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§1. Abstract.

A digraph D is r-regular if degree v=7, r =1, for every vertex v of D.
The girth n, n=2, of D containing directed cycles is the length of the
smallest cycle in D. The minimum number of vertices of r-regular digraphs
having girth n is denoted by g(r, n). In this note we prove that g(2,n)=
2n—1.

§2. Introduction and definitions.*

The smallest number of vertices that a regular graph of degree 7, r =1,
and girth n, n =2, may possess is denoted by f(r, n). The determination of
the value of f(r, n) has been the subject of many investigations in recent.
years. (See, for example, [3], [4], and [5]) Yet, with few exceptions, the
numbers f(r, n) are unknown for r=3 and n=5. In[2] the analogous prob-
lem for digraphs (directed graphs) was considered.

A digraph D is r-regular, r=1, if idv=odv=r for every vertex v of
D, where id v is the in-degree of v, while od v is the out-degree of the vertex
v of D. For positive integers =2 and =1 the number g(r, n) is defined
to be the minimum number of vertices r-regular digraphs having girth n(the
length of the smallest cycle in the digraph) may possess. The upper bound
r(n—1)+1 for g(r, n) was obtained in [2] and it was conjectured that g(7, n)
=r(n—1)41. Moreover, the values of g(r, n) for the elements of the subset
S of the set of all lattice points of the »—n plane were obtained where:

S={r,n):n=2,3U{r,n):r=1}U{(2,4), (8, 4), (4, 4), 3,5)}.

In this article we propose to prove that the conjecture is true for the
case r==2 as well.

* Definitions not given here can be found in .
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§3. The function g(2, n).

First we show that g(2, n) is an increasing function of #.

LEMMA 1. Let n=2. Then g(2, n+1)>g(2, n).

PROOF. We use induction on n. For n=2, and 3, the lemma is obviously
true. Assume D is a 2-regular digraph of order f(2, n-+1) whose girth is
n+1, n=3. Then D contains a cycle C: vy, v,, -+, Upyy, v, of length n+1.
Each vertex v; of C is adjacent to and adjacent from an element of
V(D)—V(C), say u; and u,, j + k, respectively, where V(D) denotes the vertex
set of D. There exists an integer i, 1<i<n-+1, such that the edge uﬁj is
not in D, for otherwise D contains at least 4n-+4 edges, while g2, n+1) <
2n+1 and the regularity of D show that D has at most 4n-+2 edges. Now,
we remove the vertex v; together with its incident edges and add two new
edges v;_v;s, and wgu;—if i=1, then i—1 is replaced by n-+1 and if i=n-t1,
then i+1 is replaced by 1—to obtain a new 2-regular digraph of order
£(2, n4+1)—1 and girth n. Hence, 2(2, n) < g(2, n+1) as was required to prove.

We say a vertex v of a digraph D having girth n, n=3, is adjacent
with a vertex u of D if either v is adjacent to or is adjacent from the vertex
u. From now on the subscripts are computed in terms of the integers
modulo =.

LEMMA 2. Assume there exists a 2-regular digraph D of order g(2, n)=
2n—2 having girth n,n=4. If C:v,, vy -, Uy, v, is a cycle of length n of D,
then every vertex of V(D)—V(C) is adjacent with either 2 or 3 vertices of C.

PROOF. Let u be an element of the nonempty set V(D)—V(C). Suppose
u is adjacent to v;. Then u can be adjacent from no vertices of C other
than v,_; and v;_,. Now it is clear that the vertex u can be adjacent to no
other vertices of C. This proves that u is adjacent with at most 3 vertices
of C.

Next, assume that u is an element of V(D)— V(C) which is adjacent with
at most one vertex of C. Suppose that u is adjacent from the vertices u,
and u, and is adjacent to the vertices u, and u, of D. (In case u is adjacent
with one vertex of C, then exactly one of the elements of the set {u,, u,, u,,
u,} is a vertex of C.) Now remove the edges of C from D and denote the
resulting digraph by D*. We show that D* contains a cycle C, of length n
by considering the following cases.

CASE 1. At least one of the two edges u_l_;t2 and @4 1s an edge of D.
“Then the edges u:ZZ and u34 are not in D. If D* has no cycle of length n,
then we remove the vertex u together with its incident edges from the
-digraph D and add the new edges 14_3;12 and u_l_z)t‘, to the resulting digraph to
.obtain a 2-regular digraph of order g(2, n)—1 having girth n. But this con-
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tradicts the minimality of g(2, n)

CASE 2. Neither ulu2 nor u JU, 1S an edge of D. In this case, too, follow-
ing the above argument and replacing uau2 and u U, by ulu2 and u JUy, We
reach the conclusion that D* contains a cycle of length n.

Now remove the edges of C, from D* and denote the resulting digraph
by D**. Since D contains 4n—4 edges, D** contains 2n—4 edges. Starting
from a nonisolated vertex of D** and traversing along the directed edges of

D** we obtain a cycle C, of length pg=2n—4. Clearly g=n. In case
¢ <2n—4 then D** would necessarily contain a cycle of length less than n
which is impossible. Thus, D is the sum of three edge-disjoint cycles C,, C,
and C, such that the length of C,, i=1, 2, is n and the length of C, is 2n—4.
The vertex set of D consists of the 2n—4 vertices of C, and two additional
vertices w, and w,. Both cycles C, and C, contain both vertices w, and w,;
moreover, the two cycles C, and C, have no other vertices in common. Since
D has girth n the length of the directed path w,—w, (resp. w,—w,) in C, is
the same as the length of the directed path w,—w, (resp. w,—w,) in C,. The
length of each of these 4 paths is greater than one, and no vertex of each
of the directed paths w,—w, can be adjacent with either a vertex of the
path w,—w, in C, or a vertex of the path w,—w, in C,. (See Figure 1.)

Wy

O

W,

Fig. 1.

Hence D can contain no cycle of length 2n—4 which does not pass through
w, and w, This contradiction completes the proof of the lemma.

Our main result is:

For any integer n =2, g(2, n)=2n—1.

PrOOF. We use induction on n. It is known that the theorem is true
for n=2,3,4 and 5. Assume that the theorem is true for n—1 and consider
a 2-regular digraph D having girth n, n =6 and order g(2,n). Then g(2, n)
< 2n—1 and by the induction hypothesis g(2, n—1)=2n—3. These and Lemma
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1 imply that g(2, n) is either 2n—2 or 2n—1. Assume g(2, n)=2n—2 and let
C: vy, v, -+, v, v, be a cycle of length n of D. By each element
of V(D)—V(C) is adjacent with 2 or 3 vertices of C. In fact, exactly 4 ele-
ments of V(D)—V(C), say u,, u,, u; and u, are adjacent with 3 vertices of C
and each of the remaining n—6 elements of V(D)—V(C), say us, Ug ==+, Up-z
are adjacent with two vertices of C. To see this, we observe that the only
partition of the even integer 2n with n—2 summands belonging to the set.
{2,3} is 3,3,3,3,2,2,---, 2. Next we show that such a situation is impossible.

CASE 1. Assume that two of the elements of the set {u,, u, us; u,} are
adjacent. Without loss of generality, we may suppose that u, is adjacent to
the vertex u,. Then u, is adjacent to a vertex of C, say v,;, and is adjacent.
from 2 vertices of C. These two vertices are necessarily v, and v,_,. Then
the only vertex of C to which the vertex u, can be adjacent is v,. But this.
produces a contradiction because the vertex u, must be adjacent to two:
vertices of C. For an illustration, see Figure 2.

Fig. 2.

CASE 2. The only alternative is that n =8 and that two elements of the
set {uy, U, Us, u,}, say u, and u, are joined by a semipath P of length t, 2=t
<n—6, all of whose vertices belong to V(D)—V(C). Let P: uy, us e =+, U, Uy,
where 5=k <n—3. We denote u; by w,, us; by w,, us by w,, -+, Uy by Wi_s,
and u, by wy_,. Then P:w,, w,, -+, W_,.

Now we have two cases to consider.

iy The vertex w, is adjacent to the vertex w, without loss of generality,.
we assume that w, is adjacent to v,. Then vertices v, and v,., must be:
adjacent to w,. The vertex w, is adjacent to at least one vertex of C and
that must be v,. Hence, the vertex w, must be adjacent to w, as well. Con-
tinuing this process, we observe that the vertex w; can be adjacent to only
one vertex of C, namely v,, for 1 <i<k—2; therefore the vertex w; must be:
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adjacentjtozw,,,, for 1<i<k—3. But then the adjacency of wy_,=u, to two

of the vertices of C is impossible. (Note that the semipath P turns out to be
a (directed) path from u, to u,.)

Wi = U,

Wi-y
Fig. 3.

Hence, the assumption g(2, n) =2n—2 leads to a contradiction.

ii) The vertex w, is adjacent from the vertex w,. We may assume that
‘the vertex v,_, of C is also adjacent to w,. Therefore, the two vertices of
C to which the vertex w, is adjacent are v; and v,. Next, at least one vertex
«of C must be adjacent to w, and that without any other choice is v,_,. Hence,
‘the vertex w, is adjacent to the vertex w,. Continuing this process, we con-
clude that the only vertex of C adjacent to w; is v,_; for i=1,2, ---, k—2.
Hence, the vertex w; is also adjacent from the vertex w;y;, for 1=i<k—3.
But this contradicts the fact that the vertex w,_,=u, is adjacent from two
-of the vertices of C. (In this case the semipath P is a directed path from
U, to u;.) This contradicts the assumption that g(2, n)=2n—2. For an illus-
tration, see Figure 4. Hence, in any case g(2, n)=2n—1 as was required to
prove.

We conclude this article by mentioning that with some modifications, this
method seems to work for the determination of the value of the function
g(3, n) and this result may appear elsewhere.
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