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Introduction.

This paper is a sequel to our paper [8], in ChapterV of which we de-
veloped a general theory of so-called “ preservation theorem ” without using
any model theoretic notions, so that we can apply it to different kinds of
logics. In this paper, we shall show some applications of it to the modeB
theory on a positive second order logic $\mathfrak{L}$ (in the sense of [17]) with countable
conjunctions and disjunctions. (Cf. Theorem 4.1 and Theorem 4.2 in \S 4.)

Suppose $(\exists\xi)\varphi(\xi),$ $(\forall\eta)\psi(\eta),$
$\varphi_{1},$

$\psi_{1}$ are sentences in the second order logic
such that $\varphi(\xi),$ $\psi(\eta),$

$\varphi_{1},$
$\psi_{1}$ have no second order quantifiers and $\xi,$

$\eta$ are
second order variables. Notice that the sentence $(\exists\xi)\varphi(\xi)\supset(\forall\eta)\psi(\eta)$ is a sen-
tence in the positive second order logic $\mathfrak{L}$ . Hence, Craig’s interpolation
theorem can be expressed in the following form:

(1) If $\vdash(\exists\xi)\varphi(\xi)\supset(\forall\eta)\psi(\eta)$ , then $\vdash(\exists\xi)\varphi(\xi)\supset\theta$ and $\vdash\theta\supset(\forall\eta)\psi(\eta)$ for some
first order sentence $\theta$ .

Also, Los-Tarski’s theorem on extension can be expressed in the follow-
ing form:

(2) If every extension of a model of $\varphi_{1}$ is a model of $\psi_{1}$ then $\vdash\varphi_{1}\supset\theta$

and $\vdash\theta\supset\psi_{1}$ for some existential sentence $\theta$ .
Combining (1) and (2), we can get
(3) If every extension of a model of $(\exists\xi)\varphi(\xi)$ is a model of $(\forall\eta)\psi(\eta)$ , then

$\vdash(\exists\xi)\varphi(\xi)\supset\theta$ and $\vdash\theta\supset(\forall\eta)\psi(\eta)$ for some first order existential sentence $\theta$ .
This is an example of preservation theorems in the positive second order

logic $\mathfrak{L}$ . Our Theorem 4.1 is a generalization of the preservation theorems
of the form (3) to $L_{\omega_{1}\omega}$ .

On the other hand, Tarski’s theorem on $PC_{\delta}$ -class can be expressed in
the following form:

(4) The class of substructures of models of $(\exists\xi)\varphi(\xi)$ is an $EC_{\delta}$-class.
Our Theorem 4.2 is a generalization of infinitary analogues of (4) to $L_{\omega_{1}\omega}$ .

After some preparations in \S 1, 2 and 3, we shall prove these theorems in
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\S 4. In \S 5, we shall see many instances of our main theorems with respect
to different morphisms between models $e$ . $g$ . identity relation, homomorphism,
strong homomorphism, extension, substructure, U-extension, end-extension,
super end-extension, endomorphism, retract, direct root of direct power, direct
factor, k-isomorphic union and $\omega$ -isomorphic union.

\S 1. Logic $\mathfrak{L}$ .
Let $\mathfrak{L}$ be a fixed second order logic with equality $\pm$ . We do not consider

$\pm as$ a logical symbol, but as a designated binary predicate constant. For
simplicity, we assume that $\mathfrak{L}$ has neither function symbols nor individual
constant symbols. Let $PF(\mathfrak{L}),$ $PB(\mathfrak{L}),$ $PC(\mathfrak{L}),$ $FV(\mathfrak{L}),$ $BV(\mathfrak{L})$ and $FM(\mathfrak{L})$ be the
set of free predicate variables (denoted by $\alpha,$ $\beta,$ ), the set of bound predicate
variables (denoted by $\xi,$

$\eta,$ ), the set of predicate constants (denoted by $P,$ ),

the set of free individual variables (denoted by $x,$ $y,$ $w,$ ), the set of bound
individual variables (denoted by $u,$ $v,$ ) and the set of formulas (denoted by
$\theta,$

$\varphi,$
$\psi,$ ) in $\mathfrak{L}$ respectively. We assume that $\pm\in PC(\mathfrak{L}),$ $PF(\mathfrak{L})$ and $FV(\mathfrak{L})$

are countably infinite, $PB(\mathfrak{L})$ and $BV(\mathfrak{L})$ are uncountably infinite, $PF(\mathfrak{L})$ and
$PB(\mathfrak{L})$ have sufficiently many k-ary predicate variables for each $ k<\omega$ . As
logical symbols, we shall use 7(negation), $\wedge$ ($countable$ conjunction), $\vee(count-$

able disjunction), $\forall$ ($universal$ quantification) and $\exists$ ($existential$ quantification).
Moreover, $\mathfrak{L}$ has two propositional constants $T$ (truth) and $\perp(false)$ . We shall
use $\supset(implication),$ $\equiv(equivalence)$ as abbreviations as usual. For any $\theta\in$

$FM(\mathfrak{L})$ , let $PF(\theta),$ $FV(\theta)$ and $V(\theta)$ be the set of free predicate variables in $\theta$ ,
the set of free individual variables in $\theta$ and the set of free variables in $\theta$ .
We always assume that $V(\theta)$ is finite for each $\theta\in FM(\mathfrak{L})$ throughout this
paper. A sentence $\theta$ is a formula such that $ V(\theta)=\phi$ .

Let $t,$ $s$ be two variables (free or bound, predicate or individual). We
say that “

$t$ and $s$ are of the same tyPe ” if both $t$ and $s$ are individual vari-
ables or both $t$ and $s$ are predicate variables with the same number of argu-
ment places. Let $\vec{t}$ and $\vec{s}$ are two finite sequences of variables. $\overline{t}$ and $\vec{s}$ are
called of the same tyPe if the lengths of $\overline{t}$ and $\vec{s}$ are the same and the i-th
variable of 1 and the i-th variable of $\vec{s}$ are of the same type for each $i$ .

Let $\theta$ be a formula, $\overline{t}$ and sSe two sequences of variables of the same
type such that all variables in 1 are free variables and distinct. By $\theta\left(\begin{array}{l}t\\\vec{s}\end{array}\right)$ ,

we mean the expression (not always formula) obtained from $\theta$ by substitut-
ing $t_{1},$ $\cdots$ , $t_{n}$ by $s_{1},$

$\cdots$ , $s_{n}$ respectively, where $n$ is the length of $\vec{t}$ and $\vec{s}$ .
When no confusion is to be feared we shall write $\theta$ in this situation by $\theta(\tilde{t})$

and $\theta\left(\begin{array}{l}t\\\vec{s}\end{array}\right)$ by $\theta(\vec{s})$ .
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A quasi $\mathfrak{L}$ -structure $\mathfrak{A}$ is a maPping from $PC(\mathfrak{L})$ to the set of all finitary

relations on a non empty set $|\mathfrak{A}|$ (called the universe of $\mathfrak{A}$) such that $\mathfrak{U}(P\rangle$

$\subset|\mathfrak{A}|^{k}$ for each k-ary $P\in PC(\mathfrak{L})$ and $\mathfrak{A}(=)$ is a congruence relation with
respect to $\mathfrak{A}(P)$ for each $P\in PC(\mathfrak{L});\mathfrak{U}(=)$ is an equivalence relation on $|\mathfrak{A}|$

and for any k-ary predicate constant $P\in PC(\mathfrak{L})$ , any k-ary sequences \langle $a_{1},$ $\cdots$

$a_{k}\rangle,$ $\langle b_{\lfloor}, \cdots , b_{k}\rangle$ of elements in $|\mathfrak{A}|$ such that $\langle a_{1}, b_{1}\rangle\in \mathfrak{U}(\pm),$ $\cdots$ , $\langle a_{k}, b_{k}\rangle\in \mathfrak{U}(\pm)$ ,
$\langle a_{1}, \cdots , a_{k}\rangle\in \mathfrak{U}(P)$ implies $\langle b_{1}, \cdots , b_{k}\rangle\in \mathfrak{A}(P)$ . $\mathfrak{U}$ is said to be countable if $|\mathfrak{A}|$

is countable. If $\mathfrak{U}(\pm)$ is the identity relation on $|\mathfrak{A}|,$
$\mathfrak{A}$ is said to be an $\mathfrak{L}-$

structure. For any quasi $\mathfrak{L}$ -structure $\mathfrak{U}$ , we shall associate an $\mathfrak{L}$ -structure $\mathfrak{A}^{*}$

by $|\mathfrak{U}^{*}|=|\mathfrak{A}|/\mathfrak{A}(\pm),$ $\mathfrak{A}^{*}(P)=\mathfrak{A}(P)/\mathfrak{A}(=),$ $P\in PC(\mathfrak{L})$ (usual factorization through

the equivalence relation $\mathfrak{A}(\pm))$ . For each $a\in|\mathfrak{A}|$ , by $a^{*}$ we shall denote the
equivalence class of $a$ . By an assignment $\tau$ in $\mathfrak{A}$ , we mean a maPping from
$PF(\mathfrak{L})\cup FV(\mathfrak{L})$ to the union set of $|\mathfrak{U}|$ and the set of all finitary relations on
$|\mathfrak{A}|$ , compatible with $\mathfrak{A}(\pm)$ , such that $\tau(x)\in|\mathfrak{A}|$ and $\tau(\alpha)\subseteqq|\mathfrak{A}|^{k}$ for any $x\in FV(\mathfrak{L})$

and any k-ary $\alpha\in PF(\mathfrak{L})$ . For any assignment $\tau$ in $\mathfrak{U},$ $\tau^{*}$ is an assignment
in $\mathfrak{A}^{*}$ naturally defined by $\tau$ and $\mathfrak{A}$ . If $\mathfrak{A}$ is a $quasi- \mathfrak{L}$ -structure, $\tau$ is an
assignment in $\mathfrak{A}$ and $\theta$ is a formula, then the notion “

$\theta$ is satisfied in $\mathfrak{U}$ by
$\tau$

“ (denoted by $\mathfrak{U}\models\theta[\tau]$ ) can be defined as usual. Obviously $\mathfrak{U}\models\theta[\tau]$ if and
only if $\mathfrak{U}^{*}\models\theta[\tau^{*}]$ . If $FV(\theta)=\{x_{1}, \cdots , x_{n}\},$ $PF(\theta)=\{\alpha_{1}, \cdots , \alpha_{m}\},$ $\tau(x_{1})=a_{1},$ $\cdots$

$\tau(x_{n})=a_{n},$ $\tau(\alpha_{1})=Q_{1},$ $\cdots$ , $\tau(\alpha_{m})=Q_{m}$ , we shall write $\mathfrak{A}\models\theta[a_{1}:\cdots,a_{n}:_{Q1}:\ldots:_{Q_{m}^{m}}^{a}]$ instead
of $\mathfrak{U}\models\theta[\tau]$ . If in particular $\theta$ is a sentence and $\mathfrak{A}$ is an $\mathfrak{L}$ -structure, we
shall write $\mathfrak{A}\models\theta$ and say that $\mathfrak{A}$ is a model of $\theta$ . For any set $\Psi$ of sentences
in $\mathfrak{L},$

$\mathfrak{A}$ is a model of $\Psi$ if $\mathfrak{A}$ is a model of every $\theta$ in $\Psi$ . $\theta$ is said to be
valid (written by $\models\theta$) if for any $\mathfrak{L}$ -structure $\mathfrak{A}$ and any assignment $\tau$ in $\mathfrak{A}$ .
‘

$\mathfrak{U}\models\theta[\tau]$
‘ holds (of course this is equivalent to “ for any $quasi- \mathfrak{L}$ -structure $\mathfrak{A}$

and any assignment $\tau$ in $\mathfrak{A}$ , ‘
$\mathfrak{A}\models\theta[\tau]$

‘ holds “). Let $PFM(\mathfrak{L})=\{\theta ; \models\theta\}$ . Then
obviously $PFM(\mathfrak{L})$ satisfies the requirements mentioned in \S 1 of Chapter I of
Motohashi [8]. If $\theta\in PFM(\mathfrak{L})$ , we write $\vdash\theta\backslash \cdot$ Hence $\models\theta$ is equivalent to $\vdash \mathfrak{L}\theta$ .

Let $\mathfrak{A},$
$\mathfrak{B}$ be two $\mathfrak{L}$ -structures and fbe a mapping from $|\mathfrak{A}|$ to $|\mathfrak{B}|$ . Then

$f(\mathfrak{A})$ is an $\mathfrak{L}$ -structure defined by $|f(\mathfrak{A})|=\{f(a):a\in|\mathfrak{A}|\}$ (denoted by $f(|\mathfrak{A}|)$)

and $(f(\mathfrak{A}))(P)=\{\langle f(a_{1})\cdots f(a_{k})\rangle:\langle a_{1}\cdots a_{k}\rangle\in \mathfrak{A}(P)\}$ (denoted $byf(\mathfrak{A}(P))$). If $f$ is
a bijection and $f(\mathfrak{U})=\mathfrak{B}$ , we say that $f$ is an isomorphism of $\mathfrak{U}$ to $\mathfrak{B}$ . If there
is an isomorphism of $\mathfrak{A}$ to $\mathfrak{B}$ , we say that $\mathfrak{A}$ and $\mathfrak{B}$ are isomorphic and write
$\mathfrak{A}\cong \mathfrak{B}$ . If $f$ is a surjection and $f(\mathfrak{A}(P))\subseteqq \mathfrak{B}(P)$ for each $P\in PC(\mathfrak{L})$ , we say
that $f$ is a homomorphism of $\mathfrak{U}$ to B. If there is a homomorphism of $\mathfrak{A}$ to
$\mathfrak{B}$ , we say that $\mathfrak{A}$ is homomorphic to $\mathfrak{B}$ and write $\mathfrak{A}\rightarrow\sim$ B. If $f$ is an injection
and $f(\mathfrak{A}(P))=\mathfrak{B}(P)\cap(f(|\mathfrak{A}|))^{k}$ for each k-ary $P\in PC(\mathfrak{L})$ , we say that $f$ is an
embedding of $\mathfrak{U}$ to $\mathfrak{B}$ . If $|\mathfrak{A}|\subseteqq|\mathfrak{B}|$ and the inclusion mapping is an embedd-
ing, we say that $\mathfrak{A}$ is a substructure of $\mathfrak{B}$ or $\mathfrak{B}$ is an extension of $\mathfrak{A}$ and write
$\mathfrak{A}\subseteqq \mathfrak{B}$ . The Product of $\mathfrak{U}$ and $\mathfrak{B}$ (denoted by $\mathfrak{A}\times \mathfrak{B}$) is an $\mathfrak{L}$ -structure $\mathfrak{C}$ defined
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by $|\mathfrak{C}|=|\mathfrak{A}|\times|\mathfrak{B}|,$ $\mathfrak{C}(P)=\{\langle\langle a_{1}, b_{1}\rangle, \cdots , \langle a_{k}, b_{k}\rangle\rangle;\langle a_{1}, \cdots a_{k}\rangle\in \mathfrak{A}(P),$ $\langle b_{1}, \cdots , b_{k}\rangle$

$\in \mathfrak{B}(P)\}$ for any k-ary $P\in PC(\mathfrak{L})$ . Let $S$ be a set of $\mathfrak{L}$ -structures. Then the
unien of $S$ is the $\mathfrak{L}$ -structure $\mathfrak{A}$ (denoted by $\cup S$) such that $|\mathfrak{A}|=U|\mathfrak{B}\mathfrak{B}\in S|,$

$\mathfrak{A}(P)$

$=U\mathfrak{B}(P)\mathfrak{B}\in S$ for each $P\in PC(\mathfrak{L})$ . $S$ is called a k-family if for any $a_{1},$
$\cdots$ , $ a_{k}\in$

$|\cup S|$ , there is a $\mathfrak{A}\in S$ such that $a_{1},$ $\cdots$ , $a_{k}\in|\mathfrak{A}|$ . $S$ is called an $\omega$-family if
$S$ is a k-family for any $ k<\omega$ . If $S$ is a k-family, $\cup S$ is called the k-union
of $S$. If $S$ is an $\omega$ -family, $\cup S$ is called the $\omega$ -union of S.

A formula is called first order if it does not contain any second order
quantifiers.

Now, we define recursively as follows (following [17]) the notion “ a
formula is positive or negative with respect to the second order quantifiers ”,
which will be expressed by “ a formula is positive or negative “ for brevity.

(1) Every first order formula is positive and negative.
(2) If $\theta(\alpha)$ is positive, then $(\forall\xi)\theta(\xi)$ is positive.

If $\theta(\alpha)$ is negative, then $(\exists\xi)\theta(\xi)$ is negative.
(3) $(\forall v)\theta(v),$ $(\exists v)\theta(v)$ are positive or negative according as $\theta$ is positive

or negative.
(4) $ 7\theta$ is positive or negative according as $\theta$ is negative or positive.
(5) Let $\wedge\Phi,$ $v\Phi$ be formulas in $\mathfrak{L}$ .

If all formulas in $\Phi$ are positive, then $\wedge\Phi,$ $v\Phi$ are positive.
If all formulas in $\Phi$ are negative, then $\wedge\Phi,$ $v\Phi$ are negative.

(6) All positive or negative formulas are obtained by (1) $-(5)$ .
Now we state a well-known theorem due to D. Scott in the terminology

defined above. This theorem will be used in \S 4.
(I) Scott’s isomorphism theorem: For any countable $\mathfrak{L}$ -structure $\mathfrak{A}$, there

is a first order sentence $\varphi$ (called a Scott sentence of $\mathfrak{A}$) such that for any
countable $\mathfrak{L}$ -structure $\mathfrak{B}$ ,

$\mathfrak{B}\models\varphi$ if and only if $\mathfrak{A}\cong \mathfrak{B}$ .
(Cf. Chang [3], Keisler [7], Scott [15]).

\S 2. Logic $\mathfrak{L}^{1}$.
From $\mathfrak{L}$ , we construct two object logics $\mathfrak{L}^{1}$ and $\mathfrak{L}^{2}$ by the method in [20].

Then for each $\theta\in FM(\mathfrak{L}),$ $\theta^{1}$ is the formula of $\mathfrak{L}^{1}$ obtained from $\theta$ by replac-
ing every $\alpha,$

$\xi,$ $P,$ $T,$ $\perp$ in $\theta$ by $\alpha^{1},$ $\xi^{1},$ $P^{1},$ $T^{1},1^{1}$ respectively. Similarly
$\theta^{2}$ is obtained.

Let $\{I_{i}\}_{i<\omega}$ be a set of binary predicate constants which do not appear
in $\mathfrak{L},$ $\mathfrak{L}^{1},$

$\mathfrak{L}^{2}$ . Then the formation rules of formulas in $L^{1}$ can be expressed

as follows;
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(1) $I_{i}(x, y)$ is a formula in $L^{I}$ for each $i<\omega,$ $x,$ $y$ .
(2) $\theta^{1},$

$\theta^{2}$ are formulas in $L^{I}$ for each $\theta\in FM(\mathfrak{L})$ .
\langle 3) If $F$ is a formula in $L^{I}$ , then $7F$ is a formula in $L^{I}$.
(4) If $K$ is a non empty countable set of formulas in $L^{I}$ such that the

set of free variables in $K$ is finite, then $\Lambda K,$ $\vee K$ are formulas in $L^{I}$ .
(5) If $F(x)$ is a formula in $L^{I}$ and $v$ does not occur in $F(x)$ , then $(\forall v)F(v)$ ,

$(\exists v)F(v)$ are formulas in $L^{I}$ .
(6) All the formulas in $L^{1}$ are obtained from (1) $-(5)$ .
By $F,$ $G$ (with or without suffixes) we shall denote formulas in $L^{1}$ and

$FM(L^{I})$ the set of formulas in $L^{I}$ . Every notion above mentioned with respect
to formulas in $\mathfrak{L}$ is also used to formulas in $L^{I}(e. g. FV(F), V(F), )$ . A
formula $F$ in $L^{I}$ is said to be a l-formula if $F=\theta^{1}$ for some $\theta\in FM(\mathfrak{L})$ and
a 2-formula if $F=\theta^{2}$ for some $\theta\in FM(\mathfrak{L})$ . If $F$ is neither l-formula nor 2-
formula, $F$ is called an I-formula. As for formulas in $L^{I}$, we can define a
notion “ a formula is positive or negative (with respect to the second order
quantifiers) ” by the same method as in the case of formulas in $\mathfrak{L}$ .

An $L^{I}$-structure $M$ is a mapping from $\{I_{i}\}_{i<\omega}\cup\{P^{1}, P^{2} ; P\in PC(\mathfrak{L})\}$ to the
set of all finitary relations on a non-empty set $|M|$ (called the universe of
$M)$ , such that $M_{1}$ and $M_{2}$ are $quasi- \mathfrak{L}$ -structures, where $|M_{1}|=|M_{2}|=|M|$ ,
$M_{1}(P)=M(P^{1}),$ $M_{2}(P)=M(P^{2})$ , for each $P\in PC(\mathfrak{L})$ and $M(I_{i})\subseteqq|M|^{2}$ for each
$I_{i}$ . For each $M$, each $ i<\omega$ , let $M(I_{i})^{*}=\{\langle a^{*}, b^{*}\rangle;\langle a, b\rangle\in M(I_{i}),$ $O^{*}\in|M_{1}^{*}|$ ,
$b^{*}\in|M_{2}^{*}|\}$ . Then $M(I)^{*}$ is a relation between $M_{1}^{*}$ and $M_{2}^{*}$ . $M$ is countable
if $|M|$ is countable. Then the notions “ an assignment $\nu$ in $M’$ , “

$M\models F’$ ,
$f$ ‘ $M$ is a model of $F$ ’

$‘‘\models F$
’ are defined similarly as in \S 1.

As for axioms, inference rules and derivations of $L^{I}$, we use those des-
cribed in [20]. Then by the straight-forward generalization of the method
in Lopez-Escobar [141, we can get the following completeness theorem for
positive sentences in $L^{I}$ and L\"owenheim-Skolem’s theorem for positive sen-
tences in $L^{I}$.

(II) Completeness theorem for positive sentences in $L^{I}$ : $\models F\Leftrightarrow\vdash FLA$ for
any Positive sentence $F$ in $L^{I}$ .

(III) L\"owenheim-Skolem’s theorem for positive sentences in $L^{I}(c$ . $f$ .
Vaught [18]): For any Positive sentence $F$, if $7F$ has a model, then $7F$

has a countable model.

\S 3. Interpolation theorem and characterization theorem.

In this section, we shall quote some results in the Chapter V of the paper
[8], which will be used in \S 4. For simplicity, we shall omit (I-) from every
notion, $i$ . $e$ . we shall write “ Interpolation theorem ‘’ instead of ” I-interpolation
theorem ” etc. Divide $FV(\mathfrak{L})$ into mutually disjoint, infinite sets $\{V_{i}\}_{i<\omega}$ . By
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$w^{i}$ (with or without suffixes) we shall denote an element in $V_{i}$ . Let $\Psi$ be a
set of sentences in $L^{I}$.

Then the invariant set In $(\Psi)$ of $\Psi$ is the set of all formulas $\theta(w^{i})$ such
that $\Psi\vdash(\forall\vec{u})(\forall\vec{v})$($I_{\dot{i}}(\vec{u}L^{I}\vec{v})$ A $\theta^{1}(\vec{u})\supset\theta^{2}(\vec{v})$), where $w^{t}$ is a repetition-free enumera-
tion of free individual variables in $\theta$ and $I_{i}(\vec{u},\vec{v})$ is $I_{i_{1}}(u_{1}, v_{1})\wedge\cdots\wedge I_{i_{n}}(u_{n}, v_{n})*$

A set $\Delta\subseteqq In(\Psi)$ is a characterization set of $\Psi$ if for any formula $\theta\in In(\Psi)$ ,

there is a formula $\theta^{\prime}\in\Delta$ such that $\vdash \mathfrak{L}\theta\equiv\theta^{\prime}$ and every free variable in $\theta^{\prime}$

occurs in $\theta$ .
3.1. DEFINITION. $\Psi$ is interpolatable if for any finite sequence of distinct

free variables $w^{i}$ , any formulas $\varphi(w^{\dot{i}}),$ $\psi(w^{i}),$ $\Psi\vdash(\forall\vec{u})(\forall\vec{v})$ ($I_{\dot{i}}(\vec{u}L^{l}\vec{v})$ A $\varphi^{1}(\vec{u})\supset\psi^{2}(\vec{v})$)

implies $\vdash \mathfrak{L}\varphi\supset\theta$ and $\vdash \mathfrak{L}\theta\supset\psi$ for some $\theta\in In(\Psi)$ whose free individual vari-

ables are among $w^{i}$ .
3.2. DEFINITION OF PRIMITIVE SENTENCES.
(1) $(\forall\vec{u})(\forall\vec{v})$ ( $I_{\dot{i}}$ ( $\vec{u}$ , zi) $\Lambda\psi^{1}(\vec{u})\supset\psi^{2}(\vec{v})$ ) is the primitive sentence of type1

dePned by $\psi(w^{i})$ , where $w^{i}$ is a repetition-free enumeration of free
variables in $\psi$ .

(2) $(\forall\vec{u})(\exists\vec{v})I_{i}(\vec{u},\vec{v})$ is the primitive sentence of type 2 dePned by $\vec{i}$ .
(3) $(\forall\vec{v})(\exists\vec{u})I_{i}(\vec{u},\vec{v})$ is the primitive sentence of type 3 dePned by $\vec{i}$ .
(4)

$(\forall\vec{u})(\exists\vec{v})I_{i}(\vec{u}i_{0}\leqq i\vec{v})$ is the primitive sentence of type 4 defined by $(i_{0}, n)_{r}$

where $n$ is the length of $\vec{u}$ .
(5)

$(\forall\vec{v})(\exists\vec{u})I_{i}(\vec{u}i_{0}\leqq iv)$ is the primitive sentence of type 5 defined by $(i_{0}, n)_{r}$

where $n$ is the length of zi.
(6) $(\forall\vec{u}_{2})(\forall\vec{v}_{2})(\forall\vec{u}_{1})(\exists\vec{v}_{1})(\varphi^{1}(\vec{u}_{1},\vec{u}_{2})\wedge I_{j}\rightarrow(\vec{u}_{2},\vec{v}_{2})\supset I_{i}(\vec{u}_{1},\vec{v}_{1}))$ is the primitive sen-

tence of type 6 defined by $(\varphi, w^{j})$ where $ w^{i-}w_{1}^{j}\rightarrow$ is a repetition-free

enumeration of free variables in $\varphi(w^{i}, w_{\iota^{j}})\rightarrow$ .
(7) $(\forall\vec{v}_{2})(\forall\vec{u}_{2})(\forall\vec{v}_{1})(\exists\vec{u}_{1})(\varphi^{2}(\vec{v}_{1},\vec{v}_{2})$ A $I_{J}\rightarrow(\vec{u}_{2},\vec{v}_{2})\supset I_{i}(\vec{u}_{1},\vec{v}_{1}))$ is the primitive sen-

tence of type 7 defined by $(\varphi, w^{\tilde{i}})$ , where $ w^{i\rightarrow}w_{1}^{j}\rightarrow$ is a repetition-free

enumeration of free variables in $\varphi(w^{i}, w_{1}^{j})\rightarrow$ .
(8) $(\forall\vec{u})(\exists\vec{v})(\psi^{1}(\vec{u})\supset I_{i}(\vec{u},\vec{v})$ A $\psi^{2}(\vec{v}))$ is the primitive sentence of type 8

defined by $\psi(w^{\tilde{i}})$ , where $w^{i}$ is a repetition-free enumeration of free
variables in $\psi$ .

(9) $(\forall\vec{v})(\exists\vec{u})(\psi^{2}(\vec{v})\supset I_{i}(\vec{u},\vec{v})\wedge\psi^{1}(\vec{u}))$ is the primitive sentence of type 9
defined by $\psi(w^{i})$ , where $w^{\overline{i}}$ is a repetition-free enumeration of free
variables in $\psi$ .

3.3. DEFINITION OF PRIMITIVE SETS. A set $\Psi$ of sentences in $L^{1}$ is pri-
mitive if

(1) every sentence in $\Psi$ is primitive,
(2) if $\Psi$ has the primitive sentence of type 6 (or 7) defined by $(\varphi, w^{l})$ ,
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then $\Psi$ has the primitive sentence of type 1 defined by $\varphi$ ,
(3) if $\Psi$ has the primitive sentence of type 4 (or 5) defined by $(i_{0}, n)$

then
(a) $\Psi$ has the primitive sentence of type 4 (or 5) dePned by $(i_{0}+1, n)$ ,
(b) if $ F\in\Psi$ is a primitive sentence whose type is neither 4 nor 5,

and $i\geqq i_{0}$ then $ F(t_{0}i)\in\Psi$ .
A primitive set $\Psi$ is called of first order if every sentence in $\Psi$ is of first

order and $\Psi$ is countable.
3.4. DEFINITION OF $\Delta(\Psi)$

(1) If $\Psi$ has the primitive sentence of type 1 defined by $\psi$ , then $\psi\in$

$\Delta(\Psi)$ .
(2) If $\Psi$ has the primitive sentence of type 2 defined by $\vec{i}$ and $\theta(w^{i})\in$

$\Delta(\Psi)$ , then $(\exists\vec{u})\theta(\vec{u})\in\Delta(\Psi)$ .
(3) If $\Psi$ has the primitive sentence of type 3 defined by $\vec{i}$ and $\theta(w^{i})\in$

$\Delta(\Psi)$ , then $(\forall\vec{u})\theta(\vec{u})\in\Delta(\Psi)$ .
(4) If $\Psi$ has the primitive sentence of type 4 defined by $(i_{0}, n)$ and $\theta(\vec{w}^{i_{0}}\rangle$

$\in\Delta(\Psi)$ , where the length of $\vec{w}^{i_{0}}$ is $n$ and every free variable in $\theta$

except those in $\vec{w}^{i_{0}}$ belongs to $\cup V_{i}$ , then $(\exists\vec{u})\theta(\vec{u})\in\Delta(\Psi)$ .
$f<i_{0}$

(5) If $\Psi$ has the primitive sentence of type 5 defined by $(i_{0}, n)$ and $\theta(\vec{w}^{i_{0}}\rangle$

$\in\Delta(\Psi)$ , where the length of $\vec{w}^{i_{0}}$ is $n$ and every free variable in $\theta$

except those in $\vec{w}^{i_{0}}$ belongs to $\bigcup_{i<i_{0}}V_{i}$ , then $(\forall\vec{u})\theta(\vec{u})\in\Delta(\Psi)$ .
(6) If $\Psi$ has the primitive sentence of type 6 defined by $(\varphi(w^{i}), w^{i})$ and

$\theta(w^{i})\in\Delta(\Psi)$ , then $(\exists\vec{u})$( $\varphi(\vec{u})$ A $\theta(\vec{u})$) $\in\Delta(\Psi)$ .
(7) If $\Psi$ has the primitive sentence of type 7 dePned by $(\varphi(w^{i}), w^{\mathfrak{t}})$ and

$\theta(w^{t})\in\Delta(\Psi)$ , then $(\forall\vec{u})(\varphi(\vec{u})\supset\theta(\vec{u}))\in\Delta(\Psi)$ .
(8) If $\Psi$ has the primitive sentence of type 8 dePned by $\psi(w^{i})$ and $\theta(w^{i})$

$\in\Delta(\Psi)$ , then $(\exists\tilde{u})$ ( $\psi(\vec{u})$ A $\theta(\vec{u})$) $\in\Delta(\Psi)$ .
(9) If $\Psi$ has the primitive sentence of type 9 defined by $\psi(w^{i})$ and $\theta(w^{l})$

$\in\Delta(\Psi)$ , then $(\forall\vec{u})(\psi(\vec{u})\supset\theta(\vec{u}))\in\Delta(\Psi)$ .
(10) $T,$ $\perp\in\Delta(\Psi)$ .
(11) If $\Phi$ is a non-empty, countable set of formulas in $\Delta(\Psi)$ such that

only finitely many free variables occur in $\Phi$ , then $\Lambda\Phi,$ $v\Phi\in\Delta(\Psi)$ .
(12) If $\theta(w^{i})\in\Delta(\Psi)$ , then $\theta(w_{1}^{i})\in\Delta(\Psi)$ , where $w^{i}$ is a Pnite sequence of

distinct free variables and $w^{t}=\langle w_{1}^{i_{1}}, \cdots, w_{n}^{\iota_{n}}\rangle,$ $ w_{1}^{i}=\langle w_{11}^{t_{1}}, \cdots, w_{1n}^{i_{n}}\rangle$ .
(13) All the formulas in $\Delta(\Psi)$ are obtained from (1) $-(12)$ .
When we have the following theorems.
(IV) Interpolation theorem on primitive sets: Every primitive set is

interpolatable.
(V) Characterization theorem on primitive sets: $\Delta(\Psi)$ is a characteri-

zation set of $\Psi$ for each primitive set $\Psi$ .
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\S 4. Preservation theorems.

Let $R$ be an arbitrary relation between $\mathfrak{L}$ -structures (we write $\mathfrak{A}R\mathfrak{B}$ instead
of $\langle \mathfrak{U}, \mathfrak{B}\rangle\in R$) and $\Psi$ be a countable set of sentences in $L^{1}$. $R$ is expressible
in $L^{I}$ by $\Psi$ if the following two conditions are satisfied:

$(\#)$ For any countable $\mathfrak{L}$ -structures $\mathfrak{A},$
$\mathfrak{B}$ ,

$\mathfrak{U}R\mathfrak{B}$ implies $\mathfrak{A}\cong M_{1}^{*}$ and $\mathfrak{B}\cong M_{2}^{*}$ for some $\mathfrak{M}\models\wedge\Psi$ .
$(^{**})$ For any countable $L^{l}$ -structure $M$,
$ M\models\wedge\Psi$ implies $\mathfrak{A}\cong M_{1}^{*}$ and $\mathfrak{B}\cong M_{2}^{*}$ for some $\mathfrak{A},$

$\mathfrak{B}$ such that $\mathfrak{A}R\mathfrak{B}$ .
THEOREM 4.1 (Preservation theorem). SuppOse $R$ is expressible in $L^{I}$ by a

first order primitive set $\Psi$ . Then the following two conditions are equivalent
for any Positive sentence $\varphi\supset\psi$ .

(i) For any countable $\mathfrak{L}$ -structures $\mathfrak{U},$
$\mathfrak{B}$ , if $\mathfrak{A}R\mathfrak{B}$ and $\mathfrak{A}\models\varphi$ then $\mathfrak{B}\models\psi$ .

(ii) There is a sentence $\theta\in\Delta(\Psi)$ such that $\models\varphi\supset\theta$ and $\models\theta\supset\psi$ .
PROOF. (i) $\Leftrightarrow\models\varphi^{1}\wedge\Lambda\Psi\supset\psi^{2}$ (By Assumption and (III))

$\not\in\Rightarrow\Psi\vdash\varphi^{1}L^{I}\supset\psi^{2}$ (By (II))

$\Leftrightarrow\vdash \mathfrak{L}\varphi\supset\theta$ and $\vdash \mathfrak{L}\theta\supset\psi$ for some sentence $\theta\in\Delta(\Psi)$ (By (IV) (V))

$\Leftarrow\models\varphi\supset\theta$ and $\models\theta\supset\psi$ for some sentence $\theta\in\Delta(\Psi)$

$\epsilon\Rightarrow$ (ii). Q. E. D.
THEOREM 4.2. SuppOse $R$ is expressible in $L^{I}$ by a first order primitive set

$\Psi$ . Let $\varphi$ be a negative sentence in $\mathfrak{L}$ . Then the class of all countable $\mathfrak{L}$ -struc-
tures which are isomorphic to some $\mathfrak{B}$ such that $\mathfrak{A}R\mathfrak{B}$ for some countable $\mathfrak{A}\models\varphi$

is identical to the class of all countable models of the sentences $\theta\in\Delta(\Psi)$ such
that $\models\varphi\supset\theta$ .

PROOF. Let $S_{1}$ be the class of all countable $\mathfrak{L}$ -structures which are iso-
morphic to some $\mathfrak{B}$ such that $\mathfrak{U}R\mathfrak{B}$ for some countable $\mathfrak{A}\models\varphi$ and $S_{2}$ be the
class of all countable models of the sentences $\theta\in\Delta(\Psi)$ such that $\models\varphi\supset\theta$ .
Then clearly $S_{1}\subseteqq S_{2}$ by the assumptions.

Assume $\mathfrak{B}\in S_{2}-S_{1}$ . Then $\mathfrak{B}\models\theta$ for any sentence $\theta\in\Delta(\Psi)$ such that
$\models\varphi\supset\theta$ .

Let $\psi$ be a Scott sentence of $\mathfrak{B}$ (by (I)).

Now we want to show $\models\varphi_{\Lambda}^{1}\wedge\Psi\supset 7\psi^{2}$ .
Assume “ not $\models\varphi_{\Lambda}^{1}\wedge\Psi\supset 7\psi^{2}$ ‘’. Since $\varphi_{\wedge}^{1}\wedge\Psi\supset 7\psi^{2}$ is positive, we can

get a countable $L^{I}$-structure $M$ such that $M\models\varphi_{A}^{1}\wedge\Psi_{\Lambda}\psi^{2}$ by (III). Hence
$M\models\wedge\Psi,$ $ M_{1}^{*}\models\varphi$ and $ M_{2}^{*}\models\psi$ . Since $R$ is expressible in $L^{I}$ by $\Psi$ , there are
$\mathfrak{U}_{1},$ $B_{t}$ such that $\mathfrak{A}_{1}R\mathfrak{B}_{1}$ and $\mathfrak{A}_{1}\cong M_{1}^{*},$ $\mathfrak{B}_{1}\cong M_{2}^{*}$ . Hence $\mathfrak{A}_{1}\models\varphi$ and $\mathfrak{B}_{1}\models\psi$ . Since
$\psi$ is a Scott sentence of $\mathfrak{B},$ $\mathfrak{B}\cong \mathfrak{B}_{1}$ . This implies $\mathfrak{B}\in S_{1}$ . Contradiction !

Hence we have $\models\varphi_{\wedge}^{1}\wedge\Psi\supset 7\psi^{2}$ .
By (II), $\Psi\vdash\varphi^{1}L^{I}\supset 7\psi^{2}$ .
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By (IV), (V), $\models\varphi\supset\theta$ and $\models\theta\supset 7\psi$ for some sentence $\theta\in\Delta(\Psi)$ . This
means $\mathfrak{B}\models\theta$ and $\mathfrak{B}\models 7\theta$ . Contradiction ! Therefore $S_{1}=S_{2}$ . Q. E. D.

4.3. REMARK. Assume that $\mathfrak{L},$
$L^{I}$ are finitary logics. Then the class of

all $\mathfrak{L}$ -structures which are isomorphic to substructures of some $\mathfrak{B}$ such that
$\mathfrak{A}R\mathfrak{B}$ for some $\mathfrak{A}\models\varphi$ , is identical to the class of all models of the universal
sentences $\psi$ such that $\models\varphi\supset\theta$ and $\models\theta\supset\psi$ for some $\theta\in\Delta(\Psi)$ ,

$i$ . $e$ . of $S_{1}^{\prime}=\{\mathfrak{C};\mathfrak{C}\cong\exists \mathfrak{C}^{\prime}\subseteqq\exists \mathfrak{B}, \exists \mathfrak{A}R\mathfrak{B}, \mathfrak{A}\models\varphi\}$ ,

$S_{2}^{\prime}=\{\mathfrak{C};\mathfrak{C}\models\psi,$ $\psi$ is universal sentence such that

$\models\varphi\supset\theta$ and $\models\theta\supset\psi$ for some $\theta\in\Delta(\Psi)$ } ,

then $S_{1}^{\prime}=S_{2}^{\prime}$ .
This is a direct generalization of Tarski’s theorem on $PC_{\delta}$-class (cf. [16]).

4.4. PROPOSITION (Local preservation theorem, cf. Reyes [11]). SuppOse
$R$ is exPressible in $L^{I}$ by a first order Primitive set $\Psi$ . For any countable $\mathfrak{L}-$

structures $\mathfrak{U},$ $\mathfrak{B}$ , there are $\mathfrak{A}_{1}\cong \mathfrak{A},$ $\mathfrak{B}_{1}\cong \mathfrak{B}$ such that $\mathfrak{A}_{1}R\mathfrak{B}_{1}$ if and only if $\mathfrak{A}\models\theta$

implies $\mathfrak{B}\models\theta$ for any sentence $\theta\in\Delta(\Psi)$ .
PROOF. ” Only if “ part is obvious. Assume ”

$\mathfrak{A}\models\theta$ implies $\mathfrak{B}\models\theta$
” for

any sentence $\theta\in\Delta(\Psi)$ .
Let $\varphi,$

$\psi$ be Scott sentences of $\mathfrak{U}$ and $\mathfrak{B}$ respectively.
Assume not $\mathfrak{A}_{1}R\mathfrak{B}_{1}$ for any $\mathfrak{A}_{1}\cong \mathfrak{A},$ $\mathfrak{B}_{1}\cong \mathfrak{B}$ . Then $\models\varphi_{\Lambda}^{1}\Lambda\Psi\supset 7\psi^{2}$ . Hence

$\models\psi\supset\theta$ and $\models\theta\supset 7\psi$ for some sentence $\theta\in\Delta(\Psi)$ . Since $\mathfrak{A}\models\varphi$ , we have $\mathfrak{A}\models\theta$ .
Hence $\mathfrak{B}\models\theta$ . On the other hand $\mathfrak{B}\models\psi$ and $\models\psi\supset 7\theta$ . Hence $\mathfrak{B}\models 7\theta$ . Con-
tradiction ! Therefore for some $\mathfrak{A}_{1}\cong \mathfrak{A},$ $\mathfrak{B}_{1}\cong \mathfrak{B},$ $\mathfrak{A}_{1}R\mathfrak{B}_{1}$ . Q. E. D.

\S 5. Examples of relations expressible in $L^{I}$ by a first order
primitive set.

(5.1) Identity relation

Let $R_{i}=$ { $\langle \mathfrak{A},$ $\mathfrak{A}\rangle$ ; $\mathfrak{A}$ is an $\mathfrak{L}$ -structure}

and $\Psi_{i}=\{(\forall u)(\exists v)I_{0}(u, v),$ $(\forall v)(\exists u)I_{0}(u, v)$ ,

$(\forall\vec{u})(\forall\vec{v})(I_{0}(\vec{u},\vec{v}){}_{\Lambda}P^{1}(\vec{u})\supset P^{2}(\vec{v}))$ ,

$(\forall\vec{u})(\forall\vec{v})(I_{0}(\vec{u},\vec{v})_{\Lambda}7P^{1}(\vec{u})\supset 7P^{2}(\vec{v}));P\in PC(\mathfrak{L})\}$ .
Then $\Psi_{i}$ is a first order primitive set and $R_{i}$ is expressible in $L^{I}$ by $\Psi_{i}$ .

$\Delta(\Psi_{i})$ is essentially the set of first order formulas in negation normal forms
in $\mathfrak{L}$ .

The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{i},$ $\Psi_{i}$

is essentially Craig’s interpolation theorem extended by Maehara &Takeuti
\langle Theorem 1 in [17]).
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(5.2) Homomorphism

Let $R_{h}=\{\langle \mathfrak{A}, \mathfrak{B}\rangle;\mathfrak{A}\rightarrow\sim \mathfrak{B}\}$ ,

$\Psi_{h}=\{(\forall u)(\exists v)I_{0}(u, v),$ $(\forall v)(\exists u)I_{0}(u, v)$ ,

$(\forall\vec{u})(\forall\vec{v})(I_{0}(\vec{u},\vec{v})_{\wedge}P^{1}(\vec{u})\supset P^{2}(\vec{v}));P\in PC(\mathfrak{L})\}$ .
Then $\Psi_{h}$ is a first order primitive set and $R_{h}$ is expressible in $L^{I}$ by $\Psi_{h\sim}$

$\Delta(\Psi_{h})$ is essentially the set of first order formulas having no negation sym-
bols in $\mathfrak{L}$ .

The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{h},$ $\Psi_{h}$.
is an extension of Lyndon’s theorem [12] in the model theory on finitary

first order logic and Lopez-Escobar’s theorem [14] in the model theory of
$L_{\omega_{1}\omega}$ .

The statement obtained from Theorem 4.2 by replacing $R,$ $\Psi$ by $R_{h},$ $\Psi_{h}$

is an extension of Makkai’s theorem [9] in the model theory of $L_{\omega_{1}\omega}$ .
(5.3) Strong homomorphism
A homomorphism $f$ of $\mathfrak{U}$ to $\mathfrak{B}$ is a strong homomorPhism if for any $ P\in$

$PC(\mathfrak{L}),$ $f(\mathfrak{A}(P))=\mathfrak{B}(P)$ .
Let $R_{sh}=$ { $\langle \mathfrak{A},$ $\mathfrak{B}\rangle$ ; there is a strong homomorphism of $\mathfrak{U}$ to $\mathfrak{B}$},

$\Psi_{sh}=\Psi_{h}\cup\{(\forall\vec{v})(\exists\vec{u})(P^{2}(\vec{v})\supset I_{0}(\vec{u},\vec{v})_{\wedge}P^{1}(\vec{u})) ; P\in PC(\mathfrak{L})\}$ .
Then $\Psi_{sh}$ is a first order primitive set and $R_{sh}$ is expressible in $L^{I}$ by $\Psi_{sh}$ .
$\Delta(\Psi_{sh})$ is defined by the least set $\Delta$ satisfying the following (1) $-(4)$ :
(1) Every atomic formula whose free variables are among $V_{0}$ belongs to $\Delta$ .
(2) $\Delta$ is closed under countable conjunctions and disjunctions.
(3) $\Delta$ is closed under the first order quantifications.
(4) If $\theta(\vec{w}^{0})\in\Delta$ then $(\forall\vec{u})(P(\vec{u})\supset\theta(\vec{u}))\in\Delta$ .
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $ R_{sh}an\Lambda$

$\Psi_{sh}$ is an extension of Keisler’s theorem [6] in the model theory of $L_{\omega\omega}$ and
Makkai’s theorem [9] in the model theory of $L_{\omega_{1}\omega}$ .

The statement obtained from Theorem 4.2 by replacing $R,$ $\Psi$ by $R_{sh}an(L$

$\Psi_{sh}$ is an extension of Makkai’s theorem [9].
(5.4) Extension

Let $R_{e}=\{\langle \mathfrak{U}, \mathfrak{B}\rangle;\mathfrak{A}\subseteqq \mathfrak{B}\}$ ,

$\Psi_{e}=\Psi_{i}-\{(\forall v)(\exists u)I_{0}(u, v)\}$ .
Then $\Psi_{e}$ is a first order primitive set and $R_{e}$ is expressible in $L^{I}$ by $\Psi_{e}$ .
$\Delta(\Psi_{e})$ is defined by the least set $\Delta$ satisfying the following (1) $-(3)$ :
(1), (2) in (5.3).
(3) $\Delta$ is closed under first order existential quantifications.
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{e},$ $\Psi_{\theta}$.
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is an extension of Los-Tarski theorem [13], [16] in $L_{\omega\omega}$ and Malitz’s theorem
[10] in $L_{\omega_{1}\omega}$ .

The statement obtained from Theorem 4.2 by replacing $R,$ $\Psi$ by $R_{e},$ $\Psi_{e}$

is an extension of Bairwise theorem [1] and Makkai’s theorem [9] in $L_{\omega_{1}\omega}$ .
(5.5) Substructure

Let $R_{s}=\{\langle \mathfrak{U}, \mathfrak{B}\rangle;\mathfrak{B}\subseteqq \mathfrak{U}\}$ ,

$\Psi_{s}=\Psi_{t}-\{(\forall u)(\exists v)I_{0}(u, v)\}$ .
Then $\Psi_{s}$ is a first order primitive set and $R_{s}$ is expressible in $L^{I}$ by $\Psi_{s}$ .
$\Delta(\Psi_{s})$ is defined by the least set $\Delta$ satisfying the following (1) $-(3)$ :
(1), (2) in (5.3).

(3) $\Delta$ is closed under first order universal quantifications.
Above remarks stated in the last paragraph of 5.4 are true of $R_{s},$ $\Psi_{s}$ .
(5.6) U-extension
Let $U$ be a fixed unary predicate constant in $\mathfrak{L}$ .

$\mathfrak{B}$ is an U-extension of $\mathfrak{A}$ if $\mathfrak{U}\subseteqq \mathfrak{B}$ and $\mathfrak{U}(U)=\mathfrak{B}(U)$ .
Let $R_{Ue}=$ { $\langle \mathfrak{A},$ $\mathfrak{B}\rangle;\mathfrak{B}$ is an U-extension of $\mathfrak{U}$},

$\Psi_{Ue}=\Psi_{e}^{\cup}\{(\forall v)(\exists u)(U^{2}(v)\supset I_{0}(u, v)_{\Lambda}U^{1}(u))\}$ .
Then $\Psi_{Ue}$ is a first order primitive set and $R_{Ue}$ is expressible in $L^{I}$ by

$\Psi_{Ue}$ .
$\Delta(\Psi_{Ue})$ is defined by the least set $\Delta$ satisfying the following (1) $-(4)$ :
(1), (2), (3) in (5.4).
(4) If $\theta(w^{0})\in\Delta$ then $(\forall u)(U(u)\supset\theta(u))\in\Delta$ .
(5.7) End-extension
Let $<$ be a fixed binary predicate constant in $\mathfrak{L}$ .

$\mathfrak{B}$ is an end-extension of $\mathfrak{A}$ if $\mathfrak{A}\subseteqq \mathfrak{B}$ and for any $a\in|\mathfrak{A}|,$ $b\in|\mathfrak{B}|$ ,

$\langle b, a\rangle\in \mathfrak{B}(<)$ implies $b\in|\mathfrak{A}|$ .

Let $R_{ee}=$ { $\langle \mathfrak{A},$ $\mathfrak{B}\rangle;\mathfrak{B}$ is an end-extension of $\mathfrak{U}$},

$\Psi_{ee}=\Psi_{e}^{\cup}\{(\forall v_{1})(\forall u_{1})(\forall v)(\exists u)(v<^{2}v_{1\wedge}I_{0}(u_{1}, v_{1})\supset I_{0}(u, v))\}$ .
Tlnen $\Psi_{ee}$ is a first order primitive set and $R_{ee}$ is expressible in $L^{l}$ by $\Psi_{ee}$ .
$\Delta(\Psi_{ee})$ is defined by the least set $\Delta$ satisfying the following (1) $-(4)$ :
(1), (2), (3) in (5.4).

(4) If $\theta(w_{1}^{0})\in\Delta$ , then $(\forall u)(u<w_{2}^{0}\supset\theta(u))\in\Delta$ .
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{ee},$ $\Psi_{ee}$

is an extension of Feferman-Kreisel’s theorem [4] in $L_{\omega_{1}\omega}$ .
The statement obtained from Theorem 4.2 by replacing $R,$ $\Psi$ by $R_{ee},$ $\Psi_{ee}$

is an extension of Makkai’s theorem [9] in $L_{\omega_{1}\omega}$ .
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(5.8) Super end-extension ( $\tilde{\Sigma}_{1}$ -extension in Takahashi [21])
Let $<$ be a fixed binary predicate constant in $\mathfrak{L}$ . $\mathfrak{B}$ is a super end-

extension of $\mathfrak{A}$ if $\mathfrak{B}$ is an end-extension of $\mathfrak{A}$ and for any $a\in|\mathfrak{U}|,$ $b\in|\mathfrak{B}|$

$\{c;\langle c, b\rangle\in \mathfrak{B}(<), c\in|\mathfrak{B}|\}\subseteqq\{c;\langle c, a\rangle\in \mathfrak{B}(<), c\in|\mathfrak{B}|\}$

implies $b\in|\mathfrak{U}|,$ $i$ . $e$ .
$\mathfrak{B}\models(\forall u)(u<x\supset u<y)[b, a]$ implies $b\in|\mathfrak{U}|$ .

Let $R_{se}=$ { $\langle \mathfrak{U},$ $\mathfrak{B}\rangle;\mathfrak{B}$ is a super end-extension of $\mathfrak{A}$ },

$\Psi_{se}=\Psi_{ee}^{\cup}\{(\forall v_{1})(\forall u_{1})(\forall v_{2})(\exists u_{2})((\forall v)(v<2v_{2}\supset v<2v_{1})_{\wedge}I_{0}(u_{1}, v_{1})\supset I_{0}(u_{2}, v_{2}))\}$ .
Then $\Psi_{se}$ is a first order primitive set and $R_{se}$ is expressible in $L^{I}$ by $\Psi_{se}$ .

$\Delta(\Psi_{se})$ is defined by the least set $\Delta$ satisfying the following (1) $-(5)$ :
(1) $-(4)$ in (5.7).
(5) If $\theta(w_{1}^{0})\in\Delta$ , then $(\forall u)((\forall v)(v<u\supset)v<w_{2}^{0})\supset\theta(u))\in\Delta$ .
(5.9) Endomorphism

Let $R_{ed}=$ { $\langle \mathfrak{U},$ $\mathfrak{B}\rangle$ ; $\mathfrak{U}\rightarrow\sim \mathfrak{B}$ and $\mathfrak{B}\subseteqq \mathfrak{U}$},

$\Psi_{ed}=\Psi_{h}^{\cup}\{(\forall v)(\exists u)I_{1}(u, v),$ $(\forall\vec{u})(\forall\vec{v})(I_{1}(\vec{u},\vec{v})_{\wedge}P^{1}(\vec{u})\supset P^{2}(\vec{v}))$

$(\forall\vec{u})(\forall\vec{v})(I_{1}(\vec{u},\vec{v})_{\Lambda}7P^{1}(\vec{u})\supset 7P^{2}(\vec{v}));P\in PC(\mathfrak{L})\}$ .
Then $\Psi_{ed}$ is a first order primitive set and $R_{ed}$ is expressible in $L^{I}$ by $\Psi_{ed}$ .
$\Delta(\Psi_{ed})$ is defined by the least set $\Delta$ satisfying the following (1) $-(5)$ :
(1) Every atomic formula whose free variables are among $V_{0}$ belongs

to $\Delta$ .
(2) Every atomic formula and its negation whose free variables are

among $V_{1}$ belong to $\Delta$ .
(3) $\Delta$ is closed under countable conjunctions and disjunctions.
(4) If $\theta(w^{0})\in\Delta$ then $(\forall v)\theta(v),$ $(\exists v)\theta(v)\in\Delta$ .
(5) If $\theta(w^{1})\in\Delta$ then $(\forall v)\theta(v)\in\Delta$ .
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{ed},$ $\Psi_{ed}$

is an extension of Makkai’s theorem [9] in $L_{\omega_{1}\omega}$ and the statement obtained
from Theorem 4.2 by replacing $R,$ $\Psi$ by $R_{ed},$ $\Psi_{ed}$ is an extension of Makkai’s
theorem [9] in $L_{\omega_{1}\omega}$ .

(5.10) Retract
Let $R_{r}=\{\langle \mathfrak{A}, \mathfrak{B}\rangle;\mathfrak{B}\subseteqq \mathfrak{A}$ and there is a homomorphism $f$ of $\mathfrak{A}$ to $\mathfrak{B}$

such that $f(b)=b$ for any $b\in|\mathfrak{B}|$ },

$\Psi_{r}=\Psi_{ed^{\cup}}\{(\forall v_{1})(\forall u_{1})(\forall v_{2})(\forall u_{2})(I_{0}(u_{1}, v_{1})_{\Lambda}I_{1}(u_{Z}, v_{2})_{A}u_{1}\pm^{1}u_{2}\supset v_{1}\pm^{2}v_{2})\}$ .
Then $\Psi_{r}$ is a first order primitive set and $R_{r}$ is expressible in $L^{I}$ by $\Psi_{r}$ .
$\Delta(\Psi_{\gamma})$ is defined by the least set $\Delta$ satisfying the following (1) $-(6)$ .
(1) $-(5)$ in (5.8).
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(6) $ w^{0}\pm w^{1}\in\Delta$ for any $w^{0},$ $w^{1}$ .
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{r},$ $\Psi_{r}$

is an extension of Keisler’s theorem [6] in $L_{\omega\omega}$ and Makkai’s theorem [9]
in $L_{\omega_{1}\omega}$ and the statement obtained from Theorem 4.2 by the same method
above is an extension of Makkai’s theorem [9] in $L_{\omega_{1}\omega}$ .

(5.11) Direct root of direct power.
Let $R_{dp}=\{\langle \mathfrak{U}, \mathfrak{B}\rangle;\mathfrak{U}\times \mathfrak{U}\cong \mathfrak{B}\times \mathfrak{B}\}$ ,

$\Psi_{dp}=\{(\forall u_{1})(\forall u_{2})(\exists v_{1})(\exists v_{2})(I_{1}(u_{1}, v_{1})_{\wedge}I_{2}(u_{2}, v_{2}))$

$(\forall v_{1})(\forall v_{2})(\exists u_{1})(\exists u_{2})(I_{1}(u_{1}, v_{1})_{\wedge}I_{2}(u_{2}, v_{2}))$

$(\forall\vec{u}_{1})(\forall\vec{u}_{2})(\forall\vec{v}_{1})(\forall\vec{v}_{2})(I_{1}(\vec{u}_{1},\vec{v}_{1})_{\Lambda}I_{2}(\vec{u}_{2},\vec{v}_{2})_{\wedge}P^{1}(\vec{u}_{1}){}_{A}P^{1}(\vec{u}_{2})$

$\supset P^{2}(\vec{v}_{1})_{\wedge}P^{2}(\vec{v}_{2}))$

$(\forall\vec{u}_{1})(\forall\vec{u}_{2})(\forall\vec{v}_{1})(\forall\vec{v}_{2})(I_{1}(\vec{u}_{1},\vec{v}_{1})_{\wedge}I_{2}(\vec{u}_{2},\vec{v}_{2})_{\Lambda}7(P^{1}(\vec{u}_{1})_{\wedge}P^{1}(\vec{u}_{2}))$

$\supset 7(P^{2}(\vec{v}_{1}){}_{\Lambda}P^{2}(\vec{v}_{2})));P\in PC(\mathfrak{L})\}$ .
Then $\Psi_{dp}$ is a first order primitive set and $R_{dp}$ is expressible in $L^{I}$ by

$\Psi_{dp}$ .
$\Delta(\Psi_{dp})$ is defined by the least set $\Delta$ satisfying the following (1) $-(3)$ :
(1) $T,$ $\perp,$ $P(\vec{w}^{1})_{\wedge}P(\vec{w}^{2}),$ $ 7(P(\vec{w}^{1})_{\wedge}P(\vec{w}^{2}))\in\Delta$ for any $P\in PC(\mathfrak{L})$ .
(2) $\Delta$ is closed under countable conjunctions and disjunctions.
(3) If $\theta(w^{1}, w^{2})\in\Delta$ , then $(\forall u_{1})(\forall u_{2})\theta(u_{1}, u_{2}),$ $(\exists v_{1})(\exists v_{2})\theta(v_{1}, v_{2})\in\Delta$ .
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{dp},$ $\Psi_{dp}$

is an extension of Keisler’s theorem [6] in $L_{\omega\omega}$ and Makkai’s theorem [9] in
$L_{\omega_{1}\omega}$ and the statement obtained from Theorem 4.2 by the same method
above is an extension of Makkai’s theorem [9] in $L_{\omega_{1}\omega}$ .

(5.12) Direct factor
$Le|_{\vee}^{-}$ $R_{df}=$ { $\langle \mathfrak{A},$ $\mathfrak{B}\rangle;\mathfrak{U}\cong \mathfrak{B}\times \mathfrak{C}$ for some $\mathfrak{C}$ } ,

$\Psi_{df}=\{(\forall u)(\exists v)I_{j}(u, v)i\leqq j(\forall v)(\exists u)I_{i}(u, v)$ ,

$(\forall\vec{u})(\forall\vec{v})(I_{i}(\vec{u},\vec{v}){}_{\wedge}P^{1}(\vec{u})\supset P^{2}(\vec{v}))$ ,

$(\forall\vec{u}_{1})(\forall\vec{u}_{2})(\forall\vec{v}_{1})(\forall\vec{v}_{2})(I_{\mathfrak{t}}=(\vec{u}_{1},\vec{v}_{1})_{\Lambda}I_{i}(\vec{u}_{2},\vec{v}_{2}){}_{\Lambda}P^{1}(\vec{u}_{1})_{\Lambda}7P^{1}(\vec{u}_{2})$

$\supset P^{2}(\vec{v}_{1})_{\wedge}7P^{2}(\vec{v}_{2}));i<\omega,\vec{i},$ $P\in PC(\mathfrak{L})$}.

Then obviously $\Psi_{df}$ is a first order primitive set but it is not obvious
that $R_{ff}$

( is expressible in $L^{I}$ by $\Psi_{df}$ although condition $(^{*})$ is obvious for $R_{df}$

and $\Psi_{a\dagger,f}$ ; to show that, we have only to prove that $R_{df}$ and $\Psi_{df}$ satisfy $(^{**})$ .
Suppose $M$ is countable and $M\models\wedge\Psi_{df}$ .

Let $D_{i}=$ { $a^{*};$ for some $b^{*},$ $\langle a^{*},$ $b^{*}\rangle\in M(I_{i})^{*}$ }, $ i<\omega$ .
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Then (a) $M(I_{i})^{*}$ is a mapping $f_{i}$ from $D_{i}$ onto $|M_{2}^{*}|$ .
(b) $UD_{t}=|M_{1}^{*}|<w$

(c) for any $P\in PC(\mathfrak{L}),\tilde{i}=\langle i_{1}, \cdots , i_{k}\rangle,$ $a_{1}^{*}\in D_{i_{1}},$ $a_{k}^{*}\in D_{l_{k}}$ ,

$b_{1}^{*}\in D_{i_{1}},$ $b_{k}^{*}\in D_{i_{k}}$ ,

$\langle a_{1}^{*}, \cdots , a_{k}^{*}\rangle\in M_{1}^{*}(P)$ implies $\langle f_{i_{1}}(a_{1}^{*}), \cdots , f_{i_{k}}(a_{k}^{*})\rangle\in M_{2}^{*}(P)$ ,

$\langle a_{1}^{*}, \cdots , a_{k}^{*}\rangle\in M_{1}^{*}(P)$ and $\langle b_{1}^{*}, b_{k}^{*}\rangle\not\in M_{1}^{*}(P)$ imply

$\langle f_{i_{1}}(b_{1}^{*}), f_{i_{k}}(b_{k}^{*})\rangle\not\in M_{2}^{*}(P)$ .
By using (a), (b), (c), we can get

(d) $ D_{l}\cap D_{j}\neq\phi$ implies $f_{i}=f_{j}$ .
(e) $f_{i}$ is a bijection.

Let $i\sim j\Leftrightarrow D_{i}=D_{j}$ and $|\mathfrak{C}|=\omega/\sim$ ,

$\mathfrak{C}(P)=$ { $\langle i_{1}\sim,$

$\cdots$

$,$

$\sim i_{k}\rangle$ ; for some $a_{1}^{*}\in D_{i_{1}},$ $\cdots$ , $a_{k}^{*}\in D_{i_{k}},$ $\langle a_{1}^{*},$ $a_{k}^{*}\rangle\in M_{1}(P)$ }.

Then $M_{1}^{*}\cong M_{2}^{*}\times \mathfrak{C}$ .
Hence we can conclude that $R_{df}$ is expressible in $L^{I}$ by $\Psi_{df}$.
$\Delta(\Psi_{df})$ is defined by the least set $\Delta$ satisfying the following (1) $-(4)$ :
(1) $T,$ $\perp,$ $P(w_{1}^{l}),$ $ P(w_{1}^{i})_{\wedge}7P(w_{2}^{i})\in\Delta$ for any $P\in PC(\mathfrak{L})$ ,

$w_{1}^{i}=\langle w_{11}^{i_{1}}, w_{1k}^{i_{k}}\rangle,$ $ w_{2}^{i}=\langle w_{21}^{i_{1}}, w_{2k}^{i_{k}}\rangle$ .
(2) $\Delta$ is closed under countable conjunctions and disjunctions.
\langle 3) If $\theta(w^{i})\in\Delta$ then $(\forall u)\theta(u)\in\Delta$ .
(4) If $\theta(w^{i})\in\Delta$ and $V((\exists v)\theta(v))\subset\cup V_{j}$ then $(\exists v)\theta(v)\in\Delta$ .

$j<i$

The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{df},$ $\Psi_{df}$

is an extension of Keisler’s theorem [6] in $L_{\omega\omega}$ and Makkai’s theorem [9] in
$L_{\omega_{1}\omega}$ and the statement obtained from Theorem 4.2 by the same method above
is an extension of Makkai’s theorem [9].

(5.13) $k$ -isomorPhic union
Let $ R_{ku}=\{\langle \mathfrak{U}, \mathfrak{B}\rangle$ ; for some k-family $S$ such that every element in $S$ is

isomorphic to $\mathfrak{U},$ $\mathfrak{B}=\cup S$ },

$\Psi_{ku}=\{(\forall u)(\exists v)I_{i}(u, v),$
$(\forall v_{1})\cdots(\forall v_{k})(\exists u_{1})\cdots(\exists u_{k})I_{j}(u_{1}, v_{1})_{A\cdot\cdot\wedge}I_{j}(u_{k}, v_{k})i\leqq j$

$(\forall\vec{u})(\forall\vec{v})(I_{i}(\vec{u},\vec{v})_{\wedge}(P^{1}(\vec{u})\supset P^{2}(\vec{v}))$

$(\forall\vec{u})(\forall\vec{v})(I_{i}(\vec{u},\vec{v})_{\wedge}7P^{1}(\vec{u})\supset 7P^{2}(\vec{v}));P\in PC(\mathfrak{L}),$ $ i<\omega$}.

Then $\Psi_{ku}$ is a first order primitive set and $R_{ku}$ is expressible in $L^{I}$ by
$\Psi_{ku}$ .

$\Delta(\Psi_{ku})$ is defined by the least set $\Delta$ satisfying the following (1) $-(4)$ :
(1) Every atomic formula and its negation whose free variables are all

in $V_{i}$ for some $ i<\omega$ belong to $\Delta$ .
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(2) $\Delta$ is closed under countable conjunctions and disjunctions.
(3) $\Delta$ is closed under the first order existential quantifications.
(4) If $\theta(w_{1}^{i}, \cdots , w_{k}^{i})\in\Delta$ and $V((\forall u_{1})\cdots(\forall u_{k})\theta(u_{1}\cdots u_{k}))\subseteqq UV_{j}$ then

$j<i$

$(\forall u_{1})\cdots(\forall u_{k})\theta(u_{1}\cdots u_{k})\in\Delta$ .
Especially if we consider only finitary formulas then every formula in

$\Delta(\Psi_{ku})$ is so-called universal existential formula (see Keisler [5], Weistein [19]).
So, the statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{ku}$ ,

$\Psi_{ku}$ is an extension of Keisler’s theorem [5] in $L_{\omega\omega}$ .
(5.14) $\omega$ -isomorPhic union
Let $ R_{\omega u}=\{\langle \mathfrak{U}, \mathfrak{B}\rangle$ ; for some $\omega$-family $S$ such that every element in $S$ is

isomorphic to $\mathfrak{A},$ $\mathfrak{B}=US$ } ,
$\Psi_{\omega u}=U\Psi_{ku}k<\omega$

Then $\Psi_{\omega u}$ is a first order primitive set and $R_{\omega u}$ is expressible in $L^{I}$ by
$\Psi_{\omega u}$ .

$\Delta(\Psi_{\omega u})$ is the union set of all $\Delta(\Psi_{ku}),$ $ k<\omega$ .
The statement obtained from Theorem 4.1 by replacing $R,$ $\Psi$ by $R_{\omega u},$ $\Psi_{\omega u}$

is an extension of Los, Chang’s theorem [2] in $L_{\omega\omega}$ .
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