On homogeneous Kähler manifolds of solvable Lie groups

By Hirohiko Shima

(Received April 24, 1972)

Introduction

Let M be a connected homogeneous complex manifold on which a connected Lie group G acts transitively as a group of holomorphic transformations. We assume that M admits a G-invariant volume element v. If v has an expression

$$
v=i^{n} F(z, \bar{z}) d z_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{n}
$$

in a local coordinate system $\left\{z_{1}, \cdots, z_{n}\right\}$, then the G-invariant hermitian form

$$
h=\sum_{i, j} \frac{\partial^{2} \log F(z, \bar{z})}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} d \bar{z}_{j}
$$

is called the canonical hermitian form of M. If M carries a G-invariant Kähler metric and if v is the volume element determined by this metric, the Ricci tensor of the Kähler manifold is equal to $-h$. From now on, M is assumed to be a homogeneous Kähler manifold unless otherwise specified. The canonical hermitian form h plays an important role in the investigation of homogeneous Kähler manifolds, and results in this direction are the following :
(i) If G is a semi-simple Lie group, then h is non-degenerate and the number of negative squares of h is equal to the difference between the dimension of a maximal compact subgroup of G and the dimension of the isotropy subgroup of G at a point of M [8].
(ii) If G is a unimodular Lie group and if h is non-degenerate, then G is a semi-simple Lie group [2].
(iii) h is negative definite if and only if G is a compact semi-simple Lie group [8], [11].

In [13], E. B. Vinberg, S. G. Gindikin, I. I. Pjateckii-Šapiro studied the structure of J-algebras. The J-algebra of a homogeneous bounded domain is proper in their sense. They proved the following:
(iv) Every proper J-algebra is isomorphic to the J-algebra of a homogeneous Siegel domain of the second kind. Since this domain is holomor-
phically isomorphic to a homogeneous bounded domain, the canonical hermitian form h of a proper J-algebra is positive definite. Moreover there exists a solvable Lie group which acts simply transitively on the homogeneous bounded domain.

Further they developed the theory of Kähler algebras and they proved [1], [14].
(v) If a connected simply connected Kähler manifold M admits a simply transitive solvable and splittable Lie group G, then M is a holomorphic fibre bundle whose base space is a homogeneous bounded domain and whose fibre is a locally flat homogeneous Kähler manifold. (A Lie group G is said to be splittable if the adjoint operator $\operatorname{ad}(X)$ has only real eigenvalues for any element X in the Lie algebra of G.)

We assume that the canonical hermitian form of M is positive definite and that M admits a transitive solvable Lie group. Then the corresponding Kähler algebra of M is a proper J-algebra and hence the universal covering manifold of M is holomorphically isomorphic to a homogeneous bounded domain.

Now, we shall denote by \hat{G} the identity component of the group of all holomorphic transformations of M leaving h invariant. If h is non-degenerate, the group \hat{G} is a Lie group acting on M as a Lie transformation group. In [3], Hano proved
(vi) Let M be a homogeneous complex (not necessarily Kähler) manifold with non-degenerate canonical hermitian form. Then the adjoint group $\operatorname{Ad}_{\hat{G}}(\hat{G})$ of \hat{G} is the identity component of a real algebraic group in $G L(\hat{\mathfrak{g}}, \boldsymbol{R})$, where \hat{g} is the Lie algebra of \hat{G}.

In the present paper, we show that the positive definiteness of h follows from its non-degeneracy provided that a (not necessarily splittable) solvable Lie group acts on M simply transitively. Precisely speaking, we prove the following theorem:

ThEOREM. Let M be a connected simply connected homogeneous Kähler manifold with non-degenerate canonical hermitian form h. If M admits a simply transitive solvable Lie group, then the canonical hermitian form h is positive definite and hence M is holomorphically isomorphic to a homogeneous bounded domain.

We denote by $I^{0}(M)$ the identity component of the group of all isometries of M. If the canonical hermitian form is non-degenerate, then $I^{0}(M) \subset \hat{G}[6]$, and the center of a transitive subgroup of $I^{0}(M)$ is discrete. Moreover, if M is a homogeneous bounded domain, then we have $\hat{G}=I^{\circ}(M)$ [4] and the isotropy subgroup of \hat{G} at a point $o \in M$ is a maximal compact subgroup of \hat{G}, and the center of the group \hat{G} is reduced to the identity [5].

As immediate applications of our theorem and (vi), we have
Corollary 1. Let M be a connected homogeneous Kähler manifold with non-degenerate canonical hermitian form. We assume that M admits a transitive Lie group G whose isotropy subgroup K at a point of M is a maximal compact subgroup of G and that the group \hat{G} coincides with $I^{0}(M)$ and of finite center. Then M is holomorphically isomorphic to a homogeneous bounded domain.

Corollary 2. Let M be a connected simply connected homogeneous Kähler manifold with non-degenerate canonical hermitian form. We assume that a point $o \in M$ has no conjugate point and that the group \hat{G} coincides with $I^{0}(M)$ and of finite center. Then M is holomorphically isomorphic to a homogeneous bounded domain.

The author wishes to thank Professor S. Murakami for his constant help and encouragement.

§ 1. Preliminaries

A. A $2 m$-dimensional real vector space V is called a symplectic space if there exists a skew symmetric bilinear form σ on V and a linear endomorphism J of V satisfying the following conditions; for $u, v \in V$

$$
\begin{aligned}
& J^{2} u=-u, \\
& \sigma(J u, J v)=\sigma(u, v), \\
& \sigma(J u, u)>0, \quad u \neq \mathbf{0} .
\end{aligned}
$$

In this case V may be regarded as a complex vector space with the complex structure J, which we shall denote by \tilde{V}. Moreover,

$$
(u, v)=\sigma(J u, v)+i \sigma(u, v) \quad(u, v \in \hat{V})
$$

is a positive definite hermitian form on this complex vector space \tilde{V}.
For a real linear transformation f of V, we put

$$
\begin{aligned}
& f^{+}(u)=(1 / 2)(f(u)-J f(J u)), \\
& f^{-}(u)=(1 / 2)(f(u)+J f(J u)), \quad u \in V .
\end{aligned}
$$

Then, we have $f=f^{+}+f^{-}, f^{+} J=J f^{+}$, and $f^{-} J=-J f^{-}$. Let $u_{1}, u_{2}, \cdots, u_{m}$ be an orthonormal basis of \tilde{V} with respect to the hermitian form (u, v). Put

$$
\begin{array}{ll}
f^{+}\left(u_{j}\right)=\sum_{k=1}^{m} a_{k j} u_{k}, & a_{k j} \in \boldsymbol{C}, \\
f^{-}\left(u_{j}\right)=\sum_{k=1}^{m} b_{k j} u_{k}, & b_{k j} \in \boldsymbol{C} .
\end{array}
$$

Identifying \tilde{V} and \boldsymbol{C}^{m} by means of the map $u=\sum_{j=1}^{m} z_{j} u_{j} \rightarrow z={ }^{t}\left(z_{1}, z_{2}, \cdots, z_{m}\right), f$ may be considered as a map $z \rightarrow A z+B \bar{z}$, where $A=\left(a_{k j}\right), B=\left(b_{k j}\right)$ and $\bar{z}=$ ${ }^{t}\left(\bar{z}_{1}, \cdots, \bar{z}_{m}\right)$. We denote this map f by $f=(A, B)$. If we have $f=\left(A^{\prime}, B^{\prime}\right)$ with respect to another orthonormal basis of \tilde{V}, then there exists a unitary matrix U such that

$$
A^{\prime}=U A^{t} \bar{U}, \quad B^{\prime}=U B^{t} U .
$$

A real linear transformation f of V is said to be symplectic if

$$
\sigma(f(u), v)+\sigma(u, f(v))=0
$$

for $u, v \in V$. It is easy to see that $f=(A, B)$ is symplectic if and only if A is a skew-hermitian matrix and B is a symmetric matrix. By a simple calculation, we see that if f is symplectic, then $\operatorname{Tr} f=0$.

Now, let f be a real linear transformation of V which commutes with J. For real numbers α, β, we put

$$
V_{(\alpha+i \beta)}=\left\{u \in V ;(f-(\alpha+\beta J))^{m} u=0 \text { for some } m\right\}
$$

and

$$
V_{[\alpha]}=\sum_{\beta} V_{(\alpha+i \beta)} .
$$

Then, we have $V=\sum_{\alpha} V_{[\alpha]}$ and $V_{[\alpha]}$ is the largest subspace of V on which the real parts of the eigenvalues of f are equal to α.
B. We denote by M a connected Kähler manifold on which a Lie group G acts simply transitively as a group of holomorphic isometries. Let (I, g) be the Kähler structure on M, i.e. I is a G-invariant complex structure tensor on M and g is a G-invariant Kähler metric on M.

Let g be the Lie algebra of all left invariant vector fields on G, and let π be the canonical projection from G onto M defined by $\pi(a)=a \cdot 0$, for $a \in G$, where o is a fixed point of M. Let π_{e} denote the differential of π at the identity e of G, and let X_{e}, I_{o} and g_{o} be the values of $X \in \mathfrak{g}, I$ and g at e and o respectively. Then there exist a linear endomorphism J of g and a skew symmetric bilinear form ρ on g such that

$$
\begin{gathered}
\pi_{e}(J X)_{e}=I_{o}\left(\pi_{e} X_{e}\right), \\
\rho(X, Y)=g_{o}\left(\pi_{e} X_{e}, I_{o} \pi_{e} Y_{e}\right),
\end{gathered}
$$

for $X, Y \in \mathrm{~g}$. Then (g, J, ρ) satisfies the following properties ([1], [8]):

$$
\begin{equation*}
J^{2} X=-X ; \tag{K.1}
\end{equation*}
$$

$$
\begin{equation*}
[J X, J Y]=J[J X, Y]+J[X, J Y]+[X, Y] ; \tag{K.2}
\end{equation*}
$$

$$
\begin{equation*}
\rho(J X, J Y)=\rho(X, Y) ; \tag{K.3}
\end{equation*}
$$

$$
\begin{equation*}
\rho(J X, X)>0, \quad X \neq 0 ; \tag{K.4}
\end{equation*}
$$

$$
\begin{equation*}
\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0 \tag{K.5}
\end{equation*}
$$

where $X, Y, Z \in \mathrm{~g}$.
(g, J, ρ) will be called the normal Kähler algebra of M.
It is known that the canonical hermitian form h of a homogeneous Kähler manifold M has the following expression due to J. L. Koszul [8].

Putting

$$
\begin{equation*}
\eta(X, Y)=h_{0}\left(\pi_{e} X_{e}, \pi_{e} Y_{e}\right), \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(X)=\operatorname{Tr}_{\mathrm{g}}(\operatorname{ad}(J X)-J \operatorname{ad}(X)), \tag{1.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\eta(X, Y)=(1 / 2) \phi([J X, Y]) \tag{1.3}
\end{equation*}
$$

for $X, Y \in \mathrm{~g}$. The form η satisfies the following properties:

$$
\begin{gather*}
\eta(X, Y)=\eta(Y, X), \tag{1.4}\\
\eta(J X, J Y)=\eta(X, Y), \tag{1.5}
\end{gather*}
$$

for $X, Y \in \mathrm{~g}$.
Now, the following lemma is due to [1].
Lemma 1. For $E, X, Y \in \mathrm{~g}$,

$$
\begin{gathered}
\frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
=\rho(J E, \exp t \operatorname{ad}(J E)[X, Y])
\end{gathered}
$$

Proof. By the property (K.5) of the Kähler algebra,

$$
\begin{aligned}
& \frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
&= \rho([J E, \exp t \operatorname{ad}(J E) X], \exp t \operatorname{ad}(J E) Y) \\
&+\rho(\exp t \operatorname{ad}(J E) X,[J E, \exp t \operatorname{ad}(J E) Y]) \\
&= \rho(J E,[\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y]) \\
&= \rho(J E, \exp t \operatorname{ad}(J E)[X, Y]) .
\end{aligned}
$$

Q. E. D.

Now, let g be a real Lie algebra and let \mathfrak{f} be a subalgebra of g. Suppose that there exist a linear endomorphism J of \mathfrak{g} and a 1 -form ω on \mathfrak{g}, which satisfy the following conditions:

$$
\begin{equation*}
J \mathfrak{f} \subset \mathfrak{f}, J^{2} X \equiv-X(\bmod \mathfrak{f}) ; \tag{J.1}
\end{equation*}
$$

$$
\begin{equation*}
[W, J X] \equiv J[W, X](\bmod \mathfrak{f}) ; \tag{J.2}
\end{equation*}
$$

$$
\begin{equation*}
[J X, J Y] \equiv J[J X, Y]+J[X, J Y]+[X, Y](\bmod \mathfrak{f}) ; \tag{J.3}
\end{equation*}
$$

$$
\begin{gather*}
\omega([W, X])=0 ; \tag{J.4}\\
\omega([J X, J Y])=\omega([X, Y]) ; \tag{J.5}\\
\omega([J X, X])>0, \quad X \in \mathfrak{f} ; \tag{J.6}
\end{gather*}
$$

where $X, Y \in \mathfrak{g}, W \in \neq$.
Then, $(\mathfrak{g}, \mathfrak{f}, J, \omega$) will be called a J-algebra.
Let ($\mathfrak{g}, \mathrm{f}, J, \omega$) be a J-algebra and let g^{\prime} be a subalgebra such that

$$
J g^{\prime} \subset g^{\prime}+\mathfrak{f}
$$

We can then define a linear endomorphism J^{\prime} of g^{\prime} so that $J X^{\prime} \equiv J^{\prime} X^{\prime}(\bmod \mathfrak{f})$, for $X^{\prime} \in \mathfrak{g}^{\prime}$. We define a 1 -form ω^{\prime} on \mathfrak{g}^{\prime} as the restriction of ω on \mathfrak{g}^{\prime} and we put $\mathfrak{F}^{\prime}=\mathfrak{f} \cap \mathfrak{g}^{\prime}$. It is easy to see that $\left(\mathfrak{g}^{\prime}, \mathfrak{f}^{\prime}, J^{\prime}, \omega^{\prime}\right)$ is a J-algebra. It is called a J-subalgebra of ($\mathfrak{g}, \mathfrak{f}, J, \omega$).

A J-algebra ($\mathrm{g}, \mathrm{f}, J, \omega$) is said to be proper, if it satisfies the following condition (P):
(P) Every compact semi-simple J-subalgebra of ($\mathfrak{g}, \mathfrak{f}, J, \omega$) is contained in ${ }^{\circ}$.

A J-algebra ($\mathfrak{g}, \mathfrak{f}, J, \omega$) will be called normal if $f=0$, and we denote it by (g, J, ω).

We know then the following theorem (cf. Introduction (iv)):
Let (\mathfrak{g}, J, ω) be a normal J-algebra and let g be a solvable Lie algebra. Then this J-algebra is proper, and is isomorphic to the J-algebra of a homogeneous bounded domain.

§ 2. Statement of Theorem

In this section, we shall state our theorem and sketch the proof.
Theorem. Let M be a connected Kähler manifold on which a connected solvable Lie group G acts simply transitively as a group of holomorphic isometries. Let (\mathfrak{g}, J, ρ) be the normal Kähler algebra of M. If the canonical hermitian form h of M is non-degenerate, then we get the decomposition

$$
\begin{equation*}
\mathfrak{g}=\sum_{k=1}^{m} \mathfrak{g}_{k} \tag{2.1}
\end{equation*}
$$

of g into direct sum of vector spaces with the following properties:

1) g_{k} is a J-invariant subalgebra in which there exist an element $E_{k} \in \mathrm{~g}_{k}$ and a subspace \mathfrak{p}_{k} with the following properties:

$$
\begin{equation*}
\mathfrak{g}_{k}=\left\{J E_{k}\right\}+\left\{E_{h}\right\}+\mathfrak{p}_{k} ; \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
J \mathfrak{p}_{k} \subset \mathfrak{p}_{k} ; \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
{\left[J E_{k}, E_{k}\right]=E_{k} ;} \tag{2.4}\\
{\left[J E_{k}, \mathfrak{p}_{k}\right] \subset \mathfrak{p}_{k} .} \tag{2.5}
\end{gather*}
$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}\left(J E_{k}\right)$ on \mathfrak{p}_{k} are equal to $1 / 2$, and

$$
\begin{gather*}
{\left[E_{k}, \mathfrak{p}_{k}\right]=\{0\} ;} \tag{2.6}\\
{\left[\mathfrak{p}_{k}, \mathfrak{p}_{k}\right] \subset\left\{E_{k}\right\} .} \tag{2.7}
\end{gather*}
$$

2) Put

$$
\begin{equation*}
\mathrm{g}^{k+1}=\mathrm{g}_{k+1}+\mathrm{g}_{k+2}+\cdots+\mathrm{g}_{m} \tag{2.8}
\end{equation*}
$$

then, we have

$$
\begin{equation*}
\left[J E_{k}, \mathrm{~g}^{k+1}\right] \subset \mathrm{g}^{k+1} \tag{2.9}
\end{equation*}
$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}\left(J E_{k}\right)$ on g^{k+1} are equal to 0 , and

$$
\begin{gather*}
{\left[E_{k}, \mathrm{~g}^{k+1}\right]=\{0\}} \tag{2.10}\\
{\left[\mathfrak{p}_{k}, \mathfrak{g}^{k+1}\right] \subset \mathfrak{p}_{k}} \tag{2.11}
\end{gather*}
$$

3) The form η defined by (1.2) and (1.3) is positive definite on g and the factors of the decomposition $\mathfrak{g}=\sum_{k=1}^{m}\left(\left\{J E_{k}\right\}+\left\{E_{k}\right\}+\mathfrak{p}_{k}\right)$ are mutually orthogonal with respect to this form η.

Under the same assumption of Theorem, (\mathfrak{g}, J, ψ) becomes a solvable normal J-algebra, since η is positive definite on \mathfrak{g} (cf. §1. B). Therefore it is isomorphic to a J-algebra of a homogeneous bounded domain (cf. Introduction (iv) and §1. B). Hence we have our theorem in the introduction.

As for the proof of Theorem, put $\mathrm{g}^{1}=\mathrm{g}$. We shall show by induction on n that there exists a decomposition of g

$$
\begin{equation*}
\mathfrak{g}=\sum_{k=1}^{n-1} \mathfrak{g}_{k}+\mathrm{g}^{n} \tag{2.12}
\end{equation*}
$$

with the following properties:

1) For each $k=1,2, \cdots, n-1$, there exist an element $E_{k} \in g_{k}$ and a subspace $\mathfrak{p}_{k} \subset g_{k}$ with the properties as stated in Theorem 1).
2) Put $\mathrm{g}^{k+1}=\sum_{l=k+1}^{n-1} \mathrm{~g}_{l}+\mathrm{g}^{n}$. Then g^{k+1} has the properties as stated in Theorem 2).
3) The form η which is non-degenerate on g is positive definite on $\sum_{k=1}^{n-1} \mathfrak{g}_{k}$ and the factors of the decomposition $\mathfrak{g}=\sum_{k=1}^{n-1}\left(\left\{J E_{k}\right\}+\left\{E_{k}\right\}+\mathfrak{p}_{k}\right)+\mathfrak{g}^{n}$ are mutually orthogonal with respect to this form η.

Now, our theorem will follow by this inductive process, since we shall
have $\mathrm{g}^{m+1}=\{0\}$ for a certain m.
Suppose we have a decomposition (2.12) for an integer n. Then $\mathfrak{g}_{k}(1 \leqq$ $k \leqq n-1$) and \mathfrak{g}^{n} are clearly J-invariant solvable subalgebras of g .

Define

$$
\begin{equation*}
\sigma_{k}(X, Y)=\psi([X, Y]), \tag{2.13}
\end{equation*}
$$

for $X, Y \in \mathfrak{p}_{k}(1 \leqq k \leqq n-1)$. Then $\left(\mathfrak{p}_{k}, J, \sigma_{k}\right)$ becomes a symplectic space (cf. §1. A). A representation f_{k} of g^{n} in \mathfrak{p}_{k} is defined by

$$
\begin{equation*}
f_{k}(X) U=[X, V] \tag{2.14}
\end{equation*}
$$

where $X \in \mathfrak{g}^{n}, U \in \mathfrak{p}_{k}$, and f_{k} is symplectic, i. e. $f_{k}(X)$ is a symplectic transformation of \mathfrak{p}_{k} for $X \in \mathfrak{g}^{n}$. Indeed, for $X \in \mathfrak{g}^{n}, U, V \in \mathfrak{p}_{k}$, we have

$$
[X,[U, V]]=[[X, U], V]+[U,[X, V]] .
$$

By (2.7) and (2.10), the left side of the equation is equal to 0 , and hence

$$
\psi([[X, U], V])+\psi([U,[X, V]])=0
$$

Therefore $f_{k}(X)$ is symplectic.

§ 3. Proof of Theorem: Existence of E_{n} in g^{n}

We shall prove the following.
Proposition 1. Suppose we have a decomposition (2.12) with the properties given there for an integer $n \geqq 1$. Then, there exists a non-zero element E_{n} in \mathfrak{g}^{n} such that

$$
\begin{gathered}
{\left[X, E_{n}\right]=\lambda(X) E_{n}, \quad \lambda(X) \in \boldsymbol{R}, \quad \text { for } X \in \mathfrak{g}^{n} ;} \\
{\left[J E_{n}, E_{n}\right]=E_{n} .}
\end{gathered}
$$

In the first place, we show
Lemma 2. A real solvable Lie algebra \mathfrak{g} contains a commutative ideal of dimension 1 or 2 spanned by the elements E, F such that for $X \in \mathfrak{g}$

$$
\begin{align*}
& {[X, E]=\lambda(X) E+\mu(X) F,} \\
& {[X, F]=-\mu(X) E+\lambda(X) F,} \tag{3.1}
\end{align*}
$$

where λ, μ are linear functions on g.
Proof. Let g be a real solvable Lie algebra and let $\mathrm{g}^{\mathrm{c}}=\{X+i Y ; X, Y$ $\in g\}$ be its complexification. By Lie's theorem, there exists a non-zero element Z in \mathfrak{g}^{c} such that $[W, Z]=k(W) Z$ holds for all $W \in \mathfrak{g}^{c}$ with $k(W) \in \boldsymbol{C}$.

Let E (resp. F) denote the real part (resp. imaginary part) of Z. Then for any $X \in \mathfrak{g}$,

$$
\begin{align*}
& {[X, E]=\lambda(X) E+\mu(X) F,} \tag{3.2}\\
& {[X, F]=-\mu(X) E+\lambda(X) F,}
\end{align*}
$$

hold, where λ, μ are linear functions on g .
Let $\mathfrak{r}=\{E, F\}$ be the real vector subspace spanned by the elements E, F. If E, F are linearly dependent, \mathfrak{r} is a one-dimensional ideal of g. If E, F are linearly independent, \mathfrak{r} is a two-dimensional ideal of \mathfrak{g} satisfying the above conditions. For, since $[E, E]=0$, we get $\lambda(E)=\mu(E)=0$ by the first relation in (3.2), which implies $[E, F]=0$ by the second relation in (3.2) and then \mathfrak{r} is a commutative ideal.
Q.E.D.

We shall now prove that g^{n} contains a one-dimensional ideal. In view of Lemma 2, it is sufficient to prove that g^{n} contains no two-dimensional ideal $\mathfrak{r}=\{E, F\}$ as in Lemma 2.

Let $\mathfrak{r}=\{E, F\}$ be such an ideal of g^{n}. By a simple calculation, we have

$$
\begin{equation*}
\left[\left[g^{n}, g^{n}\right], r\right]=\{0\} . \tag{3.3}
\end{equation*}
$$

Lemma 3. Let X be an element of \mathfrak{g}^{n}. If $\psi([X, C])=0$ for all $C \in \mathfrak{r}$, then $[X, C]=0$ for all $C \in \mathfrak{r}$.

Proof. First we note that $\psi \neq 0$ on \mathfrak{r}. In fact, if $\psi=0$ on $\mathfrak{r}, \eta(Y, D)=$ $\psi([J Y, D])=0$ for $Y \in \mathfrak{g}^{n}, D \in \mathfrak{r}$. Since η is non-degenerate on \mathfrak{g}^{n}, it follows $\mathfrak{r}=\{0\}$, which is a contradiction. Therefore $\psi \neq 0$ on \mathfrak{r}. Since $[X, E]=$ $\lambda(X) E+\mu(X) F,[X, F]=-\mu(X) E+\lambda(X) F$, we have $\lambda(X) \psi(E)+\mu(X) \psi(F)=0$, $-\mu(X) \psi(E)+\lambda(X) \psi(F)=0$. As $\psi(E) \neq 0$ or $\psi(F) \neq 0, \lambda(X)^{2}+\mu(X)^{2}=0$ holds, and hence we have $\lambda(X)=\mu(X)=0$, which implies $[X, C]=0$ for all $C \in \mathfrak{r}$.
Q. E. D.

We put

$$
\mathfrak{r}^{0}=\{C \in \mathfrak{r} ; \psi([J C, E])=\psi([J C, F])=0\} .
$$

Then, the following three cases are possible:

$$
\operatorname{dim} r^{0}=0, \quad \operatorname{dim} r^{0}=1 \quad \text { or } \quad \operatorname{dim} r^{0}=2 .
$$

We shall show that $\operatorname{dim} r^{0} \neq 0$. Suppose $\operatorname{dim} r^{0}=0$. Then η is nondegenerate on \mathfrak{r} and hence there exists a unique non-zero element $A \in \mathfrak{r}$ such that $\psi([J A, C])=\psi(C)$, for all $C \in \mathfrak{r}$. When $A=\alpha E+\beta F(\alpha, \beta \in \boldsymbol{R})$, we put $B=-\beta E+\alpha F$. Then A, B is a base of \mathfrak{r} such that for $X \in \mathfrak{g}^{n}$

$$
\begin{align*}
& {[X, A]=\lambda^{\prime}(X) A+\mu^{\prime}(X) B,} \\
& {[X, B]=-\mu^{\prime}(X) A+\lambda^{\prime}(X) B,} \tag{3.4}
\end{align*}
$$

where λ^{\prime} and μ^{\prime} are linear functions on \mathfrak{g}^{n}. Now, for $C \in \mathfrak{r}$, we have by (1.5), (3.3),

$$
\begin{aligned}
& \psi([J[J A, A], C])=-\psi([[J A, A], J C]) \\
&=\psi([[A, J C], J A])+\psi([[J C, J A], A]) \\
&=-\psi([A, J C]) \\
&=\psi([J A, C]) \\
&=\psi(C) .
\end{aligned}
$$

Thus we get $[J A, A]=A$, and so $[J A, B]=B$ by (3.4). When we put $[J B, A]$ $=\lambda_{0} A+\mu_{0} B, \lambda_{0}, \mu_{0} \in \boldsymbol{R}$, then $[J B, B]=-\mu_{0} A+\lambda_{0} B$ by (3.4). Hence by (K.2)

$$
\begin{aligned}
{[[J A, J B], A] } & =[J[J A, B]+J[A, J B], A] \\
& =\left[J B-\lambda_{0} J A-\mu_{0} J B, A\right] \\
& =-\lambda_{0}[J A, A]+\left(1-\mu_{0}\right)[J B, A] \\
& =-\lambda_{0} \mu_{0} A+\mu_{0}\left(1-\mu_{0}\right) B .
\end{aligned}
$$

Since $[[J A, J B], A]=0$ by (3.3), we have $\mu_{0}=0$ or $\mu_{0}=1$ and $\lambda_{0}=0$. In the case $\mu_{0}=0$, put $\gamma=\psi(B), \delta=-\psi(A)$. Then, since $\psi \neq 0$ on \mathfrak{r}, at least one of γ, δ is not zero and $\gamma \psi(A)+\delta \psi(B)=0$. Let $X=\gamma A+\delta B$. Then $X \neq 0$ and we have

$$
\begin{aligned}
& \psi([J A, X])=\psi(\gamma A+\delta B)=\gamma \psi(A)+\delta \psi(B)=0, \\
& \psi([J B, X])=\psi(\gamma \lambda A+\delta \lambda B)=\lambda(\gamma \psi(A)+\delta \psi(B))=0 .
\end{aligned}
$$

Since η is non-degenerate on \mathfrak{r}, it follows that $X=0$, which is a contradiction. Suppose $\mu_{0}=1$ and $\lambda_{0}=0$. Then we have by (K.2),

$$
[J A, J B]=J[J A, B]+J[A, J B]=J B-J B=0 .
$$

From this and (K.5), it follows

$$
\begin{gathered}
\rho([J A, J B], B)+\rho([J B, B], J A)+\rho([B, J A], J B)=0, \\
\rho(J A, A)+\rho(J B, B)=0,
\end{gathered}
$$

which is a contradiction since $\rho(J A, A)>0$ and $\rho(J B, B)>0$. Thus we have shown that $\operatorname{dim} \mathrm{r}^{0}=0$ is impossible.

We show that $\operatorname{dim} r^{0} \neq 1$. Suppose $\operatorname{dim} r^{0}=1$ and let A be a non-zero element in \mathfrak{r}^{0}. When $A=\alpha E+\beta F(\alpha, \beta \in \boldsymbol{R})$, we put $B=-\beta E+\alpha F$. Then A, B form a basis of \mathfrak{r} such that for $X \in \mathfrak{g}^{n}$

$$
\begin{align*}
& {[X, A]=\lambda^{\prime}(X) A+\mu^{\prime}(X) B} \tag{3.5}\\
& {[X, B]=-\mu^{\prime}(X) A+\lambda^{\prime}(X) B,}
\end{align*}
$$

where λ^{\prime} and μ^{\prime} are linear functions on \mathfrak{g}^{n}. Since $\psi([J A, A])=\psi([J A, B])=0$, we have $\psi([J A, C])=0$ for all $C \in \mathfrak{r}$ and it follows by Lemma 3 that $[J A, A]$ $=0$ and $[J A, B]=0$. From this and (3.3), we have

$$
\begin{aligned}
0 & =\psi([[J A, J B], A]) \\
& =\psi([J[J A, B]+J[A, J B], A]) \\
& =\psi([J[A, J B], A]), \\
0 & =\psi([[J A, J B], B]) \\
& =\psi([J[J A, B]+J[A, J B], B]) \\
& =\psi([J[A, J B], B]) .
\end{aligned}
$$

Hence there exists a real number λ_{0} such that $[J B, A]=\lambda_{0} A$. Then $[J B, B]$ $=\lambda_{0} B$ by (3.5). Since $B \notin \mathfrak{r}^{0}$, it follows that either $\psi([J B, B])=\lambda_{0} \psi(B)$ or $\phi([J B, A])=\lambda_{0} \psi(A)$ is not zero. Therefore $\lambda_{0} \neq 0$. On the other hand, we have by (K.2) and (K.5)

$$
\begin{aligned}
0 & =\rho([J A, J B], A)+\rho([J B, A], J A)+\rho([A, J A], J B) \\
& =\rho(J[J A, B], A)+\rho(J[A, J B], A)+\rho([J B, A], J A)+\rho([A, J A], J B) \\
& =-2 \lambda_{0} \rho(J A, A) .
\end{aligned}
$$

Since $\rho(J A, A)>0$, we get $\lambda_{0}=0$, which is a contradiction. Thus $\operatorname{dim} r^{0}=1$ does not occur.

Suppose now $\operatorname{dim} \mathrm{r}^{0}=2$. Since $\psi([J C, E])=0, \psi([J C, F])=0$ for any $C \in \mathfrak{r}$, it follows by Lemma 3 that $[J C, E]=[J C, F]=0$ for all $C \in \mathfrak{r}$ and hence we have

$$
\begin{equation*}
[J \mathfrak{r}, \mathfrak{r}]=\{0\} \tag{3.6}
\end{equation*}
$$

Now, we put

$$
\begin{equation*}
\mathfrak{p}=\left\{P \in \mathfrak{g}^{n} ;[P, E]=[J P, E]=0\right\} . \tag{3.7}
\end{equation*}
$$

Then, clearly

$$
\begin{equation*}
J \mathfrak{p} \subset \mathfrak{p} . \tag{3.8}
\end{equation*}
$$

Moreover we see

$$
\begin{gather*}
\operatorname{ad}(J E) \mathfrak{p} \subset \mathfrak{p}, \tag{3.9}\\
\operatorname{ad}(J E) J=J \operatorname{ad}(J E) \quad \text { on } \mathfrak{p .} \tag{3.10}
\end{gather*}
$$

Indeed, since $[J E, J P]=J[J E, P]+J[E, J P]+[E, P]=J[J E, P]$ for $P \in \mathfrak{p}$, we have $\operatorname{ad}(J E) J=J \operatorname{ad}(J E)$ on \mathfrak{p}. Since $[[J E, P], E]=0$ and $[J[J E, P], E]=$ $[[J E, J P], E]=0$ by (3.3), we have ad $(J E) \mathfrak{p} \subset \mathfrak{p}$.

Now, for $X \in \mathrm{~g}^{n}$, we get by (3.3), (3.6)

$$
[[J E, X], E]=0,
$$

$$
\begin{aligned}
{[J[J E, X], E] } & =[[J E, J X]-J[E, J X]-[E, X], E] \\
& =[[J E, J X], E] \\
& =0,
\end{aligned}
$$

which implies that $[J E, X] \in \mathfrak{p}$, and hence we have

$$
\begin{equation*}
\operatorname{ad}(J E) \mathfrak{g}^{n} \subset \mathfrak{p} . \tag{3.11}
\end{equation*}
$$

Let $P \in \mathfrak{p}$. We have

$$
\begin{aligned}
\rho(J E,[J E, P]) & =-\rho(E, J[J E, P]) \\
& =-\rho(E,[J E, J P]) \\
& =\rho(J E,[J P, E])+\rho(J P,[E, J E]) \\
& =0
\end{aligned}
$$

and it follows that for $X \in g^{n}$

$$
\begin{equation*}
\rho\left(J E, \operatorname{ad}(J E)^{2} X\right)=0 \tag{3.12}
\end{equation*}
$$

Applying Lemma 1 and (3.12), we have for $X, Y \in \mathrm{~g}^{n}$

$$
\begin{aligned}
\frac{d^{3}}{d t^{3}} & \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
& =\frac{d^{2}}{d t^{2}} \rho(J E, \exp t \operatorname{ad}(J E)[X, Y]) \\
& =\rho\left(J E, \operatorname{ad}(J E)^{2} \exp t \operatorname{ad}(J E)[X, Y]\right) \\
& =0
\end{aligned}
$$

Hence we may put

$$
\begin{equation*}
\rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y)=a t^{2}+b t+c, \tag{3.13}
\end{equation*}
$$

where a, b and c are real numbers not depending on t.
Now, let $\alpha+i \beta(\alpha, \beta \in \boldsymbol{R})$ be an eigenvalue of $\operatorname{ad}(J E)$ on \mathfrak{p}. Since $\operatorname{ad}(J E) J$ $=J \operatorname{ad}(J E)$ on \mathfrak{p} by (3.10), there exists a non-zero element $P \in \mathfrak{p}$ such that $\operatorname{ad}(J E) P=(\alpha+\beta J) P$, and hence $\exp t \operatorname{ad}(J E) P=\exp t(\alpha+\beta J) P$. Therefore we have by (K.3) and (3.10),

$$
\begin{aligned}
& \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{ad}(J E) P) \\
& \quad=\rho(J \exp t \operatorname{ad}(J E) P, \exp t \operatorname{ad}(J E) P) \\
& \quad=\rho(J \exp t(\alpha+\beta J) P, \exp t(\alpha+\beta J) P) \\
& \quad=\rho(\exp t(\alpha+\beta J) J P, \exp t(\alpha+\beta J) P) \\
& \quad=e^{(\alpha+i \beta) t} e^{(\alpha+i \beta) t} \rho(J P, P) \\
& \quad=e^{2 \alpha t} \rho(J P, P) .
\end{aligned}
$$

From this and (3.13), we have

$$
a t^{2}+b t+c=e^{2 \alpha t} \rho(J P, P) .
$$

Since $\rho(J P, P)>0$, it follows $\alpha=0$. Thus the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 .

Now, we put

$$
\begin{equation*}
\psi_{n}(X)=\operatorname{Tr}_{\mathrm{r}} n(\operatorname{ad}(J X)-J \operatorname{ad}(X)) \quad \text { for } X \in \mathrm{~g}^{n} \tag{3.14}
\end{equation*}
$$

From the facts that $\operatorname{ad}(J E) \mathfrak{g}^{n} \subset \mathfrak{p}$ (3.11) and the real parts of the eigenvalues of $a d(J E)$ on \mathfrak{p} are equal to 0 , it follows that $\mathrm{Tr}_{\mathrm{r}^{n}} \operatorname{ad}(J E)=\mathrm{Tr}_{\mathfrak{p}} \operatorname{ad}(J E)=0$. On the other hand, by (3.6) and J ad $(E) \mathfrak{g}^{n} \subset J$, we have $\operatorname{Tr}_{6} n J$ ad $(E)=$ $\operatorname{Tr}_{J \mathrm{r}} J \mathrm{ad}(E)=0$. These imply that

$$
\psi_{n}(E)=0 .
$$

Taking F instead of E, we have

$$
\psi_{n}(F)=0 .
$$

Thus we know

$$
\begin{equation*}
\psi_{n}=0 \quad \text { on } \mathrm{r} . \tag{3.15}
\end{equation*}
$$

Now, for $X \in \mathfrak{g}^{n}, P \in \mathfrak{p}_{k}$, we have $\left[X, J E_{k}\right] \in \mathfrak{g}^{k+1},\left[X, E_{k}\right]=0,[X, P] \in \mathfrak{p}_{k}$ and $\operatorname{Tr}_{\mathfrak{p}_{k}} f_{k}(X)=0$, where f_{k} is a symplectic representation of g^{n} in \mathfrak{p}_{k} (2.14). It follows that for $X \in \mathfrak{g}^{n}$

$$
\begin{align*}
\psi(X) & =\operatorname{Tr}_{8}(\operatorname{ad}(J X)-J \operatorname{ad}(X)) \tag{3.16}\\
& =\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}}\left(f_{k}(J X)-J f_{k}(X)\right)+\psi_{n}(X) \\
& =-\sum_{k=1}^{n-1} \operatorname{Tr}_{p_{k}} J f_{k}(X)+\psi_{n}(X) .
\end{align*}
$$

Put $f_{k}(E)=(A, B), f_{k}(J E)=(C, D)$ in the sense of \S 1.A. Since $\left[f_{k}(J E), f_{k}(E)\right]$ $=f_{k}([J E, E])=0$, it becomes that

$$
\begin{equation*}
C A-A C+D \bar{B}-B \bar{D}=0 \tag{3.17}
\end{equation*}
$$

By (K.2), we have

$$
\begin{equation*}
\left[J, f_{k}(J E)-(1 / 2)\left[J, f_{k}(E)\right]\right]=0 . \tag{3.18}
\end{equation*}
$$

From this and $J=(i, 0)$, we know

$$
\begin{equation*}
D=i B . \tag{3.19}
\end{equation*}
$$

Since B is a symmetric matrix, there exists a unitary matrix U such that

$$
U B^{t} U=\left(\begin{array}{ccccc}
\lambda_{1} & & & & \\
& \ddots & & & 0 \\
& \lambda_{r} & & \\
& & \lambda_{r+1} & \\
0 & & & \ddots & \\
& & & \lambda_{l}
\end{array}\right)
$$

where $\lambda_{i}>0$ for $1 \leqq i \leqq r, \lambda_{i}=0$ for $r+1 \leqq i \leqq l$. Hence we may assume that

$$
B=\left(\begin{array}{ccccc}
\lambda_{1} & & & & \tag{3.20}\\
& \ddots & & & \\
& & \lambda_{r} & & \\
& & \lambda_{r+1} & & \\
0 & & & \ddots & \\
& & & & \lambda_{l}
\end{array}\right)
$$

where $\lambda_{i}>0$ for $1 \leqq i \leqq r, \lambda_{i}=0$ for $r+1 \leqq i \leqq l$. Since $D=i B$, we have

$$
\begin{equation*}
C A-A C+2 i B^{2}=0 \tag{3.21}
\end{equation*}
$$

Taking the trace of the both sides of the formula (3.21), it follows that

$$
2 i \sum_{k=1}^{1} \lambda_{k}^{2}=0
$$

which implies that $B=0$, and hence $f_{k}(E)=(A, 0)$. From this we know that

$$
\begin{equation*}
f_{k}(E) J=J f_{k}(E) \quad \text { on } \mathfrak{p}_{k} . \tag{3.22}
\end{equation*}
$$

Using (3.15), (3.16) and (3.22), we have

$$
\begin{align*}
\psi([E, X]) & =-\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} J f_{k}([E, X])+\psi_{n}([E, X]) \tag{3.23}\\
& =-\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} J\left[f_{k}(E), f_{k}(X)\right] \\
& =-\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}}\left(J f_{k}(E) f_{k}(X)-J f_{k}(X) f_{k}(E)\right) \\
& =-\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}}\left(f_{k}(E) J f_{k}(X)-J f_{k}(X) f_{k}(E)\right) \\
& =-\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}}\left[f_{k}(E), J f_{k}(X)\right] \\
& =0, \quad \text { for } \quad X \in \mathfrak{g}^{n} .
\end{align*}
$$

Since η is non-degenerate on g^{n}, it follows that $E=0$, which is a contradiction. Thus we have known that g^{n} contains a one-dimensional ideal r of g^{n}.

Now, let E be a non-zero element of \mathfrak{r} and suppose that $[J E, E]=0$. Put

$$
\mathfrak{p}=\left\{P \in \mathfrak{g}^{n} ;[P, E]=[J P, E]=0\right\} .
$$

Then, by the argument as used above, we see the followings. First ad $(J E) g^{n}$ $\subset \mathfrak{p}$, and the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 , and $\psi([E, X])=0$ for any $X \in \mathfrak{g}^{n}$. This is a contradiction, because η is nondegenerate on g^{n}. Therefore $[J E, E] \neq 0$.

Putting $E_{n}=\lambda E$ with a non-zero constant λ, we have

$$
\begin{equation*}
\left[J E_{n}, E_{n}\right]=E_{n} \tag{3.24}
\end{equation*}
$$

Thus Proposition 1 is proved.

§ 4. Proof of Theorem (continued): Decomposition of g^{n}

Proposition 2. Let E_{n} be an element in g^{n} as in Proposition 1. Then, we get the decomposition

$$
\begin{equation*}
\mathfrak{g}^{n}=\left\{J E_{n}\right\}+\left\{E_{n}\right\}+\mathfrak{p}_{n}+\mathfrak{g}^{n+1} \tag{4.1}
\end{equation*}
$$

of \mathfrak{g}^{n} into the direct sum of vector spaces with the following properties:

1) $\mathfrak{g}_{n}=\left\{J E_{n}\right\}+\left\{E_{n}\right\}+\mathfrak{p}_{n}$ is a J-invariant subalgebra such that

$$
\begin{gather*}
J \mathfrak{p}_{n} \subset \mathfrak{p}_{n} ; \tag{4.2}\\
{\left[J E_{n}, E_{n}\right]=E_{n} ;} \tag{4.3}\\
{\left[J E_{n}, \mathfrak{p}_{n}\right] \subset \mathfrak{p}_{n} .}
\end{gather*}
$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}\left(J E_{n}\right)$ on \mathfrak{p}_{n} are equal to $1 / 2$, and

$$
\begin{gather*}
{\left[E_{n}, \mathfrak{p}_{n}\right]=0 ;} \tag{4.5}\\
{\left[\mathfrak{p}_{n}, \mathfrak{p}_{n}\right] \subset\left\{E_{n}\right\} .}
\end{gather*}
$$

2) g^{n+1} is a J-invariant subalgebra such that

$$
\begin{equation*}
\left[J E_{n}, \mathrm{~g}^{n+1}\right] \subset \mathrm{g}^{n+1} \tag{4.7}
\end{equation*}
$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}\left(J E_{n}\right)$ on g^{n+1} are equal to 0 , and

$$
\begin{align*}
& {\left[E_{n}, \mathfrak{g}^{n+1}\right]=0 ;} \tag{4.8}\\
& {\left[\mathfrak{p}_{n}, \mathfrak{g}^{n+1}\right] \subset \mathfrak{p}_{n} .} \tag{4.9}
\end{align*}
$$

3) The form η is positive definite on \mathfrak{g}_{n} and the factors of the decomposition $\mathfrak{g}_{n}=\left\{J E_{n}\right\}+\left\{E_{n}\right\}+\mathfrak{p}_{n}$ are mutually orthogonal with respect to this form η. Further, the form η is non-degenerate on g^{n+1}.

Proof. For the convenience of notation, we denote the element E_{n} by E. We put

$$
\begin{equation*}
\mathfrak{p}=\left\{P \in \mathfrak{g}^{n} ;[P, E]=[J P, E]=0\right\} . \tag{4.10}
\end{equation*}
$$

Then, we have

$$
\begin{gather*}
J \mathfrak{p} \subset \mathfrak{p}, \operatorname{ad}(J E) \mathfrak{p} \subset \mathfrak{p}, \tag{4.11}\\
\operatorname{ad}(J E) J=J \operatorname{ad}(J E) \quad \text { on } \mathfrak{p}, \tag{4.12}\\
\mathfrak{g}^{n}=\{J E\}+\{E\}+\mathfrak{p} . \tag{4.13}
\end{gather*}
$$

Indeed, (4.11) and (4.12) can be shown in the same way as (3.8), (3.9) and (3.10). Since $\{E\}$ is a one-dimensional ideal of \mathfrak{g}^{n}, we get $[X, E]=\alpha(X) E,[J X, E]$ $=\beta(X) E$ for $X \in \mathrm{~g}^{n}$, where α, β are linear functions on g^{n}. It is easily seen that $P=X-\alpha(X) J E-\beta(X) E$ belongs to \mathfrak{p} for any $X \in \mathfrak{g}^{n}$.

Lemma 4. The real parts of the eigenvalues of $\operatorname{ad}(J E)$ on \mathfrak{p} are equal to 0 or $1 / 2$.

Proof. By Lemma 1, we have for $P \in \mathfrak{p}$,

$$
\begin{aligned}
\frac{d}{d t} & \rho(\exp t \operatorname{ad}(J E) E, \exp t \operatorname{ad}(J E) P) \\
& =\rho(J E, \exp t \operatorname{ad}(J E)[E, P]) \\
& =0
\end{aligned}
$$

Since $\exp t \operatorname{ad}(J E) E=e^{t} E$, this implies that

$$
\rho(E, \exp t \operatorname{ad}(J E) P)=a^{\prime} e^{-t}
$$

where a^{\prime} is a constant determined by P and independent of t. We have then

$$
\begin{aligned}
\rho(J E, \exp t \operatorname{ad}(J E) P) & =-\rho(E, J \exp t \operatorname{ad}(J E) P) \\
& =-\rho(E, \exp t \operatorname{ad}(J E) J P) \\
& =a e^{-t}
\end{aligned}
$$

where a is the constant determined by $J P$. Since any element X in g^{n} is expressed in the form $X=\lambda J E+\mu E+P$, where $\lambda, \mu \in \boldsymbol{R}$ and $P \in \mathfrak{p}$ (4.13), we have

$$
\begin{aligned}
\rho(J E, \exp t \operatorname{ad}(J E) X) & =\rho\left(J E, \lambda J E+\mu e^{t} E+\exp t \operatorname{ad}(J E) P\right) \\
& =\mu \rho(J E, E) e^{t}+\rho(J E, \exp t \operatorname{ad}(J E) P) \\
& =a e^{-t}+b e^{t}
\end{aligned}
$$

where a, b are constant independent of t. This fact and Lemma 1 imply that for $X, Y \in \mathfrak{g}^{n}$

$$
\begin{aligned}
\frac{d}{d t} & \rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y) \\
& =\rho(J E, \exp t \operatorname{ad}(J E)[X, Y]) \\
& =a e^{-t}+b e^{t}
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\rho(\exp t \operatorname{ad}(J E) X, \exp t \operatorname{ad}(J E) Y)=a e^{-t}+b e^{t}+c, \tag{4.14}
\end{equation*}
$$

where a, b and c are constant independent of t. Let $\alpha+i \beta(\alpha, \beta \in \boldsymbol{R})$ be an eigenvalue of $\operatorname{ad}(J E)$ on \mathfrak{p}. Since $\operatorname{ad}(J E) J=J \operatorname{ad}(J E)$ on \mathfrak{p}, there exists a non-zero element P in \mathfrak{p} such that $\operatorname{ad}(J E) P=(\alpha+\beta J) P$. Hence we have

$$
\begin{aligned}
& \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{ad}(J E) P) \\
& \quad=\rho(J \exp t \operatorname{ad}(J E) P, \exp t \operatorname{ad}(J E) P) \\
& \quad=\rho(J \exp t(\alpha+\beta J) P, \exp t(\alpha+\beta J) P) \\
& \quad=\rho(\exp t(\alpha+\beta J) J P, \exp t(\alpha+\beta J) P) \\
& \quad=e^{(\alpha+i \beta) t} e^{\frac{(\alpha+i \beta) t}{}} \rho(J P, P) \\
& \quad=e^{2 \alpha t} \rho(J P, P) .
\end{aligned}
$$

Therefore

$$
e^{2 \alpha t} \rho(J P, P)=a e^{-t}+b e^{t}+c
$$

This implies that $\alpha=0$ or $1 / 2$ or $-1 / 2$, since $\rho(J P, P)>0$. We put

$$
\begin{equation*}
\mathfrak{P}_{(\alpha+i \beta)}=\left\{P \in \mathfrak{p} ;(\operatorname{ad}(J E)-(\alpha+\beta J))^{m} P=0 \text { for some integer } m>0\right\} \tag{4.15}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathfrak{p}=\sum_{\alpha+i \beta} p_{(\alpha+i \beta)}, \tag{4.16}
\end{equation*}
$$

where α is equal to 0 or $1 / 2$ or $-1 / 2$. Let P be a non-zero element in $\mathfrak{p}_{(\alpha+i \beta)}$. Then there exists a positive integer m such that $(\operatorname{ad}(J E)-(\alpha+\beta J))^{m} P=0$. Hence we have

$$
\begin{aligned}
\exp t \operatorname{ad}(J E) P= & \exp t(\alpha+\beta J) \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P \\
= & e^{\alpha t}\left\{\cos \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P\right. \\
& +\sin \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} J P
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \rho(J E, \exp t \operatorname{ad}(J E) P) \\
& =e^{\alpha t}\left\{\cos \beta t_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P\right) t^{l}\right. \\
& \left.\quad+\sin \beta t \sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} J P\right) t^{l}\right\}
\end{aligned}
$$

We put

$$
\begin{aligned}
& h(t)=\sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} P\right) t^{l} \\
& k(t)=\sum_{l=0}^{m-1} \frac{1}{l!} \rho\left(J E,(\operatorname{ad}(J E)-(\alpha+\beta J))^{l} J P\right) t^{l}
\end{aligned}
$$

Then, $h(t)$ and $k(t)$ are polynomials whose degrees are $m-1$ at most. We have then

$$
\begin{gather*}
h(t) \cos \beta t+k(t) \sin \beta t=a e^{-(1+\alpha) t}, \\
\left|\frac{h(t)}{t^{m}} \cos \beta t+\frac{k(t)}{t^{m}} \sin \beta t\right|=\left|a \frac{e^{-(1+\alpha) t}}{t^{m}}\right| . \tag{4.17}
\end{gather*}
$$

We assume that $a \neq 0$. Since $1+\alpha>0$ and since $h(t)$ and $k(t)$ are polynomials of degree $\leqq m-1$, the left side of the above formula (4.17) approaches to 0 and the right side to ∞, when $t \rightarrow-\infty$. This is a contradiction, and we must have $a=0$. This implies that

$$
\rho(J E, \exp t \operatorname{ad}(J E) P)=0, \quad \text { for } P \in \mathfrak{p}_{(\alpha+i \beta)}
$$

Hence we have

$$
\rho(J E, \exp t \operatorname{ad}(J E) P)=0, \quad \text { for } P \in \mathfrak{p}
$$

Therefore

$$
e^{2 \alpha t} \rho(J P, P)=b e^{t}+c
$$

This implies that $\alpha=0$ or $1 / 2$, which proves Lemma 4 .
Now, put

$$
\mathfrak{p}_{[\alpha]}=\sum_{\beta} \mathfrak{p}_{(\alpha+i \beta)}
$$

Then, we have

$$
\begin{gathered}
J \mathfrak{p}_{[\alpha]} \subset \mathfrak{p}_{[\alpha]}, \operatorname{ad}(J E) \mathfrak{p}_{[\alpha]} \subset \mathfrak{p}_{[\alpha]}, \\
\mathfrak{p}=\mathfrak{p}_{[0]}+\mathfrak{p}_{[1]} .
\end{gathered}
$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on $\mathfrak{p}_{[\alpha]}$ are equal to α. Hence we get the following decomposition;

$$
\begin{equation*}
\mathrm{g}^{n}=\mathrm{g}_{[0]}+\mathrm{g}_{[1 / 2]}+\mathrm{g}_{[1]}, \tag{4.18}
\end{equation*}
$$

where $\mathfrak{g}_{[0]}=\{J E\}+\mathfrak{p}_{[0]}, g_{[1 / 2]}=\mathfrak{p}_{[1 / 2]}$ and $\mathfrak{g}_{[1]}=\{E\}$. Moreover, $\operatorname{ad}(J E) g_{[\alpha]} \subset g_{[\alpha]}$ and the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on $g_{[\alpha]}$ are equal to α. We put

$$
\begin{gather*}
\mathfrak{p}_{n}=\mathfrak{p}_{[1 / 2]}, \tag{4.19}\\
\mathfrak{g}_{n}=\{J E\}+\{E\}+\mathfrak{p}_{[1 / 2]}, \tag{4.20}
\end{gather*}
$$

$$
\begin{equation*}
\mathfrak{g}^{n+1}=\mathfrak{p}_{[0]} \tag{4.21}
\end{equation*}
$$

Then, g_{n} is clearly a J-invariant subalgebra. We prove that g^{n+1} is also a J invariant subalgebra. First we have $J g^{n+1} \subset g^{n+1}$. Now, since $\left[g_{[0]}, g_{[0]}\right] \subset g_{[0]}$,
if $P, Q \in \mathrm{~g}^{n+1}$, we have

$$
[P, Q]=\lambda J E+P^{\prime},
$$

where $\lambda \in \boldsymbol{R}$ and $P^{\prime} \in \mathfrak{p}_{[00}$, and therefore

$$
[[P, Q], E]=\lambda E .
$$

On the other hand, we have

$$
[[P, Q], E]=[[P, E], Q]+[P,[Q, E]]=0 .
$$

This implies that $\lambda=0$. Thus we have $[P, Q] \in \mathfrak{g}^{n+1}$, which shows that \mathfrak{g}^{n+1} is a subalgebra.

Now, we shall show that the factors of the decomposition

$$
\mathfrak{g}^{n}=\{J E\}+\{E\}+\mathfrak{p}_{[1 / 2]}+\mathfrak{p}_{[0]}
$$

are mutually orthogonal with respect to the non-degenerate form η. Indeed, for $P \in \mathfrak{p}_{[1 / 2]}, Q \in \mathfrak{p}_{[03}$, put $P^{\prime}=[J P, Q]$. Then $P^{\prime} \in \mathfrak{p}_{[1 / 2]}$. Since the real parts of the eigenvalues of ad $(J E)$ on $\mathfrak{p}_{[1 / 2]}$ are equal to $1 / 2, \operatorname{ad}(J E)$ is non-singular on $\mathfrak{p}_{[1 / 2]}$ and hence there exists an element $P^{\prime \prime} \in \mathfrak{p}_{[1 / 2]}$ such that $\left[J E, P^{\prime \prime}\right]=P^{\prime}$. We have then $2 \eta(P, Q)=\psi([J P, Q])=\psi\left(\left[J E, P^{\prime \prime}\right]\right)=-\psi\left(\left[E, J P^{\prime \prime}\right]\right)=0$. This shows that $\mathfrak{p}_{[1 / 2]}$ and $\mathfrak{p}_{[0]}$ are orthogonal with respect to η. It is clear that the other pairs of factors are mutually orthogonal with respect to η.

Lemma 5.

$$
\psi(E)>0 .
$$

Proof. Recall that $\left(\mathfrak{p}_{k}, J, \sigma_{k}\right)$ is a symplectic space where σ_{k} is defined in (2.13) and that f_{k} is a symplectic representation of \mathfrak{g}^{n} in \mathfrak{p}_{k} defined by (2.14). Since

$$
\begin{gathered}
{\left[f_{k}(J E), f_{k}(E)\right]=f_{k}(E),} \\
{\left[J, f_{k}(J E)-(1 / 2)\left[J, f_{k}(E)\right]\right]=0,}
\end{gathered}
$$

we have by [10]

1) $\mathfrak{p}_{k}=\mathfrak{p}_{k}^{+}+\mathfrak{p}_{k}^{-}+\mathfrak{p}_{k}^{0}$ direct sum;
2) $\mathfrak{p}_{k}^{+}, \mathfrak{p}_{k}^{-}$and \mathfrak{p}_{k}^{0} are invariant by $f_{k}(J E)$;
3) the real parts of the eigenvalues of $f_{k}(J E)$ on $\mathfrak{p}_{k}^{+}, \mathfrak{p}_{k}^{-}$and \mathfrak{p}_{k}^{0} are $1 / 2$, $-1 / 2$ and 0 respectively ;
4) $J \mathfrak{p}_{k}^{-}=\mathfrak{p}_{k}^{+}, J \mathfrak{p}_{k}^{0}=\mathfrak{p}_{k}^{0}$, in particular $\operatorname{dim} \mathfrak{p}_{k}^{-}=\operatorname{dim} \mathfrak{p}_{k}^{+}, \operatorname{Tr}_{\mathfrak{p}_{k}} f_{k}(J E)=0$;
5)

$$
f_{k}(E)= \begin{cases}J & \text { on } \mathfrak{p}_{\bar{k}}, \\ 0 & \text { an } \\ \mathfrak{p}_{k}^{+}+\mathfrak{p}_{k}^{0}\end{cases}
$$

These show that $\operatorname{Tr}_{\mathfrak{p}_{k}} J f_{k}(E)=-\operatorname{dim} \mathfrak{p}_{k}^{-}$. On the other hand $\operatorname{Tr}_{\mathrm{g}^{n}}(\operatorname{ad}(J E)-$ $J \operatorname{ad}(E))>0$. Indeed, $\mathrm{Tr}_{8} n J$ ad $(E)=-1$ because J ad $(E) \mathrm{g}^{n} \subset\{J E\}$ and J ad $(E) J E$ $=-J E$. Moreover, the real parts of the eigenvalues of $\operatorname{ad}(J E)$ on g^{n} are equal to $0,1 / 2$ or 1 , and $\operatorname{ad}(J E) E=E$. Therefore we have $\operatorname{Tr}_{8} n$ ad $(J E)>0$.

These imply that $\operatorname{Tr}_{\mathrm{s}}(\operatorname{ad}(J E)-J \operatorname{ad}(E))>0$. Therefore we have

$$
\begin{aligned}
\psi(E) & =-\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} J f_{k}(E)+\operatorname{Tr}_{8} n(\operatorname{ad}(J E)-J \operatorname{ad}(E)) \\
& =\sum_{k=1}^{n-1} \operatorname{dim} \mathfrak{p}_{k}^{-}+\operatorname{Tr}_{5} n(\operatorname{ad}(J E)-J \operatorname{ad}(E))>0
\end{aligned}
$$

Q. E. D.

Lemma 6. η is positive definite on $\mathfrak{p}_{[1 / 2]}$.
Proof. We shall first prove that the decomposition $\mathfrak{p}_{[1 / 2]}=\sum_{\beta} \mathfrak{p}_{(1 / 2+i \beta)}$ is an orthogonal decomposition with respect to η. Let P and Q be non-zero elements in $\mathfrak{p}_{(1 / 2+i \beta)}, \mathfrak{p}_{\left(1 / 2+i \beta^{\prime}\right)}$ respectively and assume $\beta \neq \beta^{\prime}$. Then there exist positive integers m, n such that

$$
\begin{aligned}
& (\operatorname{ad}(J E)-(1 / 2+\beta J))^{m} P=0 \\
& \left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{n} Q=0
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \exp t \operatorname{ad}(J E) P=\exp t(1 / 2+\beta J) \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} P \\
& \exp t \operatorname{ad}(J E) Q=\exp t\left(1 / 2+\beta^{\prime} J\right) \sum_{l=0}^{n-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q
\end{aligned}
$$

Since $\left[\mathfrak{p}_{[1 / 2]}, \mathfrak{p}_{[1 / 22]}\right] \subset\{E\}$, it becomes that $[J P, Q]=\lambda E$, where $\lambda \in \boldsymbol{R} . \quad$ By Lemma 1, we have

$$
\begin{gather*}
\frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{ad}(J E) Q) \\
\quad=\rho(J E, \exp t \operatorname{ad}(J E)[J P, Q]) \tag{4.22}
\end{gather*}
$$

The left side of this equation is equal to

$$
\begin{aligned}
& \frac{d}{d t} \rho(J \exp t \operatorname{ad}(J E) P, \exp t \operatorname{ad}(J E) Q) \\
&= \frac{d}{d t} \rho\left(J \exp t(1 / 2+\beta J) \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} P,\right. \\
&\left.\quad \exp t\left(1 / 2+\beta^{\prime} J\right) \sum_{l=0}^{n-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q\right) \\
&= \frac{d}{d t} e^{t} \rho\left(\exp \beta t J \sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} J P,\right. \\
&\left.\exp \beta^{\prime} t J \sum_{l=0}^{n-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q\right) \\
&= \frac{d}{d t} e^{t} \rho\left(\{\cos \beta t+(\sin \beta t) J\} u(t),\left\{\cos \beta^{\prime} t+\left(\sin \beta^{\prime} t\right) J\right\} v(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{d}{d \bar{t}} e^{t}\left(\cos \beta t \cos \beta^{\prime} t+\sin \beta t \sin \beta^{\prime} t\right) \rho(u(t), v(t)) \\
& +\left(\sin \beta t \cos \beta^{\prime} t-\cos \beta t \sin \beta^{\prime} t\right) \rho(J u(t), v(t)) \\
= & \frac{d}{d t} e^{t}\left\{h(t) \cos \left(\beta-\beta^{\prime}\right) t+k(t) \sin \left(\beta-\beta^{\prime}\right) t\right\} \\
= & e^{t}\left\{a(t) \cos \left(\beta-\beta^{\prime}\right) t+b(t) \sin \left(\beta-\beta^{\prime}\right) t\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& u(t)=\sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} J P, \\
& v(t)=\sum_{l=0}^{n-1} \frac{t^{l}}{l!}\left(\operatorname{ad}(J E)-\left(1 / 2+\beta^{\prime} J\right)\right)^{l} Q, \\
& h(t)=\rho(u(t), v(t)), \\
& k(t)=\rho(J u(t), v(t)), \\
& a(t)=h(t)+h^{\prime}(t)+\left(\beta-\beta^{\prime}\right) k(t), \\
& b(t)=k(t)+k^{\prime}(t)-\left(\beta-\beta^{\prime}\right) h(t) .
\end{aligned}
$$

Hence $a(t)$ and $b(t)$ are polynomials. On the other hand, the right side of the equation (4.22) is equal to

$$
\begin{aligned}
\rho(J E, \exp t \operatorname{ad}(J E)[J P, Q]) & =\rho\left(J E, \lambda e^{t} E\right) \\
& =e^{t} \lambda \rho(J E, E)
\end{aligned}
$$

Therefore we have

$$
a(t) \cos \left(\beta-\beta^{\prime}\right) t+b(t) \sin \left(\beta-\beta^{\prime}\right) t=\lambda \rho(J E, E) .
$$

Since $a(t)-\lambda \rho(J E, E)$ is a polynomial and since $a\left(t_{n}\right)-\lambda \rho(J E, E)=0$ for t_{n} $=2 n \pi /\left(\beta-\beta^{\prime}\right)$, where n integer, it follows that $a(t)$ is a constant a. Similarly $b(t)$ is a constant b. Hence we have

$$
a \cos \left(\beta-\beta^{\prime}\right) t+b \sin \left(\beta-\beta^{\prime}\right) t=\lambda \rho(J E, E) .
$$

By this formula, we have $\left(\beta-\beta^{\prime}\right)^{2} \lambda \rho(J E, E)=0$. Since $\beta-\beta^{\prime} \neq 0$ and $\rho(J E, E)$ $>0, \lambda$ must be 0 . Thus we have

$$
\eta(P, Q)=\psi([J P, Q])=\lambda \psi(E)=0 .
$$

This implies that $\mathfrak{p}_{(1 / 2+i \beta)}$ and $\mathfrak{p}_{\left(1 / 2+i \beta^{\prime}\right)}$ are mutually orthogonal with respect to η.

Now, let P be a non-zero element in $\mathfrak{p}_{(1 / 2+i \beta)}$. Then, there exists a positive integer m such that

$$
(\operatorname{ad}(J E)-(1 / 2+\beta J))^{m} P=0
$$

and hence

$$
\exp t \operatorname{ad}(J E) P=\exp t(1 / 2+\beta J) u(t)
$$

where $u(t)=\sum_{l=0}^{m-1} \frac{t^{l}}{l!}(\operatorname{ad}(J E)-(1 / 2+\beta J))^{l} P$. On the other hand, we have by Lemma 1

$$
\begin{gather*}
\frac{d}{d t} \rho(\exp t \operatorname{ad}(J E) J P, \exp t \operatorname{ad}(J E) P) \tag{4.23}\\
=\rho(J E, \exp t \operatorname{ad}(J E)[J P, P]) .
\end{gather*}
$$

The left side of this equation is equal to

$$
\begin{aligned}
& \frac{d}{d t} \rho(J \exp t \operatorname{ad}(J E) P, \exp t \operatorname{ad}(J E) P) \\
& \quad=\frac{d}{d t} \rho(J \exp t(1 / 2+\beta J) u(t), \exp t(1 / 2+\beta J) u(t)) \\
& \quad=\frac{d}{d t} \rho(\exp t(1 / 2+\beta J) J u(t), \exp t(1 / 2+\beta J) u(t)) \\
& \quad=\frac{d}{d t} e^{(1 / 2+i \beta) t} e^{\overline{(1 / 2+i \beta) t}} \rho(J u(t), u(t)) \\
& \quad=\frac{d}{d t} e^{t} \rho(J u(t), u(t)) \\
& \quad=e^{t}\left(h^{\prime}(t)+h(t)\right),
\end{aligned}
$$

where $h(t)=\rho(J u(t), u(t))$, and $h(t)$ is a polynomial of degree $\leqq 2 m-2$. Because $[J P, P]=\lambda E$ where $\lambda \in \boldsymbol{R}$, the right side of the equation (4.23) is equal to

$$
\rho\left(J E, \lambda e^{t} E\right)=e^{t} \lambda \rho(J E, E) .
$$

Hence we have

$$
h^{\prime}(t)+h(t)=\lambda \rho(J E, E) .
$$

The solution of this equation is $h(t)=c e^{-t}+\lambda \rho(J E, E)$, where c is an arbitrary constant. However, $h(t)$ is a polynomial, and so c must be 0 . Hence we have

$$
h(t)=\lambda \rho(J E, E),
$$

and hence it follows that

$$
\begin{equation*}
\lambda=\frac{h(t)}{\rho(J E, E)}=\frac{h(0)}{\rho(J E, E)}=\frac{\rho(J P, P)}{\rho(J E, E)}>0 \tag{4.24}
\end{equation*}
$$

Therefore we have by Lemma 5 and (4.24)

$$
\eta(P, P)=\psi([J P, P])=\lambda \psi(E)>0 .
$$

This shows that η is positive definite on $\mathfrak{p}_{(1 / 2+i \beta)}$, and hence on $\mathfrak{p}_{[1 / 2]}=\sum_{\beta} \mathfrak{p}_{(1 / 2+i \beta)}$.
This completes the proof of Proposition 2.
As explained in $\S 2$ our theorem follows then by induction on n, applying Propositions 1 and 2 successively.

§ 5. Proof of corollaries

Proof of Corollary 1. Let \hat{K} be the isotropy subgroup of \hat{G} at the point o. Since $\hat{G}=I^{\circ}(M), \hat{K}$ is a compact subgroup of \hat{G}. By a theorem of Iwasawa, $\hat{G} / \hat{K}=G / K$ is homeomorphic to a Euclidean space. Hence \hat{K} is a maximal compact subgroup of \hat{G}. Let $\hat{\mathrm{f}}$ be the Lie subalgebra of $\hat{\mathrm{g}}$ corresponding to \widehat{K}. By a theorem of Hano (Introduction (vi)), the adjoint group $\tilde{G}=\operatorname{Ad}_{\hat{G}}(\hat{G})$ of \hat{G} is the identity component of a real algebraic group in $G L(\hat{\mathfrak{g}}, \boldsymbol{R})$. Since the center of \hat{G} is finite and since $\tilde{K}=\operatorname{Ad}_{\hat{G}}(\hat{K})$ is a compact subgroup of \tilde{G}, \tilde{K} is a maximal compact subgroup of \tilde{G}. Hence there exists a connected triangular subgroup \tilde{T} of \tilde{G} such that $\tilde{G}=\tilde{T} \tilde{K}$, where $\tilde{T} \cap \tilde{K}$ consists of the identity only [12]. Thus we have $\hat{G}=\hat{T} \hat{K}$, where $\hat{T}=\operatorname{Ad}_{\hat{G}}{ }^{-1}(\tilde{T})$, and \hat{T} is a solvable Lie group which acts transitively on M. The Kähler algebra corresponding to \hat{T} is normal, solvable and the canonical hermitian form is non-degenerate. By our theorem, M is holomorphically isomorphic to a homogeneous bounded domain.

Proof of Corollary 2. Since M is complete, simply connected, and since o has no conjugate point, the exponential map $\exp _{0}: T_{0}(M) \rightarrow M$ is a homeomorphism. Therefore the isotropy subgroup of $I^{0}(M)$ at o is a maximal compact subgroup of $I^{\circ}(M)$. Therefore, by Corollary 1 the proof is completed.

References

[1] S. G. Gindikin, I. I. Pjateckii-Šapiro and E. B. Vinberg, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87.
[2] J. Hano, On kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79 (1957), 885-900.
[3] J. Hano, Equivariant projective immersion of a complex coset space with nondegenerate canonical hermitian form, Scripta Math., 29 (1971).
[4] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[5] S. Kaneyuki, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967), 89-130.
[6] S. Kobayashi and K. Nomizu, On automorphisms of a Kählerian structure, Nagoya Math. J., 11 (1957), 115-124.
[7] S. Kobayashi and K. Nomizu, Foundations of differential geometry, II, Interscience Publishers, New York, 1969.
[8] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562-576.
[9] I. I. Pjateckii-Sapiro, Bounded homogeneous domains in n-dimensional complex space, Izv. Akad. Nauk SSSR Ser. Math., 26 (1962), 107-124; English transl., Amer. Math. Soc. Transl., (2) 43 (1964), 299-320.
[10] I. I. Pjateckii-Šapiro, The structure of j-algebras, Izv. Akad. Nauk SSSR Ser.

Math., 26 (1962), 453-484; English transl., Amer. Math. Soc. Transl., (2) 55 (1966), 207-241.
[11] H. Shima, On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad., (3) 46 (1970), 209-211.
[12] E. B. Vinberg, The Morozov-Borel theorem for real Lie groups, Dokl. Acad. Nauk SSSR, 141 (1961), 270-273; English transl., Soviet Math. Dokl., 2 (1961), 1416-1419.
[13] E. B. Vinberg, S. G. Gindikin and I. I. Pjateckii-Šapiro, Classification and canonical realization of complex bounded homogeneous domains, Trudy Moscow Math. Obshch., 12 (1963), 359-388; English transl., Trans. Moscow Math. Soc., 12 (1963), 404-437.
[14] E. B. Vinberg and S. G. Gindikin, Kaehlerian manifolds admitting a transitive solvable automorphism group, English transl., Math. Sb., 74 (116) (1967), 333-351.

Hirohiko Shima
Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi
Japan

