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§1. Introduction.

Let M be an n-dimensional connected and complete Riemannian manifold
whose sectional curvature K satisfies

(1.1) 1/4<0<K=<1 for any plane section.

If M is simply connected and J = 0.85, then M is diffeomorphic to the standard
sphere (see [5]). In the present paper we shall establish a differentiable
pinching theorem for the real projective space. Our pinching number is
independent of the dimension.

MAIN THEOREM. Let M be a connected and complete Riemannian manifold
with (1.1). Assume that the fundamental group m,(M) of M is

(1.2) n(M)=2Z,.
Then there exists a constant 6, (1/4,1) such that
(1.3 0> 9,

implies M to be diffeomorphic to the real projective space.

§2. Preliminaries.

Throughout this paper, let M satisfy both (1.1) and [1.2). We denote by
d the distance function on M with respect to the Riemannian metric. The
diameter d(M) of M is defined by d(M): =Max {d(x,y); x,y= M} and we set
d(p, q): =d(M). Let M be the universal Riemannian covering manifold of
M and = the covering projection. For any point x = M, we denote by %, %,
& M the elements of the inverse image 7 !(x), and by C(x) the cut locus of
x. Under the assumptions (1.1) and [1.2), we see in that

1/2<d(x, C(x) < 7/2v8, w/2=<dM)=<nr/2v/5

hold for any x& M. Since for any x& M and any y € C(x), each minimizing
geodesic from x to ¥ has no conjugate pair, they are joined by two and just
two distinct minimizing geodesics. Let E be defined by
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I

E:={je M; d(f, 5)=d(, 7} .

Then we observe

m(E)=C(p) .

Especially E is a hypersurface diffeomorphic to S™*. Let f: M— M be the
deck transformation. Then f is a fixed point free involution and it leaves E
invariant.

Next we observe that for any j& M, (9 € C(9). Hence we have
Ay, f(Mz=r

from the cut locus theorem due to Klingenberg [2]. For any y< C(p), let
71, 72 be the shortest connections between p and y (each emanating from p)
and 7,, 7, the lifted geodesics joining p, to 9, 7, respectively. By construc-
tion they have the same length [, and n/2=<[=<7/24/6. Therefore we have
the geodesic quadrangle (7, f:73', /-7, 72') with the same edge length and
the vertices p,, 7,, p, and 5,. Moreover from Toponogov’s comparison theorem
(see all of the edge angles are bounded from below by 7+/d > x/2, which
is proved in Lemma 3.0 Therefore as is shown in [5], all of the shortest
geodesics emanating from p; to points on E can be deformed simultaneously
in a thin neighborhood of E so that they hit orthogonally to E. In fact, let
2: M—R be the function defined by A(®):=d(p,, X)—d(p,, %), X< M. Then 0
is a regular value of 4, and hence there exists an open interval I of 0 con-
tained in the set of regular values of A such that 27*(I) C B.(p,) N\ Bx(p,) and
all of shortest connections joinning p; to points on E are transversal to each
of the hypersurfaces A°!({a}), ac I, where B.(p;) is by definition the open
metric ball in M with the radius = and the center at p;. Thus we get the
family of loops at p covering simply M, so that any loop has the same tan-
gent vectors at p as one of the original biangles. If all of these loops can
be deformed simultaneously to simply closed smooth curves, then M is diffeo-
morphic to the real projective space. For this purpose we consider the involu-
tive diffeomorphism ¢: S;(1)— S,(1) (Sp(1) © M, is by definition the unit hyper-
sphere in the tangent space M, centered at the origin) caused by the deck
transformation as follows: For each u e S,(1), ¢(u) is the unit tangent vector
such that

expyl-u=expyl-pw)eC(p), u+em), lla/2 7/2v5].

Clearly ¢ is a fixed point free involutive diffeomorphism.
Now the problem is how to construct a homotopy {@,} 0=t=<1) of
diffeomorphisms on Sp(1) satisfying
? = identity for each t=[0, 1],

2.1)
D,=¢, @, = antipodal map.
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“The essential tool for proving (2.1) is the following (see [5]
DIFFEOTOPY THEOREM. Let h be a diffeomorphism on the standard k-sphere
S*C R*¥', Assume that

(2.2) B:=Max {X(u, h(n)); ue S* <r/2,

(2.3) e:=Max {{ (4, dhA); A= TS* < cos“l{—cos B S—lgl‘i}

Then h is diffeotopic to the identity via the following homotopy of diffeomor-
phisms: For each ue S* let y,:[0,1]1—S* be the shortest great circle arc
parametrized proportionally to arc length such that y,(0): =u, 7,(1): = h(u).
Let H(u): =7,(). Then H, is a diffeomorphism for all t< [0, 1].

Let us consider the following ¢ : S,(1)—S,(1)

(2.4) d(u): = —ou).

Then ¢ is diffeotopic to the antipodal map if and only if ¢ is diffeotopic to
the identity.

The final step of the proof is to find out J, such that yvields the
diffeotopy conditions (2.2) and (2.3) for ¢. In fact if ¢ satisfies the conditions
then there exists the homotopy {¥,} (0<t<1) of diffeomorphisms obtained
in the diffeotopy theorem. From construction we see

wx/z(u) = _WJ/Z(SD(u)) , for any ue Sp(D .
Setting

(2.5) Q,: =V 000¥%,

we see that @, satisfies (2.1) and hence M is diffeomorphic to the real pro-
jective space.

§3. Construction of the involutive diffeotopy.

LEMMA 3.1. < (u, ¢w) =a(1l—~8) <x/2 holds for any u< Sy(1).

PROOF. For any u < S,(1), we have the geodesic quadrangle with edges
(G f+73% 72, 730 in M, where dz(7{(0)=u, dn(7}(0))= —¢(u). Apply Topo-
‘nogov’s comparison theorem to the isosceles triangle with vertices f,, 7, and
y,, where §,: =7, (1) E, [=1,2. The conclusion is obvious from ! <[x/2,
7/2+4/6 ] and d(¥,, ;) = .

LEMMA 3.2. There exists a(d) such that

(31) lgm a(d)=0,
—1

T dpA

32)  d(exp, A exp, 000 ) <ald)  for any ASTS,(D), [Al=1,
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where A and dpA on the left hand side of (3.2) are identified with those trans-
lated parallely in M, to the origin.

PROOF. For any u< S,(1) and any A< T,S,(1), let a: I—S,(1) be a curve
fitting A (i.e., a(0)=u, a’(0)=A and I is an open interval containing 0). Let
71, 72 [0, [L]— M be the shortest geodesics such that 7i(0)=1wu, 73(0) =¢@(u),
r1il)=71.) € C(p). We define the smooth function s—I(s), sl by l,=10),
exp,l(s)-a(s) € C(p). We denote by V: [0, [,]xI— M the 1-parameter geodesic
variation along 7;

Vit s): =exp, t%-a(s) )

(3.3) i)
2 i _S)
Vi, s): =exppt 10) p(a(s)) .
Obviously we see Vi(I,)= V)< C(p) for any s I, where Vit): = V(t,s).
Let Y; be the Jacobi field associated with V* and Z; its normal component.

From L(V)=L(V2 for any s (L( ) denotes the length of curve) and Y;(0)
=0,

(34) Yit)y=Zi{)+ct-1i(0),

where ¢ is a constant such that |[¢|= 7:25_ cot ”“éa . This follows im-
mediately from <C(¥:(h), Z(L)) S —5-(1—v3) and | V(i =1/(V3 sin -~ 25 ).
From construction, follows

(3.5 Zi(0)=A, (0)=dpA,
and
(3.6) Vil =Yul),  Z:(dl = 12l

where Z§=Vr; Z;. Let P; be the parallel field along y; such that P;(0)=
Zi(0)/I1Zi0)], and b;: [0, [,]—M be defined by

T
by(t): = eXpTi(t)—Q—Pi(t) .
We shall apply Berger’s comparison theorem (see and the “equator esti-

mate” in [5]) to b; to get

3.7) L(b) = 55 cos ’“f ,

Making use of the approximation theorem for Jacobi fields (see 8 and 9 in
[5)), we can find a function ©(3) such that

lim 00)=0, L(Pl), Z(l) = 6(9).
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From [(3.6), we have a bound for <C(Pi(l,), P:(l,)) §2cos“{ sin ”‘55_ cos @(5)}

=:0(0). In fact, applying the cosine rule for the spherical trigonometry to
the triangle (Y,(o)/I1Y U, Z,(L)/NZ,U)Il, Pi(ly)), we get L (Y.(ly), Pily) =

cos“{sin 71'«2/5— -cos @(6)}. Thus we get

d(exp,5-A, exprg- —E4T) = db(0), B.O) S L(b)-+d(bu(l), bllo)+L(b)

T 7[\/— 1 - 75\/— . 2 TA/0 .
< 75 oS —~ 24— V5 cos 1{cos +sin? 5 cos @(5)}—.a(5).

PROPOSITION 3.3. Let 0 be taken so as to satisfy

(3.8) a(®) < (2— v )z

Then for any A< TS,(1), we have cither

(3.9) 0= (4, dpA)=a(d),

or else

(3.10) VG —{a@+r(—s—1)} L4, dpA) S 7.

ProOF. Let 4;: [0, m]—»M be the shortest geodesic such that ,(0)=3,,
dr-3(0)= A(EM,), n(3,(m)) =n(6,(m)) € C(p) and #: [0, 7/2]— M be such that
£(0)=p,, dr(¥'(0)) =dpA/|dpA| (€ M,). Because of n(¥(n/2)) = b,(0), we have
from (3.2), either d(¥(n/2), 3,(x/2)) =a(d) or else d(F(n/2), fodé,(n/2)) < a(d).
Thus we get either

d(E(w/2), 5:m)) £ (@) +5-(—F5——1).

or else

d(E(x/2), 3(m) = a@)+5-(— 1)

ensures that one of the circumferences of the triangles (p,, d;(7/2), #(x/2))
is less than 2z. Hence we can apply Rauch theorem to the “smaller” triangle
to get an upper bound for the angle <J((A4, dz-7/(0)). From the former case

we get and from the latter [3.10).

PROOF OF THE MAIN THEOREM. From now on let d be taken so as to
satisfy

3.11) a@) < G-(1+ V7).

It follows from the continuity of A—<{(A4, dpA), that [(3.11) yields one of
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the inequalities or [310). We want to find out §,=(1/4,1) in such 2
way that 6 > ) implies for all A= TS,(1). For this purpose we suppose
that there exists A< TS,(1) for which holds. Then < (X, dpX) =< a(d)
holds for all X< TS,(1). We shall make use of the special closed geodesic
to derive a contradiction. Let y:[0,d(M)]—M be a shortest connection
joining p to ¢. Then y can be extended to the simply closed geodesic
7: [0, 2d(M)]— M (see [4]). Set y,(t): =y(t), 1.(t): = y(2d(M)—1), t € [0, d(M)].
We consider the lifted map ¢: Sz, — S;5,, dr-$=¢. Obviously we have ¢(71(0))
= 74(0), where we use the same notations as in [Lemma 3.2. The quadrangle
(7, f-731, f+F,, 721) forms the simply closed geodesic with vertices p; and ¥, :
=7,(d(M)). Because 7{(d(M)) is normal to T;E, the Jacobi field Y, along 7;
with the initial conditions ¥;(0): =0, dz¥}(0): = A, dz¥40): =d¢pA is normal
to 7; for any A < Tyr3,0nSp(1). We denote by ﬁi the parallel field along 7;
such that P(0)=¥(0)/|¥{0)|. Let @:[0,x/2]—M be the geodesic such
that @,(0) =7, ai(0) = ¥,(d(M))/| ¥:(d(M))|. From a,(0) = f(a,(0)), a5(0)= dfa0),
follows f(@,(s))=a,(s) for any s<[0, n/2]. Because of f(J)e C(¥), we have
a lower bound for the distance

(3.12) d(a,(s), a,(s))=rn for any s [0, =/2].

On the other hand, we have an upper bound for the distance

(B13)  d@y(n/2), ax/D) = d(@,(7/2), exDyanra Pd(M))

T T T 76
+ Ve cos 5 +a(0)+ 55 cosT

+d(exPpryaan - Pod(M)), ayx/2))

g—j(s?cos 7?«2/5 +a(d)+ \/25 cos

Hence we can find d; in such a way that d > d; implies the right hand side
of (3.13) is smaller than =.

Finally we shall check the second diffeotopy condition for ¢. From

Lemma 31, 8: =Max {I(u, ¢(u); ue Sp()} <x(1—+d)< /2. From ¢=—¢

and (assuming J>dy), follows e:=Max {L (4, dpA); A= TS, (1)} <

x(l—ﬁ)—ka(ﬁ)-kn(%—l). Hence we can find §, such that 6 > 6, implies

‘l{cos2 il 25— +sin? " 25 cos @(5)}..

(2.3) for ¢. Thus the proof of the main theorem is completed.
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