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\S 1. Introduction.

Let $M$ be an n-dimensional connected and complete Riemannian manifold
whose sectional curvature $K$ satisfies

(1.1) $1/4<\delta\leqq K\leqq 1$ for any plane section.

If $M$ is simply connected and $\delta\doteqdot 0.85$ , then $M$ is diffeomorphic to the standard
sphere (see [5]). In the present paper we shall establish a differentiable
pinching theorem for the real projective space. Our pinching number is
independent of the dimension.

MAIN THEOREM. Let $M$ be a connected and complete Riemannian manifold
with (1.1). Assume that the fundamental group $\pi_{1}(M)$ of $M$ is

(1.2) $\pi_{1}(M)=Z_{2}$ .
Then there exists a constant $\delta_{0}\in(1/4,1)$ such that

(1.3) $\delta>\delta_{0}$

implies $M$ to be diffeomorphic to the real projective space.

\S 2. Preliminaries.

Throughout this paper, let $M$ satisfy both (1.1) and (1.2). We denote by
$d$ the distance function on $M$ with respect to the Riemannian metric. The
diameter $d(M)$ of $M$ is defined by $d(M):={\rm Max}\{d(x, y);x, y\in M\}$ and we set
$d(P, q):=d(M)$ . Let $\tilde{M}$ be the universal Riemannian covering manifold of
$M$ and $\pi$ the covering projection. For any point $x\in M$, we denote by $\tilde{x}_{1},\tilde{x}_{2}$

$\in\tilde{M}$ the elements of the inverse image $\pi^{-1}(x)$ , and by $C(x)$ the cut locus of
$x$ . Under the assumptions (1.1) and (1.2), we see in [4] that

$\pi/2\leqq d(x, C(x))\leqq\pi/2\sqrt{\delta}$ , $\pi/2\leqq d(M)\leqq\pi/2\sqrt{\delta}$

hold for any $x\in M$. Since for any $x\in M$ and any $y\in C(x)$ , each minimizing
geodesic from $x$ to $y$ has no conjugate pair, they are joined by two and just
two distinct minimizing geodesics. Let $E$ be defined by
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$E:=\{\tilde{\gamma}\in\tilde{M};d(\tilde{P}_{1},\tilde{\mathcal{Y}})=d(\tilde{P}_{2},\tilde{\mathcal{Y}})\}$ .
Then we observe

$\pi(E)=C(p)$ .
Especially $E$ is a hypersurface diffeomorphic to $S^{n-1}$ . Let $f:\tilde{M}\rightarrow\tilde{M}$ be the
deck transformation. Then $f$ is a fixed point free involution and it leaves $E$

invariant.
Next we observe that for any $\tilde{y}\in\tilde{M},$ $f(\tilde{y})\in C(\tilde{y})$ . Hence we have

$ d(\tilde{y}, f(\tilde{y}))\geqq\pi$

from the cut locus theorem due to Klingenberg [2]. For any $y\in C(p)$ , let
$\gamma_{1},$ $\gamma_{2}$ be the shortest connections between $p$ and $y$ (each emanating from p)

and $\tilde{\gamma}_{1},\tilde{\gamma}_{2}$ the lifted geodesics joining $\tilde{p}_{1}$ to $\tilde{y}_{1},\tilde{y}_{2}$ respectively. By construc-
tion they have the same length 1, and $\pi/2\leqq l\leqq\pi/2\sqrt{\delta}$ . Therefore we have
the geodesic quadrangle $(\tilde{\gamma}_{1}, f\cdot\tilde{\gamma}_{2}^{-1}, f\cdot\tilde{\gamma}_{1},\tilde{\gamma}_{2}^{-1})$ with the same edge length and
the vertices $\tilde{p}_{1},\overline{y}_{1},\tilde{p}_{2}$ and $\tilde{y}_{2}$ . Moreover from Toponogov’s comparison theorem
(see [2]) all of the edge angles are bounded from below by $\pi\sqrt{\delta}>\pi/2$ , which
is proved in Lemma 3.1. Therefore as is shown in [5], all of the shortest
geodesics emanating from $\tilde{p}_{i}$ to points on $E$ can be deformed simultaneously
in a thin neighborhood of $E$ so that they hit orthogonally to $E$ . In fact, let
$\lambda:\tilde{M}\rightarrow R$ be the function defined by $\lambda(\tilde{x}):=d(\tilde{p}_{1},\tilde{x})-d(\tilde{p}_{2},\tilde{x}),\tilde{x}\in\tilde{M}$. Then $0$

is a regular value of $\lambda$ , and hence there exists an open interval $I$ of $0$ con-
tained in the set of regular values of $\lambda$ such that $\lambda^{-1}(I)\subset B_{\pi}(\tilde{p}_{1})\cap B_{\pi}(\tilde{p}_{2})$ and
all of shortest connections joinning $\tilde{p}_{i}$ to points on $E$ are transversal to each
of the hypersurfaces $\lambda^{-1}(\{a\}),$ $a\in I$, where $B_{\pi}(\tilde{p}_{i})$ is by definition the open
metric ball in $\tilde{M}$ with the radius $\pi$ and the center at $\tilde{p}_{i}$ . Thus we get the
family of loops at $P$ covering simply $M$, so that any loop has the same tan-
gent vectors at $p$ as one of the original biangles. If all of these loops can
be deformed simultaneously to simply closed smooth curves, then $M$ is diffeo-
morphic to the real projective space. For this purpose we consider the involu-
tive diffeomorphism $\varphi:S_{p}(1)\rightarrow S_{p}(1)(S_{p}(1)\subset M_{p}$ is by definition the unit hyper-
sphere in the tangent space $M_{p}$ centered at the origin) caused by the deck
transformation as follows: For each $u\in S_{p}(1),$ $\varphi(u)$ is the unit tangent vector
such that

$\exp_{p}l\cdot u=\exp_{p}l\cdot\varphi(u)\in C(p)$ , $u\neq\varphi(u)$ , $1\in[\pi/2, \pi/2\sqrt{\delta}]$ .
Clearly $\varphi$ is a fixed point free involutive diffeomorphism.

Now the problem is how to construct a homotopy $\{\Phi_{t}\}(0\leqq t\leqq 1)$ of
diffeomorphisms on $S_{p}(1)$ satisfying

\langle 2.1) $\left\{\begin{array}{ll}\Phi_{t}^{2}=identity & for each t\in[0,1] ,\\\Phi_{0}=\varphi, & \Phi_{1}=antipodal map.\end{array}\right.$
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The essential tool for proving (2.1) is the following (see [5])
DIFFEOTOPY THEOREM. Let $h$ be a diffeomorphism on the standard k-sphere

$S^{k}\subset R^{k+1}$ . Assume that

$’\langle 2.2$) $\beta:={\rm Max}\{4(u, h(u)) ; u\in S^{k}\}\leqq\pi/2$ ,

$-(2.3)$ $\epsilon$ ;

Then $h$ is diffeotopic to the identity via the following homotopy of diffeomor-
Phisms: For each $u\in S^{k}$ , let $\gamma_{u}$ : $[0,1]\rightarrow S^{k}$ be the shortest great circle arc
Parametrized ProPoriionally to arc length such that $\gamma_{u}(0):=u,$ $\gamma_{u}(1):=h(u)$ .
Let $H_{t}(u):=\gamma_{u}(t)$ . Then $H_{t}$ is a diffeomorphism for all $t\in[0,1]$ .

Let us consider the following $\psi:S_{p}(1)\rightarrow S_{p}(1)$

(2.4) $\psi(u):=-\varphi(u)$ .
Then $\varphi$ is diffeotopic to the antipodal map if and only if $\psi$ is diffeotopic to
the identity.

The final step of the proof is to find out $\delta_{0}$ such that (1.3) yields the
diffeotopy conditions (2.2) and (2.3) for $\psi$ . In fact if $\psi$ satisfies the conditions
then there exists the homotopy $\{\Psi_{t}\}(0\leqq t\leqq 1)$ of diffeomorphisms obtained
in the diffeotopy theorem. From construction we see

$\Psi_{1/2}(u)=-\Psi_{1/2}(\varphi(u))$ , for any $u\in S_{p}(1)$ .
Setting

(2.5) $\Phi_{t}$ $:=\Psi_{t/2}\circ\varphi\circ\Psi_{t/2}^{-1}$ ,

we see that $\Phi_{t}$ satisfies (2.1) and hence $M$ is diffeomorphic to the real pro-
jective space.

\S 3. Construction of the involutive diffeotopy.

LEMMA 3.1. $<X(u, \psi(u))\leqq\pi(1-\sqrt{\delta})<\pi/2$ holds for any $u\in S_{p}(1)$ .
PROOF. For any $u\in S_{p}(1)$ , we have the geodesic quadrangle with edges

$(\tilde{\gamma}_{1}, f\cdot\tilde{\gamma}_{2}^{-1}, f\cdot\tilde{\gamma}_{1},\tilde{\gamma}_{2}^{-1})$ in $\tilde{M}$, where $d\pi(\tilde{\gamma}_{1}^{\prime}(0))=u,$ $d\pi(\tilde{\gamma}_{2}^{\prime}(0))=-\psi(u)$ . Apply Topo-
nogov’s comparison theorem to the isosceles triangle with vertices $\tilde{p}_{1},\tilde{y}_{1}$ and
$\tilde{y}_{2}$ , where $\tilde{y}_{i}$ $:=\tilde{\gamma}_{i}(l)\in E,$ $1=1,2$ . The conclusion is obvious from $1\in[\pi/2$ ,
$\pi/2\sqrt{\delta}]$ and $ d(\tilde{y}_{1},\tilde{y}_{2})\geqq\pi$ .

LEMMA 3.2. There exists $\alpha(\delta)$ such that

$\backslash (3.1)$
$\lim_{\delta\rightarrow 1}\alpha(\delta)=0$ ,

$d(3.2)$ $d(\exp_{p}\frac{\pi}{2}A,$ $\exp_{p}^{d\varphi A}\frac{\pi}{2}-|d\ulcorner\varphi\overline{A|}^{-)}\leqq\alpha(\delta)$ for any $A\in TS_{p}(1),$ $\Vert A\Vert=1$ ,
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where $A$ and $d\varphi A$ on the left hand side of (3.2) are identified with those trans-
lated Parallely in $M_{p}$ to the origin.

PROOF. For any $u\in S_{p}(1)$ and any $A\in T_{u}S_{p}(1)$ , let $a:I\rightarrow S_{p}(1)$ be a curve
fitting $A$ $(i.e., a(O)=u,$ $a^{\prime}(O)=A$ and $I$ is an open interval containing $0$). Let
$\gamma_{1},$ $\gamma_{2}$ : $[0, I_{0}]\rightarrow M$ be the shortest geodesics such that $\gamma_{1}^{\prime}(0)=u,$ $\gamma_{2}^{\prime}(0)=\varphi(u)$ ,
$\gamma_{1}(l_{0})=\gamma_{2}(l_{0})\in C(p)$ . We define the smooth function $s\rightarrow l(s),$ $s\in I$ by $l_{0}=l(0)$ ,
$\exp_{p}l(s)\cdot a(s)\in C(p)$ . We denote by $V^{i}$ : $[0, l_{0}]\times I\rightarrow M$ the l-parameter geodesic
variation along $\gamma_{t}$

$V^{1}(t, s):=\exp_{p}t\frac{l(s)}{l(0)}$ . $a(s)$ ,
(3.3)

$V^{2}(t, s):=\exp_{p}t\frac{l(s)}{l(0)}\cdot\varphi(a(s))$ .

Obviously we see $V_{s}^{1}(l_{0})=V_{s}^{2}(l_{0})\in c(p)$ for any $s\in I$, where $V_{s}^{i}(t):=V^{i}(t, s)$ .
Let $Y_{i}$ be the Jacobi field associated with $V^{i}$ and $Z_{i}$ its normal component.
From $L(V_{s}^{1})=L(V_{s}^{2})$ for any $s\in I$ ($L()$ denotes the length of curve) and $Y_{i}(0)$

$=0$ ,

(3.4) $Y_{i}(t)=Z_{i}(t)+c\cdot t\cdot\gamma_{t}^{\prime}(t)$ ,

where $c$ is a constant such that $|c|\leqq\frac{2}{\pi\sqrt{\delta}}$ cot $\frac{\pi\sqrt{\delta}}{2}$ . This follows im-

mediately from $<X(Y_{i}(l_{0}), Z_{i}(l_{0}))\leqq\frac{\pi}{2}(1-\sqrt{\delta})$ and $\Vert Y_{i}(l_{0})\Vert\leqq 1/(\sqrt{\delta}$ sin $\frac{\pi\sqrt{\delta}}{2})$ .
From construction, follows

(3.5) $Z_{1}^{\prime}(0)=A$ , $Z_{2}^{\prime}(0)=d\varphi A$ ,

and

(3.6) $Y_{1}(l_{0})=Y_{2}(l_{0})$ , $\Vert Z_{1}(l_{0})\Vert=\Vert Z_{2}(l_{0})\Vert$

where $Z_{i}^{\prime}=\nabla_{\gamma_{i}^{\prime}}Z_{i}$ . Let $P_{i}$ be the parallel field along $\gamma_{i}$ such that $P_{i}(0)=$

$ Z_{i}^{\prime}(0)/\Vert Z_{i}^{\prime}(0)\Vert$ , and $b_{i}$ : $[0, l_{0}]\rightarrow M$ be defined by

$b_{i}(t):=\exp_{\gamma_{i}(t)}\frac{\pi}{2}P_{i}(t)$ .

We shall apply Berger’s comparison theorem (see [1] and the ”equator esti-
mate” in [5]) to $b_{i}$ to get

(3.7) $L(b_{i})\leqq\frac{\pi}{2\sqrt{\delta}}$ cos $\frac{\pi\sqrt{\delta}}{2}$ .
Making use of the approximation theorem for Jacobi fields (see 8 and 9 in
[5]), we can find a function $\overline{\Theta}(\delta)$ such that

$\lim_{\delta\rightarrow 1}\overline{\Theta}(\delta)=0$ , $<X(P_{i}(l_{0}), Z_{i}(l_{0}))\leqq\overline{\Theta}(\delta)$ .
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From (3.6), we have a bound for $<X(P_{1}(l_{0}), P_{2}(l_{0}))\leqq 2\cos^{-1}\{\sin\frac{\pi\sqrt{\delta}}{2}$ cos $\overline{\Theta}(\delta)\}$

$=:\Theta(\delta)$ . In fact, aPplying the cosine rule for the spherical trigonometry to
the triangle $(Y_{1}(l_{0})/\Vert Y_{1}(l_{0})\Vert, Z_{1}(l_{0})/\Vert Z_{1}(l_{0})\Vert,$ $P_{1}(l_{0}))$ , we get $<X(Y_{1}(l_{0}), P_{1}(l_{0}))\leqq$

$\cos^{-1}\{\sin\frac{\pi\sqrt{\delta}}{2}$ cos $\overline{\Theta}(\delta)\}$ . Thus we get

$d$($\exp_{p}\frac{\pi}{2}A$ , exp $p\frac{\pi}{2}\frac{d\varphi A}{\Vert d\varphi A\Vert})=d(b_{1}(0), b_{2}(0))\leqq L(b_{1})+d(b_{1}(l_{0}), b_{2}(l_{0}))+L(b_{2})$

$\leqq\frac{\pi}{\backslash /\overline{\delta}}$ cos $\frac{\pi\sqrt{\delta}}{2}+-\sqrt{\delta}1-\cos^{-1}\{\cos^{2}\frac{\pi\sqrt{\delta}}{2}+\sin^{2}\frac{\pi\sqrt{\delta}}{2}\cos\Theta(\delta)\}=;\alpha(\delta)$ .

PROPOSITION 3.3. Let $\delta$ be taken so as to satisfy

(3.8) $\alpha(\delta)\leqq(2-\frac{1}{\sqrt{\delta}})\pi$ .

Then for any $A\in TS_{p}(1)$ , we have either

(3.9) $0\leqq<X(A, d\varphi A)\leqq\alpha(\delta)$ ,

or else

(3.10) $\pi\sqrt{\delta}-\{\alpha(\delta)+\pi(\frac{1}{\sqrt{\delta}}1)\}\leqq\not\in(A, d\varphi A)\leqq\pi$ .

PROOF. Let $\tilde{\sigma}_{i}$ ; $[0, m]\rightarrow\tilde{M}$ be the shortest geodesic such that $\tilde{\sigma}_{i}(0)=\tilde{p}_{1}$ ,
$d\pi\cdot\tilde{\sigma}_{1}^{\prime}(0)=A(\in M_{n}),$ $\pi(\tilde{\sigma}_{1}(m))=\pi(\tilde{\sigma}_{2}(m))\in C(p)$ and $\tilde{\tau};[0, \pi/2]\rightarrow\tilde{M}$ be such that
$\tau\sim(0)=p_{1},$ $d\pi(\tilde{\tau}^{\prime}(O))=d\varphi A/\Vert d\varphi A\Vert(\in M_{p})$ . Because of $\pi(\tilde{\tau}(\pi/2))=b_{2}(0)$ , we have
from (3.2), either $d(\tilde{\tau}(\pi/2),\tilde{\sigma}_{1}(\pi/2))\leqq\alpha(\delta)$ or else $d(\tau\sim(\pi/2), f\circ\tilde{\sigma}_{1}(\pi/2))\leqq\alpha(\delta)$ .
Thus we get either

$d(\tilde{\tau}(\pi/2),\tilde{\sigma}_{1}(m))\leqq\alpha(\delta)+\frac{\pi}{2}(\frac{1}{\sqrt{\delta}}1)$ ,

or else

$d(\tilde{\tau}(\pi/2),\tilde{\sigma}_{2}(m))\leqq\alpha(\delta)+\frac{\pi}{2}(\frac{1}{\sqrt{\delta}}1)$ .

(3.8) ensures that one of the circumferences of the triangles $(\tilde{p}_{1},\tilde{\sigma}_{i}(\pi/2),\tilde{\tau}(\pi/2))$

is less than $ 2\pi$ . Hence we can aPply Rauch theorem to the ”smaller“ triangle
to get an upper bound for the angle $<X(A, d\pi\cdot\tilde{\tau}^{\prime}(0))$ . From the former case
we get (3.9) and from the latter (3.10).

PROOF OF THE MAIN THEOREM. From now on let $\delta$ be taken so as to
satisfy

(3.11) $\alpha(\delta)<\frac{\pi}{2}(1+\sqrt{\delta}-\frac{1}{\sqrt{\delta}})$ .
It follows from the continuity of $A\rightarrow<X(A, d\varphi A)$ , that (3.11) yields one of
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the inequalities (3.9) or (3.10). We want to find out $\delta_{0}^{\prime}\in(1/4,1)$ in such a
way that $\delta>\delta_{0}^{\prime}$ implies (3.10) for all $A\in TS_{p}(1)$ . For this purpose we suPpose
that there exists $A\in TS_{p}(1)$ for which (3.9) holds. Then $<X(X, d\varphi X)\leqq\alpha(\delta\rangle$

holds for all $X\in TS_{p}(1)$ . We shall make use of the special closed geodesic
to derive a contradiction. Let $\gamma:[0, d(M)]\rightarrow M$ be a shortest connection
joining $p$ to $q$ . Then $\gamma$ can be extended to the simply closed geodesic
$\gamma:[0,2d(M)]\rightarrow M$ (see [4]). Set $\gamma_{1}(t):=\gamma(t),$ $\gamma_{2}(t):=\gamma(2d(M)-t),$ $t\in[0, d(M)]$ .
We consider the lifted map $\tilde{\varphi}$ : $S_{\tilde{p}_{1}}\rightarrow S_{\tilde{p}_{1}},$ $ d\pi\cdot\tilde{\varphi}=\varphi$ . Obviously we have $\tilde{\varphi}(\tilde{\gamma}_{1}^{\prime}(0))$

$=\tilde{\gamma}_{2}^{\prime}(0)$ , where we use the same notations as in Lemma 3.2. The quadrangle
$(\tilde{\gamma}_{1}, f\cdot\tilde{\gamma}_{2}^{-1}, f\cdot\tilde{\gamma}_{1},\tilde{\gamma}_{2}^{-1})$ forms the simply closed geodesic with vertices $\tilde{p}_{i}$ and $\tilde{y}_{i^{\vee}}$.
$=\tilde{\gamma}_{i}(d(M))$ . Because $\tilde{\gamma}_{i}^{\prime}(d(M))$ is normal to $T_{\tilde{y}}E$ , the Jacobi field $\tilde{Y}_{i}$ along $\tilde{\gamma}_{i}$

with the initial conditions $\tilde{Y}_{i}(0):=0,$ $d\pi\tilde{Y}_{1}^{\prime}(0):=A,$ $d\pi\tilde{Y}_{2}^{\prime}(0):=d\varphi A$ is normal
to $\tilde{\gamma}_{i}$ for any $A\in T_{dr(\tilde{\gamma}_{1^{\prime}(0))}}S_{p}(1)$ . We denote by $\tilde{P}_{i}$ the parallel field along $\tilde{\gamma}_{i}$

such that $\tilde{P}_{t}(0)=\tilde{Y}_{i}^{\prime}(0)/\Vert\tilde{Y}_{i}^{\prime}(0)\Vert$ . Let $\tilde{a}_{i}$ : $[0, \pi/2]\rightarrow\tilde{M}$ be the geodesic such
that $\tilde{a}_{i}(0)=\tilde{y}_{\iota},\tilde{a}_{i}^{\prime}(0)=\tilde{Y}_{t}(d(M))/\Vert\tilde{Y}_{\iota}(d(M))\Vert$ . From $\tilde{a}_{2}(0)=f(\tilde{a}_{1}(0)),\tilde{a}_{2}^{\prime}(0)=df\overline{a}_{0}^{\prime}(0)_{r}$

follows $f(\tilde{a}_{1}(s))=\tilde{a}_{2}(s)$ for any $s\in[0, \pi/2]$ . Because of $f(\tilde{y})\in C(\tilde{y})$ , we have
a lower bound for the distance

(3.12) $ d(\tilde{a}_{1}(s),\tilde{a}_{2}(s))\geqq\pi$ for any $s\in[0, \pi/2]$ .
On the other hand, we have an upper bound for the distance

(3.13) $d(\tilde{a}_{1}(\pi/2),\tilde{a}_{2}(\pi/2))\leqq d(\tilde{a}_{1}(\pi/2), \exp_{\tilde{\gamma}_{1}(d(M))}\frac{\pi}{2}\tilde{P}_{1}(d(M))$

$+\frac{\pi}{2\sqrt{\delta}}$ cos $\frac{\pi\sqrt{\delta}}{2}+\alpha(\delta)+\frac{\pi}{2\sqrt{\delta}}\cos\frac{\pi\sqrt{\delta}}{2}$

$+d(\exp_{\tilde{\gamma}_{2}(d(M))}\frac{\pi}{2}\tilde{P}_{2}(d(M)),\tilde{a}_{2}(\pi/2))$

$\leqq\frac{\pi}{\sqrt{\delta}}\cos\frac{\pi\sqrt{\delta}}{2}+\alpha(\delta)+\frac{2}{\sqrt{\delta}}\cos^{-1}\{\cos^{2}\frac{\pi\sqrt{\delta}}{2}+\sin^{2}\frac{\pi\sqrt{\delta}}{2}\cos\overline{\Theta}(\delta)\}$ .

Hence we can find $\delta_{0}^{f}$ in such a way that $\delta>\delta_{0}^{\prime}$ implies the right hand side
of (3.13) is smaller than $\pi$ .

Finally we shall check the second diffeotopy condition for $\psi$ . From
Lemma 3.1, $\beta:={\rm Max}\{<X(u, \psi(u));u\in S_{p}(1)\}\leqq\pi(1-\sqrt{\delta})<\pi/2$ . From $\psi=-\varphi$

and (3.10) (assuming $\delta>\delta_{0}^{\prime}$), follows $\epsilon:={\rm Max}\{<X(A, d\varphi A);A\in TS_{p}(1)\}\leqq$

$\pi(1-\sqrt{\delta})+\alpha(\delta)+\pi(\frac{1}{\sqrt{\delta}}-1)$ . Hence we can find $\delta_{0}$ such that $\delta>\delta_{0}$ implies

(2.3) for $\psi$ . Thus the Proof of the main theorem is completed.
ACKNOWLEDGEMENT. The author wishes to express his thanks to H. Naka-

gawa for the announcement of his recent result [3] on this type of the pinch-
ing problem in low dimensional case. He also wishes to express his thanks
to K. Grove for valuable discussions during his stay in Aarhus University.



Pinching theorem for the real projective space 167

References

[1] M. Berger, An extension of Rauch’s metric comparison theorem and some ap-
plications, Illinois J. Math., 6 (1962), 700-712.

[2] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Gro\ssen,
Berlin-Heidelberg-New York, Springer, 1968.

[3] H. Nakagawa, On Riemannian manifolds with spherical cut loci, Preprint, Bonn.
[4] K. Shiohama, The diameter of $\delta$ -pinched manifolds, J. Diff. Geom., 5 (1971),

61-74.
[5] M Sugimoto, K. Shiohama and H. Karcher, On the differentiable pinching

problem, Math. Ann., 195 (1971), 1-16.

Katsuhiro SHIOHAMA
Department of Mathematics
Tokyo Institute of Technology
O-okayama, Meguro-ku
Tokyo, Japan


	\S 1. Introduction.
	\S 2. Preliminaries.
	\S 3. Construction of ...
	References

