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\S 0. Introduction.

The $\beta$ -transformations, which originate in a number-theoretical concept,
$\beta- expansions$ , have been suPplying numerous results to ergodic theory. They
correspond naturally to the symbolic dynamics called $\beta$ -subshifts through the
coefficients in the $\beta$ -expansions, and have natural invariant measures, which
are unique as measures of maximal entropy. The ergodic properties of $\beta-$

transformations have been studied by A. Renyi [12], W. Parry [10] et al.
All these results depend intrinsically upon the symbolical structure of $\beta-$

subshifts, though it may be obscure. In this paper we will study the sym-
bolical structure in detail, from which we deduce the dynamical and ergodic
Properties.

The notion of Markov subshifts is not only an indispensable tool from
our stand point, but also furnishes a class of simple but interesting topological
dynamics; the section 1 is devoted to the study of them; a characterization
by open-ness of maPpings, irreducibility and aperiodicity, their topological
entropy. Several Properties of topological entropy will be treated in the
section 2. It will be interesting to note that the topological entropy is in a
close relation to the numbers of periodic points. It gives an information on
the character of topological entropy, which is, however, not a complete in-
variant even for Markov subshifts. It is also known that there corresponds
an invariant measure to each Markov subshift by the maximality of entropy

and that general subshifts and the invariant measures for them can be in-
vestigated through aPproximation by Markov subshifts.

In the section 3, we will discuss on the natural realization by subshifts
of $\beta$ -transformations. Here we must emphasize on the role played by the
sequence $\omega_{\beta}$ called expansion of one and by the lexicographical order struc-
ture. Using them, we obtain a classification of words and an asymptotic
estimate of mumbers of words.

In the consequent section 4 one can find a necessary and sufficient con-
dition for $\beta$ -transformations to be Markov. As a consequence we know that
$\beta$ -subshifts are not Markov except for those $\beta’ s$ which satisfy a certain
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kind of algebraic equations. At the same time the family of $\beta$-subshift forms
a one-parameter continuous family of increasing closed invariant set, and
each of them can be closely approximated by Markovian $\beta$-subshifts.

In the last section 5 the Ornstein’s weak Bernoulli condition will be
verified for $\beta$-automorphisms with the help of our information on their sym-
bolic structure. This result is also obtained by Smorodinsky [15]. We finally
note that one of the authors constructed isomorphism of $\beta$-automorphisms to
mixing Markov automorphisms[16].
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\S 1. Markov subshift.

Let $A$ be a finite set with discrete topology, $A^{Z}$ and $A^{N}$ the infinite
product spaces where $N=\{0,1,2, \cdots\},$ $Z=\{0, \pm 1, \pm 2, \cdots\}$ . The n-th coordinate
of an element $\omega\in A^{Z}$ or $A^{N}$ is denoted by $\omega(n)$ . The shift transformation $\sigma$

is considered both on $A^{z}$ and on $A^{N}$, and is defined by the relation:

(1) $(\sigma\omega)(n)=\omega(n+1)$ .
DEFINITION 1.1. A subshift is a pair(X, $\sigma$) where $X$ is a $\sigma$ -invariant closed

subset of the product space $A^{Z}$ or $A^{N}$ and the letter $\sigma$ stands for the re-
striction $\sigma|X$ to the subset $X$ of the shift transformation.

Thus subshifts are topological dynamics with canonical generator
$\{[a]|a\in A\}$ . Here for a word $u$ over the alphabet set $A$ , in other words
for $u\in\bigcup_{n\geqq 1}A^{n},$

$[u]$ denotes the corresponding cylinder set:

$[u]=\{\omega|\omega(k)=a_{k}, 0\leqq k\leqq n\}$

if $u=$ $(a_{0}, \cdots , a_{n})(a_{k}\in A)$ .
For a subshift (X, $\sigma$), the topological entropy $e(X, \sigma)$ can be computed by

the formula:

\langle 1) $e(X, \sigma)=\varliminf_{n}\frac{1}{n}$ log card $(W_{n}(X))$

where card $(W)$ is the cardinality of a set $W$ and

(2) $W_{n}(X)=\{(\omega(0), \cdots , \omega(n-1))|\omega\in X\}$ .
DEFINITION 1.2. An invariant measure $\mu$ for a subshift (X, $\sigma$) will be

called maximal if the metrical entropy $h(\mu)=h(X, \mu, \sigma)$ coincides with the
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topological entropy $e(X, \sigma)$ .
REMARK 1.3. The existence of maximal measure for any subshift is well-

known. A proof can be given as follows. From the inequalities

$tH_{\mu}(\alpha)+(1-t)H.(\alpha)\geqq H_{t\mu+(1-t)v}(\alpha)\geqq tH_{\mu}(\alpha)+(1-t)H_{\nu}(\alpha)-\log 2$

for any finite Borel partition $\alpha$ and probability measures $\mu,$ $\nu$ , we conclude
that the metrical entropy $h(\mu)$ is upper semi-continuous affine function on the
set of invariant probability measures because the symbol set $A$ is finite.
Since this set is compact in the vague toPol\’ogy, the function $h(\mu)$ admits its
maximum there.

DEFINITION 1.4. A subshift (X, a) will be called Markov subshift of order
$p$ if there is a subset $W$ of $A^{p+1}(p>0)$ such that

$t(4)$ $X=\mathcal{M}(W)=$ { $\omega|(\omega(n),$ $\cdots$ $\omega(n+p))\in W$ for any $n$}.

The set $W$ will be called the structure set of Markov subshift (X, $\sigma$).

The structure matrix $M=(M_{uv})_{u,v\in A^{p}}$ is defined as follows;

$l\langle 5$) $M_{uv}=\{01$ $ifu=(a_{0}otherwise. ’ a_{p- 1}),$

$v=(a_{1}, \cdots, a_{p})$ for some
$(a_{0}, \cdots ’ a_{p})\in W$

REMARK 1.5. i) This notion is equivalent to subshifts of finite tyPe in
Smale [14] if $X\subset A^{Z}$ and to intrinsic Markov chain in W. Parry [11] if $X\subset A^{N}$ .
The reason why we call such subshifts Markovian is that any maximal
invariant measure $\mu$ is Markovian in the sense that $x_{n}(\omega)=\omega(n)$ form a Markov
chain with state space $A$ .

ii) The topological entropy of a Markov subshift (X, a) of order $p$ is
computable from its structure matrix $M$ via the following obvious identity:

card $(W_{n}(X))=(M^{n-p- 1}1,1)$ $(n>P+1)$

where $1={}^{t}(1,1, \cdots, 1)$ .
Consequently, as is shown in [1],

\langle 6) $e(X, \sigma)=\log\rho(M)$

where $\rho(M)$ is the maximal modulus of eigenvalues of matrix $M$, which is
the $sp^{1}ectra1$ radius of the operator $M$ on the vector sPace $C^{A^{P}}$ .

iii) Let (X, a) be a subshift. We can define Markov subshifts $(X^{p}, \sigma)(P\geqq 0\rangle$

setting

$\zeta 7)$ $X^{p}=\mathcal{M}(W_{p+1}(X))$ .
Then it is obvious that $X^{p}\supset X^{p+1},$

$X=\bigcap_{p\geqq 0}X^{p}$ , and
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(8) $e(X. \sigma)=\varliminf_{\infty}e(X^{p}, \sigma)=\inf_{p\geqq 0}e(X^{p}, \sigma)$ .

The following theorem, which is an extension of Parry’s result ([11]),

characterizes Markov subshifts. We use the following notations: $a_{+}$ denotes
the shift transformation on one-sided sequence space $A^{N}$ in order to distinguish
it from the shift transformation $\sigma$ on bilateral sequence space $A^{Z}$ and the
natural projection of $A^{Z}$ onto $A^{N}$ is denoted by $\pi$ .

THEOREM 1. Let $X$ be a $\sigma$ -invariant closed subset of the Product space $A^{Z}$

and $X_{+}=\pi(X)$ the projection of $X$ to $A^{N}$ . Then the following four conditions
are mutually equivalent:

(a) (X, $\sigma$) is a Markov subshift.
(b) $(X_{+}, \sigma_{+})$ is a Markov subshift.
(c) The restriction $\pi|X$ to the set $X$ of prOjectiOn $\pi$ is an oPen maP.
(d) The restriction $\sigma_{+}|X_{+}$ to the set $X_{+}$ of shift transformation $\sigma_{+}$ is an

open map.
PROOF. The equivalence of (a) and (b) follows from the closedness of the

set $X$ ; in fact

$X=$ {$\omega\in A^{Z}|(\omega(n+k))_{k\geqq 0}\in X_{+}$ for any $n\in Z$}.

(c) implies (d): it is obvious from the homeomorPhy of $\sigma$ and the following
commutative diagram:

$\sigma|X$

$X\rightarrow X$

$\pi|X\downarrow$ $\downarrow\pi|X$ $\pi\cdot\sigma=\sigma_{+}\cdot\pi$

$X_{+}\rightarrow X_{+}$
$\sigma_{+}|X_{+}$

We now need the following:
LEMMA 1.6. A subset of the countable product sPace $A^{Z}$ is open and closed

if and only if it is a finite union of cylinder sets.
In fact, the “ if ” part is obvious. SuPpose that an open and closed subset

$X$ is not a finite union of cylinder sets. Then there must exist a sequence
of cylinder sets

$C_{n}=\{\omega\in A^{Z}|\omega(k)=a_{k}^{n}, |k|\leqq n\}$ $(a_{k}^{n}\in A, n\geqq 0)$

which intersect both of $X$ and its complement $X^{c}$ . Since the set $A$ is finite,
we can choose a divergent subsequence $(n^{\prime})$ for which $a_{k}^{n^{\prime}}$ does not depend
on $n^{\prime}$ , say $a_{k}^{n^{\prime}}=a_{k}$ . Thus we obtain a sequence $\omega=(a_{k})_{k\in Z}\in A^{Z}$ which is
contained both in the closed sets $X$ and $X^{c}$ , which is absurd. We have
completed the proof.

Now we continue the proof of Theorem 1.
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(a) implies(c): It suffices to prove that $\pi(U)$ is an open set for any
cylinder set $U$ of form

$U=\{\omega\in X|\omega(-n)=a_{0}, \cdots , \omega(m-n)=a_{m}\}(n\in Z, m\in N, a_{0}, \cdots, a_{m}\in A)$ .
Take an arbitrary point $\omega_{+}^{0}\in\pi(U)$ and let $\omega^{0}\in U$ be such that $\pi(\omega^{0})=\omega_{+}^{0}$ .
Then the set $V=\{\omega_{+}\in X_{+}|\omega_{+}(k)=\omega_{+}^{0}(k)0\leqq k\leqq l\}$ is an open neighbourhood
of $\omega_{+}^{0}$ in $X_{+}$ where $l=\max\{p, m-n+P\}$ and $p$ is the order of Markov subshift
(X, $a$). We will show that $\pi(U)\supset V$ . For any element $\omega_{+}\in V$ , the sequence
$\omega\in A^{Z}$ defined by $\omega(n)=\omega^{0}(n)(n<0),$ $=\omega_{+}(n)(n\geqq 0)$ does belong to the set $X$

by its Markovianness. Furthermore $\omega\in U$ since $\omega^{0}\in U$ and $U$ is of the form
mentioned above. Hence $\omega_{+}=\pi(\omega)\in\pi(U)$ .

(c) implies(b): This implication is essentially due to W. Parry [11], but
we must show it since we do not give a proof of the equivalence of Parry’s
intrinsic Markov chains and our Markov subshifts. From (c) and the con-
tinuity of $\sigma_{+}$ it follows that the set $\sigma_{+}([a]\cap X_{+})$ is open and closed for any
$a\in A$ . Therefore we can choose a family $\{P_{a}|a\in A\}$ of subsets of the word
set $A^{p}$ with the following Properties:

1) $\sigma_{+}([a]\cap\pi(X))=_{u\in P_{a}}U[u]\cap\pi(X)(a\in A)$ .
2) $[u]\cap\pi(X)\neq\emptyset$ for any $u\in a\in AUP_{a}$ .

We set
$W=$ $\{(a_{0}, a_{1}, \cdots , a_{p})\in A^{p+1}|(a_{1}, \cdots , a_{p})\in P_{a_{0}}\}$

and show that $X_{+}=\mathcal{M}(W)$ . Noting that, for an arbitrary subset $Y$ of $A^{N}$

and for $n\geqq 1,$ $a_{0},$
$\cdots$ , $a_{n}\in A$ ,

(9) $\sigma_{+}([a_{0}, \cdots , a_{n}]\cap Y)=[a_{1}, \cdots , a_{n}]\cap\sigma_{+}([a_{0}]\cap Y)$ ,

we have
$a_{+}([a_{0}, \cdots , a_{n}]\cap X_{+})=[a_{1}, \cdots , a_{n}]\cap X_{+}$

if $n\geqq P$ . From this it follows immediately by induction that $ C\cap X_{+}\neq\emptyset$ for
any cylinder set $C$ in $\mathcal{M}(W)$ . Consequently, for any $\omega\in \mathcal{M}(W)$ , we can choose
$\omega^{n},$ $n\geqq 0$ such that $\omega^{n}\in X_{+}$ and that $\omega^{n}(k)=\omega(k)$ for $0\leqq k\leqq n$ . Hence

$\mathcal{M}(W)\subset c1.(X_{+})=X_{+}$ .
The inverse inclusion follows from the inclusion relation

$\bigcup_{a\in A}U[a\cdot u]=$$\bigcup_{=,u--P_{a}w_{\sim}W}[w]\supset X_{+}$ .

Thus we have shown the Markovianness of $(X_{+}, \sigma_{+})$ .
REMARK 1.7. As corollaries to Lemma 1.6 which was used in the proof

above, we obtain the followings.
a) (Hedlund’s theorem) For any continuous homomorphism $\phi$ of a shift

$(A^{Z}, \sigma)$ into a shift $(B^{Z}, \sigma)$ , there exists a partition $P_{b},$ $b\in B$ , to $A^{p}$ for some
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integer $p\geqq 0$ , such that

(10) $\phi(\omega)(n)=F[\omega(n+k), \cdots \omega(n+k+p-1)]$

where $F(a_{0}, \cdots , a_{p-1})=b$ if $(a_{0}, \cdots, a_{p-1})\in P_{b}$ .
b) Any continuous homomorphism $\phi$ of a subshift (X, a) of $(A^{Z}, \sigma)$ into

$(B^{z}, \sigma)$ can be extended to a continuous homomorphism $\overline{\phi}$ of shift $(A^{Z}. a)$ into
$(B^{Z}, a)$ . In fact $\phi^{-1}[b],$ $b\in B$ , are open subset of the set $X$ and form a
partition of $X$ ; in particular they are open and closed in $X$. It follows from
Lemma 1.6 that there are mutually disjoint subsets $Q_{b},$ $b\in B$ , of $A^{p}$ for some
$p\geqq 0$ such that $\phi^{-1}[b]=\bigcup_{u\in Q_{b}}[u]\cap X$. Let $P_{b},$ $b\in B$ , be a partition of $A^{p}$ for

which $P_{b}\supset Q_{b}$ . Then the map $\overline{\phi}$ defined through the formula (10) is a con-
tinuous homomorphism of $(A^{Z}, a)$ into $(B^{Z}, \sigma)$ which agree with $\phi$ on the set $X$.

c) A Markov subshift (X, $\sigma$) of a shift $(A^{Z}, \sigma)$ can be expressed as

(11) $X=\phi(B^{Z})\cap A^{Z}$

for some continuous homomorphism of a shift $(B^{z}, \sigma)$ into $(A^{Z}, \sigma)$ , where $B$ is
an alphabet set containing $A$ . In fact, let $W$ be the structure set of the given
Markov subshift, $B=A\cup\{*\}$ ($*being$ an additional point) and

$F|W=identity$ , $F|W^{c}=*$ .
Then the map $\phi$ given by (10) possesses the proPerty (11).

\S 2. Properties of topological entropy.

DEFINITION 2.1. (i) A subshift (X, a) is called transitive if, for any
cylinder sets $C$ and $D$, there exists a positive integer $n$ such that

(1) $(C\cap X)\cap\sigma^{n}(D\cap X)\neq\emptyset$ .
(ii) A subshift (X, $\sigma$) is called uniformly transitive if, for any finite

partition $\alpha$ by cylinder sets, there exists a positive integer $n$ such that (1)
holds for any two members $C,$ $D$ of $\alpha$ .

We recall that a matrix $M=(M_{ij})_{1\leqq i,j\leqq n}$ is called permutation-irreducible
if there is no permutation $\tau$ of the set $\{$ 1, $\cdots$ , $n\}$ for which the matrix
$M^{\prime}=(M_{\tau(i)r(j)})_{1\leqq l,j\leqq n}$ is of form

$\left(\begin{array}{ll}N_{1} & N_{3}\\0 & N_{2}\end{array}\right)$ or $\left(\begin{array}{ll}N_{1} & 0\\N_{S} & N_{2}\end{array}\right)$

where $N_{1}$ and $N_{2}$ are non-zero square matrices (See Gantmacher [5]), and
that a nonnegative permutation-irreducible matrix $M\geqq 0$ has a positive
eigenvalue $\rho(M)$ which is simple and of maximal modulus among its eigen-
values (theorem of Perron-Frobenius).
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We also note that any Markov subshift (X, $\sigma$) of order $p\geqq 2$ , over an
alphabet set $A$ , is naturally isomorphic to a Markov subshift of order 1 over
alphabet set $A^{p}$ .

$DE1^{\neg}INITION2.2$ . (i) A Markov subshift (X, a) is called irreducible if its
structure matrix is permutation-irreducible. (ii) (X, $\sigma$) is called aperiodic if
some power of its structure matrix is strictly positive.

REMARK 2.3. It is proved in [1], [11] that the maximal invariant measure
is unique for a irreducible Markov subshift and that such a Markov measure
is ergodic and is determined by its structure matrix $M$ as follows: Let $x$

and $y$ be right and left eigen-vectors corresponding to the maximal eigenvalue
$\rho(M),$ $i$ . $e$ . $Mx=\rho(M)x$ and $yM=\rho(M)y$ . Since the components of $x$ or $y$

must have common sign, we may assume that they are positive. Then the
maximal Markov measure is defined by the transition matrix $P=(P_{uv})$ ,

$P_{uv}=\frac{M_{uv}x_{v}}{\rho(M)x_{u}}$ whose unique invariant probability vector is $\pi=(\pi_{u}),$ $\pi_{u}=$

$x_{u}y_{u}$

$\overline{\sum_{v\in A}x_{v}y_{v}}$

The following lemma is due to N. Iwahori [7].

LEMMA 2.4. Let (X, $\sigma$) be a simple Markov subshift over alPhabet set $A$ .
Then the set $A$ is decomposed as follows:

(i) $A=A_{0}\cup A_{1}\cup\cdots\cup A_{m}$ (disjoint union) $(m\geqq 1)$ .
(ii) If we define $X_{k}=$ { $\omega\in X|\omega(n)\in A_{k}$ for all $n$}, then $(X_{k}, \sigma)$ is an irre-

ducible Markov subshift for $1\leqq k\leqq m$ .
(iii) {$\omega\in X|\omega(n)\in A_{0}$ for all $n$} $=\emptyset$ .
PROOF. We define a binary relation $R$ on $A$ : aRb if $a=b$ or if there is

a word $(a_{0}, \cdots, a_{n})\in W_{n+1}(X)$ such that $a_{0}=a$ and $a_{n}=b$ , and another relation
aRb by aRb and $bRa$ . Then the relation $\overline{R}$ is an equivalence relation. Let
$A(X)$ be the space of equivalence classes with respect to $\overline{R},$ $A_{1},$ $\cdots$ , $A_{m}$ be such
equivalence classes that the sets $X_{k}$ dePned in (ii) are not empty, and $A_{0}$ the
subset of those alphabets which belong to none of $A_{1},$

$\cdots,$
$A_{m}$ . Then (i) and

(iii) are trivial and (ii) follows from the fact that the irreducibility of a
Markov subshift $(Y, \sigma)$ is equivalent to the condition: if $a,$

$b$ are any two
alphabets appearing in $Y$, then there exists a word $(a_{0}, \cdots , a_{n})$ of $Y$ for which
$a=a_{0}$ and $b=a_{n}$ .

COROLLARY 2.5. Let $\chi(t)$ and $\chi_{k}(t)$ be characteristic Polynomials of the
structure matrices of Markov subshifts (X, $\sigma$) and $(X_{k}, a)$ in Lemma 2.4
$(k=1, \cdots, m)$ .

Tben,

(2) $\chi(t)=l\prod_{k=1}^{m}\chi_{k}(t)$

where $l=card(A_{0})$ .
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REMARK 2.6. i) The structure matrix of $(X_{k}, \sigma)$ is minor matrix
$(M_{ab})_{a,b\in A_{k}}$ .

ii) Consequently,

$e(X, \sigma)=\max_{1\leqq k\leqq m}e(X_{k}, \sigma)$ .
iii) In particular, the maximal invariant measures for a subshift (X, $\sigma$)

are supported by union of $X_{k}’ s$ for which $e(X_{k}, \sigma)=e(X, \sigma)$ and they span a
convex set of dimension $n$ where $n$ is the number of such $X_{k}’ s$ .

PROPOSITION 2.7. (i) For a subshift (X, $\sigma$),

(3) $\lim_{n}\underline{\sup}\frac{1}{n}$ log $P_{n}(X, \sigma)\leqq e(X, \sigma)$

where $P_{n}(X, a)=card\{\omega\in X|\sigma^{n}\omega=\omega\}$ .
(ii) The equality (3) holds if (X, a) is Markovian and the limit in the left-

hand side exists if it is aperiodic.
REMARK 2.8. (a) If $(Y, \sigma)$ is an expansive dynamical system with finite

topological entropy, then the periodic points increases at most exponentially.
In fact there exists a (topological) generator $\{U_{a}|a\in A\}$ for an expansive
system ([8]) where $A$ is a finite index set and we can define an isomorphism
$R$ of a subshift (X, $\sigma$) onto $(Y, \phi)$ as follows:

$\{R(\omega)\}=\cap\phi^{n}(\overline{U}_{\omega(n)})$ (one-point set)

and
$X=\{\omega\in A^{Z}|\{R(\omega)\}\neq\phi\}$ .

(b) In particular, the Anosov system for which the existence of Markov
partition is proved ([3], also [13]) has periodic points which increases at most
exponentially and the bound of increasing order is given by its topological
entropy. This result is found in Bowen [4].

(c) For $\beta$-subshifts, which will be studied in sections 3, 4 and 5 the
equality (3) does hold even when it is not Markovian.

PROOF. We first show (ii). Let $M$ be the structure matrix of a Markov
subshift (X, $\sigma$). Then

$P_{n}(X, a)=TrM^{n}=\sum_{a\in A}(M^{n})_{aa}$

and
card $W_{n}(X)=$ $\sum_{=,a.b\sim A}(M^{n})_{ab}$ .

These two quantities can be expressed as linear combination of powers of
1eigenvalues of the matrix $M$. It is now obvious that $\lim$ – log $P_{n}(X, \sigma)$ and

$n-\infty n$

$\varliminf_{n}\frac{1}{n}$ log card $W_{n}(X)$ exist and coincide with log $\rho(M)$ when $M$ is aperiodic.

If (X, $\sigma$) is an irreducible Markov subshift, then the eigenvalue $\rho(M)$ is simple
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so that a suitable choice of subsequence of $ n_{k}\rightarrow\infty$ shows the statement (ii).

Now (ii) follows from the Lemma 2.4 and its Corollary 2.5.
To prove(i), we approximate (X, $\sigma$) by the Markov subshifts $(X^{p}, \sigma)$

where $X^{p}=\mathcal{M}(W_{p+1}(X))$ (see \S 1, (7)). Then $X^{p}\supset X$ implies that

$P_{n}(X^{p}, \sigma)\geqq P_{n}(X, \sigma)$

and that
$\lim_{n\rightarrow}\sup_{\infty}P_{n}(X, \sigma)\leqq\lim_{n-}\sup_{\infty}P_{n}(X^{p}, \sigma)\leqq e(X^{p}, \sigma)$ .

Since $\lim_{p\rightarrow\infty}e(X^{p}, \sigma)=e(X, \sigma)$ , we have (i).

REMARK 2.9. i) There exist two Markov subshifts (X, $\sigma$ ) and $(Y, \sigma)$ with
common topological entropy which are not topologically isomorphic. Let
$X=\mathcal{M}(M)$ and $Y=\mathcal{M}(N)$ where

$M=\left(\begin{array}{lll}0 & 1 & 1\\0 & l & 1\\1 & 1 & 1\end{array}\right)$ and $N=\left(\begin{array}{lll}0 & 1 & 1\\1 & 0 & 1\\1 & 1 & 1\end{array}\right)$ .

Then $p(M)=\rho(N)=1+\sqrt{2}$ , but $P_{1}(X, \sigma)=2,$ $P_{1}(Y, \sigma)=1$ .
ii) Even if the zeta functions ([2]) of two Markov subshifts (X, $\sigma$) and

$(Y, \sigma)$ coincide, $i$ . $e.,$ $P_{n}(X, \sigma)=P_{n}(Y, \sigma)$ for all $n\geqq 1,$ $(X, \sigma)$ and $(Y, \sigma)$ may
not be isomorphic. An example can be given by the matrices:

$M=\left(\begin{array}{lll}0 & 0 & 1\\0 & 1 & 1\\1 & 0 & 1\end{array}\right)$ and $N=\left(\begin{array}{lll}0 & 0 & 1\\0 & 1 & 0\\1 & 0 & 1\end{array}\right)$ .

The characteristic polynomials are common and given by $t^{3}-2t^{2}+1=0$ .
Tr $M=TrN=2$ , Tr $M^{2}=TrN^{2}=4$ . $\mathcal{M}(N)$ has an isolated fixed point while
$\mathcal{M}(M)$ has none.

\S 3. Realization of $\beta$-transformations.

Let $\beta$ be a real number such that $s-1<\beta\leqq s$ for some integer $s\geqq 2$ .
The $\beta$-expansion of a real number $t$ is the expression of the form:

(1) $t=a_{-1}+\sum_{n\geqq 0}a_{n}\beta^{-n-1}$

where $a_{-1}$ is an integer and, for $n\geqq 0,$ $a_{n}\in A=\{0,1, \cdots , s-1\}$ . The expression
can be uniquely determined via $\beta$ -transformation $T_{\beta}$ which has been studied
by A. Renyi [12] and W. Parry [10], and is defined on the unit interval
$[0,1)$ by the relation:
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(2) $T_{\beta}t\equiv\beta t$ $(mod 1)$ .
Let $\pi_{\beta}$ be the map of the unit interval $[0,1$) into the infinite product space
$\Omega=A^{N}=\{0, \cdots , s-1\}^{N}$ defined as follows:

(3) $\pi_{\beta}(t)(n)=k$ , if $k\beta^{-1}\leqq T_{\beta}^{n}t<(k+1)\beta^{-1}$

where $T_{\beta}^{0}t=t,$ $T_{\beta}^{n+1}t=T_{\beta}(T_{\beta}^{n}t)(n\geqq 0)$ .
Then it is proved in [10] that the expression(1) holds for $a_{n}=\pi_{\beta}(t)(n)$ ,

$n\geqq 0,$ $a_{-1}=0$ in the case of $t\in[0,1$); in other words

(1) $t=\rho_{\beta}(\pi_{\beta}(t))$

where

(4) $\rho_{\beta}(\omega)=\sum_{n\geqq 0}\omega(n)\beta^{-n-1}$

for $\omega\in A^{N}$ . (See 5) of the Proposition 3.2 below.)

Let $Y_{\beta}$ be the image $\pi_{\beta}([0,1))$ and $X_{\beta}$ its closure in the product space $\Omega$

with the product topology.
DEFINITION 3.1. The subshift $(X_{\beta}, a)$ will be called $\beta$-subshift.
The space $\Omega$ is endowed with the lexicographical order $\omega>\omega^{\prime}$ : if and

only if there exists an integer $n$ such that $\omega(k)=\omega^{\prime}(k)$ for $k<n$ and $\omega(n)$

$>\omega^{\prime}(n)$ . The shift transformation on the space $\Omega=A^{N}$ will be denoted by $\sigma$.
We set

(5) $T_{\beta}^{n}1=\lim_{t|1}T_{\beta}^{n}t$

and

(6) $\pi_{\beta}(1)=\max X_{\beta}=\omega_{\beta}$ .
PROPOSITION 3.2.
1) $\sigma\circ\pi_{\beta}=\pi_{\beta^{\circ}}T_{\beta}$ on $[0,1$ ).
2) $\pi_{\beta}$

; $[0,1]\rightarrow X_{\beta}$ is an injection and is strictly order-preservjng, $i$ . $e$ . $t<s$

implies that $\pi_{\beta}(t)<\pi_{\beta}(s)$ .
3) $\rho_{\beta^{\circ}}\pi_{\beta}$ is identity on $[0,1]$ .
4) $\rho_{\beta}\circ\sigma=T_{\beta^{\circ}}\rho_{\beta}$ on $Y_{\beta}$ .
5) $\rho_{\beta}$ : $X_{\beta}\rightarrow[0,1]$ is a continuous surjection and is order-preserving, $i$ . $e$ .

$\omega<\omega^{\prime}$ implies that $\rho_{\beta}(\omega)\leqq\rho_{\beta}(\omega^{\prime})$ .
6) The inverse image $\rho_{\beta}^{-1}(t)$ of $t\in[0,1]$ consists either of $a$ one point $\pi_{\beta}(t)$

or of two pOints $\pi_{\beta}(t)$ and $\sup_{s<t}\pi_{\beta}(s)$ . The latter case occurs only when $T\beta t=0$

for some $n>0$ .
7) In particular, $\pi_{\beta}(\omega)$ is one-to-one except for a countable number of points

$\omega\in X_{\beta}$ .
PROOF. We first note that
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(7) $\beta t=T_{\beta}t+\pi_{\beta}(t)(0)$

and that

(8) $T_{\beta}^{n}t=\beta^{n}(t-\sum_{k=0}^{n-1}\pi_{\beta}(i)(k)\beta^{-k-1})$

for any $t\in[0,$ $L\rangle$ and $n\geqq 1$ . (7) is the definition itself of $T_{\beta}$ and $\pi_{\beta}$ , and ( $ 8\rangle$

is an immediate consequence of (7).

The assertion 1) and 4) are trivial. 3) follows from (8), since
$\lim_{n\sim\infty}\sum_{k=0}^{n-1}\pi_{\beta}(t)(k)\beta^{-k-1}=\rho_{\beta}(\pi_{\beta}(t))$ , and 3) implies the injectivity of $\pi_{\beta}$ and the

surjectivity of $\rho_{\beta}$ .
Now we prove that the map $\pi_{\beta}$ preserves the order. Then we have the

assertion 2). SuPpose that there exist $t,$ $s\in[0,1]$ such that $t<s$ and that
$\pi_{\beta}(t)>\pi_{\beta}(s),$ $i$ . $e.$ , that there exists an integer $n\geqq 0$ with the Properties:

$\pi_{\beta}(t)(k)=\pi_{\beta}(s)(k)$ for $k<n$

and
$\pi_{\beta}(t)(n)>\pi_{\beta}(s)(n)$ .

Then we would have, by the identity (8),

$t=\sum_{k=0}^{n}\pi_{\beta}(t)(k)\beta^{-k-1}+\beta^{-n-1}T^{n+1}t$

$\geqq\sum_{k=0}^{n}\pi_{\beta}(s)(k)\beta^{-k-1}+\beta^{-n-1}(1+T^{n+1}t)$

$=s+\beta^{-n-1}(1+T^{n+J}t-T^{n+1}s)$ .
This is absurd since $t<s$ .

Recalling that the completion of the set $Y_{\beta}$ with respect to the lexi-
cographical order coincides with its closure $X_{\beta}$ in the product topology, we
have 5).

Finally we prove the assertion 6). It is now obvious that

$\rho_{\beta}^{-I}(t)=\{\omega\in X_{\beta}|\sup_{s<t}\pi_{\beta}(s)\leqq\omega\leqq\inf_{s>\iota}\pi_{\beta}(s)\}$ .
Since $\lim_{s\downarrow t}T_{\beta}s=T_{\beta}t$ , we have

$\lim_{s\downarrow t}\pi_{\beta}(t)(O)=\pi_{\beta}(t)(O)$

and so
$\inf_{s>i}\pi_{\beta}(s)=\pi_{\beta}(t)$ .

Consequently,
$\rho_{\beta}^{-1}(t)=\{\sup_{s<t}\pi_{\beta}(s), \pi_{\beta}(t)\}$ .

Assume now that $\omega=\sup_{s<t}\pi_{\beta}(s)$ and $\omega^{\prime}=\pi_{\beta}(t)$ are distinct. Then there is an



44 S. ITO and Y. TAKAHASHI

integer $n$ for which
$\omega(k)=\omega^{\prime}(k)$ $(k<n)$

and
$\omega(n)\neq\omega^{\prime}(n)$ .

Since $\omega<\omega^{\prime}$ by 2), and since $\rho_{\beta}(\omega^{\prime\prime})<1$ for any $\omega^{\prime\prime}\in X_{\beta}$ , we have

$\omega(n)=\omega^{\prime}(n)-1$ .
Then, from the identities

$t=\rho_{\beta}(\omega)=\sum_{k=0}^{n}(k)\beta^{-k-1}+\beta^{-n- 1}\rho_{\beta}(\sigma^{n}\omega)$

and
$t=\rho_{\beta}(\omega^{\prime})=\sum_{k=0}^{n}\omega^{\prime}(k)\beta^{-k-1}+\beta^{-n-1}\rho_{\beta}(\sigma^{n}\omega^{\prime})$

it follows that
$\beta^{-n- 1}=\beta^{-n- 1}(\rho_{\beta}(\sigma^{n}\omega)-\rho_{\beta}(\sigma^{n}\omega^{\prime}))$ .

But this equalit.$y$ holds if and only if $\rho_{\beta}(\sigma^{n}\omega)=1$ and $\rho_{\beta}(\sigma^{n}\omega^{\prime})=0$ . Hence
$\omega^{\prime}(k)=0$ for any $k>n$ and

$\sigma^{n}\omega=\omega_{\beta}=\max X_{\beta}$

since $\rho_{\beta}^{-1}\{1\}$ consists of one point $\omega_{\beta}$ . The proof of Proposition is completed.
REMARK 3.3. The Proposition implies that the orders induced from the

usual order on the unit interval $[0,1]$ by the maps $\rho_{\beta}$ and $\rho_{s}(s-1<\beta\leqq s)$

coincide on the set $Y_{\beta}$ , since the order induced by $\rho_{s}$ is lexicographical on $A^{N}$.
This remark enables us to classify the set $W_{n}(X_{\beta})$ of those words of

length $n$ which appears in $\beta$ -subshift $(X_{\beta}, \sigma)(n\geqq 1)$ . These word sets are
also endowed with lexicographical order. Let

$W_{n}^{0}=\{(a_{1}, \cdots a_{n})\in W_{n}(X_{\beta})|(a_{1}, \cdots , a_{n-1}, a_{n}+1)\in W_{n}(X_{\beta})\}$ ,
(9)

$W_{n}^{0}(u)=\{u\cdot v\in W_{n+k}(X_{\beta})|u\cdot v\in W_{n+k}^{0}\}$ , $W_{n}(u)=\{u\cdot v|u\cdot v\in W_{n+k}\}$

where $n\geqq 1,$ $u\in W_{k}(X_{\beta}),$ $k\geqq 0$ , and the symbol ‘ denotes the concatenation,
$i$ . $e$ .
(10) $u\cdot v=(a_{1}, \cdots , a_{n}, b_{1}, \cdots , b_{m})$

if $u=(a_{1}, \cdots, a_{n})$ and $b=(b_{1}, \cdots, b_{m})$ (the number $m$ may be infinite). The
empty word $\epsilon$ is a symbol such that $\epsilon\cdot u=u\cdot\epsilon=u$ for any word $u$ . Finally
we set $W_{0}(X_{\beta})=W_{0}^{0}(u)=\{\epsilon\}$ .

PROPOSITION 3.4. For any $k\geqq 0$ and a word $u\in W_{k}(X_{\beta})$

$W_{n}(u)=\bigcup_{J=1}^{n}W_{j}^{0}(u)\cdot\omega_{\beta}[0, n-j)U\{\max W_{n}(u)\}$

where
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(11) $\omega_{\beta}[0, j$) $=\left\{\begin{array}{ll}(\omega_{\beta}(0), \cdots & \omega_{\beta}(j-1)) (i>1),\\\epsilon (emPty & ord) (i=0).\end{array}\right.$

REMARK 3.5. If $ u=\epsilon$ , then, $W_{n}^{0}(\epsilon)=W_{n}^{0}$ and max $W_{n}(\epsilon)=\omega_{\beta}[0, n)$ .
PROOF. We only prove the proposition for the case $ u=\epsilon$ , since the

general assertion is then deduced immediately. We first note that, if a word
$(a_{1}, \cdots , n_{n})$ belongs to the set $W_{n}(X_{\beta})$ and if $a_{n}>1$ , then any words
$(a_{1}, \cdots , a_{n-1}, b)$ with $0\leqq b\leqq a_{n}$ also belong to $W_{n}(X_{\beta})$ . In fact it is the initial
word of length $n$ of $\pi_{\beta}(t)$ where

$t=a_{1}\beta^{-1}+\cdots+a_{n-1}\beta^{-(n-1)}+b\beta^{-n}$ .
Consequently, if $u=$ $(a_{1}, \cdots , a_{n})\in W_{n}(X_{\beta})\backslash W_{n}^{0}(X_{\beta})$ and if $u\neq\max W_{n}(X_{\beta})$ , then
the word min $\{v\in W_{n}(X_{\beta})|v>u\}$ must be of the form

$(b_{1}, \cdots b_{k}, 0,0, \cdots 0)$

for some $1\leqq k\leqq n$ and some $b_{1},$ $\cdots$ , $b_{k}\in A,$ $b_{k}\neq 0$ . Since there is no word in
$W_{n}(X_{\beta})$ which lies between $u$ and this word, we have $a_{1}=b_{1},$

$\cdots,$ $a_{k-1}=b_{k-1}$ ,
$a_{k}=b_{k}-1$ . Comparing the words $(a_{k}, \cdots , a_{n})$ and $(a_{k}+1,0, \cdots , 0)$ , we can con-
clude that

$(a_{k+1}, \cdots a_{n})=\omega_{\beta}[0, n-k)$ .

On the other hand, the word $(a_{1}, \cdots, a_{k}+1)$ belongs to the set $W_{k}(X_{\beta})$ as well
as the word $(a_{1}, \cdots , a_{k})$ . This means that $(a_{1}, \cdots , a_{k})\in W_{k}^{0}(X_{\beta})$ . Hence

$u=$ $(a_{1}, \cdots , a_{k})\cdot(a_{k+1}, \cdots , a_{n})\in W_{k}^{0}(X_{\beta})\cdot\omega_{\beta}[0, n-k)$ .
Finally, if $u=\max W_{n}(X_{\beta})$ , then it is obvious that $u=\omega_{\beta}[0, n$). The inverse
inclusion is trivial. The proof is completed.

We note that the sets $[w]=\{\omega\in X_{\beta}| (\omega(0), \cdots , \omega(n))=w\},$ $w\in W_{n+1}(X_{\beta})$

form a partition of the set $X_{\beta}$ and that $\rho_{\beta}([w])=\{\rho_{\beta}(\omega)|\omega\in[w]\},$ $w\in W_{n+1}(X_{\beta})$

form a covering of the unit interval by intervals, any two of which have at
most $0Jne$ common point. Let $R_{\beta}(w)$ be the length of interval $\rho_{\beta}([w])$ . For
any $u\in W_{k}(X_{\beta})$ ,

(12)
$u\cdot v\sum_{W_{n}(u)}R_{\beta}(u\cdot v)=R_{\beta}(u)$

and

(13) $R_{\beta}(u\cdot v)=\{\rho_{\beta}((u\cdot v)^{\prime})-\rho_{\beta}(u\cdot v)1-\rho_{\beta}(u\cdot v)$

if $u\cdot v\neq\max W_{n+k}(X_{\beta})$

if $u\cdot v=\max W_{n+1}(X_{\beta})$

where we denote, for a word $w\in W_{l}(X_{\beta})$ ,

$w^{\prime}=\min\{v\in W_{l}(X_{\beta})|v>w\}$

if it exists.
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COROLLARY 3.6. Let $u\in W_{k}(X_{\beta})$ and $M_{\beta}=\sum_{n\geqq 0}(n+1)\omega_{\beta}(n)\beta^{-n- 1}$ .

a) $\varliminf_{n}\beta^{-n}$ card $(W_{n}^{0}(u))=\frac{\beta^{k}R}{M}\underline{\beta(u)}\beta$

b) $\varliminf_{n}\beta^{-n}$ card $(W_{n}(u))=\frac{\beta^{k}R_{\beta}(u)}{M_{\beta}(1-\beta^{-1})}$

where the convergence is uniform in $k\geqq 1$ and $u\in W_{k}(X_{\beta})$ .
c) In Particular, the topOlOgical entropy of the subshift $(X_{\beta}, \sigma)$ is log $\beta$ .
PROOF. If $u\cdot v\in W_{n-j}^{0}(u)\omega_{\beta}[0, j)$ for some $0\leqq i\leqq n-1$ , then $(u\cdot v)^{\prime}=u\cdot v^{\prime}$

and we obtain from Proposition3.4

\langle 14) $R_{\beta}(u\cdot v)=\beta^{-(k+n- j)(1-\sum_{m=0}^{j-1}\omega_{\beta}(m)\beta^{-m-1})}$

$=\beta^{-k-n}T_{\beta}^{j}1$ .
On the other hand, if $u\in W_{k-l}^{0}\omega_{\beta}[0,1$ ) and $u\cdot v=\max W_{n}(u)$ , then

$R_{\beta}(u\cdot v)=\beta^{-k-n}T_{\beta}^{n+l}1$ .
Now it follows from the expressions (12) and (14) that

\langle 15) $R_{\beta}(u)=\sum_{j=0}^{n-1}\beta^{-k-n}T_{\beta}^{j}1\cdot N_{n-j}^{0}(u)+\beta^{-k-n}T_{\beta}^{n+l}1$ $(n\geqq 1)$ ,

where $N_{m}^{0}(u)=card(W_{m}^{0}(u))(m\geqq 1)$ . Let us consider a formal power series:

$\sum t^{n}\sum^{n-1}\beta^{-k-n}T_{\beta}^{j}1N_{n-j}^{0}(u)$ .
$n\geqq 1$ $j=0$

Then it is easy to see that the series converges for $|t|<1$ and we can deduce
from (15) that

(16) $\sum_{n\geqq 1}\beta^{-n}N_{n}^{0}(u)t^{n}=\frac{\beta^{k}R_{\beta}(u)t}{1-\phi_{\beta}(t)}g_{l}(t)$

where
$g_{l}(t)=\frac{1-t}{1-\phi_{\beta}(t)}\sum_{n\geqq 1}t^{n}\beta^{-n}T\beta^{+l}1$ ,

\langle 17) $\phi_{\beta}(t)=\sum_{n\geqq 0}\omega_{\beta}(n)\beta^{-n-1}t^{n+1}$

But the series in (17) converges in a neighbourhood of the unit disk { $t\in C$ :
$|t|\leqq 1\}$ and the function $1-\phi_{\beta}(t)$ has only one simple root at $t=1$ in a disk
$\{t\in C:|t|<1+\epsilon\}$ for some $\epsilon>0$ . Consequently the function

$f_{u}(t)\equiv\sum_{n\geqq 1}(\beta^{-n}N_{n}^{0}(u)-\frac{\beta^{k}R_{\beta}(u)}{M_{\beta}})t^{n}$ ,

which is equal to

$\frac{\beta^{k}R_{\beta}(u)tt\beta^{k}R_{\beta}(u)}{1-\phi_{\beta}(t)(1-t)\phi_{\beta}^{\prime}(1)}g_{l}(t)$ ,

is analytic in $\{t\in C|t\neq 1, |t|<1+\epsilon\}$ and the singular point $t=1$ is removal.
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In particular the function $f_{u}(t)$ has bounded derivative on the circle $|t|=1$ .
Furthermore

$\sup_{ku\subset}\sup_{-W_{k^{(x}\beta)}}\sup_{|t|=1}|f_{u}^{\prime}(t)|<\infty$
,

since the function $g_{l}$ and its derivative $g_{l}^{\prime}$ is uniformly bounded in $l\geqq 1$ and
$\beta^{k}R(u)\leqq 1$ for any $u\in W_{k}(X_{\beta}),$ $k\geqq 1$ . Using the estimate

$n\times|\beta^{-n}N_{n}^{0}(u)-\beta^{k}R_{\beta}(u)/M_{\beta}|=|(2\pi r^{n})^{-1}\int_{0}^{2\pi}f_{u}^{\prime}(re^{i\theta})e^{-in\theta}d\theta|$

$\leqq r^{-n}\sup_{|t|\leqq 1}|f_{u}^{f}(t)|$

for $0<r<1$ and $n\geqq 0$ , we obtain

$ n\geqq 1.u\in W_{k}\sup_{(x_{\beta}) ,k\geqq 1}n|\beta^{-n}N_{n}^{0}(u)-\beta^{k}R_{\beta}(u)/M_{\beta}|<\infty$
.

Hence a). The assertion b) follows from the obvious identity

card $W_{n}(u)=\sum_{k=1}^{n}$ card $W_{k}^{0}(u)+1$ .
c) is now obvious.

Now we investigate the Markov subshift $(\mathcal{M}(W_{p+1}(X_{\beta})), \sigma)$ whose structure
set is given by $W_{p+1}(X_{\beta})$ . Let $M=M_{\beta,p}$ be its structure matrix.

PROPOSITION 3.7. Let $q$ be the minimal positive integer $n$ for which
$(\omega_{\beta}(n), \cdots , \omega_{\beta}(P-1))=(\omega_{\beta}(0), \cdots , \omega_{\beta}(P-n-1))$ if such an $n$ exists and $q=p$

otherwise. Assume that there exist a vector $x=(x_{u})_{u\in A^{p}}\neq 0$ and a $comPlex$

number $\lambda\neq 0$ such that $M_{\beta p}x=\lambda x$ . Then

(i) $1=\sum_{k=0}^{q--1}\omega_{\beta}(k)\lambda^{-k-1}+\lambda^{-q}$ if $\omega_{\beta}(p)=\omega_{\beta}(p-q)$ ,

$1=\sum_{k=0}^{p}\omega_{\beta}(k)\lambda^{-k-1}+\lambda^{-p- 1}$ if $\omega_{\beta}(p)<\omega_{\beta}(p-q)$ .

(ii) For $u\in W_{p-k}^{0}\cdot\omega_{\beta}[0, k$),

$x_{u}=c\cdot\lambda^{k}(1-\sum_{J=0}^{k-1}\omega_{\beta}(])\lambda^{-j- 1})$

where $c$ is some complex number.
PROOF. We first show that

$x_{u}=\xi_{k}$ if $u\in W_{p-k}^{0}\cdot\omega_{\beta}[0, k$)

where $\xi_{k}=x_{(0,\ldots,0)\omega_{\beta}\zeta(1k)}$ . We aPpeal to the induction on the value $\delta(u, v)$ where

$\delta(u, v)=\left\{\begin{array}{ll}0 & if u=v\\max & \{j|u(])\neq v(J)\}+1 if u\neq v,\end{array}\right.$

and Prove that, if $u,$ $v\in W_{p-k}^{0}\cdot\omega_{\beta}[0, k$), then $x_{u}=x_{v}$ . If $\delta(u, v)=0$ , then it is
trivial. We assume that this is true for $\delta(u, v)\leqq i$ . Let $u,$ $v\in W_{p-k}^{0}\cdot\omega_{\beta}[0, k$)
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and $\delta(u, v)=j+1$ . If we define words $u^{\prime}$ and $v^{\prime}$ setting

$u^{\prime}(i)=u(i+1)$ , $v^{\prime}(i)=v(i+1)$ $(0\leqq i\leqq P-1)$ ,

then, if one of $ u^{\prime}\cdot$
$a$ and $ v^{\prime}\cdot$ $a$ belongs to $W_{p}(X_{\beta})$ , so do both words and

$\delta(u^{\prime}\cdot a, v^{\prime}\cdot a)=j$ . From the definition of structure matrix and the method of
classification of words it follows that

$\lambda x_{u}=M_{uw}x_{w}=\sum_{a=0}^{\omega_{\beta^{(k)}}}x_{u^{l}a}$

and

$\lambda x_{v}=M_{vw}x_{w}=\sum_{a=0}^{\omega_{\beta}(k)}x_{v\prime a}$ .

Consequently, from the induction assumption, we conclude that $x_{u}=x_{v}$ since
$\lambda\neq 0$ .

We next show that the common value $\xi_{k}$ is given by (ii). If $0\leqq k<P$ ,

then
$\lambda\xi_{k}=\lambda x_{(0,\cdots,0)\cdot\omega_{\beta^{\subset 0,k)}}}$

$=\sum_{a=0}^{\omega_{\beta^{(k)}}}x_{(0,\cdots,0)\cdot\omega_{\beta^{\subset 0,k)\cdot a}}}$

$=\xi_{k+1}+\omega_{\beta}(k)\xi_{0}$ .
From these recurrence formulas the statement (ii) follows immediately. In
particular, if a component $x_{n}$ is zero, then the vector $x$ is zero. For $k=p$ ,
we obtain from the definition of $q$ that

$\lambda\xi_{p}=\lambda x_{\omega_{\beta^{I0,p)}\beta^{\zeta 1,p)a}}}=\sum_{a=0}^{\omega_{\beta^{(p)}}}x_{\omega}$

$=\{\xi_{p-q+1}+\omega_{\beta}(p)\xi_{0}(\omega_{\beta}(p)+1)\xi_{0}$

if $\omega_{\beta}(p)<\omega_{\beta}(p-q)$

if $\omega_{\beta}(p)=\omega_{\beta}(p-q)$ .
Consequently (i) follows from this together with the reccurrence formulas (ii).

\S 4. Symbolical properties of $\beta$-subshifts.

In this section we show two important Properties of $\beta$ -subshifts; one is
the property of the family $\{X_{\beta} : \beta>1\}$ , the other is the characterization of
those $\beta’ s$ for which the subshifts $(X_{\beta}, \sigma)$ are Markovian.

PROPOSITION 4.1.
(i) If $ 1<\beta\leqq\alpha$ , then $Y_{\beta}\subset Y_{\alpha}$ .
(ii) For any $\beta>1$ ,

a)
$X_{\beta}=\overline{\bigcup_{\alpha>\beta}X_{\alpha}}$ , b)

$X_{\beta}=\bigcap_{\alpha>\beta}X_{\alpha}$ .
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REMARK 4.2. The family $\{X_{\beta}|\beta>1\}$ gives an example of increasing
family of shift invariant closed sets with topological entropy log $\beta$ (See
corollary 3.6).

In Order to prove the Proposition we need the followirtg lemria, Which
agserts that the set $Y_{\beta}=\pi_{\beta}([0,1))$ is a $Gi$-set.

LEMMA 4.3.

$Y_{\beta}=\pi_{\beta}([0,1))=\{\omega\in A^{N}|\rho_{\beta}(\sigma^{n}\omega)<1(^{\forall}n\geqq 0)\}$ .
PROOF. Let $Z_{\beta}$ be the set in the right-hand side. Then it is obvious that

$Y_{\beta}\subset Z_{\beta}$ , Conversely, if $\omega\in Z_{\beta}$ , then

$\rho(\sigma\omega)=\beta\rho(\omega)-\omega(9)$

since $\rho(\omega)<1$ and $\rho(\sigma\omega)<1$ . This implies that $\pi_{\beta}(\rho_{\beta}(\omega))(0)=\omega(0)$ . Con-
sequently $\pi_{\beta}(\rho_{\beta}(\omega))=\omega$ because of the shift-invariance of the set $Z_{\beta}$ .

LEMMA 4.4.
$X_{\beta}=$ { $\omega\in A^{N}|\sigma^{n}\omega\leqq\omega_{\beta}$ for any $n\geqq 0$}.

PROOF. Assume that $\sigma^{n}\omega\leqq\omega_{\beta}$ for any $n\geqq 0$ . Let $\omega_{k}$ be a sequence such
that

$\omega_{k}(n)=\left\{\begin{array}{ll}\omega(n) & for n<k\\0 & for n\geq k.\end{array}\right.$

Then $\sigma^{k}\omega_{k}\in Y_{\beta}$ . We prove that $\sigma^{k-j}\omega_{k}\in Y_{\beta}$ by induction On $i=0,1,2,$ $\cdots,$
$k$ .

For this it suffices to show that if $\omega^{\prime}\in Y_{\beta}$ and $a\cdot\omega^{\prime}<\omega_{\beta}$ , then $a\cdot\omega^{\prime}\in Y_{\beta}$ .
But in case of $a=\omega_{\beta}(O)$ ,

$\rho_{\beta}(a\cdot\omega^{\prime})=\beta^{-1}(a+\rho(\omega^{\prime}))<\beta^{-1}(a+\rho(\sigma\omega_{\beta}))=1$ ,

and in case of $a<\omega_{\beta}(O)$ ,

$\rho_{\beta}(a\cdot\omega^{\prime})=\beta^{-1}(a+\rho(\omega^{\prime}))<\beta^{-1}(a+1)\leqq\beta^{-1}\omega_{\beta}(0)<1$ .
Thus we get $\omega_{k}\in Y_{\beta}$ for any $k\geqq 1$ . Consequently $\omega=\lim\omega_{k}\in X_{\beta}$ .

THEOREM 2. Let $\beta>1$ . Then the following three conditions are equivalent
$(P\geqq 1)$ :

1) The subshift $(X_{\beta}, \sigma)$ is Markov and its order is strictly equal to $P$ .
2) There exist integers $a_{i},$ $i=0,$ $\cdots$ , $p,$ $0\leqq a_{i}<s$ , such that

a) $1-\beta^{-p-1}=_{j}--R^{p}a_{j}\beta^{-j-1}$ ,

b) $1-\beta^{-p-1}>\sum_{j=0}^{p}a_{j+k}\beta^{-j-1}$ $(k=1, \cdots p)$

where we set $a_{n+p+1}=a_{n}$ for $n\geqq 0$ .
3) The sequence $\ell I\beta$ is periodic with period $p+1,$ $i$ . $e$ .
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$a^{\prime})$ $\sigma^{p+1}\omega_{\beta}=\omega_{\beta}$

and
$b^{\prime})$ $a^{q}\omega_{\beta}<\omega_{\beta}$ for any $q=1,$ $\cdots$ , $p$ .

PROOF. . We first show that 3) follows from 1). Let (X, $\sigma$) be a Markov
subshift whose order is strictly equal to $p$ . Then by Proposition 3.7 the
following dichotomy occurs:

$\alpha)$ $1=\sum_{k=0}^{p}\omega_{\beta}(k)\beta^{-k-1}+\beta^{-p-1}$ .

$\beta)$ there exists an integer $q<p$ such that

$1=\sum_{k=0}^{q-1}\omega_{\beta}(k)\beta^{-k-1}+\beta^{-Q}$ .

Then it follows easily that

$\sum_{k=0}^{\infty}\omega_{\beta}(k+r)\beta^{-k-1}=1$

where $r=P+1$ in case $\alpha$ ) and $r=q$ in case $\beta$). Therefore

$\sigma^{r}\omega_{\beta}=\omega_{\beta}$ .
Assume that $\beta$) holds. Then, $r=q$ and

$\sigma^{n}\omega\leqq\omega_{\beta}=a^{q}\omega_{\beta}$

for any $\omega\in \mathcal{M}(W_{q}(X_{\beta}))$ and any $n\geqq 0$ . Hence
$X_{\beta}=\mathcal{M}(W_{q}(X_{\beta}))$

This is a contradiction. Consequently the case $\beta$ ) never occurs. In other
words $a^{\prime}$ ) and $b^{\prime}$ ) holds.

Next we show that the statement 3) implies 2). In fact the equality a)

follows from $a^{\prime}$ ) since

$1=\rho_{\beta}(\omega_{\beta})=\sum_{j=0}^{p}\omega_{\beta}(j)\beta^{-f-1}+\beta^{-p-1}\rho_{\beta}(\sigma^{p+1}\omega_{\beta})$ .

To show b) it suffices to rewrite the inequality

$\rho_{\beta}(\sigma^{q}\omega_{\beta})<\rho_{\beta}(\omega_{\beta})$ for any $q=1,$ $\cdots$ $p$

which hold in virtue of the uniqueness of the sequence $\omega_{\beta}$ .
Finally we show that 1) follows from 2). Let

$\omega_{n}(k)=\left\{\begin{array}{ll}a_{k} & for k<n(P+1)\\0 & for k\geqq n(P+1).\end{array}\right.$

Then it is easy to see by a) and b) that $\rho_{\beta}(\sigma^{k}\omega_{n})<1$ for any $k\geqq 0$ . Therefore
$w_{n}\in Y_{\beta}$ by Lemma 4.3. And then $\varliminf_{n}\omega_{n}\in X_{\beta}$ and $\rho_{\beta}(\varliminf_{n}\omega_{n})=1$ . This shows
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that the sequence $(a_{n})_{n\geqq 0}$ is the $\beta$ -expansion of one, $\omega_{\beta}$ .
Let $W=W_{p+1}(X_{\beta})$ . If $\omega\in \mathcal{M}(W)$ , then $\sigma^{n}\omega\leqq\omega_{\beta}$ for any $n\geqq 0$ since

$\}(a_{0}, \cdots, a_{p})=\max W$. Consequently $\omega\in X_{\beta}$ by Lemma 4.4. Hence $X_{\beta}=\mathcal{M}(W)$ .
Now we claim that the subshift $(X_{\beta}, \sigma)$ is not Markovian of order $q<p$ .

SuPpose that it is Markovian of order $q$ . Then the statements $a^{\prime}$ ) and $b^{\prime}$)

.and therefore a) and b) hold with $p$ replaced by $q$ . But this is absurd.

\S 5., Metrical properties of $\beta$-automorphisms.

Renyi [12] showed that there exists a maximal invariant probability
measure for $\beta$-transformation on the unit interval $[0,1$ ) which is absolutely
’continuous with respect to Lebesgue measure. That measure induces a shift-
invariant probability measure $d\mu_{\beta}(\omega)=f_{\beta}(\omega)d\rho_{\beta}(\omega)$ on $X_{\beta}$ , where

(1) $\rho_{\beta}(\omega)=\sum_{n\geqq 0}\omega(n)\beta^{-n-1}$

$d\rho_{\beta}$ is Stieltjes integral on the ordered space $X_{\beta}$ ,

$\ovalbox{\tt\small REJECT}(2)$

$f_{\beta}(\omega)=M_{\beta}^{-1}\sum_{n\geqq 0}\beta^{-n}I(\omega\leqq a^{n}\omega_{\beta})$ ,

$k(2)$
$M_{\beta}=\sum_{n\geqq 0}(n+1)\omega_{\beta}(n)\beta^{-n-1}$

and $I(\omega\leqq\eta)$ denotes the indicator function of the set $\{\omega|\omega\leqq\eta\}$ . The proof
of invariance of $\mu_{\beta}$ is immediate in our symbolical form.

DEFINITION 5.1. The endomorphism $(X_{\beta}, \mu_{\beta}, \sigma)$ will be called $\beta$ -endo-
morphism and its natural extension $(\overline{X}_{\beta},\overline{\mu}_{\beta},\overline{\sigma})\beta$ -automorphism.

THEOREM 3. The $\beta- automorphism(\overline{X}_{\beta},\overline{\mu}_{\beta},\overline{\sigma})$ is Bernoullian.
The proof will be given by a series of lemmas, where following con-

$\rightarrow Vention$ is used:

$\phi(u)=\phi(u\cdot(000\ldots))$ for any function $\phi$ on $X_{\beta}$ .
LEMMA 5.1. Let

$a(4)$ $S_{\beta}\phi(\omega)=\beta^{-1}\sum\phi(a\omega)$

where the sum is taken over $\{a\in A|a\cdot\omega\in X\}$ . Then $S_{\beta}$ is a nonnegative
$oPerator$ on the spaces of Borel functions on $X_{\beta}$ and satisfies the following
Properties:

a) $\int_{x_{\beta}}S_{\beta}\phi(\omega)\cdot\psi(\omega)d\rho_{\beta}(\omega)=\int_{x_{\beta}}\phi(\omega)\psi(a\omega)d\rho_{\beta}(\omega)$

whenever $\phi\in L^{1}(X_{\beta}, d\rho_{\beta})$ and $\psi\in L^{\infty}(X_{\beta}, d\rho_{\beta})$ .
b) In particular, $S_{\beta}$ is a nonnegative contraction operatOr on $L^{1}(X_{\beta}, d\rho_{\beta})$

such that
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$\int_{x_{\beta}}S_{\beta}\phi(\omega)d\rho_{\beta}(\omega)=\int_{r_{\beta}}\phi(\omega)d\rho_{\beta}(\omega)$ .

e) @\mbox{\boldmath $\beta$} is a bounded operaior on $L^{\infty}\langle X_{\beta},$ $dp_{\beta}$) and

$\varliminf_{n}\sup_{||\phi||_{\infty}\leqq 1}|S_{\beta}^{n}\phi(\omega)|=_{\beta(} _{1-\beta^{-i})}^{1}$ .
PROOF.

a) $\int_{x_{\beta}}S_{\beta}\phi(\omega)\psi(\omega)d\rho_{\beta}(\omega)=\beta^{-1}\sum_{a}\int_{x_{\beta}}I_{x_{\beta}}(a\cdot\omega)\phi(a\cdot\omega)\psi(\omega)d\rho_{\beta}(\omega)$

$=\sum_{a}\int_{[a]}\phi(\omega)\psi(\sigma\omega)d\rho\beta(\omega)$

$=\int_{x_{\beta}}\phi(\omega)\psi(\sigma\omega)d\rho_{\beta}(\omega)$ .
b) is obvious from a).
c) follows from the Corollary 3.5.
Now we prove the main lemma.
LEMMA 5.2. Let $\phi$ be a continuous function on $X_{\beta}$ . Then

$\varliminf_{k}\Vert S_{\beta}^{k}\phi-c(\phi)f_{\beta}\Vert_{\infty}=0$ where $c(\phi)=\int\phi d\rho_{\beta}$ ,

and the convergence is uniform on the set $\Phi=\bigcup_{n\geq 1}S_{\beta}^{n}\Phi_{n}$ where

(5) $\Phi_{n}=$ { $\phi|\Vert\phi\Vert_{\infty}\leqq 1,$ $\phi(\omega)$ depends only on $\omega(k),$ $0\leqq k<n$}.

PROOF. Let $\phi$ be a function on $X_{\beta}$ such that $\phi(\omega)=\phi(\omega^{\prime})$ if $\omega(k)=\omega^{\prime}(k)$

for $0\leqq k<n$ . We will prove the lemma for such $\phi’ s$ .
The classification of the word set $W_{k}=W_{k}(X_{\beta})$ guarantees that

$S_{k}\phi(\omega)=\beta^{-k}\sum_{w\in W_{i}}\phi(w\cdot\omega)$

$=\sum_{J=0}^{k}\beta^{-k}$

$\sum_{v\in W_{k-j}^{0}}$

$\phi(v\cdot\omega_{\beta}[0, j)\cdot\omega)\cdot I(\sigma^{j}\omega_{\beta}>\omega)$

where $W_{j}^{0}=W_{j}^{0}(X_{\beta})$ and the sums is understood to be taken over $w’ s$ such
that $w\cdot\omega\in X_{\beta}$ here and hereafter. Let us define

(6)
$S\xi(m)\phi(\omega)=\sum_{j=0}^{mAk}\beta^{-k}\sum_{v\equiv W_{k-j}^{0}}\phi(v\cdot\omega_{\beta}[0, j)\cdot\omega)$ .

Then

(7) $\Vert S_{\beta}^{k}\phi-S_{\beta}^{k}(m)\phi\Vert_{\infty}\leqq\sum_{f=m+1}^{k}\beta^{-k}\Vert\phi\Vert_{\infty}$ card $(W_{k-j}^{0})$

$\leqq\Vert\phi\Vert_{\infty}\beta^{-k}$ card $(W_{k-m-1})$

$\leqq C_{0}\Vert\phi\Vert_{\infty}\beta^{-m-1}$
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We now assume that $k-m>n$ . Then, sifice the funetion $\phi$ dePends only an
the first $n$ coordinates, we have

$S_{\beta}^{k}(m)\phi(\omega)=\sum_{J=0}^{n}\beta^{-k}\sum_{v\overline{\subset}W_{i-f}^{0}}\phi(v)I(\sigma^{j}\omega_{\beta}\geqq\omega)$

$=\overline{\sum_{f=0}}\beta^{-k}\sum_{u\in W_{n}}\phi(u)N_{k-j-n}^{0}(u)I(\sigma^{j}\omega_{\beta}\geqq\omega)$

where $N_{k}^{0}(u)=card(W_{k}^{0}(u))$ . Therefore

$S_{\beta}^{k}(m)\phi(\omega)=\sum_{j=0}^{m}\beta^{-j}I(\sigma^{j}\omega_{\beta}\geqq\omega)\cdot\beta^{-n}\sum_{u\in W_{n}}\phi(u)\beta^{-(k-j-n)}N_{k-j-n}^{0}(u)$ .
Consequently,

$S_{\beta}^{k+n}(m)\phi(\omega)-C(\phi)f_{\beta}(\omega)$

$=S\S^{+n}(m)\phi(\omega)-M_{\beta}f_{\beta}(\omega)\beta^{-n}\sum_{u\in W_{n}}\phi(u)\beta^{n}R_{\beta}(u)M_{\beta}^{-1}$

$=-\sum_{j\geq m+1}\beta^{-j}I(\sigma^{j}\omega_{\beta}\geqq\omega)\beta^{-n}\sum_{u\subset W_{n}}\phi(u)\beta^{n}R_{\beta}(u)M_{\beta}^{-1}$

$+\sum_{j=0}^{m}\beta^{-j}I(\sigma^{j}\omega_{\beta}\geqq\omega)\beta^{-n}\sum_{u\in W_{n}}\phi(u)\{\beta^{-(k-j)}N_{k-j}^{0}(u)-\beta^{n}R_{\beta}(u)M_{\beta}^{-1}\}$ ,

The first term in the last is majorated by

$M_{\beta}^{-1}\Vert\phi\Vert_{\infty}\sum_{j\geqq m}\beta^{-j-1}=M_{\beta}^{-1}\Vert\phi\Vert_{\infty}\frac{\beta^{-m-1}}{1-\beta^{-1}}$

which tends to zero as $ m\rightarrow\infty$ , and the second term by

$||\phi\Vert_{\infty}\sum_{j=0}^{m}\beta^{-j}I(\sigma^{j}\omega_{\beta}\geqq\omega)\beta^{-n}\sum_{u\in W_{n}}|\beta^{-(k-j)}N_{k-j}^{0}(u)-\beta^{n}R_{\beta}(u)M_{\beta}^{-1}|$

$\leqq\Vert\phi\Vert_{\infty}\sum_{j=0}\beta^{-j}I(\sigma^{j}\omega_{\beta}\geqq\omega)\beta^{-n}$ card $(W_{n})\cdot\sup_{u\in W_{n}}\sup_{k\geqq i\geqq k-m}|\beta^{-i}N_{i}^{0}(u)-\beta^{n}R_{\beta}(u)M_{\beta}^{-1}|$

$\leqq const$ . $\Vert\phi\Vert_{\infty}\sup_{i\geqq k-m}\sup_{n\geq 1}\sup_{u\in W_{n}}|\beta^{-t}N_{i}^{0}(u)-\beta^{n}R_{\beta}(u)M_{\beta}^{-1}|$ ,

which tends to zero as $ k\rightarrow\infty$ uniformly in $n$ and $u\in W_{n}$ so long as $m$ is
fixed.

Thus we have shown that $\lim S^{k}\phi$ exists in the topology of uniform
convergence and the convergence is uniform in the set $\Phi$ .

Now the rest to be proved is easily verified if we approximate general
$\phi’ s$ by funetions which depend only on a finite number of coordinates.

PROOF OF THE THEOREM. Let $(\overline{X}_{\beta},\overline{\mu}_{\beta}, \sigma)$ be $\beta$ -automorphism, $i$ . $e.$ , the
natural extension of $\beta- endomorphism(X_{\beta}, \mu_{\beta}, \sigma)$ . We recall that a shift trans-
formation $(A^{Z}, \sigma, \mu)$ is Bernoulli if it satisfies the Ornstein’s weak Bernoulli
condition:

$\lim_{k\rightarrow\infty}\sup_{n\geqq 1u}\sum_{\in A^{n_{v^{\prime}}}\subset}\xi_{n}^{|\mu([u]\cap\sigma^{-n-k}[v])-\mu([u])\mu([v])|=0}$ .
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This condition is equivalent to the following condition:

$(*)$ $\varliminf\sup_{\phi}\sup_{\in kn\Phi_{n}}\sum_{\subset v^{-}A^{n}}|\int_{\sigma^{-k- n}[v]}\phi d\mu_{\beta}-\int\phi d\mu\cdot\mu[v]|=0$ .

Now we prove that the measure $\overline{\mu}_{\beta}$ satisfies this condition. It suffices to
show $(*)$ for $\mu_{\beta}$ . It follows from Lemma 5.2 a)

$\int_{\sigma^{-k- n}[v]}\phi d\mu_{\beta}=\int\phi(\omega)f_{\beta}(\omega)1_{[v]}(\sigma^{k+n}\omega)d\rho_{\beta}(\omega)$

$=\int_{[v]}S_{\beta}^{k+n}(\phi f_{\beta})d\rho_{\beta}$ .
Therefore

$\Delta_{n}^{k}(\phi)\equiv\sum_{nv\in A}|\int_{\sigma^{-k- n}[v]}\phi d\mu_{\beta}-\int\phi d\mu_{\beta}\cdot\mu_{\beta}[v]|$

$=\sum_{-,v\subset A^{n}}|\int_{[v]}\{S\#^{+n}(\phi f_{\beta})-(\int\phi d\mu_{\beta})f_{\beta}\}d\rho_{\beta}|$

$\leqq\int|S\beta^{+n}(\phi\cdot f_{\beta})-(\int\phi d\mu_{\beta})f_{\beta}|d\rho_{\beta}$ .

Since the function $f_{\beta}$ is integrable with respect to the measure $\rho_{\beta}$ , for any
$\epsilon>0$ we can find a continuous function $g$ which depepds only on the co-
ordinates $\omega(k),$ $0\leqq k<m$ for some $m$ such that

$\int|f_{\beta}-g|d\rho_{\beta}<\epsilon$ .
Then by Lemma 5.2 b) we have

$\int|S_{\beta}^{k+n}(\phi\cdot f_{\beta})-S_{\beta}^{k+n}(\phi\cdot g)|d\rho_{\beta}\leqq\int S_{\beta}^{k+n}|\phi f_{\beta}-\phi\cdot g|d\rho_{\beta}$

$=\int|\phi\cdot f_{\beta}-\phi\cdot g|d\rho_{\beta}<\epsilon$ .
Thus

$\Delta_{n}^{k}(\phi)\leqq 2\epsilon+\int|S\S^{+n}(\phi\cdot g)-(\int\phi\cdot gd\rho_{\beta})f_{\beta}|d\rho_{\beta}$

$\leqq 2\epsilon+\Vert S_{\beta}^{k}[S_{\beta}^{n}(\phi\cdot g)]-(\int\phi\cdot gd\rho_{\beta})f_{\beta}\Vert$ .

The last term converges to zero as $k\rightarrow 0$ uniformly in $n\geqq 1$ and $\phi\in\Phi_{n}$ by
Lemma 5.3 since the function $\phi\cdot g$ belongs to $\Phi_{n}$ for $n\geqq m$ up to constant
multiplication. Hence the condition $(*)$ is verified and the proof is completed.
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