and $\partial_{\overline{z}_{j}}=\frac{1}{2}(\partial_{x_{j}}+i\partial_{y_{j}})$ ,

where $z_{j}=x_{j}+iy_{j}$ .
By $\partial_{f},$ $\partial_{j}$ we shall denote the notations $\partial_{z_{j}},$

$\partial_{\overline{z}_{j}}$ respectively.
Whenever we speak of a neighborhood in $C^{n}$ we mean that it is homeo-

morphic to a polydisc.
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\S 1. Reduction to the normal form.

We first consider the following system of first order partial differential
equations (overdetermined system for $n\neq 1$):

\langle 1.1) $L_{j}f\equiv\partial_{j}f-\sum_{\mu=1}^{n}a_{j\mu}\partial_{\mu}f=a_{j}f+\overline{b}_{j}\overline{f}$ , $1\leqq j\leqq n$ ,

where all the coefficients are, for simplicity, of class $C^{\infty}$ in a neighborhood
of the origin in $C^{n}$ , and where $a_{pq}(0)=0,1\leqq p,$ $q\leqq n$ .

REMARK 1.1. Suppose that the $n\times n$ matrix $A(O)=(a_{pq}(0))$ is not the zero
one. We put

$\gamma_{\mu\nu}(z,\overline{z})=\sum_{s=1}^{n}\overline{a_{S\nu}(0)}a_{\mu s}(z,\overline{z})$ , $1\leqq\mu,$ $\nu\leqq n$ .

“We define two $n\times n$ matrices $A$ and $\Gamma$ as follows:

$A=(a_{pq}(z,\overline{z}))$ and $\Gamma=(\gamma_{pq}(z,\overline{z}))$ .
We denote the transposed matrix of $A(O)$ by $A(O)^{*}$ . Suppose that $\det(E-\Gamma)$

$\neq 0$ at the origin and that

$\det$ ( $\overline{A(0)^{*}}E$ $A(0)^{*}E)\neq 0$ ,

where $E$ is the $n\times n$ unit matrix. For example, if $|a_{pq}(0)|,$ $1\leqq p,$ $q\leqq n$ , are
sufficiently small, then such conditions are fulfilled.

Then, by introducing new independent variables

$w=z+A(0)^{*}\overline{z}$ ,

we may reduce the equations (1.1) to the case $a_{pq}(0)=0,1\leqq p,$ $q\leqq n$ , where
$w,$ $z$ are n-dimensional column vectors and $\overline{z}$ is the conjugate vector of $z$ .

We want to find a solution of (1.1) of the following form

$ f=g\exp\Omega$ .
Inserting this into (1.1), we obtain

$L_{j}(g)=\overline{b}_{j}\{\exp(\overline{\Omega}-\Omega)\}\overline{g}+\{L_{j}(\Omega)-a_{j}\}g$ , $1\leqq j\leqq n$ .
If we may take a solution $\Omega$ of the system of differential equations

\langle 1.2) $L_{j}(\Omega)=a_{j}$ , $1\leqq j\leqq n$ ,

then we may reduce the system (1.1) to the system of equations

(1.3) $L_{j}(f)=\overline{b}_{J}\overline{f}$ , $1\leqq j\leqq n$ .
We first require the hypothesis: the commutators vanish, that is,

$[L_{j}, L_{k}]=0$ ,
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and hence

$(C_{1})$ $L_{j}(a_{kt})=L_{k}(a_{jt})$ , $1\leqq j,$ $k,$ $t\leqq n$ .
Then we obtain the compatibility conditions

$(C_{2})$ $L_{j}(a_{k})=L_{k}(a_{j})$ , $1\leqq j,$ $k\leqq n$ .
Changing the variables $z$ into the variables $\zeta$ , with the aid of the Newlander-
Nirenberg theorem [12], we may transform (1.2) into

(1.4) $0_{\overline{\zeta}_{j}}\neg\hat{\Omega}=\alpha_{j}$ , $1\leqq j\leqq n$ ,

where

$\alpha_{j}=\sum_{\mu=1}^{n}(\overline{\partial_{\zeta_{j}}z_{\mu}})\delta_{\mu}$ ,

$\hat{\Omega}=\Omega\{z(\zeta,\overline{\zeta}),\overline{z(\zeta,\overline{\zeta})}\}$ and $d=a\{z(\zeta,\overline{\zeta}), \overline{z(\zeta,\overline{\zeta})}\}$ .
Then it is verified by some computations that

(1.5) $\partial_{\overline{\zeta}_{k}}\alpha_{j}=\partial_{\overline{\zeta}_{j}}\alpha_{k}$ , $1\leqq j,$ $k\leqq n$ .
In fact, using the relations

$\partial_{\overline{\zeta}_{j}}z_{\ell}+\sum_{\nu=\iota}^{n}a_{\nu\mu}(\partial_{\zeta_{j}}z_{\nu})=0$ , $1\leqq j,$ $\mu\leqq n$ (see [12]),

we obtain

(1.6) $\partial_{\overline{\zeta}_{k}}\delta_{j}=\sum_{\nu=1}^{n}(\partial_{\nu}a_{j}-\sum_{\mu=1}^{n_{\neg}}a_{\nu\mu}\partial_{\mu}a_{j})(\overline{\partial_{\zeta_{k}}z_{\nu}})$

$=\sum_{\nu}L_{\nu}(a_{j})(\overline{\partial_{\zeta_{k}}z_{\nu}})$

$=\sum_{\nu}L_{j}(a_{\nu})(\overline{\partial_{\zeta_{k}}z_{\nu}})$
$(by^{\sim}(C_{2}))$ .

On the other hand, using (1.6), we have

(1.7)
$\partial_{\overline{\zeta}_{k}}\alpha_{j}=\sum_{\mu}(\partial_{\overline{\zeta}_{k}\overline{\zeta}_{j}}\overline{z}_{\mu})d_{\mu}+\sum_{\mu,\nu}L_{\mu}(a_{\nu})\partial_{\overline{\zeta}_{j}}\overline{z}_{\mu}\partial_{\overline{\zeta}_{k}}\overline{z}_{\nu}$ .

Since the right-hand side of (1.7) is symmetric with respect to $j,$ $k$ , we obtaiIr
(1.5).

Without loss of generality, we may assume that the neighborhood of the $\cdot$

origin into which is transformed by the above change of variables is a
polydisc $\{\zeta\in C^{n}||\zeta_{j}|<r, 1\leqq j\leqq n\}$ . Therefore it is seen that a solution of
(1.4), under the compatibility conditions (1.5), is given explicitly (see [12]).

Thus we have reached the following
LEMMA 1.1. Under the assumptions $(C_{1}),$ $(C_{2})$ there exists a solution of $(1.2)($

in a neighborhood of the origin.
REMARK 1.2. This lemma is contained in H\"ormander’s theorem (see [9]).
It is seen from Lemma 1.1 that under the assumptions $(C_{1}),$ $(C_{2})$ the system
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of equations (1.1) is reduced locally to the system (1.3).

Furthermore, by using the change of variables in the proof of Lemma 1.1,

we may reduce the system (1.3) into the following normal form:

{1.8) $\partial_{j}f=\overline{b}_{j}f$ , $1\leqq j\leqq n$ .
In the case of $L_{j}=\partial_{j}$ , that is, all $a_{pq}$ of the system (1.1) being identically

zero, our reduction to the normal form is carried out globally:
Let $D$ be a polydisc $\Delta(z^{0}, r)$ . General solutions of the equations

$|(1.9)$ $\partial_{j}f=a_{j}f$ , $1\leqq j\leqq n$ ,

are given under the assumption $(C_{2})$ in the following form (see [10], [12])

\langle 1.10) $f(z,\overline{z})=\varphi(z)\exp\Omega(z,\overline{z})$ ,

where $\varphi(z)$ is a holomorphic function in $D$ and $\Omega(z,\overline{z})$ is defined as follows:
$n-1$ $(-1)^{s}$

(1.11) $\Omega(z,\overline{z})=\sum_{s=0}(s\mp 1)!\sum^{\prime}T_{j_{1}}\partial_{j_{1}}\ldots T_{Js}\partial_{Js}T_{k}(a_{k})$

where $T_{j}$ denotes the integral operator

$(T_{j}a)(z,\overline{z})=2^{1}\pi i\int\int_{1c_{J^{-\zeta_{j^{\mathbb{C}}}|_{*}r}}}a(\cdots*^{Z_{j-1},\zeta}’\ldots \overline{z}_{j-1},\overline{\zeta}, )_{\zeta-j}^{d\zeta_{\frac{d\overline{\zeta}}{z}-}}$

.and $\sum^{\prime}$ denotes the summation over all $(s+1)$ -tuples with $j_{1},$
$\cdots,$

$j_{s},$ $k$ mutually

distinct.
Let $D$ be a domain of holomorphy. With the aid of H\"ormander’s theorem

[9], it is seen that (1.9) has a solution in $D$ under the assumption $(C_{2})$ .
Therefore the system of equations (1.1) $(L_{j}=\partial_{j})$ can be reduced to the type

(1.8).
REMARK 1.3. We note that in case of $D$ being a polydisc solutions of the

system (1.9) are given explicitly in the form (1.10).

REMARK 1.4. We may consider a polydomain instead of a polydisc in the
$4ormula(1.11)$ .

\S 2. Definitions, and properties of solutions.

Let $G$ be a domain (connected open subset) in $C^{n}$ and the coefficients $b_{j}$

be of class $C^{\infty}(G)$ .
We shall call the system (1.8) the “ generalized Cauchy-Riemann equa-

tions”.
Let $D$ be any subdomain of $G$ whose closure is contained in $G$ (we denote

by $D\subset\subset G$). We call a function $f$, which is not identically zero and is of class
$C^{1}(D)$ , a regular solution (or merely solution) of (1.8) in $D$ , when $f$ satisfies
the system of equations (1.8) at every point of $D$ .
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Unless otherwise stated, it will be assumed that all the functions under
discussion are of class $C^{\infty}$ in a domain considered.

Let $D$ be a bounded domain. Following the definition of one variable,

we call two functions $f(z,\overline{z}),$ $g(z,\overline{z})$ , defined in $D$ , similar if the ratio $f/g$ is
bounded, bounded away from zero and continuous on the closure of $D$ (see

[1], [7]).

Let $\mathcal{M}(D)$ denote a class consisting of all functions which satisfy a certain
condition on $D$ and let $\mathcal{M}_{0}(D)$ denote a subclass of $\mathcal{M}(D)$ . We say that a
given system of the differential equations defined in $G$ satisfies the similarity
principle with respect to the class $\mathcal{M}_{0}(D)$ , when every solution of the system
of differential equations considered is similar to a function in $\mathcal{M}_{0}(D)$ and.
conversely, to correspond a given function in $\mathcal{M}_{0}(D)$ there exists a solution
of the system of differential equations such that two functions are similar.

If $D$ is a neighborhood of a point, then we shall use the following ter-
minology: local similarity principle.

Let $\mathcal{A}(D)$ be the class consisting of all holomorphic functions in $Dand($

$\mathcal{A}_{0}(D)$ be a subclass of $\mathcal{A}(D)$ such that $\mathcal{A}_{0}(D)$ satisfies a certain condition
given later on. Of course, we may consider $\mathcal{A}_{0}(D)=\mathcal{A}(D)$ . Then, under
what assumptions will the system of differential equations (1.8) satisfy the
similarity principle with respect to $\mathcal{A}_{0}(D)$ ? The author [10] proved the
following

THEOREM 2.1. Let all $b_{j}$ be holomorphic functions in $G$ and not zero at a
point $z^{0}$ in G. Assume that in a neighborhood $U$ of $z^{0},$ $U\subset G$ ,

$X_{k}(b_{n}^{-1}b_{j})-X_{j}(b_{n}^{-1}b_{k})=0$ , $1\leqq j,$ $k\leqq n-1$ ,

where we put $X_{s}h=b_{n}\partial_{s}h-b_{s}\partial_{n}h$ . Then (1.8) has a solution in a neighborhood
$V$ of $z^{0},$ $V\subset U$, if and only if $\partial_{k}b_{j}=\partial_{j}b_{k}$ in G. And the system (1.8) satisfies
the local similarity principle with respect to $\mathcal{A}_{0}(V)$ which is defined as follows:
Let $\phi$ be a holomorphic function in $V$ which is a solution of the differential’
equations

$b_{n}\partial_{j}\phi-b_{j}\partial_{n}\phi=0$ , $1\leqq j\leqq n-1$ .
The class $\mathcal{A}_{0}(V)$ consists of all the composite functions $\varphi\circ\phi=\varphi\{\phi(z)\}$ , where $(\rho$

is a regular analytic function of a complex variable defined in $\phi(V)$ .
In section 10 we shall give another formulation and proof of this theorem.
Let the class $\tilde{Q}(K)$ denote the set of all functions which are defined in

an open disc $K$ and satisfy except, possibly, for isolated singularities, the
Beltrami equation

$\partial_{\overline{z}}g+\alpha\partial_{z}g=0$ , $|\alpha|\leqq c_{0}<1$ .
We shall denote by $Q(K)$ a subclass of $\tilde{Q}(K)$ , whose elements do not have
singularities.
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Here we state the following lemma for a complex variable, which we shall
use later. The conditions on coefficients are, for convenience, very strong
(see [1], [2], [3], [4], [7] and [16]).

LEMMA 2.1. Let $K$ be an open disc with center the origin and radius $r$ in
the complex plane. Suppose that the functions $\alpha,$ $\beta$ and $\gamma$ are defined in a
neighborhood of the closure $ofK$ and that $|\alpha|\leqq c_{0}<1$ in $K$, where $c_{0}$ is a positive
number. Then the differential equation

$\partial_{\overline{z}}f+\alpha\partial_{z}f=\beta f+\gamma\overline{f}$

satisfies the similarity principle with respect to the class $\tilde{Q}(K)$ .
In case of $\alpha=0$ we have the so-called similarity principle. In this case

$\tilde{Q}(K)$ is identical with the class $\tilde{\mathcal{A}}(K)$ which is composed of all regular analytic
functions in $K$ except, possibly, for singular points.

In order that we may obtain a sufficient condition under which the system
(1.8) has a solution having not zero points, we have the following lemma.

LEMMA 2.2. Let $f(z,\overline{z})$ be a function of a complex variable $z$ defined in an
open disc $K$ and satisfy the system of differential equations

$\partial_{\overline{z}}f=af+b\overline{f}$ , $\partial_{z}f=Af+B\overline{f}$ ,

where $a,$ $b,$ $A$ and $B$ are defined in a neighborhood of the closure of K. Then
$f$ has no null point in $K$.

In fact, assume that $f$ has a null point $z_{0}$ in $K$ . By Lemma 2.1 we have

$f=(z-z_{0})^{m}\exp g$

$=(\overline{z}-\overline{z}_{0})^{m}\exp h$

in a sufficiently small neighborhood of $z_{0}$ , where $m$ is a non-negative integer
and $g,$

$h$ are defined and of class $C$ in that neighborhood. By considering
$\arg(z-z_{0})$ we obtain $m=0$ .

Putting
$\partial=(\partial_{1}, \cdots \partial_{n})$ , $\partial=(\partial_{1}, \cdots \partial_{n})$ ,

$\partial f=(\partial_{1}f, \cdots \partial_{n}f)$ , $\partial f=(\partial_{1}f, \cdots \partial_{n}f)$ ,

we now define two matrices $B,$ $C$ by

$B=\left(\begin{array}{llll} & & & \partial f\\ & & & \partial\overline{f}\end{array}\right)$ , $C=(\partial^{f}\partial_{\overline{f}}|$ .

Let $f$ be of class $C^{J}(D)$ . We may assume, removing, if necessary, a suit-
able relatively closed and nowhere dense set from $D$ , that rank $(B, C)$ is a
constant in $D$ . So, let rank $(B, C)$ equal 1 in $D$ . Then, in a neighborhood $U$

of every point of $D$ there exist two functions $\lambda,$

$\mu$ of class $C^{1}(U)$ such that
they satisfy $|\lambda|+|\mu|\neq 0$ and fulfill
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(2.1) $\{\lambda\partial^{j}f+\mu\partial^{j}\overline{f}=0\lambda\partial_{j}f+\mu\partial_{j}\overline{f}=0|$ $1\leqq j\leqq n$ .

Let $\lambda\neq 0$ at a point $z_{0}\in U$ . If $f$ satisfies the system of differential equations
(1.8), then we obtain from the first part of (2.1) and (1.8) that

$\partial_{j}f=-\lambda^{-1}\mu b_{f}f$ , $1\leqq j\leqq n$ ,

in a still smaller neighborhood $V$ of $z_{0}$ . With the aid of Lemma 2.2 it is seen
that $f$ has no null point in $V$ . Thus we obtain the following

THEOREM 2.2. Let $f$ be a solution of (1.8) such that rank $(B, C)=1$ in $D$ .
Then $f$ has no null point in $D$ .

We next shall consider the case that a solution $f$ of (1.8) has null points
in $D$ .

Let $M_{0}$ be the set $\{z\in D|f(z,\overline{z})=0\}$ and let $M_{0}$ be not empty. Suppose
that $M_{0}$ has an interior point $z^{0}$ . Since $D$ is connected, without loss of
generality we may assume that $D$ is a polydisc $\Delta(z^{0}, r)$ . Then there exists a
positive number $\epsilon$ such that the polydisc $\Delta(z^{0}, \epsilon)$ is contain\’ed in $M_{0}$ . Now,
since for any fixed $(z_{1}, \cdots , z_{n-1})$ the function $f$ satisfies the n-th equation of
(1.8), so, by the identity theorem for one complex variable, $f$ is identically
zero in the open disc $|z_{n}-z_{n}^{0}|<r$ for any fixed $z_{1},$ $\cdots,$ $z_{n-1}$ such that $|z_{j}-z_{j}^{0}|<\epsilon$ ,
$1\leqq j\leqq n-1$ , and hence $f$ is identically zero in the polydisc $\{z\in C^{n}||z_{j}-z_{j}^{0}|<\epsilon$ ,
$|z_{n}-z_{n}^{0}|<r,$ $1\leqq j\leqq n-1$ }. By repeating this procedure we shall attain a
contradiction that $f$ is identically zero in $D$ . Thus we obtain the following

THEOREM 2.3 [10]. $M_{0}$ has no interior point.
It is known that in the case of $n=1$ the null points of solutions of the

differential equation in Lemma 2.1 are isolated points (see [1], [3], [4] and
[16]). For $n\geqq 2$ we obtain the better result than Theorem 2.3.

We suppose that $f$ is a solution of (1.8) such that rank $(B, C)=2$ in $D$ .
Then we know that the set $M_{0}$ defined above is a real $(2n-2)$ -dimensional
differentiable regularly embedded submanifold of $C^{n}$ . On $M_{0}$ we have
rank $B=l$ and hence, with the aid of the Levi-Civita-Sommer theorem (see

[14]), we obtain the following
THEOREM 2.4. Let $f$ be a solution of (1.8) such that $f$ satisfies rank $(B, C)=2$

in D. If $M_{0}$ is not empty, then $M_{0}$ is a complex pure $(n-1)$ -dimensional analytic

manifold.
REMARK 2.1. Let $E$ be the nowhere dense set mentioned above, that is,

such that for every point of $D-E$ there exists a neighborhood in which
rank $(B, C)$ is constant. If for a point of $D-Erank(B, C)=0$ , then $f$ is
identically zero in $D$ by Theorem 2.3.

In case of holomorphic functions of one or several complex variables, since
$D$ is connected, the set $D-E$ is also connected [8]. So if we assume that
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$D-E$ is connected, then the alternatives are rank $(B, C)=1$ and rank $(B, C)=2$

in $D-E$ . And hence we obtain the following
THEOREM 2.5. Let $f$ be a solution of (1.8) such that rank $(B, C)=2$ in $D-E$ .

If $M_{0}$ is not empty, then $M_{0}-E$ is a complex pure $(n-1)$-dimensional analytic

manifold.
REMARK 2.2. Let $f$ be any function defined in $D$ (it is not always a

solution of the system of equations (1.8)) such that rank $(B, C)\leqq 1$ in $D$ . Then
the image $f(D)$ is nowhere dense [11].

\S 3. Assumptions on the coefficients.

Let $f$ be a solution of (1.8) in $D$ . Note that the coefficients of (1.8) are
defined in a domain $G$ in $C^{n}$ and solutions of (1.8) are defined in a subdomain
$D$ such that $D\subset\subset G$ . Unless stated to the contrary, from now on we shall
mean that the domain of definition of solutions $\Subset$ the domain of definition
of the coefficients. If $f$ is identically zero for some coordinate, say $z_{n}$ , then
$f$ is identically zero in $D$ by Theorem 2.3. Hence we shall also assume that
$f$ is not identically zero for any coordinate.

As it is readily seen, $f$ must satisfy the additional first order differential
equations

(3.1) $\{X_{(j,k)}f=-b_{jk}f\overline{X}_{(j,k)}f=0|$ $1\leqq j,$ $k\leqq n$ ,

where
$X_{(j,k)}=b_{k}\partial_{j}-b_{f}\partial_{k}$ , $x_{(j,k)}-=\overline{b}_{k}\partial_{j}-\overline{b}_{j}7_{k}$ ,

$b_{jk}=\partial_{j}b_{k}-\partial_{k}b_{j}$ , $1\leqq j,$ $k\leqq n$ .
We can obtain the first part of (3.1) in another way:
We set $\alpha_{j}=(\overline{b}_{j}\overline{f}/f)$ for $z\in D-M_{0},1\leqq j\leqq n$ . Then we obtain the differ-

ential equations of the type (1.9) in $D-M_{0}$ , that is,

$\partial_{j}f=\alpha_{j}f$ , $1\leqq j\leqq n$ .
Since the integrability conditions are $\partial_{j}\alpha_{k}=\partial_{k}\alpha_{j},$ $1\leqq j,$ $k\leqq n$ , we have the
additional relations $X_{(j,k)}f=-b_{fk}f,$ $1\leqq 1\leqq n$ . Then by virtue of Theorem 2.3
the first part of (3.1) is obtained.

Let a solution $f$ of (1.8) be defined in a polydomain $D$ . Then $f$ is written
in the form of (1.10) in $D-M_{0}$ and hence it is seen by simple computations
that the terms $\partial_{j}f/f,$ $1\leqq j\leqq n$ , appear in the integrals of the right-hand side
of (1.11). Accordingly we shall have to consider the existence of the integrals
of functions $\partial_{j}f/f$. Even though such a problem is solved, we could not
expect the continuity of $\Omega(z,\overline{z})$ on $M_{0}$ and the existence of the continuation
of the holomorphic function $\varphi(z)$ into $O$ without additional conditions.
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In this section we shall consider the following special infinitesimal trans-
formations defined in $G$ :

$X_{(j,k)}=b_{k}\partial_{j}-b_{j}\partial_{k}$ , $\overline{X}_{(j,k)}=\overline{b}_{k}\partial_{j}-\overline{b}_{j}\partial_{k}$ , $1\leqq j,$ $k\leqq n$ ,

where all $b_{s}$ are of class $C^{\infty}(G)$ . $X_{(j,k)}$ and $\overline{X}_{(j,k)}$ are of type $(1, 0)$ and ($ 0,1\rangle$

respectively, and $\overline{X}_{(j,k)}$ is the conjugate one of $X_{(j)k)}$ .
Now we consider a solution $f$ such that rank $(B, C)=2$ in $D$ , where $D$ is as

given at the beginning of this section. When $M_{0}$ is not empty, then it is
found from the additional equations (3.1) that

$X_{(j,k)}f=0$ , $\overline{X}_{(j,k)}f=0$ , $1\leqq j,$ $k\leqq n$

at every point of $M_{0}$ . Or, putting $u={\rm Re} f$ and $v={\rm Im} f$, we have

(3.2) $X_{(j.k)}*=0$ , $\overline{X}_{(j.k)}*=0$ , $1\leqq j,$ $k\leqq n$ ,

where $*denotesu$ or $v$ . Hence it follows from (3.2) that at every point $z$

of $M_{0}$ the contravariant vectors
$X_{(j,k)}(z,\overline{z})=b_{k}(z,\overline{z})\partial_{j}-b_{j}(z,\overline{z})\partial_{k}$ ,

$\overline{X}_{(j,k)}(z,\overline{z})=\overline{b}_{k}(z,\overline{z})\partial_{j}-\overline{b}_{j}(z,\overline{z})\partial_{k}$ , $1\leqq j,$ $k\leqq n$

are tangential to the real manifold $M_{0}$ and that such vectors build the $(2n-2)-$

dimensional complex vector space $V_{C}^{2n-2}$ . The tangent vector $X(z,\overline{z})$ to $M_{(\rangle}$

and the contravariant vector of $M_{0}$ at $z$ correspond 1–1 each other. So.
consider the following real

$infinite_{1}sima1$
transformations defined in $G$ :

(3.3) $\left\{\begin{array}{lllll} & & & & Y_{(j,k)}=2\{X_{(j,k)}+X_{(f,k)}\},\\ & & & & Z_{(j,k)}=- 2^{1}i\{X_{(j,k)}-\overline{X}_{(j,k)}\}.\end{array}\right.$

And let $Y_{f.k)}^{*}(Z_{(jk)}^{*}$ be the restrictions of $Y_{(j,k)},$ $Z_{(j,k)}$ to $M_{0}$ respectively.
Then we may consider that $Y_{(j.k)}^{*}(z,\overline{z}),$ $Z_{(j.k)}^{*}(z,\overline{z})$ belong to the real tangent
vector space $V^{2n-2}$ to $M_{0}$ at the point $z$ considered.

Now we suppose that $(b_{1}$ , $\cdot$ .. , $b_{n})\neq(0$ , $\cdot$ .. $0)$ at every point of $G$ . Let $ b_{n}\neq\theta$

at a point $z_{0}$ of $M_{0}$ and hence $b_{n}\neq 0$ in some neighborhood $U$ of $z_{0},$ $U\subset G$ .
Since we have

(3.4) $\left\{\begin{array}{lllll} & & & & X_{(j,k)}(P)=b_{n}^{-1}(P)\{b_{k}(P)X_{(j,n)}(P)-b_{f}(P)X_{(k,n)}(P)\},\\ & & & & \overline{X}_{(j,k)}(P)=\overline{b}_{n}^{-1}(P)\{\overline{b}_{k}(P)\overline{X}_{(j,n)}(P)-\overline{b}_{f}(P)\overline{X}_{(k,n)}(P)\},\end{array}\right.$

where $P\in U$ and $P=(z,\overline{z})$ , the real tangent vectors $Y_{(j.n)}^{*}(P),$ $Z_{(f.n)}^{*}(P),$ $1\leqq j\leqq n$ ,

form a base of $V^{2n-2},$ $P\in U_{\cap}M_{0}$ . With the aid of Theorem 2.4 we see that
$V^{2n-2}$ is the complex $(n-1)$-dimensional vector space $V_{C}^{n-1}$ whose base is
$X_{(f.n)}^{*}(P),$ $1\leqq j\leqq n-1$ .
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Hence we see that $M_{0}$ is an integral manifold of a system of $2n-2$

infinitesimal transformations $Y_{(j.n)}^{*},$ $Z_{(j.n)}^{*},$ $1\leqq j\leqq n-1$ , which we denote by $\mathfrak{M}^{*}$ .
Accordingly the commutators $[Y_{(j.n)}^{*}, Y_{(k.n)}^{*}],$ $[Y_{(j.n)}^{*}, Z_{(k.n)}^{*}]$ and $[Z_{(j.n)}^{*}, Z_{(k.n)}^{*}]$

belong to $\mathfrak{M}^{*}$ , each of which is denoted by the linear combination of elements
in $\mathfrak{M}^{*}$ whose coefficients are of class $C^{\infty}(U\cap M_{0})$ . From this fact we have
reached the following result: on $M_{0}\cap U$ there exists necessarily the following
relationship between the coefficients $b_{s}$ (see [14], Satz 4):

$b_{j}X_{(k.n)}^{*}b_{n}-b_{n}X_{(k.n)}^{*}b_{j}=b_{k}X_{(j.n)}^{*}b_{n}-b_{n}X_{(j.n)}^{*}b_{k}$ ,

$b_{j}\overline{X}_{(k.n)}^{*}b_{n}-b_{n}\overline{X}_{(k,n)}^{*}b_{j}=0$ , $1\leqq j,$ $k\leqq n-1$ .
If $b_{\iota}(z_{0},\overline{z}_{0})\neq 0$ for $l\neq n$ , then by considering a neighborhood $U_{\iota}$ instead

of $U$ , we also obtain the same relationship as the case of $n$ , that is, the above
relationship holds with $n$ replaced by $l$ and with $1\leqq j,$ $k\leqq n$ .

We define the sets $S$ and $T$ as follows: for all $j,$ $k,$ $1$

$S=\{z\in G|b_{j}X_{(k,l)}b_{\iota}-b_{l}X_{(k,l)}b_{j}=b_{k}X_{(j,l)}b_{l}-b_{\iota}X_{(j,l)}b_{k}\}$ ,

$T=\{z\in G|b_{j}\overline{X}_{(k,l)}b_{\iota}-b_{\iota}\overline{X}_{(k,l)}b_{j}=0\}$ .
Then it follows that $M_{0}\subset S\cap T$.

Thus we require, first, that at every point of $G$

$(H_{0})$ $(b_{1}, \cdots b_{n})\neq(0, \cdots 0)$ .
By $(H_{0})$ , corresponding to every point of $G$ there exist a number $l(1\leqq l\leqq n)$

and a neighborhood $U$ of the point such that $b_{\iota}\neq 0$ everywhere in $U$ . Without
loss of generality we can take $l=n$ . Since our argument is local, we fix the
above neighborhood $U$, that is, we shall discuss about a fixed point of $G$ .
Thus we shall require that at every point of $U$

$(H_{1})_{n}$ $b_{j}X_{(k,n)}b_{n}-b_{n}X_{(k,n)}b_{j}=b_{k}X_{(j,n)}b_{n}-b_{n}X_{(j,n)}b_{k}$ ,

$(H_{2})_{n}$ $b_{j}\overline{X}_{(k,n)}b_{n}-b_{n}\overline{X}_{(k,n)}b_{j}=0$ , $1\leqq j,$ $k\leqq n-1$ .
It is easily verified that the assumption $(H_{1})_{n}$ is equivalent to

$(H_{1})_{n}^{\prime}$ $b_{j}b_{kn}+b_{k}b_{nj}+b_{n}b_{jk}=0$ , $1\leqq 1,$ $k\leqq n-1$ .
For convenience we set

$X_{j}=X_{(j,n)}$ , $\overline{X}_{j}=\overline{X}_{(j,n)}$ , $1\leqq j\leqq n-1$ .
If $f$ satisfies

(3.5) $X_{j}f=-b_{jn}f$ , $\overline{X}_{j}f=0$ , $1\leqq j\leqq n-1$ ,

then it is derived by (3.4) that in $U$

$X_{(j,k)}f=b_{n}^{-1}(b_{k}X_{j}f-b_{j}X_{k}f)$
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$=b_{n}^{-1}(-b_{k}b_{jn}+b_{j}b_{kn})f$

$=b_{n}^{-1}(b_{j}b_{kn}+b_{k}b_{nj})f$ (by $b_{nj}=-b_{fn}$)

$=-b_{jk}f$ (by $(H_{1})_{n}^{\prime}$ )

and similarly

$\overline{X}_{(j,k)}f=0$ .
Consequently we see from the assumption $(H_{1})_{n}$ that it is sufficient to

consider the system of equations (3.5) instead of the system of equations (3.1)

in $U$ .
The equations (3.5) allow us to obtain the additional first order equations

by forming brackets:

(3.6) $[X_{j}, X_{k}]f=X_{k}X_{j}f-X_{j}X_{k}f$

$=$ $X_{k}(b_{jn}f)+X_{j}(b_{kn}f)$

$=(-X_{k}b_{jn}+X_{j}b_{kn})f$ ,

(3.7) $[X_{j},\overline{X}_{k}]f=\overline{X}_{k}X_{j}f-X_{j}\overline{X}_{k}f$

$=-(\overline{X}_{k}b_{jn})f$ .
On the other side, on account of $(H_{1})_{n},$ $(H_{2})_{n}$ , we have the following

relationship in $U$ :

(3.8) $[X_{j}, X_{k}]f=b_{n}^{-1}(X_{k}b_{n}X_{j}f-X_{j}b_{n}X_{k}f)$

$=b_{n}^{-1}(-b_{jn}X_{k}b_{n}+b_{kn}X_{j}b_{n})f$ ,

(3.9) $[X_{j},\overline{X}_{k}]f=b_{n}^{--1}\overline{X}_{k}b_{n}X_{j}f-\overline{b}_{n}^{-1}X_{j}\overline{b}_{n}\overline{X}_{k}f$

$=-(b_{n}^{-1}b_{jn}\overline{X}_{k}b_{n})f$ .
Combining (3.8), (3.9) with (3.6), (3.7) and using that $M_{0}$ has no interior point,
we find that at every point of $U$ there exist the following compatibility
conditions:

$(H_{3})_{n}$ $b_{n}X_{j}b_{kn}-b_{kn}X_{j}b_{n}=b_{n}X_{k}b_{jn}-b_{jn}X_{k}b_{n}$ ,

$(H_{4})_{n}$ $b_{n}\overline{X}_{k}b_{jn}-b_{jn}\overline{X}_{k}b_{n}=0$ , $1\leqq j,$ $k\leqq n-1$ .
REMARK 3.1. As seen in section 4, the condition $(H_{3})_{n}$ is derived from

$(H_{1})_{n}$ and $(H_{2})_{n}$ , and hence $(H_{3})_{n}$ is not the assumption.

\S 4. Main lemma and a consideration about assumptions on the coefficients.

In this and the following sections, without loss of generality, we shall
assume that $G$ contains the origin and $b_{n}\neq 0$ at every point in a neighborhood
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$U$ of the origin, $U\subset G$ . Let $\mathfrak{M}$ denote a system of real infinitesimal trans-
formations $Y_{(j,k)},$ $Z_{(j,k)}$ defined in $G((3.3))$ . It is seen from $(H_{1})_{n},$ \langle $H_{2})_{n}$ that
the system $\mathfrak{M}$ has the dimension $(2n-2)$ and is involutive in $U$ . Therefore,

by virtue of the Frobenius lemma [5], [13], $\mathfrak{M}$ is locally integrable, and hence
there exist two real valued functions $u,$ $v$ of class $C^{\infty}$ in a neighborhood $V$

of the origin, $V\subset U$, such that

rank $\left(\begin{array}{ll}\partial u & \partial u\\\partial v & \partial v\end{array}\right)=2$

and they are solutions of the system of differential equations

(4.1) $Y_{j}\tau=0$ , $Z_{j}\tau=0$ , $1\leqq j\leqq n-1$ ,

where we put $Y_{j}=Y_{(j,n)},$ $Z_{j}=Z_{(j,n)}$ .
$Y_{j},$ $Z_{j},$ $1\leqq j\leqq n-1$ , build a base of $\mathfrak{M}$ around the origin. For every

solution $g$ of the equations (4.1) there exists a real valued function $F$ of a
complex variable $w$ such that $F$ is defined in $\Delta$ and $g=F(u, v)$ , where $\Delta$ is
the image of $V$ by $f=u+iv$ . The function $g$ also is written in the form

$g=\tilde{F}(f,\overline{f})=F\{-12-(f+f),$ $\frac{1}{2i}(f-\overline{f})\}$

and for another solution $h$ we also see that $h=\tilde{H}(f,\overline{f})$ . Setting $\lambda=\tilde{F}+i\tilde{H}$,

we see that the function $\lambda$ is a solution of the system of differential equations

(4.2) $\left\{\begin{array}{l}X_{j}\lambda=0,\\\overline{X}_{j}\lambda=0,\end{array}\right.$ $1\leqq j\leqq n-1$ .

Since for every solution $\lambda$ of (4.2) ${\rm Re}\lambda,$ ${\rm Im}\lambda$ are solutions of (4.1) respec-
tively, it is seen that $\lambda$ is written in the form

$\lambda=\varphi\circ f=\varphi(f,\overline{f})$ ,

where $\varphi$ is a complex valued function defined in $\Delta$ and $f$ is a solution of ($ 4.2\rangle$

such that it satisfies rank $(B, C)=2$ in $V(\Delta=imagef(V))$ .
Conversely, if a function $\sigma$ is the solution of (4.2) in some neighborhood

$V$ of any point $z^{0}$ of $U$ such that rank $(B, C)=2$ in $V$ , where we consider
the matrices $B,$ $C$ with $\sigma$ instead of $f$, then the $(2n-2)$ -dimensional real mani-
fold defined by $\sigma=t$ is the $(n-1)$ -dimensional complex manifold, where $t$ is
any point of the image $\sigma(V)$ . For, from that $\sigma$ satisfies (4.2) and that $b_{n}$ is
not zero at any point of $U$ , we obtain that in $V$

$\frac{\partial_{j}\sigma}{\partial_{j}\overline{\sigma}}=\frac{\partial_{n}\sigma}{\partial_{n}\sigma}$ , $1\leqq j\leqq n-1$ ,

and hence rank $B=1$ in $V$ . Therefore the infinitesimal transformations $X_{j}^{*}$ ,
$\overline{X}_{j}^{*},$ $1\leqq j\leqq n-1$ , satisfy the conditions $(H_{1})_{n},$ $(H_{2})_{n}$ on the manifold considered
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(see section 3). Noting that $t$ is any point of $\sigma(V)$ and the point $z^{0}$ is any
point of $U$, we see that the conditions $(H_{1})_{n},$ $(H_{2})_{n}$ are satisfied in $U$ . Thus
we have reached the following

LEMMA 4.1. A necessary and sufficient condition in order that the system

of first order partial differential equations (4.2) may have a solution $\sigma$ in some
neighborhood $V$ of any point in $U$ such that

\langle 4.3) rank $(B, C)=2$ in $V$

is that $(H_{1})_{n},$ $(H_{2})_{n}$ are satisfied in U. Furthermore, for such a solution

$|(4.3)^{\ovalbox{\tt\small REJECT}}$ $rankB=1$ in $V$ ,

and every solution of (4.2) is given in the form
$(\varphi\circ\sigma)(z,\overline{z})=\varphi\{\sigma(z,\overline{z}),\overline{\sigma(z,\overline{z})}\}$ .

Suppose that we impose the assumptions $(H_{1})_{n},$ $(H_{2})_{n},$ $(H_{3})_{n}$ and $(H_{4})_{n}$ upon
the coefficients $b_{j}$ in $U$ . Let $b_{\iota}\neq 0$ in a neighborhood $U_{\iota}$ of the origin, $U_{\iota}\subset G$

\langle $l\neq n$). By Lemma 4.1 we see that the system $\mathfrak{M}$ of $2n-2$ infinitesimal trans-
formations $X_{j},\overline{X}_{j},$ $1\leqq j\leqq n-1$ , defined in $U$ is involutive and hence the
manifold defined by $\sigma(z,\overline{z})=t$ is an integral manifold of $\mathfrak{M}$ . The infinitesimal
transformations $X_{(j,l)},\overline{X}_{(j,l)},$ $1\leqq j\leqq n,$ $j\neq l$ , are linearly independent in $U_{\iota}$ .
Hence $X_{(j,l)},\overline{X}_{(j,l)},$ $1\leqq j\leqq n$ , form a base of $\mathfrak{M}$ around the origin. Hence it is
seen that there are the conditions $(H_{1})_{l},$ $(H_{2})_{l}$ in $U_{\iota}\cap U$ . As a consequence,
we must assume $(H_{3})_{l},$ $(H_{4})_{l}$ in $U_{\iota}\cap U$, where $(H_{s})_{l},$ $(H_{4})_{l}$ denote $(H_{3})_{n},$ $(H_{4})_{n}$

with $n$ replaced by 1 respectively (see Remark 3.1).

REMARK 4.1. In section 8 we shall see that $(H_{4})_{l}$ is derived from $(H_{j})_{n}$ ,
$j=1,2,4,5,6,7$ .

From (4.2) it follows that in $V$

$ b_{j}=b(z,\overline{z})\partial_{j}\sigma$ , $1\leqq j\leqq n$ and $b\neq 0$ .
Then $X_{(j,k)},\overline{X}_{(j,k)}$ are written in the form

\langle 4.4) $\left\{\begin{array}{l}X_{(j,k)}=b(\partial_{k}\sigma\partial_{j}-\partial_{j}\sigma\partial_{k}),\\\overline{X}_{(j,k)}=\overline{b}(\partial_{k}\overline{\sigma}\partial_{j}-\partial_{j}\overline{\sigma}\partial_{k}).\end{array}\right.$

Now we set

\langle 4.5) $\left\{\begin{array}{l}Y_{(j,k)}=\partial_{k}\sigma\partial_{j}-\partial_{j}\sigma\partial_{k},\\\overline{Y}_{(j,k)}=\partial_{k}\overline{\sigma}\partial_{j}-\partial_{j}\overline{\sigma}\partial_{k}.\end{array}\right.$

Remark that these infinitesimal transformations differ from those in sec-
tion 3 and in the proof of Lemma 4.1. From now on, unless stated to the
contrary, the infinitesimal transformations $Y$ are those defined by (4.5).

Then we have
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(4.6) $X_{(j,k)}=bY_{(j,k)}$ , $\overline{X}_{(j,k)}=\overline{b}\overline{Y}_{(j,k)}$ ,

(4.7) $b_{jk}=\partial_{j}(b\partial_{k}\sigma)-\partial_{k}(b\partial_{j}\sigma)$

$=(\partial_{k}\sigma)(\partial_{j}b)-(\partial_{j}\sigma)(\partial_{k}b)$

$=Y_{(j,k)}b$ ,

\langle 4.8) $\overline{b}_{jk}=\overline{Y}_{(j,k)}\overline{b}$ .

Since $b_{\iota}\neq 0$ in $U_{\iota}$ and $Y_{(j,l)}\sigma=0,\overline{Y}_{(j,l)}\sigma=0,1\leqq j\leqq n$ , so it is obtained
that the infinitesimal transformations $Y_{(j,l)},\overline{Y}_{(j,l)}$ also form a base of $\mathfrak{M}$ around
the origin. Hence we obtain

\langle 4.9) $[Y_{(j,l)}, Y_{(k,l)}]=\frac{1}{\partial_{l}\sigma}\{(Y_{(k,l)}\partial_{l}\sigma)Y_{(j,l)}-(Y_{(j,l)}\partial_{\iota}\sigma)Y_{(k,l)}\}$ , $1\leqq j,$ $k\leqq n$ .

REMARK 4.2. We shall see in section 8 that $[Y_{(j,l)},\overline{Y}_{(k,l)}]=0$ .
Now we want to express $(H_{3})_{n}$ by means of $Y_{j}$ , where $Y_{J}=Y_{(j,n)},$ $1\leqq i$

$\leqq n-1$ . Observe that

\langle 4.10) $\left\{\begin{array}{llll} & & & b_{n}X_{j}b_{kn}-b_{n}X_{k}b_{jn}=(b^{2}\partial_{n}\sigma)[Y_{k},Y_{j}]b\\ & & & b_{kn}X_{j}b_{n}-b_{jn}X_{k}b_{n}=b^{2}\{(Y_{j}\partial_{n}\sigma)Y_{k}b-(Y_{k}\partial_{n}\sigma)Y_{j}b\}.\end{array}\right.$

Then, with the aid of (4.9), (4.10), we can assert that the assumption $(H_{8})_{n}$

follows from $(H_{1})_{n},$ $(H_{2})_{n}$ . Similarly $(H_{8})_{l}$ follows from $(H_{1})_{l},$ $(H_{2})_{l}$ and hence
from $(H_{1})_{n},$ $(H_{2})_{n}$ in $U_{\iota}\cap U$ .

At the end of this section we shall have the following corollary as one
ef the properties of solutions of (4.2).

COROLLARY 4.1. Let $\phi$ be defined in the image $\sigma(V)$ such that

rank $\left(\begin{array}{lllll} & & & \partial_{w}\phi & \partial_{\overline{w}}\phi\\ & & & \partial_{w}\overline{\phi} & \partial_{\overline{w}}\overline{\phi}\end{array}\right)=2$ in $\sigma(V)$ .

Put $M_{t}=\{z\in V|(\phi\circ\sigma)(z,\overline{z})=t\}$ . Then if $M_{t}$ is not empty, the real $(2n-2)-$

dimensional manifold $M_{t}$ is the complex pure $(n-1)$ -dimensional analytic mani-
fold.

In fact, since $\phi$ has the isolated t-points, on account of (4.3) and (4.3) it
$\ovalbox{\tt\small REJECT} is$ sufficient to note that

$\left(\begin{array}{lllll} & & & \partial_{w}\phi & \partial_{\overline{w}}\phi\\ & & & \partial_{w}\overline{\phi} & \partial_{\overline{w}}\overline{\phi}\end{array}\right)\left(\begin{array}{lllll} & & & \partial\sigma & \partial\sigma\\ & & & \partial\overline{\sigma} & \partial\overline{\sigma}\end{array}\right)=\left(\begin{array}{lllll} & & & \partial\phi^{*} & \partial\phi^{*}\\ & & & \partial\overline{\phi}^{*} & \partial\overline{\phi}^{*}\end{array}\right)$ ,

where $\phi^{*}(z,\overline{z})=(\phi\circ\sigma)(z,\overline{z})$ .
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\S 5. Reduction to a single differential equation.

In this section we shall see that if the system of differential equations
(1.8) satisfies the assumptions considered in section 3, the system (1.8) is
reduced to a single differential equation of a complex variable by a change
of variables. However, since we have the additional differential equations,
our system ( $i$ . $e$ . $(1.8)$ and (3.5)) is not reduced to a single equation. As we
shall see in section 7, by adding suitable assumptions our system is essen-
tially reduced to a differential equation of a complex variable.

We now introduce a non-singular $C^{\infty}$-transformation of variables $w_{j}=$

$\psi_{j}(z,\overline{z}),$ $1\leqq j\leqq n$ , such that $\psi_{j}$ are defined in $V$ and its Jacobian is not zero
in $V$ . Then the system (1.8), (3.5):

$\partial_{j}f=\overline{b}_{j}f$ , $X_{j}f=-b_{jn}f$ , $\overline{X}_{j}f=0$ , $1\leqq j\leqq n$

( $X_{n}$ denotes the zero infinitesimal transformation) are transformed into (5.1),
(5.2) and (5.3) respectively:

(5.1) $\sum_{\iota=1}^{n}d_{s}f\partial_{j}w_{s}+\sum_{\iota=1}^{n}\overline{d}_{s}f\partial_{j}\overline{w}_{s}=^{-}\hat{b}_{j}\hat{f}^{-}$,

(5.2) $\sum_{l=1}^{n}X_{j}w_{s}d_{s}\hat{f}+\sum_{l=1}^{n}X_{j}\overline{w}_{s}\overline{d}_{s}f=-\hat{b}_{jn}f$ ,

(5.3) $\sum_{s=1}^{n}\overline{X}_{j}w_{s}d_{s}\hat{f}+\sum_{\epsilon^{--1}}^{n}\overline{X}_{j}\overline{w}_{s}\overline{d}_{s}f=0$ , $1\leqq j\leqq n$ ,

where we set $d_{s}=\partial_{w_{S}},\overline{d}_{s}=\partial_{\overline{w}_{S}}$ and where $f$ will denote the function into which
$f$ is transformed. From now on we intend to use the symbol - in such a
sense. Here, if we choose $\psi_{j}$ as follows:

(5.4) $\psi_{j}=z_{j}$ , $\psi_{n}=\sigma(z,\overline{z})$ , $1\leqq j\leqq\uparrow\iota-1$ ,

where $\sigma(z,\overline{z})$ is a solution of (4.2) which satisfies (4.3) in $V$ and is zero at the
origin, then, observing that

$X_{s}z_{j}=b_{n}\partial_{s}z_{j}-b_{s}\partial_{n}z_{j}=b_{n}\delta_{sj}$ ,

$X_{s}\overline{z}_{j}=\overline{X}_{s}z_{j}=0$ ,

$\overline{X}_{s}\overline{z}_{j}=\overline{b}_{n}\delta_{sj}$ , ( $\delta_{sj}$ is Kronecker delta.)

it follows that the system (5.1), (5.2) and (5.3) are transformed into (5.5), (5.6)
and (5.7) respectively:

(5.5) $d_{n}f\partial_{j}\sigma+\overline{d}_{n}f\partial_{j}\overline{\sigma}=^{-}\hat{b}_{j}\hat{f}^{-}$, $1\leqq j\leqq n$ ,

(5.6) $d_{j}f=-b_{n}^{-1}\hat{b}_{jn}f$ , $1\leqq j\leqq n-1$ ,

(5.7) $\overline{d}_{j}f=0$ , $1\leqq j\leqq n-1$ .
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The assumptions $(H_{1})_{n},$ $(H_{2})$. and Lemma 4.1 assure the existence of such
a transformation.

Without loss of generality we may assume that

(5.8) $|\partial_{n}\sigma|^{2}-|\partial_{n}\sigma|^{2}>0$ in $V$ .

In fact, from (4.2) there exists a pair of numbers $j_{0}$ and $j_{1}$ such that

$\partial_{j_{0}}\sigma\partial_{j_{1}}\overline{\sigma}-\partial_{j_{1}}\sigma\partial_{j_{0}}\overline{\sigma}\neq 0$ ,

where we consider, if necessary,. furthermore smaller neighborhood of the
origin than $V$ . Hence, using (4.2) and considering, if necessary, $\overline{\sigma}$ instead of
$\sigma$ , we obtain (5.8).

Again, using (4.2) and considering sufficiently small neighborhood $W$ of
the origrn, $W\subset V_{\lambda}$ we see in turn that we can set

(5.9) $ a=\underline{\partial}_{\frac{J^{\sigma}}{J^{\overline{\sigma}}}}\partial$

and can assume that $1-|a|^{2}$ is bounded away from zero.
Thus, because of $ b_{j}=b\partial_{j}\sigma$ , it is seen that the system (5.5) is transformed

into a single equation

(5.10) $\overline{d^{f}}_{n}f+\delta d_{n}f=\hat{b}\hat{f}^{-}-$, a $|\leqq c_{0}<1$ ,

where $d,\hat{b}$ are defined in $\hat{W}$, where $W$ is the image of $W$ under the trans-
formation (5.4).

\S 6. Properties of the transformed differential equations.

In order to obtain the local similarity principle we shall add another
assumptions on the coefficients to the assumptions $(H_{j}),$ $0\leqq j\leqq 4$ .

We shall consider the following system of differential equations

(6.1)

Now we shall impose a number of assumptions upon the coefficients of (6.1).
Let all the coefficients be defined in a polydisc $\hat{P}=\{w\in C^{n}||w_{j}|<R, 1\leqq j\leqq n\}$ .

(i) $\alpha$ is a function of $w_{n}andw_{n}$ only such that $|\alpha|\leqq c_{0}<1$ for a positive
constant $c_{0}$ ,

(ii) $\overline{d}_{j}\beta=\overline{d}_{n}A_{j}+\alpha d_{n}A_{j},$ $d_{j}\beta=\overline{d}_{n}B_{j}+\alpha d_{n}B_{j}$ ,
(iii) $\overline{d}_{j}\gamma=(A_{j}-\overline{B}_{j})\gamma,$ $ d_{j}\gamma=(B_{j}-\overline{A}_{j})\gamma$ ,
(iv) $\overline{d}_{j}A_{k}=\overline{d}_{k}A_{j},$ $d_{j}A_{k}=\overline{d}_{k}B_{j},$ $d_{j}B_{k}=d_{k}B_{j},$ $1\leqq j,$ $k\leqq n-1$ .
Now we introduce $a$ . function $\omega(w,\overline{w})$ deflned in $P$ ;
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$\omega(w,\overline{w})=\sum_{\iota=1}^{n-1}\phi_{\iota}(w_{\iota}, w_{\iota+1}, \cdots w_{n},\overline{w}_{l+1}, \cdots \overline{w}_{n})$

$+\sum_{l=1}^{n-1}(T_{l}\tilde{A}_{\iota})(w_{\iota}, \cdots w_{n},\overline{w}_{l}, \cdots \overline{w}_{n})$ ,

where we put

$\phi_{\iota}(w_{\iota}, w_{\iota+1}, \cdots w_{n},\overline{w}_{l+1}, \cdots \overline{w}_{n})=\int_{0}^{w_{l}}(\tilde{B}_{l}-d_{\iota}T_{\iota}\tilde{A}_{\iota})d\zeta_{\iota}$ , $|w_{\iota}|<R$ ,

$(1\leqq l\leqq n-1)$

$\tilde{A}_{\iota}=A_{\iota}-\overline{d}_{l}\sum_{\mu=1}^{l-1}(\phi_{\mu}+T_{\mu}\tilde{A}_{\mu})$ , $\tilde{A}_{1}=A_{1}$ ,

$(2\leqq l\leqq n-1)$

$\tilde{B}_{\iota}=B_{\iota}-d_{l}\sum_{\mu=1}^{l-1}(\phi_{\mu}+T_{\mu}\tilde{A}_{\mu})$ , $\tilde{B}_{1}=B_{1}$ .

For each $l,$ $2\leqq l\leqq n-1,\tilde{A}_{\iota}$ and $\tilde{B}_{\iota}$ do not include $w_{1},$ $\cdots,$ $w_{l-1},\overline{w}_{1},$ $\cdots,\overline{w}_{l-1}$ .
It follows from the integrability conditions (iv) that

$\tilde{B}_{l}-d_{\iota}T_{\iota}\tilde{A}_{\iota}$ $(2\leqq l\leqq n-1)$

is a holomorphic function of a variable $w_{\iota}$ in the disc $|w_{\iota}|<R$ when fixing
other variables. From this it is seen that $\phi_{\iota}(w_{\iota}, \cdots)$ is holomorphic with
respect to $w_{\iota}$ .

The integral operator $T_{l}$ has been defined in section 1, but it should be
noted that the variables $z$ and 2 are replaced by the variables $w$ and $\overline{w}$

respectively.
LEMMA 6.1. $\overline{d}_{j}\omega=A_{j},$ $d_{j}\omega=B_{j},$ $1\leqq j\leqq n-1$ .
In fact,

$\overline{d}_{j}\omega=\sum_{\iota=1}^{n-1}\overline{d}_{j}\phi_{\iota}+\sum_{\ell=1}^{n-I}\overline{d}_{j}T_{\iota}\tilde{A}_{\iota}$

$=\sum_{\iota=1}^{f-1}\overline{d}_{j}\phi_{\iota}+\sum_{\iota=1}^{j-1}\overline{d}_{j}T_{l}\tilde{A}_{\iota}+\tilde{A}_{j}$

$=A_{j}$ ,

$d_{j}\omega=d_{j}\sum_{\iota=\iota}^{f-1}\phi_{\iota}+(\tilde{B}_{j}-d_{j}T_{j}\tilde{A}_{j})+d_{f}\sum_{l=1}^{f}T_{\iota}\check{A}_{\iota}$

$=B_{j}$ .
From this lemma, (i), (ii) and (iii) we obtain the following

LEMMA 6.2. We set
$\rho=\beta-\overline{d}_{n}\omega-\alpha d_{n}\omega$ ,

$\tau=\gamma\exp(\overline{\omega}-\omega)$ .
Then we have in $P$

$\overline{d}_{j}\rho=d_{f}\rho=\overline{d}_{j}\tau=d_{j}\tau=0$ , $1\leqq j\leqq n-1$ .
That is, $\rho$ and $\tau$ do not include $2n-2$ variables $w_{f},\overline{w}_{j},$ $1\leqq j\leqq n-1$ .
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Let $F$ be a regular solution of the system of differential equations (6.1)

in a subpolydisc $\hat{P}_{0}=\{w\in C^{n}||w_{j}|<r<R, 1\leqq j\leqq n\}$ . Then, setting

$g=F(w,\overline{w})\exp\{-\omega(w,\overline{w})\}$ ,

we obtain from Lemma 6.1, 6.2 that $g$ does not include the variables $w_{f},\overline{w}_{j}$ ,
$1\leqq j\leqq n-1$ , and satisfies the following differential equation in the disc
$K:|w_{n}|<r$ in the complex plane $w_{n}$

$t(6.2)$ $\overline{d}_{n}g+\alpha d_{n}g=\rho g+\tau\overline{g}$ , $|\alpha|\leqq c_{0}<1$ .
It follows with the aid of Lemma 2.1 that the function $g$ is similar to a

function of $Q(K)$ and vice versa.
Regarding all functions of a complex variable as functions of several

complex variables, we shall denote the class $Q(K)$ by $Q(P_{0})$ .
Thus we are now in a position to state the
THEOREM 6.1. The system of differential equations (6.1) satisfies the simi-

iarity principle with respect to the class $Q(\hat{P}_{0})$ .

\S 7. Additional assumptions on the coefficients and main theorem.

In this section we return to the system of equations (5.6), (5.7) and (5.10):

\langle 5.6) $d_{j}f=-\hat{b}_{n}^{-1}\hat{b}_{jn}f$ ,
$(1\leqq j\leqq n-1)$

$’(5.7)$ $\overline{d}_{j}f=0$ ,

\langle 5.10) $\overline{d}_{n}\hat{f}+dd_{n}f=\hat{b}\hat{f}^{-}-$, $|\delta|\leqq c_{0}<1$ .
It does not always follow that the function $a$ defined by (5.9) is written

in the composite form $\alpha\circ\sigma$, where $\alpha$ is defined in the image $\sigma(W)$ . We
$\tau emark$ the following fact: Let $G$ be a domain in $C^{n}$ and let a function
$\sigma(z,\overline{z})$ be defined such that $|\partial_{n}\sigma|^{2}-|\partial_{n}\sigma|^{2}\neq 0$ in $G$ . Then the image $\sigma(G)$ is
also the domain in the complex plane.

We impose the following condition:

There exists a function $\alpha$ defined in the image $\sigma(W)$ such that $a$ is
$\langle H_{6})_{n}$

written in the form $\alpha\circ\sigma$ and $|\alpha|\leqq c_{0}<1$ in $W$ .
Furthermore we shall assume that for $j,$ $1\leqq j\leqq n-1$ ,

$(H_{6})_{n}$ $\overline{X}_{j}b=-\overline{b}_{jn}b$ , $(b_{j}=b\partial_{j}\sigma)$

$\langle H_{7})_{n}$ $b_{n}\partial_{n}b_{jn}-b_{jn}\partial_{n}b_{n}=0$ .
It is seen that the assumption $(H_{5})_{n}$ is the condition which $\sigma$ must more-

over satisfy. However, giving $\alpha$ in a neighborhood of the origin in the
complex plane such that $|\alpha|\leqq c_{0}<1$ , we assume $(H_{5})_{n}^{\prime}$ :
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There exist a neighborhood $W$ of the origin in $C^{n}$ and a functiom
$\sigma(z,\overline{z})$ such that $\sigma(0)=0,$ $\partial_{n}\sigma\neq 0$ in $W$ and $\sigma$ satisfies the system of

$(H_{5})_{n}^{\prime}$ first order non-linear differential equations $\partial_{j}\sigma=(\alpha\circ\sigma)\partial_{j}\overline{\sigma},$ $1\leqq j\leqq n_{\sim}$

Moreover $\sigma$ has the property that there exists a function $b$ defineffi
in $W$ such that $b_{j}=b\partial_{j}\sigma,$ $1\leqq j\leqq n$ .

Then, noting that $\sigma$ in $(H_{5})_{n}^{\prime}$ satisfies (4.2), Lemma 4.1 shows that the assump-
tions $(H_{1})_{n},$ $(H_{2})_{n}$ and $(H_{6})_{n}$ can be replaced by $(H_{5})_{n}^{\prime}$ .

To sum up, in order to assure the existence of $\sigma$ which completes the $\cdot$

change of variables we assume $(H_{1})_{n}$ and $(H_{2})_{n}$ and in order that we may
reduce essentially the system of equation (1.8) and the additional equations.
(3.1) to a single equation of one complex variable we assume $(H_{j})_{n},$ $4\leqq j\leqq 7$ .

In making examples of our system which satisfies the above six assump-
tions we shall use the assumption $(H_{6})_{n}^{\prime}$ .

Without loss of generality we can assume $that_{\sim}^{\underline{v}}W$ corresponds homeo-
morphically to $P$ and hence that $fi=W$. We put

(7.1) $\left\{\begin{array}{lll} & & A_{j}=0, B_{j}=-(b_{jn}b_{n}^{-1}),\\ & & -\\ & & \alpha=d, \beta=0, \gamma=\hat{b}.\end{array}\right.$

We want to check that (7.1) satisfies the conditions $(i)_{\sim}^{r}(ii)_{\iota}^{r}(iii)$ and (iv)
in section 6 under the assumptions $(H_{j})_{n},$ $4\leqq j\leqq 7$ .

First, (i) is obvious from $(H_{5})_{n}$ . Observe that

(7.2) $X_{j}=b_{n}d_{j}$ , $\overline{X}_{j}=\overline{b}_{n}\overline{d}_{j}$ , $1\leqq j\leqq n-1$ .
Then (iii) is equivalent to

(7.3) $\overline{X}_{j}\overline{b}=\overline{b}_{jn}\overline{b}$ , $X_{j}\overline{b}=-b_{jn}\overline{b}$ , $1\leqq i\leqq n-1$ .
The second part of (7.3) is $(H)_{n}$ itself.

From (4.6) and (4.7) we see that the first part of (7.3) is trivial.
The condition (iv) is transformed by the inverse transformation of $(5.4)\backslash $

into

(7.4) $\overline{X}_{j}(b_{n}^{-1}b_{jn})=0$ ,

(7.5) $X_{j}(b_{n}^{-1}b_{kn})=X_{k}(b_{n}^{-1}b_{jn})$ , $1\leqq i\leqq n-1$ .
It is seen that (7.4), (7.5) are nothing but $(H_{4})_{n},$ $(H_{3})$. respectively.
It remains to verify that the condition (ii) is satisfied. To this end, we

must state the following
LEMMA 7.1. $\overline{d}_{n}B_{j}+\alpha d_{n}B_{j}=0$ is equivalent to $(H_{7})_{n}$ .
PROOF. Observe first that

(7.6) $dB_{j}=\partial_{n}\check{B}_{j}dz_{n}+\partial_{n}\check{B}_{j}d\overline{z}_{n}$ ,
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where the symbol $d$ denotes either of the differential operators $\overline{d}_{n},$ $d_{n}$ and the
symbol . denotes the function into which a function under $\vee$ is transformed
by the inverse change of variables of (5.4).

From (7.6) we obtain that

$t\langle 7.7)$ $\overline{d}_{n}B_{j}+\alpha d_{n}B_{j}=\partial_{n}B_{j}^{*}(\overline{d}_{n}z_{n}+ad_{n}z_{n})+\partial_{n}B_{j}^{*}(\overline{d}_{n}Z_{n}+ad_{n}\overline{z}_{n})$ ,

where $B_{j}^{*}=b_{jn}/b_{n}$ and $ a=\alpha\circ\sigma$ .
By differentiating the both sides of $w_{n}=\sigma(z,\overline{z})$ with respect to $w_{n},\overline{w}_{n}$ , we

may derive that

$’(7.8)$

where $J=|\partial_{n}\sigma|^{2}-|\partial_{n}\sigma|^{2}$ .
Observe secondly that by (7.8)

\langle 7.9)

$=(\partial_{n}\overline{\sigma})^{-1}$

Inserting (7.9) into the right-hand side of (7.7), we find

$\overline{d}_{n}B_{j}+\alpha d_{n}B_{j}=(\partial_{n}\overline{\sigma})^{-1}\partial_{n}B_{j}^{*}$

which completes the proof.
The following lemma is easily derived.
LEMMA 7.2. Let $g$ is in $Q(K)$ . Then the composite function $ g\circ\sigma$ is holo-

lmorphic in $W_{0}$ which corresponds to the polydisc $p_{0}$ under the change of vari-
.ables (5.4).

We shall consider a class $\mathcal{A}(W_{0})$ and a subclass $\mathcal{A}_{0}(W_{0})$ of the class $\mathcal{A}(W_{0})$

-which is composed of functions go $\sigma,$ $g$ being in $Q(K)$ .
Remark that, giving the system of equations (1.8) in $G$ , we consider the

.assumptions on the coefficients of (1.8) which are restricted to a neighborhood
$\ovalbox{\tt\small REJECT} of$ a point, say, the origin in $G$ .

We are now in a position to state the following
THEOREM 7.1 (Main Theorem). Suppose that in a neighborhood $W$ of the

origin in $C^{n}$ the coefficients of the system (1.8) satisfy the conditions $(H_{j})_{n}$ ,
$j=1,2,4,5,6,7$ . Then there exists a neighborhood $W_{0}$ of the origin such that
$W_{0}\subset W$ and the system of equations (1.8) satisfies the similarity principle with
respect to the class $\mathcal{A}_{0}(W_{0})$ .



234 A. KOOHARA

\S 8. Lemmas for an analysis of the coefficients, and an example.

In this and following sections we shall show the existence of the system

of equations (1.8) which satisfies the assumptions of Theorem 7.1. Viewing
from a different angle, we analyse the coefficients of (1.8).

It follows from (4.5), (4.6) and (4.8) that the assumption $(H)_{n}$ is turned
into

(8.1) $Y_{j}|b|^{2}=0$ , $1\leqq j\leqq n-1$ ,

that is, $(H_{6})_{n}$ is equivalent to (8.1).

From this and with the aid of Lemma 4.1, it turns out that

(8.2) $|b|=r\circ\sigma$ ,

where $r$ is a non-negative valued function of a complex variable which is.
defined in the image $\sigma(W)$ .

Similarly, inserting (4.5), (4.6) and (4.7) into $(H_{4})_{n}$ and deforming them, we
shall obtain

(8.3) $b\alpha_{n}\overline{Y}_{k}Y_{j}b-\alpha_{n}Y_{j}b\overline{Y}_{k}b-b\overline{Y}_{k}\alpha_{n}Y_{j}b=0$ ,

where we set $\alpha_{n}=\partial_{n}\sigma$ .
Before considering (8.3) we must state the
LEMMA 8.1. (1) $\overline{Y}_{(j,k)}\partial_{j}\sigma=0$ for $j,$ $k=1,2,$ $\cdots,$ $n$ .
(2) For any number I such that $\partial_{\iota}\sigma\neq 0$ in $W$ and for $j,$ $k=1,2,$ $\cdots$ , $n$ ,

$\overline{Y}_{(j,k)}\partial_{\iota}\sigma=0$ ,

$Y_{(j,k)}\partial_{\iota}\sigma=0$ .
PROOF. It follows from $(H_{5})_{n}$ that

$\partial_{s}\sigma=(\alpha\circ\sigma)\partial_{s}\overline{\sigma}$ .
For $s=j,$ $k$ , by differentiating the above both sides with respect to $z_{j}$ re-
spectively, and by eliminating $\partial_{j}\alpha\circ\sigma$ from them, we obtain

$\partial_{k}\overline{\sigma}\partial_{j}\partial_{j}\sigma-\partial_{j}\overline{\sigma}\partial_{j}\partial_{k}\sigma=(\alpha\circ\sigma)(\partial_{k}\overline{\sigma}\partial_{j}\partial_{j}\overline{\sigma}-\partial_{j}\overline{\sigma}\partial_{j}\partial_{k}\overline{\sigma})$ .
Expressing this in terms of $\overline{Y}_{(j,k)}$ , we have

$\overline{Y}_{(j,k)}\partial_{j}\sigma=(\alpha\circ\sigma)\overline{Y}_{(j,k)}\partial_{j}\overline{\sigma}$

$=(\alpha\circ\sigma)\overline{Y}_{(j,k)}\{(\overline{\alpha\circ\sigma)}\partial_{j}\sigma\}$

$=|\alpha\circ\sigma|^{2}\overline{Y}_{(j,k)}\partial_{j}\sigma$

(by $Y_{(j,k)}\alpha\circ\sigma=0$ and Lemma 4.1).

Because of a $\circ\sigma|<1$ , we obtain the required result for either $l=j$ or $k_{-}$
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To complete the proof of the first part of (2), it is sufficient to remark
that we may have

$Y_{(j,k)}\partial_{\iota}\overline{\sigma}=(\alpha_{l})^{-1}(\alpha_{k}Y_{(j,l)}\overline{\alpha}_{\iota}-\alpha_{j}Y_{(k,l)}\overline{\alpha}_{\iota})$ ,

where we set $\alpha_{s}=\partial_{s}\sigma,$ $1\leqq s\leqq n$ .
Next we have

$Y_{(j,k)}\partial_{\iota}\sigma=Y_{(j,k)}\{(\alpha\circ\sigma)\partial_{\iota}\overline{\sigma}\}$

$=(\alpha\circ\sigma)Y_{(j,k)}\partial_{\iota}\overline{\sigma}$

$=0$ .
This completes the proof.

From this lemma and Lemma 4.1 the $fo11owing\underline{\ell}_{\iota^{I}}1emma$ is immediately
obtained.

LEMMA 8.2. For any function $h$ defined in the image $\sigma(W)$

$\overline{Y}_{(j,k)}\partial_{\iota}h\circ\sigma=0$ ,

$Y_{(j,k)}\partial_{\iota}h\circ\sigma=0$ .
With the aid of Lemma 8.1, we see that (8.3) is turned into

(8.4) $b\overline{Y}_{k}Y_{j}b-Y_{j}b\overline{Y}_{k}b=0$ , $1\leqq j,$ $k\leqq n-1$ .
By (8.2) $b$ is written in the form

(8.5) $b=(r\circ\sigma)\exp\{i\theta(z,\overline{z})\}$ ,

where $\theta$ is a real valued function defined in $W$.
Substituting (8.5) in (8.4) and using Lemma 4.1, we obtain the system of

differential equations with respect to $\theta$

(8.6) $\overline{Y}_{k}Y_{f}\theta=0$ , $1\leqq j,$ $k\leqq n-1$ ,

The following lemma is readily obtained from Lemma 8.1.
LEMMA 8.3. $[Y_{j},\overline{Y}_{k}]=0$ , that is, $Y_{j}$ and $\overline{Y}_{k}$ commute.
COROLLARY 8.1. $[Y_{(j,l)},\overline{Y}_{(k,l)}]=0$ .
Observe that we have, by the change of variables (5.4) and using (7.2),

(4.6),

(8.7) $Y_{j}=\alpha_{n}d_{j}$ , $\overline{Y}_{j}=\overline{\alpha}_{n}\overline{d}_{j}$ , $1\leqq j\leqq n-1$ .
Note that

(8.8) $\overline{Y}_{j}\alpha_{k}=0,$ $Y_{j}\partial_{k}\sigma=0$ are equivalent to $\overline{d}_{j}\hat{\alpha}_{k}=0,$
$d_{j}\partial_{k}^{\wedge}\sigma=0$, respectively.

Then it follows that (8.4) is equivalent to

(8.9) $\overline{d}_{j}d_{k}\hat{\theta}=0$ , $1\leqq j,$ $k\leqq n-1$ .
Thus it is seen that $\hat{\theta}$ is, for each fixed $w_{n}$ , a pluriharmonic function with
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respect to $w_{f},$ $\varpi_{j},$ $1\leqq i\leqq n-1$ . Since we can assume that the given neigh-
borhood $W$ of the origin corresponds to the polydisc $P$ under the change of
variables considered, $\hat{\theta}$ is represented in the form ${\rm Re}\phi$ , where $\phi$ is a holo-
morphic function with respect to $w_{1},$ $\cdots,$ $w_{n-1}$ in $P$. And hence $\theta$ is written
in the form

1(8.10) ${\rm Re}\phi\{z_{1}, \cdots z_{n-1}, \sigma(z,\overline{z}),\overline{z}_{1}, \cdots \overline{z}_{n- 1},\overline{\sigma(z,\overline{z})}\}$ .
Using (4.7), (8.5), it is derived fr,om Lemma 4.1 that

\langle 8.11) $--=-bY_{b^{(}\partial_{k^{k}}^{j}\sigma^{)}}bb^{j_{k}k}$

$ Y_{(j,k)}\theta$

$=i-\partial_{k}\sigma$

Differentiating the both sides of (8.11) with respect to $\overline{z}_{l}$ , we obtain

$\partial_{\iota}\frac{b_{jk}}{b_{k}}=\frac{i}{\alpha}.-.\{\alpha_{k}Y_{(j,k)}\partial_{\iota}\theta-(\partial_{k}\theta)Y_{(j,k)}\partial_{\iota}\sigma\}k^{2}$

By virtue of these and Lemma 8.1, we obtain the
LEMMA 8.4.

$\partial_{\iota}\frac{b_{jk}}{b_{k}}=0$ is equivalent to $Y_{(j,l)}\partial_{k}\theta=0$ , $1\leqq j,$ $k,$ $l\leqq n$ .

We shall again remark that the symbol . denotes the functions into which
our functions are transformed by the change of variables (5.4).

Note that
$Y_{(j,k)}=\alpha_{k}d_{f}-\alpha_{j}d_{k}$ , $1\leqq j,$ $k\leqq n-1$ ,

$\partial_{l}=\partial_{\iota}\sigma d_{n}+\overline{d}_{l}+\alpha_{l}^{\leftarrow}\overline{d}_{n}$ for $l\neq n$ ,

and $\partial_{n}=\partial_{n}\sigma d_{n}+\overline{\alpha}_{n}\overline{d}_{n}$ .
The following lemma is readily obtained from Lemma 7.1 (also Lemma 8.4).

LEMMA 8.5. $(H_{7})_{n}$ is equivalent to

(8.12) $d_{j}(\overline{d}_{n}\hat{\theta}+\alpha d_{n}\hat{\theta})=0$ , $1\leqq i\leqq n-1$ .
LEMMA 8.6. Under the assumpfion $(H_{\tau})_{n}$ we have

(1) $Y_{(j,k)}\partial_{\iota}\theta=0=\alpha_{k}d_{j}\overline{d}_{\iota}\hat{\theta}-\alpha_{j}d_{k}\overline{d}_{\iota}\hat{\theta}=0$ , $1\leqq j,$ $k\leqq n-1$ ;

(2) $Y_{k}\partial_{k}\theta=0=d_{k}\overline{d}_{k}\hat{\theta}=0$ , $1\leqq k\leqq n-1$ .
PROOF. From $\partial_{l}\sigma=(\alpha\circ\sigma)\partial_{\iota}\overline{\sigma}$ , we see that

$\partial_{\iota}=\overline{\alpha}_{i}(\overline{d}_{n}+\alpha d_{n})+\overline{d}_{\iota}$ , $1\leqq l\leqq n-1$ .
Observing that $Y_{l}5_{m}=0=d_{t}\overline{\alpha^{\wedge}}_{m}=0,1\leqq l,$ $m\leqq n$ , then (1), (2) are easily obtained
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from Lemmas 8.1, 8.5.
COROLLARY 8.2. Under the assumption $(H_{7})_{n}$ we have

(1) $Y_{(j,k)}\partial_{\iota}\theta=0=\alpha_{k}Y_{j}\overline{Y}_{l}\theta-\alpha_{j}Y_{k}\overline{Y}_{l}\theta=0$ ;

(2) $Y_{k}\partial_{k}\theta=0=Y_{k}\overline{Y}_{k}\theta=0$ , $1\leqq j,$ $k,$ $l\leqq n-1$ .
REMARK 8.1. The assumption $(H_{7})_{l},$ $l\neq n_{j}$ that is, $\partial_{l}(b_{jl}/b_{\iota})=0,1\leqq j\leqq n$ ,

follows from the assumptions $(H_{j})_{n},$ $1\leqq j\leqq 7,$ $j\neq 3$ and with the aid of Lemmas
8.4, 8.6. Similarly the assumption $(H_{4})_{\iota},$ $l\neq n$ , does so. In fact, it is sufficient
to observe the following relations which are obtained from (8.11) and with
the aid of Lemma 8.1:

$\overline{Y}_{(k,l)}Y_{(j,l)}=|\alpha_{n}|^{-2}\{\overline{\alpha}_{\iota}\alpha_{\iota}\overline{Y}_{k}Y_{j}-\overline{\alpha}_{k}\alpha_{l}\overline{Y}_{l}Y_{j}-\overline{\alpha}_{\iota}\alpha_{j}\overline{Y}_{k}Y_{\iota}+\overline{\alpha}_{k}\alpha_{j}\overline{Y}_{l}Y_{\iota}\}$ ,

$(j, k\neq n)$

$\overline{Y}_{(n,l)}Y_{(j,l)}=(\alpha_{n})^{-1}(\alpha_{j}\overline{Y}_{l}Y_{l}-\alpha_{l}\overline{Y}_{l}Y_{j})$ , $(j\neq n)$

$\overline{Y}_{(k,l)}Y_{(n,l)}=(\overline{\alpha}_{n})^{-1}(\overline{\alpha}_{k}\overline{Y}_{l}Y_{\iota}-\overline{\alpha}_{\iota}\overline{Y}_{k}Y_{\iota})$ , $(k\neq n)$ .
REMARK 8.2. In section 11 we shall discuss about the assumptions $(H_{5})_{\iota}$ ,

$(H_{6})_{l}$ .
It is natural for the following question to arise: Will there exist a non-

trivial solution of the system of equations (8.9)? Such a solution surely exists.
That is, we have the following example:

(8.13) $\hat{\theta}=2^{-(\hat{\phi}+\hat{\phi})+\hat{\Theta}(w_{n},\overline{w}_{n})}1^{-}$

where $\hat{\phi}$ is a holomorphic function with respect to $w_{1},$ $\cdots,$ $w_{n-1}$ and includes
neither $w_{n}$ nor $\overline{w}_{n}$ and where $\hat{\Theta}$ is a real valued function defined in the open
disc $|w_{n}|<R$ . Then (8.10) is described as follows:

(8.14) $\theta={\rm Re}\phi(z_{1}, \cdots z_{n-1})+(\Theta\circ\sigma)(z,\overline{z})$ ,

where $\phi(z_{1}, \cdots, z_{n-1})$ is holomorphic.
To sum up, we have carried out in two stages in order to make examples

which fulfill a number of assumptions $(H_{j})_{n},$ $1\leqq j\leqq 7,$ $j\neq 3$ : we find $\sigma$ such
that $\partial_{j}\sigma=(\alpha\circ\sigma)\partial_{j}\overline{\sigma},$ $1\leqq j\leqq n$ (see the following section), and find the function
$b$ such that $(H_{4})_{n},$ $(H_{6})_{n}$ and $(H_{7})_{n}$ are fulfilled. Thus the desired examples are
obtained by putting $ b_{j}=b\partial_{j}\sigma$ .

As immediately seen, these examples show that the assumption $(H_{5})_{n}^{\prime}$ is
satisfied.

\S 9. Non-emptiness of the assumption $(H_{5})_{n}^{\prime}$ .
In this section we shall show that there exists a function $\sigma$ which satisfies

the first part of the assumption $(H_{5})_{n}^{\prime}$ . Nirenberg [13] discussed more general
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system of non-linear first order partial differential equations than our system.
Though our system is a special case of those in [12], [13], it should be
noted that we need no integrability conditions. Our technique of the proof
is the same as Newlander-Nirenberg’s one [12] and hence we give the out-
line of the proof.

LEMMA 9.1. Let $\Delta$ be an open disc with center at the origin in t-plane.
Let $\alpha(t,\overline{t})$ be a complex valued function defined in $\Delta$ such that $\alpha(0)=0$ . Then
the system of first order non-linear differential equations

(9.1) $\partial_{j}g=(\alpha\circ g)\partial_{j}\overline{g}$ , $1\leqq j\leqq n$ ,

admits a solution defined in a sufficiently small neighborhood $N$ of the origin
such that $g(O)=0,$ $\partial_{j}g\neq 0,1\leqq j\leqq n$ in $N$.

For such a solution $g$, we set $M_{t}=\{z\in N|g(z,\overline{z})=t\}$ . Then $M_{t}$ is a com-
plex pure $(n-1)$-dimensional analytic manifold.

Set
$F=(a\partial_{1}\overline{g}, a\partial_{2}\overline{g}, \cdots a\partial_{n}\overline{g})$ , $a=\alpha\circ g$

and
$\tau p_{g=\sum}^{n-1}$

$(-1)^{\epsilon}$ ... $T_{Js}\partial_{j_{S}}T_{k}((\alpha\circ g)\partial_{k}\overline{g})$
$s=0(s+^{-}1)!\sum^{\prime}T_{j_{1}}\partial_{J_{1}}$ (see (1.11)).

Assume that $\sigma$ is a solution of (9.1) in some neighborhood of the origin. From
(9.1) we obtain
(9.2) $\sigma(z,\overline{z})=\varphi(z)+(TF\sigma)(z,\overline{z})\backslash $ ’

where $\varphi(z)$ is a holomorphic function in that neighborhood.
Observe that without any conditions we have

$\partial_{j}\{(\alpha\circ\sigma)\partial_{k}\overline{\sigma}\}=\partial_{k}\{(\alpha\circ\sigma)\partial_{j}\overline{\sigma}\}$ , $1\leqq j,$ $k\leqq n$ .
Conversely, let $\varphi(z)$ be a given holomorphic function and $\sigma(z,\overline{z})$ be a

solution of (9.2). Then we have the following relations:

(9.3) $\partial_{j}\sigma-a\partial_{j}\overline{\sigma}=\sum_{s=0}^{n-2}(s+2)^{s}\ulcorner^{\Sigma_{(j)}T_{j_{1}}\partial_{j_{1}}}(-1)\ldots T_{Js}\partial_{J\epsilon}T_{k}q_{jk}$ ,

$q_{jk}=\partial_{j}(a\partial_{k}\overline{\sigma})-\partial_{k}(a\partial_{j}\overline{\sigma})$ ,

where $\Sigma_{(j)}$ denotes the summation over all $(s+1)$ -tuples with $j_{1},$
$\cdots,$

$j_{s},$ $k$

mutually distinct and different from $j$ .
Setting the left-hand side of (9.3) $p_{j}$ , we obtain the system of the linear

integro-differential equations with respect to $p_{j},$ $1\leqq j\leqq n$

(9.4) $p_{j}=\sum_{s=0}^{n-2}-(s\overline{+}2)^{s}!^{-\Sigma_{(j)}T_{j_{1}}\partial_{j_{1}}\cdots T_{is}\partial_{is}T_{k}(\partial_{k}p_{j}-\partial_{f}p_{k})}(-1)$

which admits only null solution for sufficiently small neighborhood of the
origin.
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Now, in order to obtain the desired solution we consider the equation of
the following type:

(9.5) $g=\sum_{j^{-}-1}^{n}z_{j}+TFg-(TFg)_{0}$ ,

where $(TFg)_{0}$ is the value of $TFg$ at the origin.
The function space in which we shall solve (9.5) is the Banach space

$\tilde{C}^{m+\delta}$ , which is introduced in [12], where $m$ is any integer $\geqq n$ and $0<\delta<1$ .
Each element in $\tilde{C}^{m+\delta}$ is defined in an open polydisc with center the origin
and polyradius $r,$ $r\leqq(1/4)$ . Making use of the principle of the contraction
mapping and taking, if necessary, a sufficiently small $r$, it follows that the
integral equation (9.5) admits a unique solution $\sigma$ and the system of integro-
differential equations (9.4) has only zero solution.

From the definition of the norm of $\tilde{C}^{m+\delta}$ and for $r$ possibly restricted still
further it is seen that in the polydisc considered

(9.6) $\partial_{j}\sigma\neq 0$ , $1\leqq j\leqq n$

and a $\circ\sigma|\leqq c_{0}<1$ .
Because of

$-\partial_{1^{\frac{\sigma}{\overline{\sigma}}}}^{1}\partial=\frac{\partial_{2}\sigma}{\partial_{2}\overline{\sigma}}=\ldots=\frac{\partial_{n}\sigma}{\partial_{n}\overline{\sigma}}$ ,

the second part of lemma is obvious.

\S 10. Special cases.

In this section we shall consider the system of equations (1.8) whose
coefficients fulfill some conditions.

It is readily seen from (8.11) that

$b_{jk}=0$ is equivalent to $Y_{(j,k)}\theta=0$ , $1\leqq j,$ $k\leqq n$ .
Since $\theta$ is a real valued function, we have also

$\overline{Y}_{(j,k)}\theta=0$ , $1\leqq j,$ $k\leqq n$ .
Hence, by Lemma 4.1 and (8.5), we can state the

LEMMA 10.1. $b_{jk}=0$ is equivalent to that $b$ is written in the form $\nu\circ\sigma$ .
Here we consider the case in which the coefficients are constants, that is.

(10.1) $\partial_{j}f=\overline{c}_{1j}f+\overline{c}_{2j}f$ , $1\leqq j\leqq n$ .
The domain $G$ considered is a polydisc with center the origin and polyradius
$R$ . Then we obtain

$T_{j}\overline{c}_{1j}=\overline{c}_{1j}\overline{z}_{j}$ , $|z_{j}|\leqq R$ , $1\leqq j\leqq n$

and hence
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$\Omega(z,\overline{z})=\sum_{j=1}^{n}\overline{c}_{1j}\overline{z}_{j}$ , $|z_{j}|\leqq R$ , $1\leqq j\leqq n$ .
Observing that

$b_{j}=c_{\$ j}\exp(\Omega-\overline{\Omega})$ , $1\leqq j\leqq n$ ,

$\theta=2i(\overline{\Omega}-\Omega)$ ,

$b=\exp(\Omega-\overline{\Omega})$ ,

we find from Lemma 10.1 that

$b_{jk}=0,1\leqq j,$

$k\leqq n=rank\left(\begin{array}{l}c_{1n}\\c_{2n}\end{array}\right)=1$

.

Using $\sigma=c_{21}z_{1}+c_{22}z_{2}+\cdots+c_{2n}z_{n}$ , we have

$\overline{\Omega}=\{\sum_{\mu=1}^{n-1}(c_{1\mu}c_{zn}-c_{1n}c_{2\mu})z_{\mu}+c_{1n}\sigma\}c_{2}1_{n}$

Setting

$\phi=c_{2n}^{i}\sum_{\mu=1}^{n-1}(c_{1\mu}c_{2n}-c_{1n}c_{\epsilon\mu})z_{\mu}$ ,

$\Theta(t,\overline{t})=2i(c_{2n}^{1n}t-c\overline{\frac{c}{c}}1n\overline{f})2n$

we know the existence of solutions of equations (10.1) by (8.14).

Assume that $b_{jk}=0,1\leqq j,$ $k\leqq n$ , in $U$ . If the system (1.8) has a solution
$f$ which fulfills rank $(B, C)=2$ , then (3.1) turns into

$X_{(j,k)}f=0$ , $\overline{X}_{(j,k)}f=0$ , $1\leqq j,$ $k\leqq n$ ,

and with the aid of Lemma 4.1 there must exist the relation $(H_{2})_{n}$ and hence
the relations $(H_{2})_{k},$ $1\leqq k\leqq n-1$ , between the coefficients $b_{s},$ $1\leqq s\leqq n$ , and the
solution $f$ must take the form go $\lambda$ where $\lambda$ is the function given in Lemma 4.1.

REMARK 10.1. In the above case $(H_{1})_{k},$ $1\leqq k\leqq n$ , are free (see $(H_{1})_{n}^{\prime}$ ).

In case the coefficients $b_{j}$ are holomorphic, the assumption $(H_{1})_{n}$ alone
assures the existence of solutions of (1.8).

Let all $b_{j},$ $1\leqq j\leqq n(n\geqq 2)$ , be holomorphic functions in a domain $G$ which
contains the origin and let $b_{n}\neq 0$ at the origin. Then there exists a neigh-
borhood $U$ of the origin such that $b_{n}\neq 0$ there. With the aid of Lemma 4.1
it follows that for a suitable neighborhood $V$ of the origin, $V\subset U$ , we have
a holomorphic solution $\sigma$ of the system of equations (4.2) in $V$ such that
$\sigma(0)=0$ . Hence $b_{j}$ is written in the form

(10.2) $ b_{j}=b\partial_{j}\sigma$ , $1\leqq j\leqq n$ ,

where $b$ is a holomorphic function in $V$ .
It is obvious that $b_{j}$ , being given by (10.2), fulfills the assumption $(H_{1})_{n}$ .
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Here we may consider a non-singular holomorphic transformation (5.4). We
may assume, taking, if necessary, still smaller neighborhood, that $V$ cor-
responds homeomorphically to a polydisc $\hat{W}$ with center the origin and poly-

radius $r$ . Then, since $\omega$ is holomorphic in $\hat{W}$ and $\alpha$ vanishes (see section 6),

it is derived that $\rho$ vanishes. Observe that

(10.3) $X_{j}\check{\tau}=-\check{\tau}X_{j}\check{\omega}$ ,

where the symbol $\vee$ denotes the function into which a function under is
transformed by the inverse transformation of (5.4) and we set

(10.4) $\tau=\hat{b}\exp(\overline{\omega}-\omega)-$ .
From (6.2) it is seen that $\tau$ is the function of $w_{n},\overline{w}_{n}$ only. Hence

$\check{\tau}=\kappa\circ\sigma$ ,

where $\kappa$ is a function defined in the image $\sigma(V)$ . In other words, the function
$\check{\tau}$ is the solution of equations

$X_{j}h=0$ , $1\leqq j\leqq n$ .
And hence we obtain from (10.3) that $\check{\omega}$ satisfies the equations $X_{j}\check{\omega}=0$ , that is.
$\check{\omega}$ is written in the form $\check{\omega}=\nu\circ\sigma$ . From this and (10.4) it follows that

(10.5) $ b=\xi\circ\sigma$ ,

where $\nu$ and $\xi$ are holomorphic in the image $\sigma(V)$ .
Thus we derive with the aid of Lemma 10.1 that $b_{jk}=0,1\leqq j,$ $k\leqq n$ . By

virtue of the identity theorem, we obtain the following
THEOREM 10.1. Let the coefficients $b_{j}$ of the system (1.8) be holomorphic in

a domain $G$ , let $V$ be a neighborhood of the point $z^{0}$ of $G$ , and let $b,$ $\sigma$ be holo-
morphic in $V$ such that $b_{j}=b\partial_{j}\sigma,$ $1\leqq j\leqq n,$ $b\neq 0$ and $\partial_{n}\sigma\neq 0$ in V. Then a
necessary and sufficient condition in order that the system (1.8) may have a
solution in $V$ is that $b$ be written in the form (10.5) in $V$ and hence that $b_{jk}=$ (}

everywhere in $G$ .
Another formulation of Theorem 10.1 is Theorem 2.1.
REMARK 10.2. In case of $n=2$ the assumption $(H_{1})_{n}$ is vacuous and hence

the system (1.8) has locally a solution if and only if $b_{12}=0$ , that is, $\partial_{1}b_{2}-\partial_{2}b_{\iota}$

$=0$ everywhere in $G$ .
In case that the coefficients $b_{j}$ of the system (1.8) are holomorphic in a

domain $G$ , we may regard the condition $(H_{1})_{n}$ as the necessary condition, so
long as we deal with solutions with the null points.

We can scribe the commutators $[X_{j}, X_{k}],$ $1\leqq j,$ $k\leqq n-1$ , in the following

forms:

$[X_{j}, X_{k}]=\sum_{s=1}^{n-1}\alpha_{jks}X_{s}+\beta_{jkn}\partial_{n}$ ,
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where $\alpha_{jks},$ $\beta_{jkn},$ $1\leqq j,$ $k\leqq n-1$ , are holomorphic in $G$ . We denote the analytic
variety $\{z\in G|\beta_{jkn}(z)=0,1\leqq j, k\leqq n-1\}$ by $s*$ . Then we have $S\subset S^{*}$ , where
the set $S$ is as defined in section 3. Let $f$ be any solution in a neighborhood
$V,$ $V\subset G$ . Remark that the set of null points of $f$ is contained in $S$ . We
may consider that the system (1.8) has an infinite number of solutions as the
case of one complex variable. And hence the above remark shows that $s*$

may have an interior point, that is, $s*$ is identical with $G$ . We see readily

that the relations $\beta_{jkn}=0,1\leqq j,$ $k\leqq n-1$ , are $(H_{1})_{n}$ itself. For that reason,
in case that $b_{j},$ $1\leqq 1\leqq n$ , are holomorphic in $G$ , we may consider that the
condition $b_{jn}=0,1\leqq j\leqq n-1$ , is a necessary and sufficient one in order that
there may exist a local solution of the system (1.8).

\S 11. Compatibility of the assumptions.

We supposed a number of conditions $(H_{j})_{n},$ $j\neq 3,1\leqq j\leqq 7$ around a point
of $G$ and obtained Theorem 7.1 (Main Theorem). However, even if we suppose
the conditions $(H_{j})_{l},$ $j\neq 3,1\leqq j\leqq 7$ , for a number 1 such that $1\leqq l\leqq n$ , we
shall also obtain the same result. Then it is natural for the following question
to arise: Are the assumptions $(H_{j})_{n}$ compatible with $(H_{j})_{l},$ $j\neq 3,1\leqq j\leqq 7$ ,

around the same point? In this section we shall deal with this problem.
Assuming that $G$ contains the origin, as usual we shall discuss around

the origin and hence the notations follow those which are used until now.
Let $l$ be a number different from $n$ such that $b_{l}\neq 0$ in a neighborhood

$U_{\iota}$ of the origin. Assume that the coefficients $b_{j}$ of the system (1.8) satisfy
$(H_{j})_{\iota},$ $j\neq 3,1\leqq j\leqq 7$ in $U_{\iota}$ .

It is seen from (3.4) that in $U\cap U_{\iota}$ the conditions $(H_{j})_{l},$ $j=1,2$ , is derived
from $(H_{j})_{n},$ $j=1,2$ , and vice versa.

Let $\tau$ be a solution in a neighborhood $W_{\iota}\subset U_{\iota}$ of the origin of the follow-
ing system of equations

$X_{(j,l)}\tau=0$ , $\overline{X}_{(j,l)}\tau=0$ , $1\leqq j\leqq n$ ,

such that in $W_{l}$

rank $\left(\begin{array}{ll}\partial\tau & \partial\tau\\\partial_{\overline{T}} & \partial_{\overline{T}}\end{array}\right)=2$ .

$\sigma^{*}$ and $T^{*}$ will denote the restrictions of $\sigma$ and $\tau$ to $W\cap W_{l}$ respectively.

Then by virtue of Lemma 4.1 there exist functions $g$ and $\tilde{g}$ such that $g$ and
$\tilde{g}$ are defined in $\sigma^{*}(W\cap W_{\iota})$ and $\tau^{*}(W\cap W_{\iota})$ respectively, and such that
$\tau^{*}=g\circ\sigma^{*}$ and $\sigma^{*}=\tilde{g}\circ\tau^{*}$ . And hence we obtain that $\tilde{g}=g^{-1}$ in $\tau^{*}(W\cap W_{\iota})$ .

From now on, for simplicity we shall use the notation $\sigma$ and $\tau$ instead
of $\sigma^{*},$ $T^{*}$ respectively.



Similarity principle 243

In order to establish the relationship between $(H_{5})_{n}$ and $(H_{5})_{l}$ we shall
have the following

LEMMA 11.1. Let $\sigma$ and $\tau$ be defined in a neighborhood $W_{0}$ , let $\sigma$ be $a$

solution of the system (4.2) such that $\sigma$ fulfills $(H_{5})_{n}$ and $\partial_{n}\sigma\neq 0$ in $W_{0}$ , and let
$\tau$ be also a solution of (4.2) such that $|\tilde{a}|\leqq c_{0}\sim<1$ , where $\tilde{c}_{0}$ is a positive constant
and $a$ is defined by $\tilde{a}=\partial_{j}\tau/\overline{\partial}_{J^{\overline{T}}},$ $1\leqq j\leqq n$ . Then $\tau$ fulfills the following con-
ditions:

i) There exists a function $g$ defined in $\sigma(W_{0})$ such that $\tau=go\sigma$ , where $g$

satisfies the condition that $|\partial_{w}g|^{2}-|\partial_{\overline{w}}g|^{2}>0$ ,
ii) $\partial_{n}\tau\neq 0$ in $W_{0}$ ,

iii) there exists a function a defined in $\tau(W_{0})$ such that $a$ is written in the
form $\tilde{a}=\tilde{\alpha}\circ\tau$ .

PROOF. Since, by $virtue^{\iota}$ of Lemma 4.1, there exists $g$ such that $\tau=g\circ\sigma$ ,

we have

(11.1) $\left(\begin{array}{llllll} & & & & \partial\tau & \partial\tau\\ & & & & \partial_{\overline{T}} & \partial_{\overline{T}}\end{array}\right)=\left(\begin{array}{llllll} & & & & \partial_{w}g & \partial_{\overline{w}}g\\ & & & & \partial_{w}\overline{g} & \partial_{\overline{w}}\overline{g}\end{array}\right)\left(\begin{array}{llllll} & & & & \partial\sigma & \partial\sigma\\ & & & & \partial\overline{\sigma} & \partial\overline{\sigma}\end{array}\right)$ .

From that both rank $\left(\begin{array}{llllll} & & & & \partial\tau & \partial_{T}\\ & & & & \partial_{\overline{T}} & \overline{\partial}\overline{\tau}\end{array}\right)$ and rank $\left(\begin{array}{llllll} & & & & \partial\sigma & \partial\sigma\\ & & & & \partial\overline{\sigma} & \partial\overline{\sigma}\end{array}\right)$ equal 2 in $W_{0}$ , we have

that $|\partial_{w}g|^{2}-|\partial_{\overline{w}}g|^{2}\neq 0$ in $W_{0}$ . From (11.1) we obtain
\langle 11.2) $|\partial_{n}\tau|^{2}-|\partial_{n^{T}}|^{2}=(|\partial_{w}g|^{2}-|\partial_{\overline{w}}g|^{2})(|\partial_{n}\sigma|^{2}-|\partial_{n}\sigma|^{2})$ .
Hence we have

$(1-|\tilde{a}|^{2})|\partial_{n}\tau|^{2}=(|\partial_{w}g|^{2}-|\partial_{\overline{w}}g|^{2})(1-|a|^{2})|\partial_{n}\sigma|^{2}$ ,

where $a$ denotes $\alpha\circ\sigma$ . This follows i) and ii).

On the other hand, we have

$\overline{\partial}_{n}\tau=(\alpha\partial_{w}g+\partial_{\overline{w}}g)\partial_{n}\overline{\sigma}$ ,
(11.3)

$\partial_{n^{\overline{T}}}=(\partial_{\overline{w}}\overline{g}+\alpha\partial_{w}\overline{g})\partial_{n}\overline{\sigma}$ .
From (11.3) we obtain iii).

By virtue of Lemma 11.1 it is seen that $(H_{5})_{l}$ is derived from $(H_{5})_{n}$ in
$W\cap W_{l}$ .

Next we shall demonstrate that the assumption $(H_{6})_{l}$ is also derived from
$(H_{6})_{n}$ in $W\cap W_{\iota}$ .

The assumption $(H_{6})_{l}$ is as follows:

$(H_{6})_{l}$
$ X_{(j,)}\iota^{--}b=-b_{jl}b\sim\sim$ , $1\leqq j\leqq n$ ,

where $b_{j}=5\partial_{j}\tau,$ $1\leqq j\leqq n$ .
Since $b_{j}=b\partial_{j}\sigma=5\partial_{J^{T}}$ in $W\cap W_{\iota}$ , we have that

(11.3) $5=b-\partial_{\underline{n}}\sigma$ in $W\cap W_{l}$ .
$\partial_{n}\tau$
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We change the complex conjugate of the left-hand side of $(H_{0})_{l}$ as follows:

(11.4) $\overline{X}_{(j,\iota)}5=b(\partial_{\iota^{\overline{T}}}\partial_{j}5-\partial_{j^{\overline{T}}}\partial_{\iota}5)\overline{\sim}$

$=\overline{b}(\partial_{\iota}\overline{\sigma}\partial_{j}5-\partial_{j}\overline{\sigma}\partial_{\iota 5)}$

$=\overline{b}\overline{Y}_{(j,l)}(b_{\partial^{n}}^{\partial_{n}}-\frac{\sigma}{\tau})$ (by (11.3))

$=\overline{b}\overline{Y}_{(j,l)}(b\partial_{n}g^{\frac{\sigma}{\circ\sigma})}\underline{\partial}_{n}$

$=\overline{b}\partial_{n}g\circ\sigma\partial_{n}\sigma.\overline{Y}_{(j,l)}b$ (by Lemmas 8.1, 8.2)

$=5b\overline{X}_{(j,l)}b$ (by (11.3)).

On the other hand, we have that

$X_{(j,l)}=b_{n}1_{-(b_{\iota}X_{j}-b_{j}X_{l})}$ $1\leqq j\leqq n$ .
Hence, by a simple computation we see that $(H_{l})_{n}$ follows

(11.5) $\overline{X}_{(j,l)}b=-\overline{b}_{jl}b$ ,

where we use $(H_{1})_{n}^{\prime}$ .
From (11.4) and (11.5) we obtain that

$\overline{X}_{(j,l)}5=-\overline{b}_{jl}5$ , $1\leqq j\leqq n$ .
This completes the proof.

Thus, by virtue of the above mentioned and Remark 8.1, we obtain the
following

PROPOSITION 11.1. The assumptions $(H_{j})_{l},$ $j\neq 3,1\leqq j\leqq 7$ are derived from
$(H_{j})_{n},$ $j\neq 3,1\leqq j\leqq 7$ and vice versa, equivalently that $(H_{j})_{\iota},$ $j\neq 3,1\leqq j\leqq 7$ are
compatible with $(H_{j})_{n},$ $j\neq 3,1\leqq j\leqq 7$ .

Since, if $b_{\iota}\neq 0(l\neq n)$ at a point of $G$ , we may change the coordinate
numbers, without restricting the generality of the argument we can suppose
that at every point of $G$

i) $b_{n}\neq 0$ ,
ii) $(H_{j})_{n},$ $j=1,2$ , are satisfied.
With the aid of Lemma 4.1, corresponding to each point $z^{0}$ of $G$ there

exists a neighborhood $W$ of $z^{0}(W\subset G)$ such that the system of equations
(4.2) has a solution $\sigma$ . We shall say that a triple $(n, W, \sigma)$ is assigned to each
point $z^{0}$ of $G$ .

We furthermore assume that $\sigma$ satisfies the conditions $(H_{j})_{n},$ $4\leqq j\leqq 7$ .
In short, we suppose the existence of a solution $\sigma$ of (4.2) with the
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properties $(H_{j})_{n},$ $4\leqq j\leqq 7$ in $W$. Then by Theorem 7.1 we are now in a
position to state the following

THEOREM 11.1. Under the assumptions stated above the system of equations
(1.8) satisfies the similarity principle with respect to the class $\mathcal{A}_{0}(W_{0})$ , where $W_{0}$

is a subneighborhood of $z^{0},$ $W_{0}\subset W$, simply speaking, the local similarity principle
at each point of $G$ .

REMARK 11.1. The Cauchy-Riemann equations $\partial_{j}f=0,1\leqq i\leqq n$ , has a
solution ( $i$ . $e$ . holomorphic function) in any neighborhood of each point of $G$ .
Let $W_{j},$ $j=1,2$ , be neighborhoods such that $W_{1}\cap W_{2}$ is not empty and let
$\varphi_{j},$ $j=1,2$ , be the solutions in $W_{j},$ $j=1,2$ , respectively. We know that, in
general, no relation between $\varphi_{j},$ $j=1,2$ , exists.

It is natural for the following question to arise: Will there exist the
system (1.8) such that it satisfies the assumptions of Theorem 11.1. We shall
answer this problem in the subsequent section.

\S 12. Examples.

In this section we shall give examples which satisfy the conditions of
Theorem 11.1. In case that the coefficients $b_{j}$ are holomorphic, we can readily
find desired examples, because we may assume the condition $(H_{1})_{n}$ alone. On
the contrary, in case that all $b_{j}$ are of class $C^{\infty}$ , we make use of (8.2), (8.14)
and $\sigma$ , which is given in Lemma 9.1. We give examples of the case $n=2$ .

EXAMPLE 12.1. $\Delta_{z}$ and $\Delta_{w}$ denote the following discs: $\Delta_{z}=\{z\in C||z|<1\}$ ,
$\Delta_{w}=\{w\in C||w|<1\}$ . Let $G$ be the polydisc with the origin deleted: $\Delta_{z}\times\Delta_{w}$

$-\{(0,0)\}$ . Let $b_{1}=z,$ $b_{2}=w-(1/2)$ . Then we have a solution $\sigma=z^{2}+(w-1/2)^{2}$

such that $b_{2}\partial_{Z}\sigma-b_{1}\partial_{w}\sigma=0$ in $G$ . Let $N_{0}$ denote the set of all non-positive real
numbers in the z-plane, $P_{1/2}$ the set of all real numbers which are not smaller
than 1/2 in the w-plane, and $I_{0}$ the set of all pure imaginary numbers whose
imaginary parts are non-positive in the z-plane. We define $\tilde{\Delta}_{z}^{1},\tilde{\Delta}_{z}^{g}$ and $\tilde{\Delta}_{w}$ as
follows: $\tilde{\Delta}_{t}^{1}=\Delta_{z}-N_{0},\tilde{\Delta}_{l}^{2}=\Delta_{z}-I_{0}$ and $\tilde{\Delta}_{w}=\Delta_{w}-P_{1/2}$ . Moreover we define $W_{1}$ ,
$W_{2}$ and $W_{3}$ as follows: $W_{1}=\tilde{\Delta}_{t}^{1}\times\Delta_{w},$ $W_{2}=\Delta_{z}\times\tilde{\Delta}_{w}$ and $W_{3}=\tilde{\Delta}_{z}^{2}\times\Delta_{w}$ . Let $\sigma^{*},$ $\sigma^{**}$

and $\sigma^{***}$ denote the restrictions of $\sigma$ to $W_{1},$ $W_{2}$ and $W_{3}$ respectively. We
assign a triple to each point of $G$ as follows: Let the same triple $(1, W_{8}, \nu)$

assign to each point $(z, w)\in G$ such that $z\in N_{0}$ and $w\in P_{1/2}$ , where $\nu=$

$\exp\{(1/2)\sigma^{***}\}$ . From now on we denote the above as follows: $(z, w)\in G_{-}$

$z\in N_{0},$ $w\in P_{1/2}\rightarrow(1, W_{3}, \nu)$ . For other points of $G$ ,

$(z, w)\in G:z\in N_{0},$ $w\not\in P_{1/2}\rightarrow(2, W_{2}, \tau)$ ,

$(z, w)\in G:z\not\in N_{0},$ $w\in P_{1/2}\rightarrow(1, W_{1}, \sigma^{*})$ ,

$(z, w)\in G:z\not\in N_{0},$ $w\not\in P_{1/2}\rightarrow(1, W_{1}, \sigma^{*})$ (or (2, $W_{2},$ $\tau)$),
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where $\tau=(\sigma^{**}+4)^{2}$ . Then we see that

$b_{1}=\frac{1}{2}\partial_{z}\sigma^{*}$ , $b_{2}=\frac{1}{2}\partial_{w}\sigma^{*}$ in $W_{1}$ ,

$ b_{1}=\frac{1}{4(\sigma^{**}+4)}\partial_{z}\tau$ , $b_{2}=\frac{1}{4(\sigma^{**}+4)}\partial_{w^{T}}$ in $W_{2}$ ,

$ b_{1}=\{\exp(\frac{1}{2})\sigma^{***}\}\partial_{z}\nu$ , $ b_{2}=\{\exp(-\frac{1}{2})\sigma^{***}\}\partial_{w}\nu$ in $W_{S}$ .

EXAMPLE 12.2. Let $\Delta_{f}=\{z\in C||z|<r\},$ $\Delta_{w}=\{w\in C||w|<r\}$ , where $r$ is
sufficiently small such that $r<(1/4)$ (see \S 9). Let $G=\Delta_{z}\times\Delta_{w}$ . We define $W_{1}$

and $W_{2}$ as follows:

$W_{1}=\{z\in C||z|<r,$ ${\rm Im} z>-\frac{1}{2}r\}\times\Delta_{w}$ ,

$W_{2}=\{z\in C||z|<r,$ ${\rm Im} z<^{1}-2-r\}\times\Delta_{w}$ .

Let $c$ be a complex number such that $\sup_{a}|\sigma|<|c|$ . We define $b_{j},$ $j=1,2$ , by

$b\partial_{j}\sigma,$ $j=1,2$ , respectively, where $\sigma$ is given by Lemma 9.1 and $b=|\sigma+c|$

$\exp\{i({\rm Re} z+|\sigma|)\}$ (see (8.2), (8.14)). Let $b^{*}$ and $b^{**}$ be the restrictions of $b$ to
$W_{1}$ and $W_{2}$ respectively. Let $\tau=\sigma^{*}+c$ and $\nu=(\sigma^{**}+c)^{2}$ . We assign a triple
to each point of $G$ as follows:

$(z, w)\in G:{\rm Im} z>-\frac{1}{2}r\rightarrow(1, W_{1}, \tau)$ (or (2, $W_{1},$ $\tau)$),

$(z, w)\in G:{\rm Im} z<_{2}^{1}--r\rightarrow(2, W_{2}, \nu)$ (or (1, $W_{2},$ $\nu)$).

We define 5 by $b/\{2(\sigma+c)\}$ . We obtain that

$ b_{1}=b^{*}\partial_{z}\tau$ , $ b_{2}=b^{*}\partial_{w}\tau$ in $W_{1}$ ,

$ b_{1}=5**\partial_{z}\nu$ , $ b_{2}=5**\partial_{w}\nu$ in $W_{2}$ ,

where $5**is$ the restriction of 5 to $W_{2}$ . Thus, putting $\tilde{\alpha}(\xi,\overline{\xi})=\alpha(\xi-c, \xi-\overline{c})$ ,
we see that

$\frac{\partial_{z}\tau}{\partial_{z^{\overline{T}}}}=\frac{\partial}{\partial}\frac{w^{T}}{w^{\overline{T}}}=\tilde{\alpha}\circ\tau$ in $W_{1}$ ,

$\frac{\partial_{t}\nu}{\partial_{z}\overline{\nu}}=\frac{\partial_{w}\nu}{\partial_{w}\overline{\nu}}=\tilde{\beta}\circ\nu$ in $W_{l}$ ,

where $\tilde{\beta}(\xi,\overline{\xi})$ is defined by

$\frac{\xi^{1/2}}{\overline{\xi^{1/2}}}\cdot\alpha(\xi^{1/2}-c,\overline{\xi^{1/2}-c})$

and $\xi^{1/2}$ denotes the branch such that $(c^{2})^{1/2}=c$.
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EXAMPLE 12.3. $\Delta_{z}$ and $\Delta_{w}$ are the same as those in Example 12.1. Let
$\tilde{\Delta}_{\text{\’{e}}}^{0}=\Delta_{z}-\{0\}$ . We define $G$ by $\tilde{\Delta}_{z}^{0}\times\Delta_{w}$ , and define $W_{1}$ and $W_{2}$ as follows:
$W_{1}=(\Delta_{z}-N_{0})\times\Delta_{w},$ $W_{2}=(\Delta_{z}-I_{0})\times\Delta_{w}$ , where $N_{0}$ and $I_{0}$ are as defined in Example
12.1. Let $b_{1}=1/z$ and $b_{2}=w$ . We assign a triple to each point of $G$ as
follows:

$(z, w)\in G:z\in I_{0}\rightarrow(1,$ $W_{1},$ ${\rm Log} z+\frac{1}{2}w^{2})$ ,

$(z, w)\in G:z\in N_{0}\rightarrow(1,$ $W_{2},$ ${\rm Log} z+^{1}-2-\pi i+\frac{1}{2}w^{2})$ ,

$(z, w)\in G:z\not\in I_{0}\cup N_{0}\rightarrow(1,$ $W_{1},$ ${\rm Log} z+\frac{1}{2}w^{2})$

(or $(1,$ $W_{2},$ ${\rm Log} z+^{1}-2-\pi i+\frac{1}{2}w^{2})$),
where ${\rm Log} z$ denotes the principal value.

As seen from Example 12.3, since $\log z$ is not well-defined in $G$ , in general
we cannot expect a global solution of the system (1.8). However, for the case
$in_{-}^{\eta_{A}}which$ all $b_{j}$ are holomorphic in $G$ which is a simply connected domain,

from that $b_{jn}=0$ in $G$ , we have

$\sigma(z)=\sigma(z^{0})+\int_{z^{0}}^{z}\sum_{k=1}^{n}b_{k}(\zeta)d\zeta_{k}$ , $z^{0}\in G$ ,

where the integral takes along a polygonal line contained in $G$ which joins
$z^{0}$ and $z\in G$ .

It is obvious that $\sigma(z)$ satisfies the system of equations $b_{n}\partial_{j}\sigma-b_{j}\partial_{n}\sigma=0$ ,
$1\leqq j\leqq n$ . We immediately obtain a solution of the following form: $(f\circ\sigma)(z,\overline{z})$ ,
where $f$ satisfies the equation

$\partial_{\overline{w}}f=^{-}\hat{b}\hat{f}^{-}$

in the image $\sigma(D),$ $D\subset\subset G$ and $b$ is given by $ b_{j}/\partial_{j}\sigma$ . Remark that $ b=\hat{b}\circ\sigma$,

where $\hat{b}$ is a holomorphic function in $\sigma(G)$ .
Thus the system (1.8) satisfies the similarity principle with respect to the

$\ovalbox{\tt\small REJECT}\prime class\mathcal{A}_{0}(D)$ .
In short, we always have the global result whenever $G$ is a bounded

simply connected domain and all coefficients $b_{j}$ are holomorphic there.
On the contrary, when $G$ is merely a domain, the global solutions of the

system (1.8) are closely related with the analytic continuation of $\sigma(z)$ .
For the case in which the coefficients $b_{j}$ are of class $C^{\infty}(G)$ , we also see

that the existence of a global solution of the system of equations (1.8) is
derived from that of the equations (4.2) which satisfies the conditions $(H_{j})_{n}$ ,

$- 4\leqq j\leqq n$ , in $G$ .
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\S 13. Solutions with singularities.

Until now we have considered regular solutions of the system (1.8). As
it is seen from Theorem 7.1, it is possible to extend the definition of solutions.
of the system (1.8).

Suppose that the coefficients $b_{j}$ satisfy the assumptions in Theorem 7.1.
Let $f$ be defined and of class $C^{1}$ in $W_{0}-C$, where $W_{0}$ is a neighborhood of
the origin such that $W_{0}\subset W$, and where $C$ is as follows:

1) A subset $E$ of the image $\sigma(W_{0})$ , which depends on $f$, are composed of
$\cdot$

isolated points. $E$ may be the empty set.
2) $C=$ {complex analytic manifold $M_{t}|\sigma(z,\overline{z})=t,$ $t\in E$ }, that is, $C_{r}$. is;

composed of pairwise disjoint complex $(n-1)$-dimensional analytic manifolds.
We shall say that $f$ is a solution of the system (1.8), when $f$ satisfies $(1.8)\$ $

at every point of $W_{0}-C$ .
We extend the class $\mathcal{A}(W_{0}),$ $\mathcal{A}_{0}(W_{0})$ considered in section 7 to the $following^{-}$

class $\tilde{\mathcal{A}}(W_{0}),\tilde{\mathcal{A}}_{0}(W_{0})$ respectively:
$\tilde{\mathcal{A}}(W_{0})$ is composed of all holomorphic functions in $W_{0}$ except, perhaps,.

for singular points.
$\tilde{\mathcal{A}}_{0}(W_{0})$ is composed of all composite functions go $\sigma$ such that $g$ is in the

class $\tilde{Q}(K)$ .
Thus we are in a position to state the following
THEOREM 13.1. Under the assumptions of Theorem 7.1 the system of

equations (1.8) satisfies the (local) similarity principle with respect to the class
$\tilde{\mathcal{A}}_{0}(W_{0})$ .
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