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Abstract. The weak Harnack inequality for LP-viscosity solutions is
shown for fully nonlinear, second order uniformly elliptic partial differential
equations with unbounded coefficients and inhomogeneous terms. This result
extends those of Trudinger for strong solutions [21] and Fok for LP-viscosity
solutions [13]. The proof is a modification of that of Caffarelli [5], [6]. We apply
the weak Harnack inequality to obtain the strong maximum principle, boundary
weak Harnack inequality, global C* estimates for solutions of fully nonlinear
equations, strong solvability of extremal equations with unbounded coefficients,
and Aleksandrov-Bakelman-Pucci maximum principle in unbounded domains.

1. Introduction.

In this paper, we establish the weak Harnack inequality for LP-viscosity
supersolutions of fully nonlinear, second order uniformly elliptic partial differ-
ential equations (PDE) with unbounded coefficients and inhomogeneous terms. In
fact this reduces to showing that the weak Harnack inequality holds for
nonnegative LP-viscosity supersolutions of Pucci extremal equations

P (D*u) + p(x)|Du| = f(xr) in Q, (1.1)

where Q C R", and p € LY(Q), f € LP(Q) for some p, g. The Pucci operator 227 (X)
is defined by 2" (X) = max{—tr(4X) | A€ S", \[ < A < AI} for X € S", where
S"™ is the set of m x n symmetric matrices, and 0 < A < A are the ellipticity
constants. The ellipticity constants will be fixed throughout this paper. We also
have the Pucci operator 2 (X) := — 2" (—X) for X € S".

Trudinger showed in [21] that the weak Harnack inequality holds for strong
solutions of linear PDE when the gradient coefficient is in L?"(£2). Afterwards,
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Fok in [13] verified this fact for viscosity supersolutions of (1.1) following the
argument in Gilbarg-Trudinger’s book [14]. In [13] and [14], in order to show the
weak Harnack inequality one estimates |u||Du| < 1/2(u2/c+ c|Dul?) for an
appropriate ¢ and uses the exponential /logarithmic transformation to eliminate
the quadratic term ¢/Du|*/2. This is the place where one needs to suppose p €
L*(9Q) to apply the Aleksandrov-Bakelman-Pucci (ABP) maximum principle for
the new inhomogeneous term ?/(2¢). Thus, as long as one follows this argument,
it seems hard to avoid the assumption p € L**(Q).

We will generalize this result in the current paper. More precisely, when
we L1(Q) and fe LP(Q), we will obtain the weak Harnack inequality for
LP-viscosity supersolutions of (1.1) if ¢>n and ¢>p>p,, where py=
po(n, \,A) € [n/2,n) is the constant giving the range where the maximum
principle holds (see [12], [11], [10]).

Since the ABP maximum principle holds for L"-strong solutions when
w, f € L"(Q), we could hope that the weak Harnack inequality also holds for
L"-viscosity supersolutions when p = ¢ = n. However, unfortunately, we do not
know if the ABP maximum principle is true in this case. In fact, the difficulty
comes from the lack of existence results for L"-strong solutions of extremal PDE
in [18] when p = ¢ = n.

A direct consequence of the weak Harnack inequality is the strong maximum
principle for LP-viscosity solutions. We refer to [2], [15] for results on the strong
maximum principle for viscosity solutions of possibly degenerate PDE without
measurable terms. We also establish the boundary weak Harnack inequality
which enables us to extend some qualitative properties of LP-viscosity solutions.
One consequence of it is the global Holder continuity estimates for LP-viscosity
solutions. Similar and in fact more broad result for equations with quadratically
growing gradient terms has been recently obtained by Sirakov [20] without using
the weak Harnack inequality. When restricted to solutions of (1.1), Sirakov’s
result requires ¢ > n,p > n and in this case our result is a slight generalization of
it as we allow p > py. Another consequence of the boundary weak Harnack
inequality is the ABP type maximum principle in unbounded domains. The study
of ABP maximum principle in unbounded domains was initiated by Cabré in [3].
For more results on this we refer to [4], [22] in the context of strong solutions, and
[8] for viscosity solutions.

This paper is organized as follows. In section 2 we recall the definitions of
LP-viscosity solutions and LP-strong solutions, and then list several preliminary
results from our previous paper [18]. In section 3 we show that LP-strong solutions
are LP-viscosity solutions for general PDE with unbounded ingredients. Therefore
all the results of this paper also apply to strong solutions. Section 4 is devoted to
the weak Harnack inequality for LP-viscosity supersolutions of (1.1) when g > n,
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q =D > po.

In section 5, we derive the strong maximum principle as a simple consequence
of the weak Harnack inequality. We obtain the boundary weak Harnack
inequality, and then the global Holder continuity estimate in section 6. In section
7, as an application of the Holder estimates of section 6, we show existence of
strong solutions of extremal equations (1.1) when the support of u is not necessary
compact. Finally in section 8, we slightly improve a sufficient condition of [8] for
an ABP type maximum principle in unbounded domains.

In the Appendix, following [7], we prove two important results in the theory
of LP-viscosity solutions. The first is the fact that if an LP-viscosity subsolution
(resp., supersolution) belongs to W.”(Q), then it is an LP-strong subsolution
(resp., supersolution). The second is a stability result for LP-viscosity solutions of
general PDE, which is needed to prove the strong solvability of extremal
equations in section 7.

2. Preliminaries.

Throughout the paper, unless specified otherwise, Q C R" will always be a
domain, i.e. an open and connected set. We remind that {2 is not necessary
bounded unless stated. In particular, we notice that 2 can be unbounded in the
strong maximum principle, Proposition 4.1 and Theorem 5.1.

We first recall the definition of LP-viscosity solutions of general fully
nonlinear PDE

F(x,u, Du, D*u) = f(z) in Q, (2.1)

where FF: @ Xx RXx R" x S" — R and f:Q — R are functions which are at least

measurable. We will be using the standard notation of [14]. For r > 1 we denote

by L’ (€2) the set of nonnegative functions in L"(€2). We will often write ||¢||, for

¢l £+ when the integration is taken over the whole domain of a function (.
Throughout this paper we always assume that

>n
p 9"

DEFINITION 2.1 ([7]). wu € C(Q) is an LP-viscosity subsolution (resp., super-
solution) of (2.1) if

esslim inf(F(y,u(y), Do(y), D*¢(y)) — f(y)) <0

Yo
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<r68p~, esslimsup(F(y, u(y), Do(y), D*¢(y)) — f(y)) > 0)

y—x

provided that for ¢ € WP (Q), u — ¢ attains its local maximum (resp., minimum)
at x € Q.

We call u € C(2) an LP-viscosity solution of (2.1) if it is both an LP-viscosity
sub- and supersolution of (2.1).

We remind that if u is an LP-viscosity subsolution (resp., supersolution) of
(2.1), then it is also an LP-viscosity subsolution (resp., supersolution) of (2.1) if
p>p.

We recall the definitions of LP-strong sub- and supersolutions.

DEFINITION 2.2. A function w is an LP-strong subsolution (resp., super-
solution) of (2.1) if u € W2P(Q), and

F(x,u(z), Du(z), D*u(z)) < f(z) a.e.in Q
(resp., F(z,u(z), Du(z), D*u(z)) > f(z) a.e.in Q).

We call u an LP-strong solution of (2.1) if it is both an LP-strong sub- and
supersolution of (2.1).

Contrary to LP-viscosity solutions, if u is an LP-strong subsolution (resp.,
supersolution) of (2.1), then it is an L?-strong subsolution (resp., supersolution) of
(2.1) provided p > p.

The upper-contact set I'[u; Q] of u over  is defined as

Tw; Q] = {x € Q| Ip € R" such that u(y) < u(x) + (p,y — x) for all y € Q}.

We will write B,.(x) for the open ball centered at x € R" with radius r» > 0. For
simplicity, B, will mean B,(0).
In what follows we will often consider separately the case

g>n and q>p>n. (2.2)

Notice that (2.2) is equivalent to ¢ > p > n or ¢ > p = n.

We begin recalling a result on existence of LP-strong sub- and supersolutions
of extremal PDE. This is just a preliminary result which will be improved and
generalized in Section 7. In particular we will then remove the condition supp
wE .
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THEOREM 2.3 (cf. Proposition 2.6 and Remark 2.10 in [18]). Let Q C By
satisfy the uniform exterior cone condition. Let f € L% (Q) and p € LL (), where

g>n and q>p>py, (2.3)

and suppose that supp p € Q. Then there exists an LP-strong supersolution (resp.,
subsolution) u € C(Q) NWP(Q) of

P~ (D*u) — p(x)|Du| = f(x) in Q (2.4)
(resp., 2" (D*u) + p(z)|Du| = —f(z) in Q) (2.5)

such that u =10 on Q. Forp >n,
0 < u < Crexp(Call ) fll pnrpuseyy  in €2 (2.6)

(resp., 0> u> —Crexp(Cllll)IS ooy 7 Q) (2.7)

where Cy, = Cx(n, A\, A) for k=1,2 are from Theorem 2.4, and for n > p > py,

N-1

0<u< C:s{GXP(CQIIALIWL)|MlléV +> ||M||§}||f|p in Q2
k=0

k=0

N-1
(Tesp-, 0wz Cs{exp(czIMIIZ)HMII(];V + |M||§}||f||p in Q>,

where C3 >0 and N > 1 are from Theorem 2.5. Moreover for every Q' € Q we
have

lullwry < Call £l
where Cy = Cy(n, p, A, A, || p]] ., dist (€', 09)) > 0.

If p, f € L7(Q), then for every py < p < n there exists an LP-strong super-
solution (resp., subsolution) u € C(Q) NW2P(Q) of (2.4) (resp., (2.5)) satisfying

loc

(2.6) (resp., (2.7)) such that for every Q' € Q
HU’HI/VZ-I’(Q’) < C4||f||n’

for some Cy = Cy(n,p, A\, A, p, Q, dist (', 00)) > 0.
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PROOF. Although we gave a complete proof in [18], we did not mention
there that we may take the L"-norm on the upper contact set in (2.6) and (2.7).
We will only show (2.6).

Following the proof of Proposition 2.6 in [18], to find an LP-strong
supersolution of (2.4), we approximate p and f by smooth functions py and fj
such that supp pup C supp p,

e = plly + 1f = fell, = 0 as k — oo,

we find classical solutions u; € C?(Q) N C(Q) of

P~ (D*wy) — p(x)| Dug| = fi(x) — in €,
up =0 on 0},

and obtain local W?? estimates for the wuj;. We then show that there is u €

cQ)n Wﬁ(p(Q) such that, possibly along a subsequence,
llur —ull, — 0 as k— oo.

However the ABP maximum principle applied to u; yields

0 < wy, < Crexp(Collpelln) || fr

(Pl 102,

and according to Appendix A in [7], we may then replace ||fillp:(rp.0) bY
[ 1l (rpusqy) 0 the limit as & — oo.

The proof of the theorem in the case n > p > py follows the lines of the proof
of Proposition 2.6 in [18] when we now use the estimates of Theorem 2.5 (see
Remark 2.10 in [18]). We pass to the limit with the w; using the local WP
estimates for the u;, (which are shown with only minor and rather straightforward
technical differences) and the strong convergence, possibly along a subsequence,
of the Duy, in Lﬁ;c for every p' < p* =np/(n — p).

For p, f € L7 (2) the proof uses similar modifications. The dependence of C;
on p and € enters through the fact that for every e > 0 there exists r¢ (depending
on p and ) such that if r <rg and V' C Q is a ball of radius r then |[u]| . <€
and this property can be assumed to be preserved by mollification. The smallness
of ||u|], is enough to obtain the uniform W?2? estimates for the wu. O

We next state the following version of the ABP maximum principle for
LP-viscosity solutions. It is a slight variation of Proposition 2.8 of [18].
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THEOREM 2.4 (cf. Proposition 2.8 of [18]). Let Q C By, and let (2.2) hold.

There exists Cy, = C(n, A\, A) > 0 (k= 1,2) such that if f € L (), p € LL(Q), and
u € C(Q) is an LP-viscosity subsolution (resp., supersolution) of

P~ (D*u) — p(x)|Du| = f(x) in Q= {z € Q| u(z) > s;go ut}

(resp., PHD*u) + p(x)|Du| = —f(x) in Qy:={xcQ|ux) < —supu}),
o0

then

@) 11 2oy

L"(Qo)> -

The same conclusion also holds if i, f € L (2) and u is an LP-viscosity subsolution
(resp., supersolution) of the above equations for some py < p < n.

supu < supu’ + Cy exp(Co||lp
Q o9

Z"(QU)) Ilf

(resp,, sup(—u) <supu~ + C; exp(Chl|p
Q o0

We could also give a corresponding result with Qg when n > p > py (see
Theorem 2.9 in [18]). Moreover we could state the above estimates using the L™
norms of f over the upper contact set of u. We do not do it here since we will not
need such results. We leave these easy versions and extensions to the interested
readers. The proof for the case p, f € L} (Q) is the same as the proof of Proposition
2.8 of [18] if we use Theorem 2.3.

Next we present the ABP maximum principle for LP-strong solutions. It was
proved in [13] however the constant py there might have been different from ours.
We sketch a different proof. We refer the reader to [14] or Proposition 2.3 in [18]
for the case p=q¢=n.

THEOREM 2.5. Let Q C By, and let py < p <n < q. There exist an integer
N = N(n,p,q) and C3 = Cs5(n,\,A,p,q) >0 such that if f € L (Q), pe LL(Q),
and u € C(Q) is an LP-strong subsolution (respectively, supersolution) of
P~ (D*u) — p(x)|Du| = f(x) inQ
(resp., 2% (D*u) + p(z)|Du| = —f(z) in Q),

then

N-1
SUpu < supu + Cg{eXp(@IMIIZ)HMléV +> ||M||]§}||f||p (2.10)
¢ k=0
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N-1
i > . n N k ]
<resp infu > infu cg{exp<c2||u|n>||u||q D3 ||u|q}|f||p>, 2.11)

where Csy is from Theorem 2.4.

PrOOF. We will indicate how to show (2.10). First, we can choose
u; € C2() such that u; — u in C(Q) N W2P(Q). Then

P~ (D*w)) - ()| Duy| — P~ (D*u) — ()| Dl

in L} (). Therefore by considering slightly smaller domains we can assume
without loss of generality that f € L (£) as we can then recover the result in the
limit. After this initial adjustment the proof then repeats the proof of Theorem 2.9
n [18]. The estimates on the size of the iteration functions v, are controlled by
[ f1l o) however the functions vy are now in W24, Therefore in the final step we
can use the classical ABP maximum principle in its nonlinear version, see [14] or

Proposition 2.3 in [18]. O

Finally we state a slightly generalized version of the ABP maximum principle
from [18] for equations with superlinear gradient terms.

THEOREM 2.6. Let Q C By, m>1, (2.2) hold. For fe€ L (Q), p,um €
L), consider an LP-viscosity subsolution u € C(Q) of

P~ (D*u) — py ()| Du| — p, ()| Du|™ = f(z) in Q. (2.12)
Then:

(i) Let gq>p>mn. There exist §=06(n,\,A,m,p, ||/~L1||q) >0 and Cs=
Cs(n, A\, Aym,p, ||ull,) > 0 such that if

m—1
1A e, <6,
then

supu < sup + G (|1 f1l, + 1715 el )
Q N

(ii) Let py < p < n < q satisfy
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-1
o mam =1 (2.13)
mqg—mn

Denote ap=0 and ap=14+m+---+mF! for k> 1. There exist an integer
N = N(na m,p, q) Z 17 0= 6(”7 /\,A,m,p, q, ||,u1||q) >0 and CG = C@(’I’L, )\,A,’ﬁ’l,
P, ¢, lpll,) > 0 such that if

mY (m—1 m"
LA Dl < 6, (2.14)
then
N+1 .
supu < supu+Cs > || FI (2.15)
Q a0 e

REMARK 2.7.  The constants C5 and Cg above are bounded if |||, varies in
a bounded set in R. See [19] for the precise dependence.

The proof of this theorem is similar to those of Theorems 2.11 and 2.12 in
[18], however in the iterative scheme there, we need to substitute solutions of
extremal equations

P (D*u;) = — fi()

(see the proofs of Theorems 2.11 and 2.12 in [18]) by solutions v; of extremal
inequalities

P (D*v) + pa (z)|Dvi| < —fi(x)

provided by Theorem 2.3. We refer to [19] for the details, particularly, a careful
dependence on [[u]], and [|un,||, in the constants Cy (k= 5,6) and 6.

3. Strong solutions are viscosity.

In [18] we presented various versions of the ABP maximum principle for
LP-viscosity solutions of extremal inequalities with possibly superlinear gradient
terms and unbounded coefficients. However we did not mention there that
LP-strong solutions of such inequalities are LP-viscosity solutions. We will show it
here for general equations (2.1).

The function F': Q x R x R" x S — R will satisfy the following assump-
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tions. First of all, without loss of generality we can always assume that
F(2,0,0,0)=0 in Q. (3.1)

This can be achieved by taking F(z,r,p, X) := F(z,r,p,X) — F(2,0,0,0) and
f(z) = f(z) — F(z,0,0,0). Next we require that F' is uniformly elliptic, i.e.

P (X -Y)< F(z,r,p,X) — F(z,r,p,Y) < (X -Y) (3.2)

for (z,7,p, X, Y) € Q2 x Rx R" x 8" x S". As regards the continuity in r,p, we
assume that there are m > 1, u € L% (Q), ¢ € L% (R2), and a nondecreasing function
w € C([0,4+00)) satisfying w(0) = 0 such that

[P (2, r,p, X) = Flz, 5,0, X)| < pl2)(|p" ™ +la" ™ +D)lp— gl +c(@)w(r—s|)  (3.3)

for (z,7,p,¢,X) €Qx Rx R"x R"x S". Note that (3.1) and (3.3) yield
|F(z,0,p,0) < p(z)(Ip]™ + Ip|) for (z,p) € @ x R".

THEOREM 3.1.  Let (3.1)—(3.3) hold. Suppose also that f € LP(?) and that
one of the following conditions is satisfied:

(1) g>n, ¢g=p=>n,
(2) g>n>p>py, p((m—1)g+n(g—n)) > (m—1)gn,
(3) ¢g=n=p, m=1.

If uw is an LP-strong subsolution (resp., supersolution) of (2.1), then it is an
LP-viscosity subsolution (resp., supersolution) of (2.1).

REMARK 3.2. We remark that when ¢ >n > p > pg and m = 1, the second
condition in (2) automatically holds. Note that it is weaker than (2.13).

PROOF. We only prove the claim for subsolutions. Suppose, contrary to the
claim, that there are 6,79 >0 and z €Q, ¢ € W?(B,,(z)) such that 0=
(u—¢)(x) = (u—¢)(y) for y € By, (x) € 2 and

F(y,u(y), Do(y), D*¢(y)) — f(y) > 20 a.e. in B, ().

Since wu is an LP-strong subsolution, by (3.1)-(3.3), setting v = u — ¢, we have

P~ (D*0) = u(y)(|Duly)|" " + |Do(y)[" " +1)|Dov| < —20 ae. in By, (x).
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Setting v-(y) = v(y) — e|y — z|* for £ > 0, we notice that v. achieves the strict
maximum over B, (z) at z. It is also easy to verify that for 0 < e < 6/(2nA),

P~ (D*.) —y(y)|Dv.| < 2rey(y) — 0 a.e. in B,(x), for all r < rg,

where v(y) = u(y)(|Du(y)|™ " + |Dp(y)|" " + 1) in B,,(z). Using Sobolev embed-
dings we have v € L (B,,(z)) for some ¢ > p/ > n in cases (1)-(2), and v = 3u €
L™"(B,,(z)) in case (3). In cases (1) and (3) we can apply directly the maximum
principle after scaling to get

0= sup v. < —er® + Gy exp(Collr|Mer?lly
BT("’“)

(B < —€r” + Cer? Il s, ()

for some constant C' > 0 independent of r. Therefore, taking small r > 0, we
obtain a contradiction.

In case (2) we need to justify that we can apply the maximum principle using
the L™ norm of the right hand side even though we only have p < n. This is indeed
a general fact which holds for both LP-strong and viscosity solutions.

Define 7,.(y) = v(y) for y € B,(x) and v,(y) = 0 for y € B,,(z) \ Br(x). In view
of Theorem 2.3, for 0 <r <ry/2, we can find LP-strong subsolutions &, €
C(By(z)) N WP (By,(z)) of

loc

YD) + 7 ()| D& = —2rev,(y)  ae. in By(z), & =0 on 0By,(z),

such that 0 < —¢&, < Cyexp(Co|ly||m)er? ||y
satisfies

1By 1 Ba(z). Then w. =v. +¢;

P (D*w.) — y(y)|Dw.| <0 a.e. in B,(z).

Therefore, by Theorem 2.5,

fC’sr2||’y||L,,(B7<m)) < sup w, < sup w, < —er’.

B, (z) OB, (x)

Again we obtain a contradiction by taking r sufficiently small. O

REMARK 3.3. Thanks to Theorem 3.1, all the results for LP-viscosity
subsolutions (resp., supersolutions) in this paper hold true for LP-strong
subsolutions (resp., supersolutions).



734 S. KOIKE and A. SWIE)CH

4. Weak Harnack inequality.

In this section, we establish the weak Harnack inequality for nonnegative
LP-viscosity supersolutions of extremal PDE with L9-coefficients.

We define Q; := [[;_,[—1/2,1/2], and then Q, = rQ1, and Q,(z) = = + Q, for
r>0and z € R".

We first recall the strong maximum principle for extremal equations without
unbounded coefficients even though we will only need it for classical solutions in
the proof of Lemma 4.2. Much more general strong maximum principle for
viscosity solutions of fully nonlinear degenerate equations was shown in [2].
However we present here a simple proof for completeness. Results on strong
maximum principle for classical solutions of fully nonlinear PDE can be found in
[14].

PROPOSITION 4.1.  Let u € C(2) be an LP-viscosity subsolution (resp.,
supersolution) of

P~ (D*u) =0 (resp., 27 (D*u) =0) inQ

such that supgu < oo (resp., infou > —o00). If u attains its mazimum (resp.,
minimum) over Q at x € Q, then u is constant in €.

PROOF. We only show the assertion for LP-viscosity subsolutions. Suppose
that wu(z) =supgu =: K for some z € Q. Then, for small ¢> 0, by setting
v:= K — u, the weak Harnack inequality (see for instance [6]) yields

/ v'dr | <C inf v=0 for some C,r >0,
Qi) @i()

which implies the claim by a standard argument. (I

We now present a modification of Lemma 4.1 in [6]. This lemma gives an
explicit construction of a barrier function and we could use it here as well. Our
lemma uses classical solvability of extremal equations, together with the strong
maximum principle.

Let U,V be fixed domains with smooth boundaries such that

Q%CUCQ%, Q%CVCQ4.
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LEMMA 4.2.  There ezist ¢ € C*(V) and ¢ € C(V) such that

G 6<0 iV,
() 2 (D9)=¢ iV,
(i) 6<-2 inQ,

(iv) ¢=0 in OV,

(v) €=0 in V\U.

PROOF. Thanks to a result in Section 9 of [6], we can find a classical
solution ¢y € C*(V \ U) of

P (D?¢y) =0 inV\U,
¢ =0 on IV,
¢0 =-1 on OU.

Since this classical solution is an LP-viscosity solution of the above, in view of

Proposition 4.1, setting o = —maxgg, ¢, we see that o € (0,1), and ¢y < —o in
Qs \ U. Hence, taking ¢ = 2¢y /0, and denoting by the same ¢ a smooth extension
of ¢ to V such that ¢ < —2 in U, we obtain the required conclusion. (I

We can now show a preliminary version of the weak Harnack inequality for
LP-viscosity supersolutions.

LEMMA 4.3.  Suppose that (2.2) holds. There exist ey = go(n, A\, A) € (0,1]
satisfying the following property: for p € L%(V) satisfying

16l vy < €0, (4.1)

there are r = r(n,\,A) > 0 and C7; = C7(n,\,A) > 0 such that if f € L% (V), and
u € C(V) is a nonnegative LP-viscosity supersolution of

P (D*u) + p(x)|Du| = —f(x) inV, (4.2)

then

1

</ w“dx) rg C7 <igfu+ | f

b ) (4.3
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PROOF.
Step 1: By taking u(z)(infq, u + 6 4+ t|| f],,) ", where ¢,8 > 0, it is enough to
find r > 0 and C; > 0 (independent of 6) such that

( / | ufdx) <o (4.4)

Thus, we may suppose that infg v <1 and || f||,, < 1/t. However, to use the cube
decomposition argument, we will only need a weaker requirement infg, v < 1.

Let ¢ be the function from Lemma 4.2. Setting w = u + ¢, we easily verify
that w is an LP-viscosity supersolution of

P (D*w) + p(x)| Dw| = — f(z) — &(z) — p(@)|D(z)| =: g(z) n V.

Denote Qy = {z € V | w(z) < 0}. We notice that €y # 0. Theorem 2.4 and (iii) of
Lemma 4.2 imply

1< Sgp(—w) < Sgp(—w) = Sgp(—w) < Crexp(Co|pllzn a9l e ay)-
3 0

If g < 1, then we have

1< C1602||g

L ()
which, recalling (v) of Lemma 4.2, yields

e O

Ch

< 1 nwy + 1€ i@ | + 1Dl gy 12

1
t

L (V)

<

H[1El L (0) |2 + 1D e iy 2l gy

where Q; = {z € Q; | w(z) < 0}. Hence, taking ¢ sufficiently big, if gy is small
enough we can find 6 = 0(n, A\, A, &) € (0,1) such that

0 < .

We remind that 6 is independent of 8. Putting M := supy(—¢) > 1, we have thus
obtained
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0<{ze|ulx)< M} (4.5)

Step 2: Following [5] (see also [6] and [16]) we will show that
{z € Q1 | u(z) > M"}| < (1—6)" for integers k > 1. (4.6)

Inequality (4.6) is true for k=1 by (4.5). Suppose it holds for k— 1 for some
k > 2. We will prove that it holds for k.

Setting A ={z € Q; | u(x) > M*} and B={x € Q; | u(x) > M* '}, we ob-
serve that A C B and |A| <1 — 6. Therefore, in view of the Calderon-Zygmund
decomposition lemma (Lemma 4.2 in [6]), letting Q = Q1/2(2) be a dyadic cube of
Q := Q121 (2) for some z, 2 € @ such that

1-46
oin

IANQ| > (4.7)

we only need to show that Q C B.

Suppose, contrary to this, that there is # € Q \ B, i.e. u(#) < M*!. Setting
v(z) = u(z+277z)/M*1 for x €V, we see that info,v <1, and v is an LP-
viscosity supersolution of

P~ (D*0) + j(z)|Dv| = —f(z) inV,

where fi(z) = u(z+2772)/2 and f(z) = f(z+277z)/(2¥M*1). Notice that
|4 vy < €o- Therefore by Step 1 applied to v instead of u we obtain

o Qi o)< M} >0

which yields |@Q \ A| > 6/2/". This contradicts (4.7).
It is now standard to conclude that (4.6) implies that there exists r > 0 such
that

1
(/ urdm>7< Cr

for some C7 > 0. O

REMARK 4.4. 1If uw were an L"-strong supersolution, then we could obtain
Lemma 4.3 under the assumption p = ¢ = n. This is due to the fact that the ABP
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maximum principle for L"-strong solutions holds in this case. We do not know if
such a result is true for L"-viscosity solutions when ¢ = n.

THEOREM 4.5.  Let (2.2) hold, and R > 1. Let p € LL(Qr), f € L (Qr) and
let r=r(n,\,A) >0 be from Lemma 4.3. There exists Cs= Cs(n,\ A,q,
l1ll,» B) > 0 such that w € C(Qr) is a nonnegative LP-viscosity supersolution of

P (D*u) + pl(@)|Dul = — f(z) in Qr, (4.8)

then

(/ U’da:) < Cs <16121fu + ”f”L”(QR))' (4.9)

PROOF. The theorem will follow from Lemma 4.3 and a covering argument
of [3] once we know weak Harnack inequality in small cubes. To this end let
Qu(zr) C Qr and without loss of generality we can assume that = =0, i.e.
Qu(x) = Qu. Let g9 be from Lemma 4.3. We verify that v(z) = u(tz) is an
LP-viscosity supersolution of

P (D*0) + p(x)|Dv| = —fi(x) inV,

where p(z) = tu(tz) and fi(z) = t* f(txr). We notice that [ fell vy = tLf Il ey and

1-2

bl gy < (40 4 lpell g,y < €0

if ¢ is sufficiently small. Hence, it follows from Lemma 4.3 that for t <t =

t(n, g, \ A, |l R)
1 1

The result now follows from a covering argument of [3]. O

REMARK 4.6. A rather straightforward analysis of the proofs of Lemma 4.3
and Theorem 4.5, together with the use of Theorem 2.3, shows that (4.9) also
holds for nonnegative LP-viscosity supersolutions of (4.8) if u, f € L'l (Qr) and
po < p < n. However then the constant Cs = Cs(n, A\, A, u, R) and it depends on u
and R in a way similar to the way Cy depended on p and €2 in Theorem 2.3.
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In what follows, we will not make any distinction between a function and its
zero-extension outside its domain.

THEOREM 4.7. Let
g>n>p>p (4.10)
and r =r(n,\,A) >0 be from Theorem 4.5. Let 1 < R<2, ue€ LY (Qgr) and

f € LE(Qr). There exists Cy = Cy(n, X\, A, p, g, ||pll,,, R) > 0 such that if u € C(Qr)
is a nonnegative LP-viscosity supersolution of (4.8) in Qr, then

1
(/ u"dw)TS Cy

where N and Cy are the constants from Theorem 2.3.

N-1
infu + {GXP(CQHMHZ)HNH,V +y IMIIZ} IIfIIP] ;o (41

k=0

PROOF. In view of Theorem 2.3, we can find an LP-strong supersolution
v € C(Qg) NW2P(Qr) of

(D) - p(@)|Dv| = f(&) in Qpr

such that v =0 on dQg+1, and

N-1
0<v<Cs{exp(CQIIMIIZ)IIMIIéV +Z||u||’;}||f||,, Q. (412)

k=0
Since w := u 4 v is a nonnegative LP-viscosity supersolution of
P (D*w) + p(x)|Dw| =0 in Q,

Theorem 4.5 yields

1 1
(/ urdx>’§ (/ wrdw)lg Csg igfw.

This, together with (4.12), gives (4.11) for some constant Cy. O

We now state scaled versions of Theorems 4.5 and 4.7 whose obvious proof is
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obtained by applying Theorems 4.3 and 4.7 to the function v(z) = u(tx).

COROLLARY 4.8. Let 1 < R<2. There exist r =r(n,\,A) >0, Cs = Cs(n,
A A g, tl_%Hqu,R) >0 and Cy= Cy(n,\ A,p,q, t1_§||u||q,R) >0 such that if
t€(0,1], p € LLU(Qtr), f € LY (Qir), andu € C(Qir) is a nonnegative LP-viscosity
supersolution of

P (D*u) + p(x)|Du| = —f(z) in Qur,

then for ¢ >n and g >p > n,

1
1 . r .
(ﬁ/ wd:p) <C8<1Cr21fu+t||f||L”<Qm)),

and for g >mn > p > po,

1
1 o\ . n N
(5 [ i) < aligtus {eClllioulnli,

N-1
k P
+ 3 Wl 1|

k=0

5. Strong maximum principle.

As an application of the weak Harnack inequality, we can now derive the
strong maximum principle for LP-viscosity solutions of PDE with the first
derivative term, which extends Proposition 4.1.

THEOREM 5.1.  Let (2.3) hold. Let p € LL(Q), and u € C(Q) be an LP-vis-
cosity subsolution (resp., supersolution) of

P~ (D*u) — p(x)|Du| =0 (resp., P (D*u) + p(x)|Du| =0) in Q (5.1)

such that supgu < oo (resp., infou > —o0). If u attains its mazimum (resp.,
minimum) over Q at x € Q, then u is constant in 0.

PROOF. The proof is the same as the proof of Proposition 4.1. We only need
to replace the standard weak Harnack inequality ([6]) by either Theorem 4.5 or
Theorem 4.7. O
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REMARK 5.2. If ¢ = p =n, then the strong maximum principle also holds
for L™-strong sub- and supersolutions of (5.1) since the ABP maximum principle
holds in this case, and it implies the weak Harnack inequality (see Remark 4.4).

6. Boundary weak Harnack inequality and the global Ho&lder
estimate.

We will first establish the boundary weak Harnack inequality. We recall
again that, unless specified otherwise, all functions are extended by zero outside of
their domains.

THEOREM 6.1.  Suppose that (2.3) holds, and Q@ C R" is such that
QNQE; #0.

Let R>1 and letr, Cy, (k=8,9) and N be the constants from Theorems 4.5 and
4.7. Let pe LL(Q) and f € LA (Q). Let u e C() be a nonnegative LP-viscosity
supersolution of

P (D*u) + p(x)|Du| = —f(z) in Q. (6.1)

Then for q >mn and g > p > n,

(/Q (u;}ydm) "g Cs (i(rglfu; + ||f||L”(QR))7 (6.2)

and for g >n >p > py,

([ toras)” < culint u + {explCallala )l o
' (6.3)

N-1
k.
T Z||u||Lq<QR)}||f|mR)} ,

k=0

where for m = inf{u(z) | r € NN Qr},

B { min{u(x),m} in QN Qr,
qu(I = .
m in Qr\ .

(The functions p and f are equal to 0 outside of Q.)
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PROOF. For u € C(Q), we define u, € C(Qp) as above. Since constants are
LP-viscosity supersolutions of (6.1) in Qg, it is easy to see that w, is an
LP-viscosity supersolution of (6.1) in Qg. Therefore, applying Theorem 4.5 or 4.7,
we conclude the proof. (I

We will now present the global Holder estimate for LP-viscosity solutions of
(2.1). As we have mentioned in the introduction a similar result has been obtained
before by Sirakov [20] by a different method. His result is a little more general as
it applies to equations with quadratically growing gradient terms, however the
difficulty is in proving it for solutions of extremal equations of type (1.1).
Comparing it to our Theorem 6.2 Sirakov’s result would require ¢ > n,p > n. Our
improvement is in allowing n > p > py and in obtaining a Hélder exponent which
does not depend on |||,

We need an additional condition on 2. We assume that there exists © >
0,t9 > 0, such that

|Qi(z) \ Q] > 6t" for z € 9Q and 0 < t < t. (6.4)

THEOREM 6.2. Let Q be a bounded domain which satisfies (6.4). Let (2.3),
(3.1), (3.2) and (3.3) with m = 1 hold. Let g € C*(9Q) with 3 € (0,1), and L > 0.
There ezist a=a(n,p,q,\,A,0©,0) € (0,1) and Cio= Cio(n,p,q,\, A, O, ],
£l w(L)llell,s [lglleson). diam (€2), L, to) > 0 such that if u € C(S2) is an LP-vis-
cosity solution of (2.1) such that

lu| <L inQ, and uw=g ondQ,
then
fu(2) - u(y)| < Crole — 4l for a,y € . (6.5)
PROOF. The proof follows rather standard arguments, however we present
it here for completeness and to keep track of the dependence of various constants.
We first notice that +u are LP-viscosity supersolutions of
(D (£u)) + u(@)|Du] = ~|f(2)] - c(w)w(L).
This is the only information needed to show the weak Harnack and boundary

weak Harnack inequalities. Thus, we may assume that c(x)w(L) = 0 regarding it
as the inhomogeneous term.
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We will only prove the assertion when ¢ > n > p > py, since the other case is
proved by the same argument.

We first show an estimate at a boundary point. By translation, we may
suppose that 0 € 902 and without loss of generality we can assume that ¢, = 2. We
note that for any constant K € R, K + u are LP-viscosity supersolutions of

P*(D*u) + u(a)|Dul = —|f(2)] in €.

Thus, by setting M; = supg,nqu and m; = infg,nou for 0 <t <2, My —u and
u — my are nonnegative LP-viscosity supersolutions of the above PDE in Qs N 2.

For a function w: Qo N Q :— R, we define m[w] := inf{w(x) | z € Q2 N N},
and

W (z) = min{w(z),mw|} for x € Q2N Q,
" m{w] for x € Q2 \ Q.

Setting also OM; = supygng, © and dmy; = infyong, u, we observe that

iélf(MQ —u),, <My —M; and i(rglf(u —mg), < my —ma.
1

m —
1

Hence, by (6.3) applied to the functions (Ms — u),, and (v — ms), , using (6.4) we

m?

have
O(My — OMy) < oMy = My + Al f],)
and

O(0ms —ms) < Cy(my —mz + Al £],),

where Alu] = {exp(CQH/iHZ)HuHéV + Ziv:_ol HM”;} Therefore, we find 6 = 6(n, A, A,
p,q,0, [|lull,) € (0,1) and C' > 0 such that

My —my < Q(MQ — mg) + C(@Mg — 8m2) + CA[/.L]Hf”p (66)

Here and below C stands for various positive constants independent of w.
However we will only use a scaled version of (6.6). We then have

My —my < 0(My — may) + Ct° + CA[u]|| fill,
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for 0 = 0(n, X\, A, p,q, 0, [|ul,) € (0,1) where pu(z) = tu(tz) and fi(z) = t*f(tz) for
r€@ and 0<t<1. We have [pupq, =1 7§||N||L4(Q2l) <1 for t<i=

_ 9 90 . n
tn, g, [lplly), and [|fill oy =t 21 fllegn) <t ?Ifll,- Therefore if we take t <

we obtain that 6 = 6(n, \, A, p,q,0) € (0,1), i.e. it is independent of ||u[|,. We can
now follow a standard argument (see for instance [14]) to establish that

Mt — my S ct™ (67)

for all ¢ > 0 for some C' >0 and «; € (0,min{g,2 —% ) (which also depends on
n,\, A, p,q,0).

Next, we show a precise local estimate for u. Instead of (6.4), we will use the
fact that for every region ¢

(/Q ¢+ nlrdfc) %g 2%1{ (/Q ICIde) %+ (/Q |77|rdx)%} (6.8)

for {,ne L"(Y) when 0<r <1, which, together with the weak Harnack
inequality, will give a precise Holder continuity estimate with no use of the local
maximum principle.

We fix z € Q and let d = dist(z, 9Q) > 0. We notice that Qs 5 C Q. We will
suppose that x = 0 for the sake of simplicity.

For t € (0,d/+/n |, setting v = My; — u and then v = u — my;, Corollary 4.8

yields
1 1
(& ) = ligee s améhun, ).

where Alu] = exp(C’QHMHZ)HuHé\[ + fo:_ol ||,u||f; for some integer N, where the
norms are taken over Qo Hence, in view of (6.8), we obtain

My — mg; < C(MQt — My +my — mo + t2_5>

for some C = C(n, )\,A,tl_%Hqu), which implies that for t <t =t(n,q, ||ull,)

n

Mt — my < Q(Mgt — mQt) + t2_}7

for some 6 = O(n, A\, A, p,q) € (0,1). It is then standard (see Lemma 8.23 of [14]) to
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verify that

My —my < c{ (g) " (Mg — mag) + tw} (6.9)

n

for some ay € (0,2 — 5) (depending only on n, A\, A,p,q), and t € (0,6), where

6 = min{t,d/\/n}.

We now define « := min{ay, as}. For z,y € Q, in order to show that
lu(z) — u(y)| < Clz —yl*,

we only need to consider the case when z,y € Q and |z — y| < ¢, because of (6.7),
and g € C(09).

We may suppose that dist(z,99) > dist(y,dQ) > 0. Thus, we set d:=
dist(z, 9Q) and suppose for simplicity that = 0.

Case 1: |z —y| > d/\/n

We choose g,y € 02 such that dist(z,00Q) = |r — x| and dist(y,dQ) =
ly — yo|- Noting that [z —y| > |2 — zo|/(v1) = [y — yol/(Vn), in view of (6.7), we
see that

u(z) — u(y)l < C(lz — w0l + |0 — vl + [y — w[*) < Cla —y|"

Case 2: |z —y| < d/\/n
Because of (6.9) we have

u(z) — u(y)| < C(%“) (Mas — mas) 4+ Clz — y|”. (6.10)

If 6=t we are done. Otherwise § =d/\/n. Then, if xo € N is such that
| — xo| = dist(x,00) = d, (6.7) implies that

max wuw— min u<Cd”
QE(IO)QQ Q4_(](‘LO)QQ
v Vn

which, together with (6.10) gives

|u(z) —u(y)] < Clo —y[". O

REMARK 6.3. Theorems 6.1 and 6.2 also hold for nonnegative LP-viscosity
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supersolutions of (6.1) and LP-viscosity solutions of (2.1) if u, f,c € L (Qg) and
po < p <n. The constant Cg in (6.2) is then the one from Remark 4.6 and in
Theorem 6.2 we have a = a(n,\,A,0,0) € (0,1) and Cip = Cip(n, \, A, O, || f1],,,
w(L)llell,s gl esonys 1 2 Lyto) > 0. We leave the details to the readers as the
proofs are almost the same as those above if we carefully use Remark 4.6 and its
small cube version.

7. Strong solvability of extremal equations.

As an application of the global continuity estimates of Theorem 6.2, we prove
a result about strong solvability of general extremal equations. Fok [13] showed
this result for fe€ LP(Q)NL*(Q"), where Q"= {x € Q: dist(z,0Q) < n} for
some 71 > 0, however his py may be different from ours. (We incorrectly attributed
the full Theorem 7.1 to [13] in [17].) When p =n, Theorem 7.1 can be also
deduced from the results of [20].

THEOREM 7.1. Let Q) C B; be a domain satisfying the uniform exterior cone
condition. Under (2.3), let f € LP(QY) and p € LY(Y), and let g € C(09N). Then,
there exist LP-strong solutions u, v e C(Q) N W2 (Q) of

loc
P~ (D*u) — p(x)|Du| = f(x) in Q (7.1)
and
PH(D*v) + p(x)|Dv| = f(x) in Q (7.2)
such that u=v = g on 0Q. Moreover for every Q' € §, we have

lwllw2sy < Cllglla + 171,), (7.3)
fOT’ w=1u,v, and C = C(napa q, >‘a A7 ||/”L||q7 diSt(Q/a aQ))

REMARK 7.2. We notice that the uniform exterior cone condition for €
implies (6.4).

PROOF. We will only consider (7.1). We first approximate g by g; € C?(952)
for some 8 € (0,1),i=1,2,.... Then, approximating f and p by smooth functions

fr and gy, such that |[f — fill, + lu — pxll, — 0 as k — oo, we find u, € C(€2) N
C?*(Q) such that

P~ (D*up) — pu(x)| Dug| = fe(x) in Q,
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under u; = g; on 0f.

Thanks to Theorem 6.2, we may assume that u; converges to a function
@; € C(2) uniformly in Q. On the other hand, it is known (e.g. [18]) that for each
Q' € Q, there is C' = C(n, A\, A, dist(Q', 09), || ull,) > 0 such that

l[urllwzo(ry < CUlgilloo + 1 Fell,)-
Therefore, we may suppose that w = i; € C(Q) N W2P(Q) satisfies (7.3).

It is standard to show that 4; is an LP-strong supersolution of (7.1) because of
the concavity of &~ and the fact that we may suppose that D?u; converges
weakly to D?@;. It remains to show that @; is also an LP-strong subsolution of
(7.1). However, Proposition 9.4 in Appendix implies that u; is an LP-viscosity
subsolution of (7.1). On the other hand, since ; is twice differentiable for almost
all € Q (because p>n/2), Proposition 9.1 implies that u,; satisfies
P~ (D?*u;(x)) — p(x)|Du;i(z)| < f(x) for almost all z € Q.

We can now pass to the limit as ¢ — +oo. It follows from the maximum
principle that the @; converge uniformly on Q to some function v € C(Q), u = gon
9. Moreover the function u € W;27(Q) and it satisfies (7.3). The fact that u is a
strong solution of (7.1) follows from the same arguments as these described above
to establish this fact for the u;. O

8. Maximum principle in unbounded domains.

An application of Theorem 6.1 is an ABP type maximum principle in
unbounded domains. Following [4] (see also [22]), we say that () satisfies (wG) if
there exist 0 < 7, 0 < 1 such that

Ve € Q, 3R, and 3z, € R" such that |Qr, (z;) \ Qu.r, | > 0|Qr, (2)].

Here Qg , is the connected component of QN Qg /-(2,) such that z € QN
QR];(ZI)-

We will impose the condition

M :=sup M, < oo, (8.1)

z€N
1-z
where M, = Ry *[|pll o, ,, . - In [8], instead of (8.1), it was assumed that

sup RIHMHM(Q;E.R,,T) < .
zef ’



748 S. KOIKE and A. SWIE)CH

We also refer to a recent paper [1] and references therein for results on ABP
type maximum principles, strong maximum principle, Liouville type theorems,
etc. for viscosity solutions of fully nonlinear PDE having superlinear, at most
quadratic, growth in Du with bounded and continuous coefficients in unbounded
domains.

THEOREM 8.1. Let Q C R" satisfy (wG) and let (2.3) hold. Suppose that
f €Ll (Q) and p e LL(Q) satisfies (8.1). There exists C1qy = Cii(n, N\, A, p,q, M,
o,7) > 0 such that if u € C(Q) is an LP-viscosity subsolution (resp., supersolution)

of
2~ (D*u) = p(x)|Dul = f(z) in Q

(resp., 27 (D*u) + u(x)|Du| = —f(x) in Q)

such that supg u < oo (resp., infou > —00), then

_n

2 =
supu < supu + Cyysup R, 7|

Fll7»
Q 0 zef Il

91
(resp., sup(—u) < sup(—u) + Cyq sup R, p||f||Ln(Q,,.R,T)>'
Q0 o9 2€Q A

PROOF. Fix any z € R". By (wQG), we choose R=R, >0and z=2, € R"
such that x € Qr(z) and

[Qr(2) \ Q. rr| > 0]Qr(2)]. (8.2)

We may suppose z = 0 by translation. Moreover, by scaling, we may suppose that
u is an LP-viscosity subsolution of

(D) - jy)|Dul = f(y) in

QZ )
R o

where /i(y) = Ru(Ry) and f(y) = R*f(Ry) (and where f and p are equal to 0
outside of 2). We notice that (8.1) implies that ||/l||Lq<Q1/T> < M.
Setting v = K — u, where K := supq u, we denote by v, the function

~ { min{K —u(y),m} forye }%Qm‘R,n
/0777, y =
m for A Ql/'r \IL%QZ‘R,‘IW
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where m = K — supyq u. It now follows from Theorem 6.1 and (8.2) that

_ < _ £
o (= supu) < (K = o) + 1l )

for some C) = Cy(n, X\, A,p,q, M,7) > 1. Therefore we have

g g N
u(z) < (1- o K+ a,)sélﬂpu+ 1l 2o -

Therefore, taking the supremum over x € 0, we find

U

C 2-2
K <suwpu+—supR: || fll ) O
) 0 zeQ e

9. Appendix.

We prove several technical results about LP-viscosity solutions. We refer to
[9] for the definition of the semi-jets J>.

PROPOSITION 9.1 (cf. Proposition 3.4 in [7]). Let F satisfy (3.1)—~(3.3), let
f € LP(Q) and let one of the following conditions be satisfied:

{(1) qg>n, ¢q=p=>mn, 0.1)

(2) g>mn>p>py, p(mg—n)>ng(m—1).

Ifu € C(Q) is an LP-viscosity subsolution (resp., supersolution) of (2.1), then there
exists a null set N C Q such that for x € Q\ N

F(z,u(z),p, X) < f(z) (resp., = f(z))
provided (p, X) € J* u(x) (resp., J* u(x)).

In particular, if w € W2P(Q) is an LP-viscosity solution of (2.1), then it is an

LP-strong solution of (2.1).

REMARK 9.2. When m =1, the second property of (9.1) automatically
holds.

PROOF. We will only present proof in the case (2) and m > 1 as the proofs
in the other cases are similar but much easier. Set G(z,r,p,X) = F(z,r,
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p,X) — f(x) for (z,r,p,X) € Q2 x Rx R" x S". For (p,X) € R" x 5" we denote
by L(p, X) the set of points x € Q such that

1
lig = | 16(@,u(2),p. X) = Gy, uly).p, X)dy =0. 9.2)

Let 4 C R" x S" be a countable dense set. For u,c € L% (Q) in (3.3), we then
define

1
lim — x) — Pdy=05%.
/B )~ )y }

r—0 77

E= ‘L(p,X)ﬂ{m e

This set has full measure, i.e. |E| = || and it is easy to see that (9.2) holds for
every (z,p, X) € Ex R" x S".
We will show that if (p, X) € J>Tu(x) for = € E, then

G(z,u(z),p, X) <O0.
Similar statement holds for the supersolution case.
By translation we may assume that x = 0. Suppose that the above inequality
fails, i.e. there is 6 > 0 such that

26 < G(0, u(0), p, X).

Then for small n > 0, setting Y = X + 2nl, we find 7y > 0 such that
1
u(@) + 3 lol* < 6(@) = u(0) + (p.x) +5 (Vaa) forfe| <ro,  (93)

and
6 < G(0,u(0),p,Y). (9.4)

Conditions (3.2) and (3.3) imply that ¢ = u — ¢ is an LP-viscosity subsolution
of
P~ (D) — Cu(@)| DY|"™ — Cy(x) | Dy| = g(x) i B,

9.5
wg—gﬁ on 0B, (9.5)
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where
g(x) =—0+ CM(Z'”Y"E‘ + G(Oau(o)vpa Y) - G(w,u(m),p, Y)

Since 0 € E we have

91l o5,y < o(r7). (9.6)

The idea now is to show that this cannot happen using maximum principle.
Unfortunately the estimate of Theorem 2.6 is nonlinear and it is not obvious how
it scales when the diameter of the domain goes to 0. However after careful analysis
one can obtain a scaled version of (2.15) presented below in Lemma 9.3. Using
(9.6) and (9.7), we easily conclude the proof since 1(0) =0 and this cannot
happen for small r. O

LEMMA 9.3.  IfQ = B, in Theorem 2.6, then in case (ii) we have

N+1

supu < supu + cr' Ty Z ||M7n||aLA5(B,)

mk
Fs,)- (9.7)
B, 9B, k=0

PROOF. We will rescale equation (2.12). Set w(x) = u(rz). Then w is an
LP-viscosity subsolution of

P (D*w) — M;Sff) |Dw|™ — rpy (re)|Dw| = 2 f(rz) in Bj. (9.8)
Denote
fine) =P @) = ), i) = ()

Then for r <1

2—k—

~ n ~ 91
Nkl pomy =" el os,y  (B=1,m), Nfllpmy =1 21, (9.9)
First we need to convince ourselves that condition (2.14) is preserved under

scaling. We have
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-1

Do N Ny, nm n(m—1)
[ e T A

_n m (m—1 N mN (-2 n
(I)”f”Z:(g:L) >||an,||7£1(B,.) <" (m - ‘1)5.

However mfw — 4 >0 Dby (2.13) so (2.14) is satisfied. In fact the above
shows that 6 — +oo as r — 0.
To show (9.7) we proceed by induction. We define
My = ||f||L1’(Bl)’ M1 = [l fom | o My for k> 0.
By (9.9) we can assume that

2-2 : *
M, <r p||Um||%’tz(Br)||f||TL’;(B

since it is satisfied for kK = 0. Then for r <1

L S T 7 [ 1
g p_nm=l) n " Je+1 9_n ‘
= " qHMmH?j(lB Hme <r p||/im||zkf<3 ”f”m

where we again have used by (2.13). Therefore, by (2.15), we obtain

N+1 N+1

supu— supw < supw+CZMk < supu+Cr
B B 9B,

O

We can now show the stability result for (2.1), which is needed to establish
the strong solvability of extremal PDE in section 7.

PROPOSITION 9.4. Let F,F,: QX RXR'"xS"—> R k=1,2,... satisfy
(3.1)=(3.3) with m > 1,\,A > 0,u € LL(Q),c € LE(Q) and modulus w, let f, fi €
LP(Q),k=1,2,..., and let one of (9.1) hold.

Let uy, be LP-viscosity subsolutions (resp., supersolutions) of

Fk(;v,umDuk,DQuk) = fi(z) in Q.

Assume also that for every B.(x) C Q, ux — u uniformly in B.(z) as k — oo, and

for ¢ € W*P(B,(x))

Jim [[(Gl8) = Grle) ™Ml s, 0 = 0 (9.10)
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(resp i 1G16] — Gulo) T = 0))

where

Gilgl(y) = Fi(w, ur(z), Dé(x), D*¢(x)) — fi(z), and
Glol(y) = F(z,u(z), Dg(x), D*¢(x)) — f(x).

Then u is an LP-viscosity subsolution (resp., supersolution) of
F(x,u, Du, D*u) = f(z) in Q.

PROOF. Again we will only show the result for case (2) when m > 1.
Suppose, contrary to the claim, that there exist y € Q, 7 > 0, p € W??(B,(y)) such
that u — ¢ has a maximum at y over B,(y) € Q but

F(:U,u(x),Dgo(:r),chp(x)) — f(x) > 6 ae. in B.(y).

Without loss of generality we may assume that y=0¢€ Q and (u— ¢)(0) =0.
Define wy(z) = up(z) — p(x) — nlz*>, where 1 =6/(2nA), and set e, = supp,
|un(z) = u(z)|.

Using (3.2) and (3.3) we easily obtain that wy, is an LP-viscosity subsolution of

P~ (Dwy) — Cyp(@)| Durl™ — Cyu(@)(IDp(@) ™" + 2] + 1)| Du
= c(@)wler) + Glo +nlal’)(z) = Gilp +nlal’](z)
+ Cpa() (| De(a)[™ ™ + 202" + 1) |20

in B, for some constant C; = Cj(m). Because of condition (2), the function
w(z)(| D)™ + |2nz|" " +1) € LP(B,) for some p > n. Moreover, denoting

h(z) := Cypu(z)(|Do(z)[™ " + [2nz|™ ' +1)|2nz| and using that e LY(Q),
Dy € L (B,), we have

||hHL])(BT) S CQT]_7+Q

for some Cy and « > 0. Therefore it follows from Lemma 9.3 and (9.10) that

sup wy < sup wy + Car® prr ™ 4 o(k),
B, aB,
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where o(k) — 0 as k — +o0o. This leads to a contradiction by first choosing small r
and then letting k — 400 since

(11]
(12]
13]
(14]
1]
[16]

[17]

18]

[19]

lim supw, =0 and lim supw; < —nr. [l
k——+00 B, k—+o0 OB,
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