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\S 1. Abstract.

A digraph $D$ is r-regular if degree $v=r,$ $r\geqq 1$ , for every vertex $v$ of $D$ .
The girth $n,$ $n\geqq 2$ , of $D$ containing directed cycles is the length of the
smallest cycle in $D$ . The minimum number of vertices of r-regular digraphs
having girth $n$ is denoted by $g(r, n)$ . In this note we prove that $g(2, n)=$

$2n-1$ .

\S 2. Introduction and definitions.*

The smallest number of vertices that a regular graph of degree $r,$ $r\geqq 1$ .
and girth $n,$ $n\geqq 2$ , may posSess is denoted by $f(r, n)$ . The determination of
the value of $f(r, n)$ has been the subject of many investigations in recent
years. (See, for example, [3], [4], and [5].) Yet, with few exceptions, the
numbers $f(r, n)$ are unknown for $r\geqq 3$ and $n\geqq 5$ . In [2] the analogous prob-
lem for digraphs (directed graphs) was considered.

A digraph $D$ is r-regular, $r\geqq 1$ , if id $v=odv=r$ for every vertex $v$ of
$D$ , where id $v$ is the in-degree of $v$ , while od $v$ is the out-degree of the vertex
$v$ of $D$ . For positive integers $n\geqq 2$ and $r\geqq 1$ the number $g(r, n)$ is defined
to be the minimum number of vertices r-regular digraphs having girth $n(the$

length of the smallest cycle in the digraph) may possess. The upper bound
$r(n-1)+1$ for $g(r, n)$ was obtained in [2] and it was conjectured that $g(r, n)$

$=r(n-1)+1$ . Moreover, the values of $g(r, n)$ for the elements of the subset
$S$ of the set of all lattice points of the $r-n$ plane were obtained where:

$S=\{(r, n):n=2,3\}\cup\{(r, n):r=1\}\cup\{(2,4), (3,4), (4,4), (3,5)\}$ .

In this article we propose to prove that the conjecture is true for the
case $r=2$ as well.

*Definitions not given here can be found in [1].
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\S 3. The function $g(2, n)$ .
First we show that $g(2, n)$ is an increasing function of $n$ .
LEMMA 1. Let $n\geqq 2$ . Then $g(2, n+1)>g(2, n)$ .
PROOF. We use induction on $n$ . For $n=2$ , and 3, the lemma is obviously

true. Assume $D$ is a 2-regular digraph of order $f(2, n+1)$ whose girth is
$n+1,$ $n\geqq 3$ . Then $D$ contains a cycle $C:v_{1},$ $v_{2},$ $\cdots$ , $v_{n+1},$ $v_{1}$ of length $n+1$ .
Each vertex $v_{i}$ of $C$ is adjacent to and adjacent from an element of
$V(D)-V(C)$ , say $u_{j}$ and $u_{k},$ $j\neq k$ , respectively, where $V(D)$ denotes the vertex
set of $D$ . There exists an integer $i,$ $1\leqq i\leqq n+1$ , such that the edge $u_{k}u_{j}$ is
not in $D$ , for otherwise $D$ contains at least $4n+4$ edges, while $ g(2, n+1)\leqq$

$2n+1$ and the regularity of $D$ show that $D$ has at most $4n+2$ edges. Now,
we $remove\rightarrow$ the $vertex\rightarrow v_{i}$ together with its incident edges and add two new
edges $v_{i-1}v_{i+1}$ and $u_{k}u_{J}$–if $i=1$ , then $i-1$ is replaced by $n+1$ and if $i=n+1$ ,
then $i+1$ is replaced by l–to obtain a new 2-regular digraph of order
$g(2, n+1)-1$ and girth $n$ . Hence, $g(2, n)<g(2, n+1)$ as was required to prove.

We say a vertex $v$ of a digraPh $D$ having girth $n,$ $n\geqq 3$ , is adjacent
with a vertex $u$ of $D$ if either $v$ is adjacent to or is adjacent from the vertex
$u$ . From now on the subscripts are computed in terms of the integers
modulo $n$ .

LEMMA 2. Assume there exists a 2-regular digraph $D$ of order $g(2, n)=$

$2n-2$ having girth $n,$ $n\geqq 4$ . If $C:v_{1},$ $v_{2},$ $\cdots$ , $v_{n},$ $v_{1}$ is a cycle of length $n$ of $D$ ,
then every vertex of $V(D)-V(C)$ is adjacent with either 2 or 3 vertices of $C$.

PROOF. Let $u$ be an element of the nonempty set $V(D)-V(C)$ . SuPpose
$u$ is adjacent to $v_{i}$ . Then $u$ can be adjacent from no vertices of $C$ other
than $v_{i-1}$ and $v_{i-2}$ . Now it is clear that the vertex $u$ can be adjacent to no
other vertices of $C$. This proves that $u$ is adjacent with at most 3 vertices
of $C$.

Next, assume that $u$ is an element of $V(D)-V(C)$ which is adjacent with
at most one vertex of $C$. Suppose that $u$ is adjacent from the vertices $u_{1}$

and $u_{3}$ and is adjacent to the vertices $u_{2}$ and $u_{4}$ of D. (In case $u$ is adjacent
with one vertex of $C$, then exactly one of the elements of the set $\{u_{1},$ $u_{2},$ $u_{3}$ ,
$u_{4}\}$ is a vertex of $C.$) Now remove the edges of $C$ from $D$ and denote the
resulting digraph by $D^{*}$ . We show that $D^{*}$ contains a cycle $C_{2}$ of length $n$

by considering the following cases.
$\rightarrow$

CASE 1. At $\rightarrow leastoneof\rightarrow$ the two edges $u_{1}u_{2}$ and $u_{3}u_{4}$ is an edge of $D$ .
Then the edges $u_{3}u_{2}$ and $u_{1}u_{4}$ are not in $D$ . If $D^{*}$ has no cycle of length $n$ ,

then we remove the vertex $ utogether\rightarrow withits\rightarrow$ incident edges from the
digraph $D$ and add the new edges $u_{3}u_{2}$ and $u_{1}u_{4}$ to the resulting digraph to

$\backslash obtain$ a 2-regular digraph of order $g(2, n)-1$ having girth $n$ . But this con-
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tradicts the $minimalityof\rightarrow g(2,n)\rightarrow$ .
CASE 2. Neither $u_{1}u_{2}$ nor $u_{3}u_{4}$ is an $ edge\rightarrow$ of D. $\rightarrow In$ this $case\rightarrow$ ’ too, $\rightarrow follow-$

ing the above argument and replacing $u_{3}u_{2}$ and $u_{1}u_{4}$ by $u_{1}u_{2}$ and $u_{3}u_{4}$ , we
reach the conclusion that $D^{*}$ contains a cycle of length $n$ .

Now remove the edges of $C_{2}$ from $D^{*}$ and denote the resulting digraph
by $D^{**}$ . Since $D$ contains $4n-4$ edges, $D^{**}$ contains $2n-4$ edges. Starting
from a nonisolated vertex of $D^{**}$ and traversing along the directed edges of
$D^{**}$ we obtain a cycle $C_{3}$ of length $\mu=2n-4$ . Clearly $\mu\geqq n$ . In case
$\mu<2n-4$ then $D^{**}$ would necessarily contain a cycle of length less than $n$

which is impossible. Thus, $D$ is the sum of three edge-disjoint cycles $C_{1},$ $C_{2}$

and $C_{3}$ such that the length of $C_{i},$ $i=1,2$ , is $n$ and the length of $C_{3}$ is $2n-4$ .
The vertex set of $D$ consists of the $2n-4$ vertices of $C_{3}$ and two additional
vertices $w_{1}$ and $w_{2}$ . Both cycles $C_{1}$ and $C_{2}$ contain both vertices $w_{1}$ and $w_{2}$ ;
moreover, the two cycles $C_{1}$ and $C_{2}$ have no other vertices in common. Since
$D$ has girth $n$ the length of the directed path $w_{1}-w_{2}$ (resp. $w_{2}-w_{1}$ ) in $C_{1}$ is
the same as the length of the directed path $w_{1}-w_{2}$ (resp. $w_{2}-w_{1}$) in $C_{2}$ . The
length of each of these 4 paths is greater than one, and no vertex of each
of the directed paths $w_{1}-w_{2}$ can be adjacent with either a vertex of the
path $w_{2}-w_{1}$ in $C_{1}$ or a vertex of the path $w_{2}-w_{1}$ in $C_{2}$ . (See Figure 1.)

$C_{\iota}$

$C_{2}$

Fig. 1.

Hence $D$ can contain no cycle of length $2n-4$ which does not pass through
$w_{1}$ and $w_{2}$ . This contradiction completes the proof of the lemma.

Our main result is:
For any integer $n\geqq 2,$ $g(2, n)=2n-1$ .
PROOF. We use induction on $7l$ . It is known that the theorem is true

for $n=2,3,4$ and 5. Assume that the theorem is true for $n-1$ and consider
a 2-regular digraph $D$ having girth $n,$ $n\geqq 6$ and order $g(2, n)$ . Then $g(2, n)$

$\leqq 2n-1$ and by the induction hypothesis $g(2, n-1)=2n-3$ . These and Lemma
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1 imply that $g(2, n)$ is either $2n-2$ or $2n-1$ . Assume $g(2, n)=2n-2$ and let
$C:v_{1},$ $v_{2},$ $\cdots$ , $v_{n},$ $v_{1}$ be a cycle of length $n$ of $D$ . By Lemma 2 each element
of $V(D)-V(C)$ is adjacent with 2 or 3 vertices of $C$ . In fact, exactly 4 ele-
ments of $V(D)-V(C)$ , say $u_{1},$ $u_{2},$ $u_{3}$ and $u_{4}$ are adjacent with 3 vertices of $C$

and each of the remaining $n-6$ elements of $V(D)-V(C)$ , say $u_{5},$ $u_{6},$
$\cdots$ , $u_{n-2}$ ,

are adjacent with two vertices of $C$. To see this, we observe that the only
partition of the even integer $2n$ with $n-2$ summands belonging to the set
{2, 3} is 3, 3, 3, 3, 2, 2, $\cdots$ , 2. Next we show that such a situation is impossible.

CASE 1. Assume that two of the elements of the set $\{u_{1}, u_{2}, u_{3}, u_{4}\}are^{\sim}$

adjacent. Without loss of generality, we may suppose that $u_{1}$ is adjacent $t$ (\rangle ,

the vertex $u_{2}$ . Then $u_{1}$ is adjacent to a vertex of $C$, say $v_{1}$ , and is adjacent
from 2 vertices of $C$. These two vertices are necessarily $v_{n}$ and $v_{n-1}$ . Then
the only vertex of $C$ to which the vertex $u_{2}$ can be adjacent is $v_{2}$ . But $this_{\vee}$

produces a contradictiOn because the vertex $u_{2}$ must be adjacent to two,

vertices of $C$. For an illustration, see Figure 2.

Fig. 2.

CASE 2. The only alternative is that $n\geqq 8$ and that two elements of the’
set $\{u_{1}, u_{2}, u_{3}, u_{4}\}$ , say $u_{1}$ and $u_{2}$ , are joined by a semiPath $P$ of length $t,$ $2\leqq t$

$\leqq n-6$, all of whose vertices belong to $V(D)-V(C)$ . Let $P:u_{1},$ $u_{5},$ $u_{6},$ $\cdots$ , $u_{k},$ $u_{2r}$

where $5\leqq k\leqq n-3$ . We denote $u_{1}$ by $w_{1},$ $u_{5}$ by $w_{2},$ $u_{6}$ by $w_{3},$ $\cdots$ , $u_{k}$ by $w_{k- 3},$ .

and $u_{2}$ by $w_{k-2}$ . Then $P:w_{1},$ $w_{2},$ $\cdots$ , $w_{k-2}$ .
Now we have two cases to consider.
i) The vertex $w_{1}$ is adjacent to the vertex $w_{2}$ . without loss of generality,

we assume that $w_{1}$ is adjacent to $v_{1}$ . Then vertices $v_{n}$ and $v_{n-1}$ must be
adjacent to $w_{1}$ . The vertex $w_{2}$ is adjacent to at least one vertex of $C$ and
that must be $v_{2}$ . Hence, the vertex $w_{2}$ must be adjacent to $w_{3}$ as well. Con-
tinuing this process, we observe that the vertex $w_{i}$ can be adjacent to only
one vertex of $C$, namely $v_{i}$ , for $1\leqq i\leqq k-2$ ; therefore the vertex $w_{i}$ must be
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$adjacent_{\wedge}to_{\wedge}^{-}w_{i+1}$ , for $1\leqq i\leqq k-3$ . But then the adjacency of $w_{k-2}=u_{2}$ to two
$\iota of$ the vertices of $C$ is impossible. (Note that the semipath $P$ turns out to be
.a (directed) path from $u_{1}$ to $u_{2}.$)

Fig. 3.

Hence, the assumption $g(2, n)=2n-2$ leads to a contradiction.
ii) The vertex $w_{1}$ is adjacent from the vertex $w_{2}$ . We may assume that

the vertex $v_{n- 1}$ of $C$ is also adjacent to $w_{1}$ . Therefore, the two vertices of
$C$ to which the vertex $w_{1}$ is adjacent are $v_{1}$ and $v_{n}$ . Next, at least one vertex
of $C$ must be adjacent to $w_{2}$ and that without any other choice is $v_{n-2}$ . Hence,
the vertex $w_{3}$ is adjacent to the vertex $w_{2}$ . Continuing this process, we con-
clude that the only vertex of $C$ adjacent to $w_{i}$ is $v_{n-i}$ for $i=1,2,$ $\cdots$ , $k-2$ .
Hence, the vertex $w_{i}$ is also adjacent from the vertex $w_{i+1}$ , for $1\leqq i\leqq k-3$ .
But this contradicts the fact that the vertex $w_{k- 2}=u_{2}$ is adjacent from two
of the vertices of C. (In this case the semipath $P$ is a directed path from
$u_{2}$ to $u_{1}.$ ) This contradicts the assumption that $g(2, n)=2n-2$ . For an illus-
tration, see Figure 4. Hence, in any case $g(2, n)=2n-1$ as was required to
prove.

We conclude this article by mentioning that with some modifications, this
method seems to work for the determination of the value of the function
$g(3, n)$ and this result may appear elsewhere.
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Fig. 4.
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