Model theory on a positive second order logic with countable conjunctions and disjunctions

By Nobuyoshi MOTOHASHI

(Received Nov. 9, 1971)

Introduction.

This paper is a sequel to our paper [8], in Chapter V of which we developed a general theory of so-called " preservation theorem" without using any model theoretic notions, so that we can apply it to different kinds of logics. In this paper, we shall show some applications of it to the model theory on a positive second order logic \mathfrak{R} (in the sense of [17]) with countable conjunctions and disjunctions. (Cf. Theorem 4.1 and Theorem 4.2 in §4.)

Suppose $(\exists \xi) \varphi(\xi),(\forall \eta) \psi(\eta), \varphi_{1}, \psi_{1}$ are sentences in the second order logic such that $\varphi(\xi), \psi(\eta), \varphi_{1}, \psi_{1}$ have no second order quantifiers and ξ, η are second order variables. Notice that the sentence $(\exists \xi) \varphi(\xi) \supset(\forall \eta) \psi(\eta)$ is a sentence in the positive second order logic $\mathfrak{\Omega}$. Hence, Craig's interpolation theorem can be expressed in the following form:
(1) If $\vdash(\exists \xi) \varphi(\xi) \supset(\forall \eta) \psi(\eta)$, then $\vdash(\exists \xi) \varphi(\xi) \supset \theta$ and $\vdash \theta \supset(\forall \eta) \psi(\eta)$ for some first order sentence θ.

Also, Los-Tarski's theorem on extension can be expressed in the following form:
(2) If every extension of a model of φ_{1} is a model of ψ_{1} then $\vdash \varphi_{1} \supset \theta$ and $\vdash \theta \supset \psi_{1}$ for some existential sentence θ.

Combining (1) and (2), we can get
(3) If every extension of a model of $(\exists \xi) \varphi(\xi)$ is a model of $(\forall \eta) \psi(\eta)$, then $\vdash(\exists \xi) \varphi(\xi) \supset \theta$ and $\vdash \theta \supset(\forall \eta) \psi(\eta)$ for some first order existential sentence θ.

This is an example of preservation theorems in the positive second order logic \mathfrak{Z}. Our Theorem 4.1 is a generalization of the preservation theorems. of the form (3) to $L_{\omega_{1} \omega}$.

On the other hand, Tarski's theorem on $\mathrm{PC}_{\dot{j}}$-class can be expressed in the following form:
(4) The class of substructures of models of $(\exists \xi) \varphi(\xi)$ is an $\mathrm{EC}_{\tilde{\delta}}$-class.

Our Theorem 4.2 is a generalization of infinitary analogues of (4) to $L_{\omega_{1} \omega}$. After some preparations in $\S 1,2$ and 3 , we shall prove these theorems in
§4. In §5, we shall see many instances of our main theorems with respect to different morphisms between models e.g. identity relation, homomorphism, strong homomorphism, extension, substructure, U-extension, end-extension, super end-extension, endomorphism, retract, direct root of direct power, direct factor, k-isomorphic union and ω-isomorphic union.

§ 1. Logic Ω.

Let \mathfrak{R} be a fixed second order logic with equality \bumpeq. We do not consider \bumpeq as a logical symbol, but as a designated binary predicate constant. For simplicity, we assume that \mathfrak{Z} has neither function symbols nor individual constant symbols. Let $P F(\mathfrak{Z}), P B(\mathfrak{Z}), P C(\mathfrak{Z}), F V(\mathfrak{Z}), B V(\mathfrak{Z})$ and $F M(\mathfrak{Z})$ be the set of free predicate variables (denoted by α, β, \cdots), the set of bound predicate variables (denoted by ξ, η, \cdots), the set of predicate constants (denoted by P, \cdots), the set of free individual variables (denoted by x, y, w, \cdots), the set of bound individual variables (denoted by u, v, \cdots) and the set of formulas (denoted by $\theta, \varphi, \psi, \cdots)$ in \mathfrak{Z} respectively. We assume that $\bumpeq \in P C(\mathfrak{Z}), P F(\mathfrak{Z})$ and $F V(\Omega)$ are countably infinite, $P B(\mathfrak{Z})$ and $B V(\mathfrak{Z})$ are uncountably infinite, $P F(\mathfrak{Z})$ and $P B(\mathfrak{Z})$ have sufficiently many k-ary predicate variables for each $k<\omega$. As logical symbols, we shall use 7 (negation), \wedge (countable conjunction), \vee (countable disjunction), \forall (universal quantification) and \exists (existential quantification). Moreover, \mathfrak{R} has two propositional constants T (truth) and \perp (false). We shall use \supset (implication), \equiv (equivalence) as abbreviations as usual. For any $\theta \in$ $F M(\Omega)$, let $P F(\theta), F V(\theta)$ and $V(\theta)$ be the set of free predicate variables in θ, the set of free individual variables in θ and the set of free variables in θ. We always assume that $V(\theta)$ is finite for each $\theta \in F M(\mathbb{Z})$ throughout this paper. A sentence θ is a formula such that $V(\theta)=\phi$.

Let t, s be two variables (free or bound, predicate or individual). We say that " t and s are of the same type" if both t and s are individual variables or both t and s are predicate variables with the same number of argument places. Let \vec{t} and \vec{s} are two finite sequences of variables. \vec{t} and \vec{s} are called of the same type if the lengths of \vec{t} and \vec{s} are the same and the i-th variable of \vec{t} and the i-th variable of \vec{s} are of the same type for i.

Let θ be a formula, \vec{t} and \vec{s} be two sequences of variables of the same type such that all variables in \vec{t} are free variables and distinct. By $\theta\binom{\vec{t}}{\vec{s}}$, we mean the expression (not always formula) obtained from θ by substituting t_{1}, \cdots, t_{n} by s_{1}, \cdots, s_{n} respectively, where n is the length of \vec{t} and \vec{s}. When no confusion is to be feared we shall write θ in this situation by $\theta(\vec{t})$ and $\theta\binom{\vec{t}}{\vec{s}}$ by $\theta(\vec{s})$.

A quasi \mathfrak{R}-structure \mathfrak{A} is a mapping from $P C(\mathfrak{Z})$ to the set of all finitary relations on a non empty set $|\mathfrak{H}|$ (called the universe of \mathfrak{U}) such that $\mathfrak{X}(P)$ $\subset|\mathfrak{U}|^{k}$ for each k-ary $P \in P C(\mathfrak{Z})$ and $\mathfrak{A}(\Omega)$ is a congruence relation with respect to $\mathfrak{H}(P)$ for each $P \in P C(\mathfrak{Z}) ; \mathfrak{A}(\Omega)$ is an equivalence relation on $|\mathfrak{H}|$ and for any k-ary predicate constant $P \in P C(\Omega)$, any k-ary sequences $\left\langle a_{1}, \cdots\right.$, $\left.a_{k}\right\rangle,\left\langle b_{1}, \cdots, b_{k}\right\rangle$ of elements in $|\mathfrak{A}|$ such that $\left\langle a_{1}, b_{1}\right\rangle \in \mathfrak{Z}(\Omega), \cdots,\left\langle a_{k}, b_{k}\right\rangle \in \mathfrak{Z}(\Omega)$, $\left\langle a_{1}, \cdots, a_{k}\right\rangle \in \mathfrak{U}(P)$ implies $\left\langle b_{1}, \cdots, b_{k}\right\rangle \in \mathfrak{Y}(P)$. \mathfrak{H} is said to be countable if $|\mathfrak{H}|$ is countable. If $\mathfrak{Z}(\bumpeq)$ is the identity relation on $|\mathfrak{H}|, \mathfrak{H}$ is said to be an \mathbb{R} structure. For any quasi \mathbb{Q}-structure \mathfrak{A}, we shall associate an \mathbb{R}-structure \mathfrak{A} * by $|\mathfrak{A} *|=|\mathfrak{H}| / \mathfrak{A}(\bumpeq)$, $\mathfrak{2} *(P)=\mathfrak{N}(P) / \mathfrak{H}(\bumpeq), P \in P C(\mathfrak{Z})$ (usual factorization through the equivalence relation $\mathfrak{X}(\Omega))$. For each $a \in|\mathfrak{Q}|$, by a^{*} we shall denote the equivalence class of a. By an assignment τ in \mathfrak{N}, we mean a mapping from $\operatorname{PF}(\mathfrak{Z}) \cup F V(\mathfrak{Z})$ to the union set of $|\mathfrak{H}|$ and the set of all finitary relations on $|\mathfrak{A}|$, compatible with $\mathfrak{X}(\bumpeq)$, such that $\tau(x) \in|\mathfrak{H}|$ and $\left.\tau(\alpha) \subseteq|\mathfrak{R}|\right|^{k}$ for any $x \in F V(\mathfrak{R})$ and any k-ary $\alpha \in P F(\mathfrak{Z})$. For any assignment τ in \mathfrak{A}, τ^{*} is an assignment in $\mathfrak{2 *}$ naturally defined by τ and \mathfrak{H}. If \mathfrak{H} is a quasi- \mathfrak{E}-structure, τ is an assignment in \mathfrak{U} and θ is a formula, then the notion " θ is satisfied in \mathfrak{A} by τ " (denoted by $\mathfrak{X} \vDash \theta[\tau]$) can be defined as usual. Obviously $\mathfrak{A} \vDash \theta[\tau]$ if and only if $\mathfrak{R}^{*} \vDash \theta\left[\tau^{*}\right]$. If $F V(\theta)=\left\{x_{1}, \cdots, x_{n}\right\}, \operatorname{PF}(\theta)=\left\{\alpha_{1}, \cdots, \alpha_{m}\right\}, \tau\left(x_{1}\right)=a_{1}, \cdots$, $\tau\left(x_{n}\right)=a_{n}, \tau\left(\alpha_{1}\right)=Q_{1}, \cdots, \tau\left(\alpha_{m}\right)=Q_{m}$, we shall write $\mathfrak{A} \vDash \theta\left[\begin{array}{c}x_{1}, \cdots, x_{n}, \alpha_{1}, \ldots, \alpha_{m} \\ a_{1}, \cdots, a_{n}, Q 1+\cdots, Q_{m}\end{array}\right]$ instead of $\mathfrak{H} \vDash \theta[\tau]$. If in particular θ is a sentence and \mathfrak{N} is an \mathfrak{R}-structure, we shall write $\mathfrak{H} \vDash \theta$ and say that \mathfrak{U} is a model of θ. For any set Ψ of sentences in $\mathfrak{Z}, \mathfrak{A}$ is a model of Ψ if \mathfrak{A} is a model of every θ in $\Psi . \theta$ is said to be valid (written by $\vDash \theta$) if for any \mathbb{Z}-structure \mathfrak{H} and any assignment τ in \mathfrak{H}, ' $\mathfrak{A} \vDash \theta[\tau]$ ' holds (of course this is equivalent to "for any quasi-R-structure \mathfrak{A} and any assignment τ in \mathfrak{A}, ' $\mathfrak{Z} \vDash \theta[\tau]$ ' holds"). Let $P F M(\mathfrak{Q})=\{\theta ; \vDash \theta\}$. Then obviously $\operatorname{PFM}(\mathfrak{Z})$ satisfies the requirements mentioned in $\S 1$ of Chapter I of Motohashi [8]. If $\theta \in P F M(\mathbb{Z})$, we write $\vdash \theta$. Hence $\vDash \theta$ is equivalent to $\underset{\varepsilon}{\vdash} \theta$.

Let $\mathfrak{A}, \mathfrak{B}$ be two \mathfrak{R}-structures and f be a mapping from $|\mathfrak{N}|$ to $|\mathfrak{B}|$. Then $f(\mathfrak{H})$ is an \mathfrak{R}-structure defined by $|f(\mathfrak{Y})|=\{f(a): a \in|\mathfrak{X}|\}$ (denoted by $f(|\mathfrak{H}|))$ and $(f(\mathfrak{H}))(P)=\left\{\left\langle f\left(a_{1}\right) \cdots f\left(a_{k}\right)\right\rangle:\left\langle a_{1} \cdots a_{k}\right\rangle \in \mathfrak{Y}(P)\right\}$ (denoted by $\left.f(\mathfrak{Y}(P))\right)$. If f is a bijection and $f(\mathfrak{X})=\mathfrak{B}$, we say that f is an isomorphism of \mathfrak{H} to \mathfrak{B}. If there is an isomorphism of \mathfrak{A} to \mathfrak{B}, we say that \mathfrak{A} and \mathfrak{B} are isomorphic and write $\mathfrak{H} \cong \mathfrak{B}$. If f is a surjection and $f(\mathfrak{Y}(P)) \subseteq \mathfrak{B}(P)$ for each $P \in P C(\mathfrak{Z})$, we say that f is a homomorphism of \mathfrak{X} to \mathfrak{B}. If there is a homomorphism of \mathfrak{A} to \mathfrak{B}, we say that \mathfrak{A} is homomorphic to \mathfrak{B} and write $\mathfrak{A} \simeq \mathfrak{B}$. If f is an injection and $f(\mathfrak{U}(P))=\mathfrak{B}(P) \cap(f(|\mathfrak{P}|))^{k}$ for each k-ary $P \in P C(\mathfrak{Z})$, we say that f is an embedding of \mathfrak{A} to \mathfrak{B}. If $|\mathfrak{X}| \subseteq|\mathfrak{B}|$ and the inclusion mapping is an embedding, we say that \mathfrak{A} is a substructure of \mathfrak{B} or \mathfrak{B} is an extension of \mathfrak{Z} and write $\mathfrak{Z} \subseteq \mathfrak{B}$. The product of \mathfrak{U} and \mathfrak{B} (denoted by $\mathfrak{U} \times \mathfrak{B})$ is an \mathfrak{R}-structure \mathfrak{C} defined
by $|\mathfrak{C}|=|\mathfrak{A}| \times|\mathfrak{B}|, \mathfrak{C}(P)=\left\{\left\langle\left\langle a_{1}, b_{1}\right\rangle, \cdots,\left\langle a_{k}, b_{k}\right\rangle\right\rangle ;\left\langle a_{1}, \cdots, a_{k}\right\rangle \in \mathfrak{H}(P),\left\langle b_{1}, \cdots, b_{k}\right\rangle\right.$ $\in \mathfrak{B}(P)\}$ for any k-ary $P \in P C(\mathfrak{Z})$. Let S be a set of \mathbb{R}-structures. Then the unien of S is the \mathfrak{Z}-structure \mathfrak{A} (denoted by $\cup S$) such that $|\mathfrak{A}|=\bigcup_{\mathfrak{B} \in S}|\mathfrak{B}|, \mathfrak{H}(P)$ $=\underset{\mathcal{B} \in S}{ } \mathfrak{B}(P)$ for each $P \in P C(\mathfrak{Z})$. S is called a k-family if for any $a_{1}, \cdots, a_{k} \in$ $|\cup S|$, there is a $\mathfrak{U} \in S$ such that $a_{1}, \cdots, a_{k} \in|\mathfrak{X}| . S$ is called an ω-family if S is a k-family for any $k<\omega$. If S is a k-family, $\cup S$ is called the k-union of S. If S is an ω-family, $\cup S$ is called the ω-union of S.

A formula is called first order if it does not contain any second order quantifiers.

Now, we define recursively as follows (following [17]) the notion "a formula is positive or negative with respect to the second order quantifiers", which will be expressed by "a formula is positive or negative" for brevity.
(1) Every first order formula is positive and negative.
(2) If $\theta(\alpha)$ is positive, then $(\forall \xi) \theta(\xi)$ is positive.

If $\theta(\alpha)$ is negative, then $(\exists \xi) \theta(\xi)$ is negative.
(3) $(\forall v) \theta(v),(\exists v) \theta(v)$ are positive or negative according as θ is positive or negative.
(4) 7θ is positive or negative according as θ is negative or positive.
(5) Let $\wedge \Phi, \vee \Phi$ be formulas in \mathfrak{R}.

If all formulas in Φ are positive, then $\wedge \Phi, \vee \Phi$ are positive.
If all formulas in Φ are negative, then $\wedge \Phi, \vee \Phi$ are negative.
(6) All positive or negative formulas are obtained by (1)-(5).

Now we state a well-known theorem due to D. Scott in the terminology defined above. This theorem will be used in $\S 4$.
(I) Scott's isomorphism theorem: For any countable \mathfrak{Z}-structure \mathfrak{N}, there is a first order sentence φ (called a Scott sentence of \mathfrak{Z}) such that for any countable \mathfrak{Z}-structure \mathfrak{B},

$$
\mathfrak{B} \vDash \varphi \text { if and only if } \mathfrak{N} \cong \mathfrak{B} \text {. }
$$

(Cf. Chang [3], Keisler [7], Scott [15]).

§ 2. Logic ${ }^{1}$.

From \mathfrak{Z}, we construct two object logics \mathfrak{R}^{1} and \mathfrak{R}^{2} by the method in [20]. Then for each $\theta \in F M(\mathfrak{Z}), \theta^{1}$ is the formula of \mathbb{R}^{1} obtained from θ by replacing every $\alpha, \xi, P, \mathrm{~T}, \perp$ in θ by $\alpha^{1}, \xi^{1}, P^{1}, \mathrm{~T}^{1}, \perp^{1}$ respectively. Similarly θ^{2} is obtained.

Let $\left\{I_{i}\right\}_{i<\omega}$ be a set of binary predicate constants which do not appear in $\mathfrak{R}, \mathfrak{R}^{1}, \mathfrak{R}^{2}$. Then the formation rules of formulas in L^{I} can be expressed as follows;
(1) $I_{i}(x, y)$ is a formula in L^{I} for each $i<\omega, x, y$.
(2) θ^{1}, θ^{2} are formulas in L^{I} for each $\theta \in F M(\Omega)$.
(3) If F is a formula in L^{I}, then $7 F$ is a formula in L^{I}.
(4) If K is a non empty countable set of formulas in L^{I} such that the set of free variables in K is finite, then $\wedge K, \vee K$ are formulas in L^{I}.
(5) If $F(x)$ is a formula in L^{I} and v does not occur in $F(x)$, then $(\forall v) F(v)$, $(\exists v) F(v)$ are formulas in L^{I}.
(6) All the formulas in L^{I} are obtained from (1)-(5).

By F, G (with or without suffixes) we shall denote formulas in L^{I} and $F M\left(L^{I}\right)$ the set of formulas in L^{I}. Every notion above mentioned with respect to formulas in \mathfrak{Z} is also used to formulas in L^{I} (e.g. $F V(F), V(F), \cdots$). A formula F in L^{I} is said to be a 1 -formula if $F=\theta^{1}$ for some $\theta \in F M(\Omega)$ and a 2-formula if $F=\theta^{2}$ for some $\theta \in F M(\Omega)$. If F is neither 1 -formula nor 2formula, F is called an I-formula. As for formulas in L^{I}, we can define a notion "a formula is positive or negative (with respect to the second order quantifiers)" by the same method as in the case of formulas in \mathfrak{R}.

An L^{I}-structure M is a mapping from $\left\{I_{i}\right\}_{i<\omega} \cup\left\{P^{1}, P^{2} ; P \in P C(\mathbb{Z})\right\}$ to the set of all finitary relations on a non-empty set $|M|$ (called the universe of M), such that M_{1} and M_{2} are quasi- \mathcal{Z}-structures, where $\left|M_{1}\right|=\left|M_{2}\right|=|M|$, $M_{1}(P)=M\left(P^{1}\right), M_{2}(P)=M\left(P^{2}\right)$, for each $P \in P C(\Omega)$ and $M\left(I_{i}\right) \cong|M|^{2}$ for each I_{i}. For each M, each $i<\omega$, let $M\left(I_{i}\right)^{*}=\left\{\left\langle a^{*}, b^{*}\right\rangle ;\langle a, b\rangle \in M\left(I_{i}\right), a^{*} \in\left|M_{1}^{*}\right|\right.$, $\left.b^{*} \in\left|M_{2}^{*}\right|\right\}$. Then $M(I)^{*}$ is a relation between M_{1}^{*} and $M_{2}^{*} . \quad M$ is countable if $|M|$ is countable. Then the notions " an assignment ν in M ", " $M \vDash F$ ", " M is a model of F " " $\vDash F$ " are defined similarly as in $\S 1$.

As for axioms, inference rules and derivations of L^{1}, we use those described in [20]. Then by the straight-forward generalization of the method in Lopez-Escobar [14], we can get the following completeness theorem for positive sentences in L^{I} and Löwenheim-Skolem's theorem for positive sentences in L^{I}.
(II) Completeness theorem for positive sentences in $L^{I}: \vDash F \Leftrightarrow \underset{L^{1}}{ } F$ for any positive sentence F in L^{1}.
(III) Löwenheim-Skolem's theorem for positive sentences in L^{1} (c.f. Vaught [18]): For any positive sentence F, if $7 F$ has a model, then $7 F$ has a countable model.

§ 3. Interpolation theorem and characterization theorem.

In this section, we shall quote some results in the Chapter V of the paper [8], which will be used in §4. For simplicity, we shall omit (I-) from every notion, i. e. we shall write " Interpolation theorem" instead of " I-interpolation theorem" etc. Divide $F V(\Omega)$ into mutually disjoint, infinite sets $\left\{V_{i}\right\}_{i<\omega}$. By
w^{i} (with or without suffixes) we shall denote an element in V_{i}. Let Ψ be a set of sentences in L^{I}.

Then the invariant set $\operatorname{In}(\Psi)$ of Ψ is the set of all formulas $\theta\left(w^{i}\right)$ such that $\Psi_{L^{I}}(\forall \vec{u})(\forall \vec{v})\left(I_{i}(\vec{u}, \vec{v}) \wedge \theta^{1}(\vec{u}) \supset \theta^{2}(\vec{v})\right)$, where w^{i} is a repetition-free enumeration of free individual variables in θ and $I_{i}(\vec{u}, \vec{v})$ is $I_{i_{1}}\left(u_{1}, v_{1}\right) \wedge \cdots \wedge I_{i_{n}}\left(u_{n}, v_{n}\right)$.

A set $\Delta \subseteq I n(\Psi)$ is a characterization set of Ψ if for any formula $\theta \in \operatorname{In}(\Psi)$, there is a formula $\theta^{\prime} \in \Delta$ such that $\vdash_{\mathfrak{Z}} \theta \equiv \theta^{\prime}$ and every free variable in θ^{\prime} occurs in θ.
3.1. Definition. Ψ is interpolatable if for any finite sequence of distinct free variables w^{i}, any formulas $\varphi\left(w^{i}\right), \psi\left(w^{i}\right), \Psi_{L^{I}}^{\vdash}(\forall \vec{u})(\forall \vec{v})\left(I_{i}(\vec{u}, \vec{v}) \wedge \varphi^{1}(\vec{u}) \supset \psi^{2}(\vec{v})\right)$ implies $\underset{\mathfrak{z}}{\stackrel{\leftarrow}{\varphi}} \varphi \supset \theta$ and $\underset{\mathfrak{z}}{\stackrel{\leftarrow}{r}} \theta \supset \psi$ for some $\theta \in \operatorname{In}(\Psi)$ whose free individual variables are among w^{i}.

3.2. Definition of primitive sentences.

(1) $(\forall \vec{u})(\forall \vec{v})\left(I_{i}(\vec{u}, \vec{v}) \wedge \psi^{1}(\vec{u}) \supset \psi^{2}(\vec{v})\right)$ is the primitive sentence of type 1 defined by $\psi\left(w^{i}\right)$, where w^{i} is a repetition-free enumeration of free variables in ψ.
(2) $\quad(\forall \vec{u})(\exists \vec{v}) I_{i}(\vec{u}, \vec{v})$ is the primitive sentence of type 2 defined by i.
(3) $(\forall \vec{v})(\exists \vec{u}) I_{i}(\vec{u}, \vec{v})$ is the primitive sentence of type 3 defined by i.
(4) $(\forall \vec{u})(\exists \vec{v}){ }_{i_{0} \leq i} I_{i}(\vec{u}, \vec{v})$ is the primitive sentence of type 4 defined by $\left(i_{0}, n\right)$, where n is the length of \vec{u}.
(5) $(\forall \vec{v})(\exists \vec{u}){ }_{i_{0} \leq i} I_{i}(\vec{u}, \vec{v})$ is the primitive sentence of type 5 defined by $\left(i_{0}, n\right)$, where n is the length of \vec{v}.
(6) $\left(\forall \vec{u}_{2}\right)\left(\forall \vec{v}_{2}\right)\left(\forall \vec{u}_{1}\right)\left(\exists \vec{v}_{1}\right)\left(\varphi^{1}\left(\vec{u}_{1}, \vec{u}_{2}\right) \wedge I_{j}\left(\vec{u}_{2}, \vec{v}_{2}\right) \supset I_{i}\left(\vec{u}_{1}, \vec{v}_{1}\right)\right)$ is the primitive sentence of type 6 defined by $\left(\varphi, w^{i}\right)$ where $w^{i} \frown w_{1}^{\overrightarrow{3}}$ is a repetition-free enumeration of free variables in $\varphi\left(w^{i}, w_{1}^{\vec{j}}\right)$.
(7) $\left(\forall \vec{v}_{2}\right)\left(\forall \vec{u}_{2}\right)\left(\forall \vec{v}_{1}\right)\left(\exists \vec{u}_{1}\right)\left(\varphi^{2}\left(\vec{v}_{1}, \vec{v}_{2}\right) \wedge I_{j}\left(\vec{u}_{2}, \vec{v}_{2}\right) \supset I_{i}\left(\vec{u}_{1}, \vec{v}_{1}\right)\right)$ is the primitive sentence of type 7 defined by (φ, w^{i}), where $w^{i} \frown w_{1}^{\vec{j}}$ is a repetition-free enumeration of free variables in $\varphi\left(w^{i}, w_{\mathrm{i}}^{\vec{j}}\right)$.
(8) $(\forall \vec{u})(\exists \vec{v})\left(\psi^{1}(\vec{u}) \supset I_{i}(\vec{u}, \vec{v}) \wedge \phi^{2}(\vec{v})\right)$ is the primitive sentence of type 8 defined by $\psi\left(w^{i}\right)$, where w^{i} is a repetition-free enumeration of free variables in ψ.
(9) $(\forall \vec{v})(\exists \vec{u})\left(\psi^{2}(\vec{v}) \supset I_{i}(\vec{u}, \vec{v}) \wedge \psi^{1}(\vec{u})\right)$ is the primitive sentence of type 9 defined by $\psi\left(w^{i}\right)$, where w^{i} is a repetition-free enumeration of free variables in ψ.
3.3. Definition of primitive sets. A set Ψ of sentences in L^{1} is primitive if
(1) every sentence in Ψ is primitive,
(2) if Ψ has the primitive sentence of type 6 (or 7) defined by $\left(\varphi, w^{i}\right)$,
then Ψ has the primitive sentence of type 1 defined by φ,
(3) if Ψ has the primitive sentence of type 4 (or 5) defined by (i_{0}, n) then
(a) Ψ has the primitive sentence of type 4 (or 5) defined by $\left(i_{0}+1, n\right)$,
(b) if $F \in \Psi$ is a primitive sentence whose type is neither 4 nor 5 , and $i \geqq i_{0}$ then $F\left(i_{i}^{(0)}\right) \in \Psi$.
A primitive set Ψ is called of first order if every sentence in Ψ is of first order and Ψ is countable.
3.4. Definition of $\Delta(\Psi)$
(1) If Ψ has the primitive sentence of type 1 defined by ψ, then $\psi \in$ $\Delta(\Psi)$.
(2) If Ψ has the primitive sentence of type 2 defined by i and $\theta\left(w^{i}\right) \in$ $\Delta(\Psi)$, then $(\exists \vec{u}) \theta(\vec{u}) \in \Delta(\Psi)$.
(3) If Ψ has the primitive sentence of type 3 defined by \dot{i} and $\theta\left(w^{i}\right) \in$ $\Delta(\Psi)$, then $(\forall \vec{u}) \theta(\vec{u}) \in \Delta(\Psi)$.
(4) If Ψ has the primitive sentence of type 4 defined by (i_{0}, n) and $\theta\left(\vec{w}^{i_{0}}\right)$ $\in \Delta(\Psi)$, where the length of $\vec{w}^{i_{0}}$ is n and every free variable in θ except those in $\vec{w}^{i_{0}}$ belongs to $\underset{j<i_{0}}{ } V_{i}$, then $(\exists \vec{u}) \theta(\vec{u}) \in \Delta(\Psi)$.
(5) If Ψ has the primitive sentence of type 5 defined by (i_{0}, n) and $\theta\left(\vec{w}^{i}\right)$ $\in \Delta(\Psi)$, where the length of $\vec{w}^{i_{0}}$ is n and every free variable in θ except those in $\vec{w}^{i_{0}}$ belongs to $\bigcup_{i<i_{0}} V_{i}$, then $(\forall \vec{u}) \theta(\vec{u}) \in \Delta(\Psi)$.
(6) If Ψ has the primitive sentence of type 6 defined by ($\varphi\left(w^{i}\right), w^{i}$) and $\theta\left(w^{i}\right) \in \Delta(\Psi)$, then $(\exists \vec{u})(\varphi(\vec{u}) \wedge \theta(\vec{u})) \in \Delta(\Psi)$.
(7) If Ψ has the primitive sentence of type 7 defined by $\left(\varphi\left(w^{i}\right), w^{i}\right)$ and $\theta\left(w^{i}\right) \in \Delta(\Psi)$, then $(\forall \vec{u})(\varphi(\vec{u}) \supset \theta(\vec{u})) \in \Delta(\Psi)$.
(8) If Ψ has the primitive sentence of type 8 defined by $\psi\left(w^{i}\right)$ and $\theta\left(w^{i}\right)$ $\in \Delta(\Psi)$, then $(\exists \vec{u})(\psi(\vec{u}) \wedge \theta(\vec{u})) \in \Delta(\Psi)$.
(9) If Ψ has the primitive sentence of type 9 defined by $\psi\left(w^{i}\right)$ and $\theta\left(w^{i}\right)$ $\in \Delta(\Psi)$, then $(\forall \vec{u})(\psi(\vec{u}) \supset \theta(\vec{u})) \in \Delta(\Psi)$.
(10) $\mathrm{T}, \perp \in \Delta(\Psi)$.
(11) If Φ is a non-empty, countable set of formulas in $\Delta(\Psi)$ such that only finitely many free variables occur in Φ, then $\wedge \Phi, \vee \Phi \in \Delta(\Psi)$.
(12) If $\theta\left(w^{i}\right) \in \Delta(\Psi)$, then $\theta\left(w_{1}^{i}\right) \in \Delta(\Psi)$, where w^{i} is a finite sequence of distinct free variables and $w^{i}=\left\langle w_{1}^{i_{1}}, \cdots, w_{n}^{i_{n}}\right\rangle, w_{1}^{i}=\left\langle w_{11}^{i_{1}}, \cdots, w_{1 n}^{i_{n}}\right\rangle$.
(13) All the formulas in $\Delta(\Psi)$ are obtained from (1)-(12).

When we have the following theorems.
(IV) Interpolation theorem on primitive sets: Every primitive set is: interpolatable.
(V) Characterization theorem on primitive sets: $\Delta(\Psi)$ is a characterization set of Ψ for each primitive set Ψ.

§ 4．Preservation theorems．

Let R be an arbitrary relation between \mathfrak{R}－structures（we write $\mathfrak{Y} R \mathfrak{B}$ instead of $\langle\mathfrak{R}, \mathfrak{B}\rangle \in R$ ）and Ψ be a countable set of sentences in $L^{I} . R$ is expressible in L^{I} by Ψ if the following two conditions are satisfied：
（＊）For any countable \mathfrak{R}－structures $\mathfrak{N}, \mathfrak{B}$ ，
$\mathfrak{H} R \mathfrak{B}$ implies $\mathfrak{H} \cong M_{1}^{*}$ and $\mathfrak{B} \cong M_{2}^{*}$ for some $\mathfrak{M} \vDash \wedge \Psi$ ．
（＊＊）For any countable L^{1}－structure M ，
$M \vDash \wedge \Psi$ implies $\mathfrak{H} \cong M_{1}^{*}$ and $\mathfrak{B} \cong M_{2}^{*}$ for some $\mathfrak{A}, \mathfrak{B}$ such that $\mathfrak{A} R \mathfrak{B}$ ．
Theorem 4.1 （Preservation theorem）．Suppose R is expressible in L^{I} by a first order primitive set Ψ ．Then the following two conditions are equivalent for any positive sentence $\varphi \supset \psi$ ．

（ii）There is a sentence $\theta \in \Delta(\Psi)$ such that $\vDash \varphi \supset \theta$ and $\vDash \theta \supset \psi$ ．
Proof．（i）$\Leftrightarrow \vDash \varphi^{1} \wedge \wedge \Psi \supset \psi^{2} \quad$（By Assumption and（III））

$$
\Leftrightarrow \Psi \underset{L^{I}}{\vdash} \varphi^{1} \supset \psi^{2} \quad(\mathrm{By}(\mathrm{II}))
$$

$$
\Leftrightarrow \underset{\mathfrak{q}}{\vdash_{\varphi}} \varphi \partial \text { and } \stackrel{q}{\mathfrak{z}}_{\vdash} \theta \supset \psi \text { for some sentence } \theta \in \Delta(\Psi)(\mathrm{By}(\mathrm{IV})(\mathrm{V}))
$$

$$
\Leftrightarrow \vDash \varphi \supset \theta \text { and } \vDash \theta \supset \psi \text { for some sentence } \theta \in \Delta(\Psi)
$$

$$
\Leftrightarrow(\mathrm{ii}) .
$$

Q．E．D．
Theorem 4．2．Suppose R is expressible in L^{I} by a first order primitive set Ψ ．Let φ be a negative sentence in Ω ．Then the class of all countable $\mathbb{\Omega}$－struc－ tures which are isomorphic to some \mathfrak{B} such that $\mathfrak{A} R \mathfrak{B}$ for some countable $\mathfrak{W} \vDash \varphi$ is identical to the class of all countable models of the sentences $\theta \in \Delta(\Psi)$ such that $\vDash \varphi \supset \theta$ ．

Proof．Let S_{1} be the class of all countable \mathbb{R}－structures which are iso－ morphic to some \mathfrak{B} such that $\mathfrak{A R} \mathfrak{B}$ for some countable $\mathfrak{Z} \vDash \varphi$ and S_{2} be the class of all countable models of the sentences $\theta \in \Delta(\Psi)$ such that $\vDash \varphi \supset \theta$ ． Then clearly $S_{1} \subseteq S_{2}$ by the assumptions．

Assume $\mathfrak{B} \in S_{2}-S_{1}$ ．Then $\mathfrak{B} \vDash \theta$ for any sentence $\theta \in \Delta(\Psi)$ such that $\vDash \varphi \supset \theta$ ．

Let ψ be a Scott sentence of \mathfrak{B}（by（I））．
Now we want to show $\vDash \varphi^{1} \wedge \wedge \Psi \supset フ \psi^{2}$ ．
Assume＂not $\vDash \varphi^{1} \wedge \wedge \Psi \supset フ \psi^{2}$＂．Since $\varphi^{1} \wedge \wedge \Psi \supset フ \psi^{2}$ is positive，we can get a countable L^{I}－structure M such that $M \vDash \varphi^{1} \wedge \wedge \Psi_{\wedge} \psi^{2}$ by（III）．Hence $M \vDash \wedge \Psi, M_{1}^{*} \vDash \varphi$ and $M_{2}^{*} \vDash \psi$ ．Since R is expressible in L^{I} by Ψ ，there are $\mathfrak{N}_{1}, \mathfrak{B}_{1}$ such that $\mathfrak{U}_{1} R \mathfrak{B}_{1}$ and $\mathfrak{N}_{1} \cong M_{1}^{*}, \mathfrak{B}_{1} \cong M_{2}^{*}$ ．Hence $\mathfrak{N}_{1} \vDash \varphi$ and $\mathfrak{B}_{1} \vDash \psi$ ．Since ψ is a Scott sentence of $\mathfrak{B}, \mathfrak{B} \cong \mathfrak{B}_{1}$ ．This implies $\mathfrak{B} \in S_{1}$ ．Contradiction！

Hence we have $\vDash \varphi^{1} \wedge \wedge \Psi \supset フ \psi^{2}$.
By （II），$\Psi \underset{L^{I}}{\vdash} \varphi^{1} \supset フ \psi^{2}$ ．

By（IV），（V），$\vDash \varphi \supset \theta$ and $\vDash \theta \supset フ \psi$ for some sentence $\theta \in \Delta(\Psi)$ ．This means $\mathfrak{B} \vDash \theta$ and $\mathfrak{B} \vDash 7 \theta$ ．Contradiction！Therefore $S_{1}=S_{2}$ ．Q．E．D．

4．3．Remark．Assume that Ω, L^{I} are finitary logics．Then the class of all \mathfrak{Q}－structures which are isomorphic to substructures of some \mathfrak{B} such that $\mathfrak{H} R \mathfrak{B}$ for some $\mathfrak{H} \vDash \varphi$ ，is identical to the class of all models of the universal sentences ψ such that $\vDash \varphi \supset \theta$ and $\vDash \theta \supset \psi$ for some $\theta \in \Delta(\Psi)$ ，

$S_{2}^{\prime}=\{\mathfrak{C} ; \mathfrak{c} \vDash \psi, \psi$ is universal sentence such that

$$
\vDash \varphi \supset \theta \text { and } \vDash \theta \supset \psi \text { for some } \theta \in \Delta(\Psi)\}
$$

then $S_{1}^{\prime}=S_{2}^{\prime}$ ．
This is a direct generalization of Tarski＇s theorem on $\mathrm{PC}_{\dot{\delta}}$－class（cf．［16］）．
4．4．Proposition（Local preservation theorem，cf．Reyes［11］）．Suppose R is expressible in L^{I} by a first order primitive set Ψ ．For any countable \mathbb{Z}－ structures \mathfrak{A} ， \mathfrak{B} ，there are $\mathfrak{H}_{1} \cong \mathfrak{A}, \mathfrak{B}_{1} \cong \mathfrak{B}$ such that $\mathfrak{A}_{1} R \mathfrak{B}_{1}$ if and only if $\mathfrak{A} \vDash \theta$ implies $\mathfrak{B} \vDash \theta$ for any sentence $\theta \in \Delta(\Psi)$ ．

Proof．＂Only if＂part is obvious．Assume＂ $\mathfrak{H} \vDash \theta$ implies $\mathfrak{B} \vDash \theta$＂for any sentence $\theta \in \Delta(\Psi)$ ．

Let φ, ψ be Scott sentences of \mathfrak{A} and \mathfrak{B} respectively．
Assume not $\mathfrak{A}_{1} R \mathfrak{B}_{1}$ for any $\mathfrak{N}_{1} \cong \mathfrak{A}, \mathfrak{B}_{1} \cong \mathfrak{B}$ ．Then $\vDash \varphi^{1} \wedge \wedge \Psi \supset フ \psi^{2}$ ．Hence $\vDash \psi \supset \theta$ and $\vDash \theta \supset フ \psi$ for some sentence $\theta \in \Delta(\Psi)$ ．Since $\mathfrak{H} \vDash \varphi$ ，we have $\mathfrak{A} \vDash \theta$ ． Hence $\mathfrak{B} \vDash \theta$ ．On the other hand $\mathfrak{B} \vDash \psi$ and $\vDash \psi \supset 7 \theta$ ．Hence $\mathfrak{B} \vDash 7 \theta$ ．Con－ tradiction！Therefore for some $\mathfrak{n}_{1} \cong \mathfrak{A}, \mathfrak{B}_{1} \cong \mathfrak{B}, \mathfrak{N}_{1} R \mathfrak{B}_{1}$ ．

Q．E．D．
§ 5．Examples of relations expressible in L^{I} by a first order primitive set．
（5．1）Identity relation

$$
\text { Let } \begin{aligned}
R_{i}= & \{\langle\mathfrak{N}, \mathfrak{n}\rangle ; \mathfrak{\mathfrak { N }} \text { is an } \mathfrak{R} \text {-structure }\} \\
\text { and } \quad \Psi_{i}= & \left\{(\forall u)(\exists v) I_{0}(u, v),(\forall v)(\exists u) I_{0}(u, v),\right. \\
& (\forall \vec{u})(\forall \vec{v})\left(I_{0}(\vec{u}, \vec{v})_{\wedge} P^{1}(\vec{u}) \supset P^{2}(\vec{v})\right), \\
& \left.(\forall \vec{u})(\forall \vec{v})\left(I_{0}(\vec{u}, \vec{v})_{\wedge}>P^{1}(\vec{u}) \supset \neg P^{2}(\vec{v})\right) ; P \in P C(\mathfrak{Z})\right\} .
\end{aligned}
$$

Then Ψ_{i} is a first order primitive set and R_{i} is expressible in L^{I} by Ψ_{i} ． $\Delta\left(\Psi_{i}\right)$ is essentially the set of first order formulas in negation normal forms in \mathfrak{L} ．

The statement obtained from Theorem 4.1 by replacing R, Ψ by R_{i}, Ψ_{i} is essentially Craig＇s interpolation theorem extended by Maehara \＆Takeuti （Theorem 1 in［17］）．

(5.2)
 Homomorphism

$$
\text { Let } \quad \begin{aligned}
R_{h}= & \{\langle\mathfrak{\mathfrak { n }}, \mathfrak{B}\rangle ; \mathfrak{A} \simeq \mathfrak{B}\}, \\
\Psi_{h}= & \left\{(\forall u)(\exists v) I_{0}(u, v),(\forall v)(\exists u) I_{0}(u, v),\right. \\
& \left.(\forall \vec{u})(\forall \vec{v})\left(I_{0}(\vec{u}, \vec{v})_{\wedge} P^{1}(\vec{u}) \supset P^{2}(\vec{v})\right) ; P \in P C(\mathfrak{Q})\right\} .
\end{aligned}
$$

Then Ψ_{h} is a first order primitive set and R_{h} is expressible in L^{I} by Ψ_{h}. $\Delta\left(\Psi_{h}\right)$ is essentially the set of first order formulas having no negation symbols in R.

The statement obtained from Theorem 4, 1 by replacing R, Ψ by R_{h}, Ψ_{n} is an extension of Lyndon's theorem [12] in the model theory on finitary first order logic and Lopez-Escobar's theorem [14] in the model theory of $L_{\omega_{1} \omega}$.

The statement obtained from Theorem 4.2 by replacing R, Ψ by R_{h}, Ψ_{h} is an extension of Makkai's theorem [9] in the model theory of $L_{\omega_{1} \omega}$.
(5.3) Strong homomorphism

A homomorphism f of \mathfrak{A} to \mathfrak{B} is a strong homomorphism if for any $P \in$ $P C(\mathfrak{Z}), f(\mathfrak{H}(P))=\mathfrak{B}(P)$.

Let $\quad R_{s h}=\{\langle\mathfrak{A}, \mathfrak{B}\rangle$; there is a strong homomorphism of \mathfrak{A} to $\mathfrak{B}\}$,

$$
\Psi_{s h}=\Psi_{h} \cup\left\{(\forall \vec{v})(\exists \vec{u})\left(P^{2}(\vec{v}) \supset I_{0}(\vec{u}, \vec{v})_{\wedge} P^{1}(\vec{u})\right) ; P \in P C(\mathfrak{L})\right\}
$$

Then $\Psi_{s h}$ is a first order primitive set and $R_{s h}$ is expressible in L^{I} by $\Psi_{s h}$. $\Delta\left(\Psi_{s h}\right)$ is defined by the least set Δ satisfying the following (1)-(4):
(1) Every atomic formula whose free variables are among V_{0} belongs to Δ.
(2) Δ is closed under countable conjunctions and disjunctions.
(3) Δ is closed under the first order quantifications.
(4) If $\theta\left(\vec{w}^{0}\right) \in \Delta$ then $(\forall \vec{u})(P(\vec{u}) \supset \theta(\vec{u})) \in \Delta$.

The statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{s h}$ and $\Psi_{s h}$ is an extension of Keisler's theorem [6] in the model theory of $L_{\omega \omega}$ and Makkai's theorem [9] in the model theory of $L_{\omega_{1} \omega}$.

The statement obtained from Theorem 4.2 by replacing R, Ψ by $R_{s \hbar}$ and. $\Psi_{s h}$ is an extension of Makkai's theorem [9].
(5.4) Extension

$$
\text { Let } \begin{array}{ll}
& R_{e}=\{\langle\mathfrak{\mathfrak { l }}, \mathfrak{B}\rangle ; \mathfrak{\mathfrak { A }} \subseteq \mathfrak{B}\}, \\
& \Psi_{e}=\Psi_{i}-\left\{(\forall v)(\exists u) I_{0}(u, v)\right\}
\end{array}
$$

Then Ψ_{e} is a first order primitive set and R_{e} is expressible in L^{I} by Ψ_{e}. $\Delta\left(\Psi_{e}\right)$ is defined by the least set Δ satisfying the following (1)-(3):
(1), (2) in (5.3).
(3) Δ is closed under first order existential quantifications.

The statement obtained from Theorem 4.1 by replacing R, Ψ by R_{e}, Ψ_{e}
is an extension of Los-Tarski theorem [13], [16] in $L_{\omega \omega}$ and Malitz's theorem [10] in $L_{\omega_{1} \omega}$.

The statement obtained from Theorem 4.2 by replacing R, Ψ by R_{e}, Ψ_{ϵ} is an extension of Bairwise theorem [1] and Makkai's theorem [9] in $L_{\omega_{1} \omega}$.
(5.5) Substructure

$$
\text { Let } \begin{aligned}
& R_{s}=\{\langle\mathfrak{A}, \mathfrak{B}\rangle ; \mathfrak{B} \subseteq \mathfrak{N}\}, \\
& \Psi_{s}=\Psi_{i}-\left\{(\forall u)(\exists v) I_{0}(u, v)\right\} .
\end{aligned}
$$

Then Ψ_{s} is a first order primitive set and R_{s} is expressible in L^{I} by Ψ_{s}. $\Delta\left(\Psi_{s}\right)$ is defined by the least set Δ satisfying the following (1)-(3):
(1), (2) in (5.3).
(3) Δ is closed under first order universal quantifications.

Above remarks stated in the last paragraph of 5.4 are true of R_{s}, Ψ_{s}.
(5.6) U-extension

Let U be a fixed unary predicate constant in \mathfrak{R}.
\mathfrak{B} is an U-extension of \mathfrak{A} if $\mathfrak{A} \cong \mathfrak{B}$ and $\mathfrak{H}(U)=\mathfrak{B}(U)$.
Let $\quad R_{U e}=\{\langle\mathfrak{A}, \mathfrak{B}\rangle ; \mathfrak{B}$ is an U-extension of $\mathfrak{H}\}$,

$$
\Psi_{U e}=\Psi_{e} \cup\left\{(\forall v)(\exists u)\left(U^{2}(v) \supset I_{0}(u, v)_{\wedge} U^{1}(u)\right)\right\} .
$$

Then $\Psi_{U e}$ is a first order primitive set and $R_{U e}$ is expressible in L^{I} by $\Psi_{U e}$.
$\Delta\left(\Psi_{U e}\right)$ is defined by the least set Δ satisfying the following (1)-(4):
(1), (2), (3) in (5.4).
(4) If $\theta\left(w^{0}\right) \in \Delta$ then $(\forall u)(U(u) \supset \theta(u)) \in \Delta$.
(5.7) End-extension

Let $<$ be a fixed binary predicate constant in \mathfrak{Q}.
\mathfrak{B} is an end-extension of \mathfrak{A} if $\mathfrak{H} \subseteq \mathfrak{B}$ and for any $a \in|\mathfrak{A}|, b \in|\mathfrak{B}|$,

$$
\langle b, a\rangle \in \mathfrak{B}(<) \text { implies } b \in|\mathfrak{H}| .
$$

Let $\quad R_{e e}=\{\langle\langle\mathfrak{A}, \mathfrak{B}\rangle ; \mathfrak{B}$ is an end-extension of $\mathfrak{A}\}$,

$$
\Psi_{e e}=\Psi_{e} \cup\left\{\left(\forall v_{1}\right)\left(\forall u_{1}\right)(\forall v)(\exists u)\left(v<^{2} v_{1} I_{0}\left(u_{1}, v_{1}\right) \supset I_{0}(u, v)\right)\right\} .
$$

Then $\Psi_{e e}$ is a first order primitive set and $R_{e e}$ is expressible in L^{1} by $\Psi_{e e}$. $\Delta\left(\Psi_{e e}\right)$ is defined by the least set Δ satisfying the following (1)-(4): (1), (2), (3) in (5.4).
(4) If $\theta\left(w_{1}^{0}\right) \in \Delta$, then $(\forall u)\left(u<w_{2}^{0} \supset \theta(u)\right) \in \Delta$.

The statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{e e}, \Psi_{e e}$ is an extension of Feferman-Kreisel's theorem [4] in $L_{\omega_{1} \omega}$.

The statement obtained from Theorem 4.2 by replacing R, Ψ by $R_{e e}, \Psi_{e e}$ is an extension of Makkai's theorem [9] in $L_{\omega_{1} \omega}$.
(5.8) Super end-extension ($\tilde{\Sigma}_{1}$-extension in Takahashi [21])

Let $<$ be a fixed binary predicate constant in $\mathfrak{L} . \mathfrak{B}$ is a super endextension of \mathfrak{A} if \mathfrak{B} is an end-extension of \mathfrak{H} and for any $a \in|\mathfrak{A}|, b \in|\mathfrak{B}|$

$$
\{c ;\langle c, b\rangle \in \mathfrak{B}(<), c \in|\mathfrak{B}|\} \cong\{c ;\langle c, a\rangle \in \mathfrak{B}(<), c \in|\mathfrak{B}|\}
$$

implies $b \in|\mathfrak{A}|$, i. e.

$$
\mathfrak{B} \models(\forall u)(u<x \supset u<y)[b, a] \text { implies } b \in|\mathfrak{A}| .
$$

Let $R_{s e}=\{\langle\mathfrak{A}, \mathfrak{B}\rangle ; \mathfrak{B}$ is a super end-extension of $\mathfrak{A}\}$,

$$
\Psi_{s e}=\Psi_{e e} \cup\left\{\left(\forall v_{1}\right)\left(\forall u_{1}\right)\left(\forall v_{2}\right)\left(\exists u_{2}\right)\left((\forall v)\left(v<^{2} v_{2} \supset v<^{2} v_{1}\right)_{\wedge} I_{0}\left(u_{1}, v_{1}\right) \supset I_{0}\left(u_{2}, v_{2}\right)\right)\right\} .
$$

Then $\Psi_{s e}$ is a first order primitive set and $R_{s e}$ is expressible in L^{I} by $\Psi_{s e}$.
$\Delta\left(\Psi_{s e}\right)$ is defined by the least set Δ satisfying the following (1)-(5):
(1)-(4) in (5.7).
(5) If $\theta\left(w_{1}^{0}\right) \in \Delta$, then $(\forall u)\left((\forall v)\left(v<u \supset v<w_{2}^{0}\right) \supset \theta(u)\right) \in \Delta$.
(5.9) Endomorphism

Let $\quad R_{e d}=\{\langle\mathfrak{N}, \mathfrak{B}\rangle ; \mathfrak{N} \simeq \mathfrak{B}$ and $\mathfrak{B} \subseteq \mathfrak{H}\}$,

$$
\begin{aligned}
& \Psi_{e d}= \Psi_{h} \cup\left\{(\forall v)(\exists u) I_{1}(u, v),(\forall \vec{u})(\forall \vec{v})\left(I_{1}(\vec{u}, \vec{v})_{\wedge} P^{1}(\vec{u}) \supset P^{2}(\vec{v})\right)\right. \\
&\left.(\forall \vec{u})(\forall \vec{v})\left(I_{1}(\vec{u}, \vec{v})_{\wedge}>P^{1}(\vec{u}) \supset \supset P^{2}(\vec{v})\right) ; P \in P C(\mathfrak{Z})\right\}
\end{aligned}
$$

Then $\Psi_{e d}$ is a first order primitive set and $R_{e d}$ is expressible in L^{I} by $\Psi_{e d}$. $\Delta\left(\Psi_{e d}\right)$ is defined by the least set Δ satisfying the following (1)-(5):
(1) Every atomic formula whose free variables are among V_{0} belongs to Δ.
(2) Every atomic formula and its negation whose free variables are among V_{1} belong to Δ.
(3) Δ is closed under countable conjunctions and disjunctions.
(4) If $\theta\left(w^{0}\right) \in \Delta$ then $(\forall v) \theta(v),(\exists v) \theta(v) \in \Delta$.
(5) If $\theta\left(w^{1}\right) \in \Delta$ then $(\forall v) \theta(v) \in \Delta$.

The statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{e d}, \Psi_{e d}$ is an extension of Makkai's theorem [9] in $L_{\omega_{1} \omega}$ and the statement obtained from Theorem 4.2 by replacing R, Ψ by $R_{e d}, \Psi_{e d}$ is an extension of Makkai's theorem [9] in $L_{\omega_{1} \omega}$.
(5.10) Retract

Let $\quad R_{r}=\{\langle\mathfrak{N}, \mathfrak{B}\rangle ; \mathfrak{B} \subseteq \mathfrak{H}$ and there is a homomorphism f of \mathfrak{H} to \mathfrak{B} such that $f(b)=b$ for any $b \in|\mathfrak{B}|\}$,

$$
\Psi_{r}=\Psi_{e d} \cup\left\{\left(\forall v_{1}\right)\left(\forall u_{1}\right)\left(\forall v_{2}\right)\left(\forall u_{2}\right)\left(I_{0}\left(u_{1}, v_{1}\right)_{\wedge} I_{1}\left(u_{2}, v_{2}\right)_{\wedge} u_{1} \Omega^{1} u_{2} \supset v_{1} \Omega^{2} v_{2}\right)\right\}
$$

Then Ψ_{r} is a first order primitive set and R_{r} is expressible in L^{I} by Ψ_{r}. $\Delta\left(\Psi_{r}\right)$ is defined by the least set Δ satisfying the following (1)-(6).
(1) $-(5)$ in (5.8).
(6) $w^{0} \bumpeq w^{1} \in \Delta$ for any w^{0}, w^{1}.

The statement obtained from Theorem 4.1 by replacing R, Ψ by R_{r}, Ψ_{r} is an extension of Keisler's theorem [6] in $L_{\omega \omega}$ and Makkai's theorem [9] in $L_{\omega_{1} \omega}$ and the statement obtained from Theorem 4.2 by the same method above is an extension of Makkai's theorem [9] in $L_{\omega_{1} \omega}$.
(5.11) Direct root of direct power.

Let $\quad R_{d p}=\{\langle\mathfrak{Y}, \mathfrak{B}\rangle ; \mathfrak{H} \times \mathfrak{H} \cong \mathfrak{B} \times \mathfrak{B}\}$,

$$
\Psi_{a p}=\left\{\left(\forall u_{1}\right)\left(\forall u_{2}\right)\left(\exists v_{1}\right)\left(\exists v_{2}\right)\left(I_{1}\left(u_{1}, v_{1}\right)_{\wedge} I_{2}\left(u_{2}, v_{2}\right)\right)\right.
$$

$$
\left(\forall v_{1}\right)\left(\forall v_{2}\right)\left(\exists u_{1}\right)\left(\exists u_{2}\right)\left(I_{1}\left(u_{1}, v_{1}\right)_{\wedge} I_{2}\left(u_{2}, v_{2}\right)\right)
$$

$$
\left(\forall \vec{u}_{1}\right)\left(\forall \vec{u}_{2}\right)\left(\forall \vec{v}_{1}\right)\left(\forall \vec{v}_{2}\right)\left(I_{1}\left(\vec{u}_{1}, \vec{v}_{1}\right)_{\wedge} I_{2}\left(\vec{u}_{2}, \vec{v}_{2}\right)_{\wedge} P^{1}\left(\vec{u}_{1}\right)_{\wedge} P^{1}\left(\vec{u}_{2}\right)\right.
$$

$$
\left.\supset P^{2}\left(\vec{v}_{1}\right)_{\wedge} P^{2}\left(\vec{v}_{2}\right)\right)
$$

$$
\left(\forall \vec{u}_{1}\right)\left(\forall \vec{u}_{2}\right)\left(\forall \vec{v}_{1}\right)\left(\forall \vec{v}_{2}\right)\left(I_{1}\left(\vec{u}_{1}, \vec{v}_{1}\right)_{\wedge} I_{2}\left(\vec{u}_{2}, \vec{v}_{2}\right)_{\wedge} フ\left(P^{1}\left(\vec{u}_{1}\right)_{\wedge} P^{1}\left(\vec{u}_{2}\right)\right)\right.
$$

$$
\left.\left.\supset フ\left(P^{2}\left(\vec{v}_{1}\right)_{\wedge} P^{2}\left(\vec{v}_{2}\right)\right)\right) ; P \in P C(\Omega)\right\} .
$$

Then $\Psi_{d p}$ is a first order primitive set and $R_{d p}$ is expressible in L^{I} by $\Psi_{d p}$.
$\Delta\left(\Psi_{d p}\right)$ is defined by the least set Δ satisfying the following (1)-(3):
(1) T, $\perp, P\left(\vec{w}^{1}\right)_{\wedge} P\left(\vec{w}^{2}\right), \neg\left(P\left(\vec{w}^{1}\right)_{\wedge} P\left(\vec{w}^{2}\right)\right) \in \Delta$ for any $P \in P C(\mathfrak{Z})$.
(2) Δ is closed under countable conjunctions and disjunctions.
(3) If $\theta\left(w^{1}, w^{2}\right) \in \Delta$, then $\left(\forall u_{1}\right)\left(\forall u_{2}\right) \theta\left(u_{1}, u_{2}\right),\left(\exists v_{1}\right)\left(\exists v_{2}\right) \theta\left(v_{1}, v_{2}\right) \in \Delta$.

The statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{d p}, \Psi_{d p}$ is an extension of Keisler's theorem [6] in $L_{\omega \omega}$ and Makkai's theorem [9] in $L_{\omega_{1} \omega}$ and the statement obtained from Theorem 4.2 by the same method above is an extension of Makkai's theorem [9] in $L_{\omega_{1} \omega}$.
(5.12) Direct factor

Let $\quad R_{d f}=\{\langle\mathfrak{A}, \mathfrak{B}\rangle ; \mathfrak{X} \cong \mathfrak{B} \times \mathfrak{C}$ for some $\mathfrak{G}\}$,

$$
\begin{aligned}
\Psi_{d f}= & \left\{(\forall u)(\exists v) \bigvee_{i \leqq j} I_{j}(u, v),(\forall v)(\exists u) I_{i}(u, v),\right. \\
& (\forall \vec{u})(\forall \vec{v})\left(I_{i}(\vec{u}, \vec{v})_{\wedge} P^{1}(\vec{u}) \supset P^{2}(\vec{v})\right), \\
& \left(\forall \vec{u}_{1}\right)\left(\forall \vec{u}_{2}\right)\left(\forall \vec{v}_{1}\right)\left(\forall \vec{v}_{2}\right)\left(I_{i}\left(\vec{u}_{1}, \vec{v}_{1}\right)_{\wedge} I_{i}\left(\vec{u}_{2}, \vec{v}_{2}\right)_{\wedge} P^{1}\left(\vec{u}_{1}\right)_{\wedge}>P^{1}\left(\vec{u}_{2}\right)\right. \\
& \left.\left.\supset P^{2}\left(\vec{v}_{1}\right)_{\wedge}>P^{2}\left(\vec{v}_{2}\right)\right) ; i<\omega, \vec{i}, P \in P C(\Omega)\right\} .
\end{aligned}
$$

Then obviously $\Psi_{d f}$ is a first order primitive set but it is not obvious that $R_{d f}$ is expressible in L^{I} by $\Psi_{d f}$ although condition (*) is obvious for $R_{d f}$ and $\Psi_{u f}$; to show that, we have only to prove that $R_{d f}$ and $\Psi_{d f}$ satisfy (**). Suppose M is countable and $M \vDash \wedge \Psi_{d f}$.

Let $D_{i}=\left\{a^{*}\right.$; for some $\left.b^{*},\left\langle a^{*}, b^{*}\right\rangle \in M\left(I_{i}\right)^{*}\right\}, i<\omega$.

Then (a) $M\left(I_{i}\right)^{*}$ is a mapping f_{i} from D_{i} onto $\left|M_{2}^{*}\right|$.
(b) $\bigcup \bigcup_{i<\omega} D_{i}=\left|M_{1}^{*}\right|$.
(c) for any $P \in P C(\Omega), \vec{i}=\left\langle i_{1}, \cdots, i_{k}\right\rangle, a_{1}^{*} \in D_{i_{1}}, \cdots, a_{k}^{*} \in D_{i_{k}}$,
$b_{1}^{*} \in D_{i_{1}}, \cdots, b_{k}^{*} \in D_{i_{k}}$,
$\left\langle a_{1}^{*}, \cdots, a_{k}^{*}\right\rangle \in M_{1}^{*}(P)$ implies $\left\langle f_{i_{1}}\left(a_{1}^{*}\right), \cdots, f_{i_{k}}\left(a_{k}^{*}\right)\right\rangle \in M_{2}^{*}(P)$,
$\left\langle a_{1}^{*}, \cdots, a_{k}^{*}\right\rangle \in M_{1}^{*}(P)$ and $\left\langle b_{1}^{*}, \cdots, b_{k}^{*}\right\rangle \notin M_{1}^{*}(P)$ imply

$$
\left\langle f_{i_{1}}\left(b_{1}^{*}\right), \cdots, f_{i_{k}}\left(b_{k}^{*}\right)\right\rangle \notin M_{2}^{*}(P) .
$$

By using (a), (b), (c), we can get
(d) $D_{i} \cap D_{j} \neq \phi$ implies $f_{i}=f_{j}$.
(e) f_{i} is a bijection.

Let $i \sim j \Leftrightarrow D_{i}=D_{j}$ and $|\mathfrak{C}|=\omega / \sim$,

$$
\mathfrak{E}(P)=\left\{\left\langle\tilde{i}_{1}, \cdots, \tilde{i_{k}}\right\rangle ; \text { for some } a_{1}^{*} \in D_{i_{1}}, \cdots, a_{k}^{*} \in D_{i_{k}},\left\langle a_{1}^{*}, \cdots, a_{k}^{*}\right\rangle \in M_{1}(P)\right\} .
$$

Then $M_{1}^{*} \cong M_{2}^{*} \times \mathbb{C}$.
Hence we can conclude that $R_{d f}$ is expressible in L^{I} by $\Psi_{d f}$.
$\Delta\left(\Psi_{d f}\right)$ is defined by the least set Δ satisfying the following (1)-(4):
(1) \quad, $\perp, P\left(w_{\mathrm{i}}^{\mathrm{i}}\right), P\left(w_{\mathrm{i}}^{\mathrm{i}}\right)_{\wedge} 7 P\left(w_{2}^{i}\right) \in \Delta$ for any $P \in P C(\mathfrak{Z})$,

$$
w_{1}^{i}=\left\langle w_{11}^{i_{1}}, \cdots, w_{1 k}^{i_{k}}\right\rangle, w_{2}^{i}=\left\langle w_{21}^{i_{1}}, \cdots, w_{2 k}^{i_{k}}\right\rangle .
$$

(2) Δ is closed under countable conjunctions and disjunctions.
(3) If $\theta\left(w^{i}\right) \in \Delta$ then $(\forall u) \theta(u) \in \Delta$.
(4) If $\theta\left(w^{i}\right) \in \Delta$ and $V((\exists v) \theta(v)) \subset \bigcup_{j<i} V_{j}$ then $(\exists v) \theta(v) \in \Delta$.

The statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{d f}, \Psi_{d f}$ is an extension of Keisler's theorem [6] in $L_{\omega \omega}$ and Makkai's theorem [9] in $L_{\omega_{1} \omega}$ and the statement obtained from Theorem 4.2 by the same method above is an extension of Makkai's theorem [9].
(5.13) k-isomorphic union

Let $R_{k u}=\{\langle\mathfrak{Y}, \mathfrak{B}\rangle$; for some k-family S such that every element in S is isomorphic to $\mathfrak{A l}, \mathfrak{B}=\cup S\}$,

$$
\begin{aligned}
\Psi_{k u}= & \left\{(\forall u)(\exists v) I_{i}(u, v),\left(\forall v_{1}\right) \cdots\left(\forall v_{k}\right)\left(\exists u_{1}\right) \cdots\left(\exists u_{k}\right) \bigvee_{i \leqq j} I_{j}\left(u_{1}, v_{1}\right)_{\wedge \ldots \wedge} I_{j}\left(u_{k}, v_{k}\right),\right. \\
& (\forall \vec{u})(\forall \vec{v})\left(I_{i}(\vec{u}, \vec{v})_{\wedge}\left(P^{1}(\vec{u}) \supset P^{2}(\vec{v})\right)\right. \\
& \left.(\forall \vec{u})(\forall \vec{v})\left(I_{i}(\vec{u}, \vec{v})_{\wedge}>P^{1}(\vec{u}) \supset \succ P^{2}(\vec{v})\right) ; P \in P C(\mathfrak{Z}), i<\omega\right\} .
\end{aligned}
$$

Then $\Psi_{k u}$ is a first order primitive set and $R_{k u}$ is expressible in L^{1} by $\Psi_{k u}$.
$\Delta\left(\Psi_{k u}\right)$ is defined by the least set Δ satisfying the following (1)-(4):
(1) Every atomic formula and its negation whose free variables are all in V_{i} for some $i<\omega$ belong to Δ.
(2) Δ is closed under countable conjunctions and disjunctions.
(3) Δ is closed under the first order existential quantifications.
(4) If $\theta\left(w_{1}^{i}, \cdots, w_{k}^{i}\right) \subseteq \Delta$ and $V\left(\left(\forall u_{1}\right) \cdots\left(\forall u_{k}\right) \theta\left(u_{1} \cdots u_{k}\right)\right) \subseteq \bigcup_{j<i} V_{j}$ then

$$
\left(\forall u_{1}\right) \cdots\left(\forall u_{k}\right) \theta\left(u_{1} \cdots u_{k}\right) \in \Delta .
$$

Especially if we consider only finitary formulas then every formula in $\Delta\left(\Psi_{k u}\right)$ is so-called universal existential formula (see Keisler [5], Weistein [19]).

So, the statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{k u}$, $\Psi_{k u}$ is an extension of Keisler's theorem [5] in $L_{\omega \omega}$.
(5.14) ω-isomorphic union

Let $R_{\omega u}=\{\langle\mathfrak{H}, \mathfrak{B}\rangle$; for some ω-family S such that every element in S is isomorphic to $\mathfrak{A}, \mathfrak{B}=\cup S\}$, $\Psi_{\omega u}=\bigcup_{k<\omega} \Psi_{k u}$.
Then $\Psi_{\omega u}$ is a first order primitive set and $R_{\omega u}$ is expressible in L^{I} by $\Psi_{\omega u}$.
$\Delta\left(\Psi_{\omega u}\right)$ is the union set of all $\Delta\left(\Psi_{k u}\right), k<\omega$.
The statement obtained from Theorem 4.1 by replacing R, Ψ by $R_{\omega u}, \Psi_{\omega u}$ is an extension of Los, Chang's theorem [2] in $L_{\omega \omega}$.

> Department of Mathematics Gakushuin University
> Mejiro, Toshima-ku, Tokyo
> Japan

References

[1] J. Barwise, Remark on universal sentences of $L_{\omega_{1} \omega}$, Duke Math. J., 36 (1969), 631-637.
[2] C. C. Chang, On unions of chains of models, Proc. Amer. Math. Soc., 10 (1959), 120-127.
[3] C.C. Chang, Some remarks on the model theory of infinitary languages, in "the Syntax and Semantics of Infinitary languages" edited by J. Barwise, Lecture Notes in Math. No. 72, Springer-Verlag, 1968, 36-63.
[4] S. Feferman and G. Kreisel, Persistent and invariant formulas relative to theories of higher order, Bull. Amer. Math. Soc., 72 (1966), 480-485.
[5] H. J. Keisler, Unions of relational systems, Proc. Amer. Math. Soc., 15 (1964), 540-545.
[6] H. J. Keisler, Some applications of infinitely long formulas, J. Symbolic Logic, 30 (1965), 339-349.
[7] H. J. Keisler, Model theory for infinitary logic, North Holland, 1971.
[8] N. Motohashi, Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci., 4 (1972), 85-150.
[9] M. Makkai, On the model theory of denumerably long formulas with finite strings of quantifiers, J. Symbolic Logic, 34 (1969), 437-459.
[10] J. Malitz, Universal classes in infinitary languages, Duke. Math. J., 36 (1969), 621-630.
[11] G. E. Reyes, Local definability theory, Ann. of Math., Logic, 1 (1970), 95-137.
[12] R.C. Lyndon, Properties preserved under homomorphism, Pacific J. Math., 9 (1959), 143-154.
[13] J. Los, On the extending of models, I, Fund. Math., 42 (1955), 38-54.
[14] E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund. Math., 57 (1965), 253-272.
[15] D. Scott, Logic with denumerably long formulas and finite strings of quantifiers, in Theory of Models, North-Holland, 1965, 329-341.
[16] A. Tarski, Contributions to the theory of models, Indag, Math., 16 (1954), Part I 572-581, Part II 582-588; 17 (1955), Part III 56-64.
[17] S. Maehara and G. Takeuti, Two interpolation theorems for a $\Pi_{1}{ }^{1}$ predicate calculus, J. Symbolic Logic, 36 (1971), 262-270.
[18] R. Vaught, The Löwenheim-Skolem theorem, in Proc. of the 1964 Int'l Cong. Logic Math. and Phil. Sci. held in Jerusalem, 81-89.
[19] J. Weinstein, ($\left.\omega_{1}, \omega\right)$-properties of unions of models, in "the Syntax and Semantics of Infinitary Languages", edited by J. Barwise, Lecture Note in Math., No. 72, Springer-Verlag, 1968, 265-268.
[20] N. Motohashi, Object logic and morphism logic, J. Math. Soc. Japan, 24 (1972), 684-697.
[21] M. Takahashi, \tilde{J}_{1}-definability in set theory, in "Conference in Mathematical Logic, London '70", Lecture Note in Math., No. 255, Springer-Verlag, 1972, 281-304.

