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In this paper we continue the investigation of quasi-permutation modules
over finite groups, begun in [4] and [5]. The notation and terminology are
the same as those in [5].

Let $\Pi$ be a finite group and denote the projective class group of the
integral group algebra $ Z\Pi$ by $C(Z\Pi)$ . Let $\Omega_{Z\Pi}$ be a maximal order in $ Q\Pi$

containing $ Z\Pi$ . As in [5] we put $\tilde{C}(Z\Pi)=\{[\mathfrak{A}]-[Z\Pi]\in C(Z\Pi)|\mathfrak{A}$ is a pro-
jective ideal of $ Z\Pi$ such that $\Omega_{Z\Pi}\mathfrak{A}\oplus\Omega_{Z\Pi}\cong\Omega_{Z\Pi}\oplus\Omega_{Z\Pi}$ } and $C^{q}(Z\Pi)=\{[\mathfrak{A}]-[Z\Pi]$

$\in C(Z\Pi)|\mathfrak{A}$ is a quasi-permutation projective ideal of $ Z\Pi$ }. We further define
$\tilde{C}^{q}(Z\Pi)=\{[\mathfrak{A}]-[Z\Pi]\in C(Z\Pi)|\mathfrak{A}$ is a projective ideal of $ Z\prod$ such that $\mathfrak{A}\oplus S$

$\cong Z\Pi\oplus S$ for a permutation $\Pi$ -module $S$ }.
In [5] we raised the following basic problem on quasi-permutation pro-

jective modules:
‘ For a finite group $\Pi C(Z\Pi)=C^{q}(Z\Pi)7$ ’

It was proved in [5] that if $\Pi$ is an abelian group or a $p$-group where
$p$ is an odd prime, then the answer to the problem is affirmative.

This study is mainly centered on this problem. We will show that, for
a fairly extensive class of finite groups, the answer to the problem is affir-
mative. But we will also give some examples of finite groups $\Pi$ such that
$C^{q}(Z\Pi)$ gi $\tilde{C}(Z\Pi)$ .

First we will give the following:
[I] The induction theorems hold for the functors $\tilde{C}(Z\cdot),$ $C^{q}(Z\cdot)$ and $\tilde{C}^{q}(Z\cdot)$ .
A finite group $\Pi$ is said to be of split type over $Q$ if any simple com-

ponent of $ Q\Pi$ is isomorphic to a full matrix algebra over its center.
As an application of [I] the following result can be shown.
[II] Let $\Pi$ be one of the following groups:
(1) a nilpOtent group whose 2-Sylow subgroup is of split type over $Q$ ;
(2) an extension of a p-group whose subgroups are of split type over $Q$ by

a cyclic group of order prime to $P$

Then $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)=C^{q}(Z\Pi)$ .
Next, using the Rosen’s theorem ([14]) and the Artin’s theorem ([1]), we

prove the following:
[III] Let $\Pi$ be one of the following groups:
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(1) a semidirect pr0duct of a cyclic normal subgroup of order $n$ and a
cyclic p-subgroup such that $(p, n)=1$ where $p$ is an odd prime;

(2) a dihedral group $D_{n}$ of order $2n$ .
Then $C(Z\Pi)=6^{q}(Z\Pi)=C^{q}(Z\Pi)$ .

Furthermore, applying [I] and [III], we get the following:
[IV] Let $\Pi$ be one of the following groups:
(1) the pr0jective special linear group $PSL(2, p^{f})$ where $p$ is a prime and

$f\geqq 0$ ;
(2) the Janko simple group $J_{1}$ ;
(3) the symmetric group $S_{n},$ $n\leqq 7$ .

Then $C(Z\Pi)=C^{q}(Z\Pi)=C^{q}(Z\Pi)$ .
On the other hand, the following result can be deduced from the Artin’s

theorem and the Mackey’s subgroup theorem.
[V] Let $\Pi$ be one of the following groups:
(1) the semidirect product of the cyclic normal subgroup $ C=\langle\sigma\rangle$ of order

15 and the cyclic subgroup $ P=\langle\tau\rangle$ of order 4 such that $\tau^{-1}\sigma\tau=\sigma^{2}$ ;
(2) the alternating group $A_{n},$ $n=8,9$ .

Then $C^{q}(Z\Pi)\not\leqq\tilde{C}(Z\Pi)$ .

\S 1. The induction theorems.

Let $F$ be a Frobenius functor and let $M$ be a Frobenius F-module (for

the definitions see [11]). Let $\mathfrak{M}$ be a class of finite groups. For any finite
group $\Pi$ we define $F_{\mathfrak{M}}(\Pi)$ (resp. $M_{\mathfrak{M}}(\Pi)$ ) to be the sum of the images of the
maps $i_{*}:$ $F(\Pi’)\rightarrow F(\Pi)$ (resp. $M(\Pi^{\prime})\rightarrow M(\Pi)$ ) for all $ i:\Pi^{\prime}\subseteqq\Pi$ with $\Pi^{\prime}\in \mathfrak{M}$.
The following result is the most important one in the theory of Frobenius
modules.

(A) ([11], (3.4).) SuPpose that $e\cdot F(\Pi)\subseteqq F_{\mathfrak{M}}(\Pi)$ for some positive integer
$e$ . Then $e\cdot M(\Pi)\subseteqq M_{\mathfrak{M}}(\Pi)$ .

Let $R$ be a Dedekind domain and let $\Pi$ be a finite group. We will denote
the Grothendieck ring of $ R\Pi$ by $G(R\Pi)$ ([16]). The functor $G(R\cdot)$ is the
most typical Frobenius functor.

From now we will assume that $K$ is an algebraic number field and that
$R$ is the ring of all algebraic integers in K. $\mathfrak{C}$ will denote the class of all
cyclic groups. $\mathfrak{C}_{K}$ will denote the class of all K-elementary groups and,
especially, $\mathfrak{H}$ will denote the class of all hyperelementary groups. Now the
well-known induction theorem can be stated as follows:

(B) ([16].) Let $\Pi$ be a finite group. Then:
(1) $|\Pi|\cdot G(Q\Pi)\subseteqq G_{\mathfrak{C}}(Q\Pi)$ (Artin).
(2) $G_{e_{K}}(K\Pi)=G(K\Pi)$ , and especially $G_{\mathfrak{H}}(Q\Pi)=G(Q\Pi)$

(Brauer-Witt-Berman).
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Let $\Pi$ be a finite group and let $\Omega_{R\Pi}$ be a maximal R-order in $ K\Pi$ con-
taining $ R\Pi$ . We denote by $C(R\Pi)$ and $C(\Omega_{R\Pi})$ the (reduced) projective class
group of $ R\Pi$ and $\Omega_{R\Pi}$ , respectively. Then we have the natural epimorphism
$\nu$ : $C(R\Pi)\rightarrow C(\Omega_{R\Pi})(e. g. [5])$ . Put $\tilde{C}(R\Pi)=Ker\nu$ . Then we easily see that
$\tilde{C}(R\Pi)=\{[\mathfrak{U}]-[R\Pi]\in C(R\Pi)|\mathfrak{A}$ is aprojective ideal of $ R\Pi$ such that $\Omega_{R\Pi}\mathfrak{A}\oplus\Omega_{R\Pi}$

$\cong\Omega_{R\Pi}\oplus\Omega_{R\Pi}\}=\{[\mathfrak{U}]-[R\Pi]\in C(R\Pi)|\mathfrak{U}$ is a projective ideal of $ R\Pi$ such that
$\mathfrak{U}\oplus X\cong R\Pi\oplus X$ for some finitely generated $ R\Pi$ -module $X$ } $(e$ . $g$ . [5], (2.4) $)$ .
R. G. Swan proved in [16], \S 9 that the functor $C(R\cdot)$ is a Frobenius $G(K\cdot)-$

module so that by (A) and (B) the induction theorem holds for $C(R\cdot)$ .
We first give
THEOREM 1.1. The functor $\tilde{C}(R\cdot)$ is a Frobenius $G(K\cdot)$ -submodule of $C(R\cdot)$ .

Let $\Pi$ be a finite group. Then:
(1) $|\Pi|\cdot\tilde{C}(Z\Pi)\subseteqq\tilde{C}_{\mathfrak{C}}(Z\Pi)$ .
(2) $\tilde{C}_{g_{K}}(R\Pi)=\tilde{C}(R\Pi)$ and especially $\tilde{C}_{\mathfrak{H}}(Z\Pi)=\tilde{C}(Z\Pi)$ .
PROOF. The second part of the theorem is an immediate consequence of

(A), (B) and the first part. Hence we only need to prove the first part. Let
$\Pi$ be a finite group, let $\Pi^{\prime}$ be a subgroup of $\Pi$ and let $ i:\Pi^{\prime}\rightarrow\Pi$ be the
inclusion map. In [16], \S 9 the following maps have been defined: (i) $i_{*}:$ $C(R\Pi’)$

$\rightarrow C(R\Pi)$ ; (ii) $i^{*}:$ $C(R\Pi)\rightarrow C(R\Pi^{\prime})$ ; (iii) $\mu:G(K\Pi)\times C(R\Pi)\rightarrow C(R\Pi)$ . In fact
Swan proved that these maps make $C(R\cdot)$ a Frobenius $G(K\cdot)$ -module. Accord-
ingly it suffices to check a) $i_{*}(\tilde{C}(R\Pi^{\prime}))\subseteqq\tilde{C}(R\Pi),$ $b$) $i^{*}(\tilde{C}(R\Pi))\subseteqq\tilde{C}(R\Pi^{\prime})$ and
$\mu(G(K\Pi)\times\tilde{C}(R\Pi))\subseteqq\tilde{C}(R\Pi)$ .

a) Let $[\mathfrak{A}^{\prime}]-[R\Pi^{\prime}]$ be an element of $\tilde{C}(R\Pi^{\prime})$ . Then there is a finitely
generated $R\Pi^{\prime}$ -module $X^{\prime}$ such that $\mathfrak{A}^{\prime}\oplus X^{\prime}\cong R\Pi^{\prime}\oplus X^{\prime}$ . Tensoring this with
$ R\Pi$ over $R\Pi^{\prime}$ , we get $(R\Pi\bigotimes_{R\Pi},\mathfrak{A}^{\prime})\oplus(R\Pi\bigotimes_{R\Pi^{\prime}}X^{\prime})\cong R\Pi\oplus(R\Pi\ovalbox{\tt\small REJECT} X^{\prime})$ . This implies

that $i_{*}([\mathfrak{A}^{\prime}]-[R\Pi^{\prime}])=[R\Pi\bigotimes_{R\Pi\prime}\mathfrak{A}^{\prime}]-[R\Pi]\in\tilde{C}(R\Pi)$ .
b) This is evident.
c) By the definition of $\mu$ it suffices to show that $\mu(G(R\Pi)\times\tilde{C}(R\Pi))\subseteqq$

$\tilde{C}(R\Pi)$ . Let $[\mathfrak{A}]-[R\Pi]\in\tilde{C}(R\Pi)$ and $[M]\in G(R\Pi)$ where $M$ is a finitely
generated R-projective $ R\Pi$ -module. Then we have $\mathfrak{A}\oplus X\cong R\Pi\oplus X$ for some
finitely generated $ R\Pi$ -module $X$. Tensoring this with $M$ over $R$ , we get
$(M\bigotimes_{R}\mathfrak{A})\oplus(M\bigotimes_{R}X)\cong(M\bigotimes_{R}R\Pi)\oplus(M\bigotimes_{R}X)$ . Since $M$ is R-projective, both $M\bigotimes_{R}\mathfrak{U}$

and $ M\bigotimes_{R}R\Pi$ are $ R\Pi$-projective ([16], Prop. 5.1). Therefore $\mu([M]\times([\mathfrak{A}]-$

$[R\Pi]))=[M\bigotimes_{R}\mathfrak{A}]-[M\bigotimes_{R}R\Pi]\in\tilde{C}(R\Pi)$ .
COROLLARY 1.2. $C(\Omega_{R}.)$ is a Frobenius $G(K\cdot)$ -module.
PROOF. By the dePnition of $\tilde{C}(R\cdot)$ we have $C(\Omega_{R}.)=C(R\cdot)/\tilde{C}(R\cdot)$ . Since

$\tilde{C}(R\cdot)$ is a Frobenius $G(K\cdot)\cdot submodule$ of $C(R\cdot)$ by (1.1), $C(\Omega_{R}.)$ is a Frobenius
$C(K\cdot)$ -module.

COROLLARY 1.3 (Reiner-Ullom [12]). Let $\Pi$ be a finite $P$-group. Then
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$\tilde{C}(Z\Pi)$ is a p-group.
PROOF. In case $\Pi$ is cyclic this can easily be proved ([2], p. 604, (5.9),

etc.). Therefore in the general case this follows from (1.1), (1).

Let $R$ be a commutative ring with unit element. Let $\Pi$ be a Pnite group.

We define $B(R\Pi)$ to be the abelian group given by generators $[\bigoplus_{i=1}^{t}R\Pi/\Pi_{i}^{f}]$

where $\Pi_{1}^{\prime},$ $\Pi_{2}^{\prime},$ $\cdots$ , $\Pi_{t}^{\prime}$ are subgroups of $\Pi$ with relations

$[(\bigoplus_{i=1}^{t}R\Pi/\Pi_{i}^{\prime})\oplus(\bigoplus_{f=1}^{l}R\Pi/\Pi_{j}^{\prime\prime})]=[\bigoplus_{i=1}^{t}R\Pi/\Pi_{i}^{\prime}]+[\bigoplus_{j=1}^{l}R\Pi/\Pi_{j}^{\prime\prime}]$ .
Then it is clear that $B(R\cdot)$ is a Frobenius functor.

Now we consider the case where $R=Z$. Here we have the commutative
diagram of Frobenius functors:

$B(Q)\rightarrow G(Q)B(Z\cdot.)-G(Z\cdot.)\downarrow\beta\alpha_{Q}\downarrow\gamma\underline{\alpha_{Z}}$

where $\beta$ and $\gamma$ are epimorphisms while $\alpha_{Q}$ is a monomorphism. It is easily

seen ( $e$ . $g$ . $[16]$ , Prop. 4.1) that $|\Pi|\cdot B(Q\Pi)\subseteqq B_{Q}(Q\Pi)$ . Further we have
PROPOSITION 1.4. Let $\Pi$ be a finite group. Then $B_{8}(Q\Pi)=B(Q\Pi)$ .
PROOF. This can be seen, for example, in the Swan’s proof of the Witt-

Berman induction theorem ([16], \S 4). In fact, let $\rho$ be a finite group with a
cyclic normal subgroup $\sigma$ such that the extension $1\rightarrow\sigma\rightarrow\rho\rightarrow\rho/\sigma\rightarrow 1$ splits.
As in the proof of [16], Lemma 4.4 we can make $ Q\sigma$ a $ Q\rho$ -module. Then,
for any subgroup $\sigma^{\prime}$ of $\sigma$ , we can find a subgroup $\rho^{\prime}$ of $\rho$ such that $Q\sigma/\sigma^{\prime}$

$\cong Q\rho/\rho^{\prime}$ as $ Q\rho$ -modules. Further it is easily seen that $B(Q\sigma)=G(Q\sigma)$ . Hence
a function $f_{p}$ in [16], Lemma 4.5 can be chosen in $B_{\mathfrak{H}}(Q\Pi)$ . Therefore, along
the same line as in the Swan’s proof ([16], p. 564), we can prove that $B_{\mathfrak{H}}(Q\Pi)$

$=B(Q\Pi)$ .
REMARK 1.5. The monomorphism $\alpha_{Q^{\Pi}}$ : $B(Q\Pi)\rightarrow G(Q\Pi)$ is not always an

isomorphism. In fact, J.-P. Serre noted in [15], p. 120, Ex. 4 that if $\Pi$ is the
direct product of a cyclic group of order 3 and a quaternion group of order
8, then $B(Q\Pi)\subsetneqq G(Q\Pi)$ . Recently J. Ritter proved in [13] that if $\Pi$ is a
finite $p$-group then $B(Q\Pi)=G(Q\Pi)$ . For further informations, see (3.3), (5.3)

and [17].

As in [4] we dePne $C^{q}(Z\Pi)=\{[\mathfrak{A}]-[Z\Pi]\in C(Z\Pi)|\mathfrak{A}$ is a quasi-permutation
projective ideal of $ Z\Pi$ }. Further we define $\tilde{C}^{q}(Z\Pi)=\{[\mathfrak{A}]-[Z\Pi]\in C(Z\Pi)|\mathfrak{A}$

is a projective ideal of $ Z\Pi$ such that $\mathfrak{A}\oplus S\cong Z\Pi\oplus S$ for some permutation
$\Pi$-module $S$ }. Then both $C^{q}(Z\Pi)$ and $\tilde{C}^{q}(Z\Pi)$ are submodules of $C(Z\Pi)$ and
$\tilde{C}^{q}(Z\Pi)\subseteqq\tilde{C}(Z\Pi)\cap C^{q}(Z\Pi)$ .

THEOREM 1.6. The functors $C^{q}(Z\cdot)$ and $\tilde{C}^{q}(Z\cdot)$ are Frobenius $B(Q\cdot)$ -sub-
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modules of $C(Z\cdot)$ . In particular, for any finite group $\Pi,$ $C_{\mathfrak{H}}^{q}(Z\Pi)=C^{q}(Z\Pi)$ and
$\tilde{C}_{\mathfrak{H}}^{q}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .

PROOF. Both $C^{q}(Z\cdot)$ and $\tilde{C}^{q}(Z\cdot)$ are clearly Frobenius $B(Z\cdot)$ -submodules
of $C(Z\cdot)$ . Since $C(Z\cdot)$ is a Frobenius $B(Q\cdot)$ -module, we have ker $\beta\cdot C(Z\cdot)=0$ .
Therefore both $C^{q}(Z\cdot)$ and $\tilde{C}^{q}(Z\cdot)$ are Frobenius $B(Q\cdot)$ -submodules of $C(Z\cdot)$ .
The second part of the theorem follows immediately from the first part, (1.4)

and (A).

\S 2. Restatements of the problem.

Let $\Pi$ be a finite group. Let $A_{\Pi}$ be the set of all subgroups of $\Pi$ and
let $B_{\Pi}$ be the set of all subgroups $\Pi^{\prime}$ of $\Pi$ such that $Z\Pi/\Pi^{\prime}$ satisPes the
Eichler’s condition $(\epsilon)$ ([5]). We put $T_{\Pi}=(\bigoplus_{\Pi\Pi^{\prime}\in B}Z\Pi/\Pi^{\prime})\oplus(,\bigoplus_{\Pi\Pi\in A-B\Pi}[Z\Pi/\Pi^{\prime\prime})^{(2)})$ .

Let $C_{\Pi}$ be the class of all (finitely generated Z-free) $\Pi$ -modules. Let $M$,
$M^{\prime}\in C_{\Pi}$ . We write $M\sim M^{\prime}$ if $M_{p}\cong M_{p}^{\prime}$ for every prime $p$ . Further we write
$M\approx M^{\prime}$ if $M\sim M^{\prime}$ and $\Omega_{Z\Pi}M\cong\Omega_{Z\Pi}M^{\prime}$ . For $M\in C_{\Pi}$ we put $\gamma_{M}=\{X\in C_{\Pi}|X\approx M\}$

and denote by $|\gamma_{M}|$ the number of all isomorphism types in $r_{M}$ .
PROPOSITION 2.1. For any finite group $\Pi$ the following statements are

equivalent:
(1) Any $\Pi$ -module $L$ with $L\approx T_{\pi}$ is a quasi-permutatiOn module.
(2) $\tilde{C}(Z\Pi)\subseteqq C^{q}(Z\Pi)$ .
PROOF. (1) $\Rightarrow(2)$ : Let $[\mathfrak{A}]-[Z\Pi]EC(Z\Pi)$ . There is a $\Pi$-module $L$ with

$L\approx T_{\pi}$ such that $\mathfrak{A}\oplus T_{\Pi}\cong Z\Pi\oplus L$ . By hypothesis $L$ is a quasi-permutation
$\Pi$ -module. Therefore [5], (1.4) shows that $\mathfrak{U}$ is a quasi-permutation $\Pi$-module.
(2) $\Rightarrow(1)$ : Let $L$ be a $\Pi$-module with $L\approx\tau_{\Pi}$ . Now there is a projective ideal
$\mathfrak{U}$ of $ Z\Pi$ such that $T_{\Pi}\oplus Z\Pi\cong L\oplus \mathfrak{U}$ . Hence $[\mathfrak{A}]-[Z\Pi]\in\tilde{C}(Z\Pi)$ . Then by
hypothesis $\mathfrak{U}$ is a quasi-permutation $\Pi$-module, and therefore $L$ is so.

PROPOSITION 2.2. For any finite group $\Pi$ the following statements are
equivalent;

(1) $|\gamma_{T\Pi}|=1$ .
(2) There exists a faithful quasi-permutation $\Pi$ -module $N$ satisfying $(\epsilon)$

such that $|\gamma_{N}|=1$ .
(3) $C(Z\Pi)=C^{q}(Z\Pi)$ .
PROOF. (1) $\Rightarrow(2)$ is evident and (1) $\Leftrightarrow(3)$ can be shown in the same way

as in the proof of (2.1). Hence we only need to prove (2) $\Rightarrow(1)$ . To prove
this let $L$ be a $\Pi$ -module with $L\approx T_{\Pi}$ . Then $L\oplus N\cong T_{\Pi}\oplus N$ because $|\gamma_{N}|=1$ .
Since $N$ is a quasi-permutation $\Pi$ -module, there exists an exact sequence

$0\rightarrow N\rightarrow S\rightarrow S^{\prime}\rightarrow 0$

where $S$ and $S^{f}$ are permutation $\Pi$ -modules. Taking the pushout of
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$L\oplus N\cong T_{\Pi}\oplus N\rightarrow T_{\Pi}\oplus S$ , we get the commutative diagram with exact rows
$ L\oplus S\downarrow$

and columns:
$0$ $0$

$0\rightarrow L\oplus N\downarrow\rightarrow T_{\Pi}\oplus S\downarrow\rightarrow S^{\prime}\rightarrow 0$

$\downarrow$ $\downarrow$ $\Vert$

$ 0\rightarrow L\oplus S\downarrow\rightarrow$ $ X\downarrow$

$\rightarrow S^{\prime}\rightarrow 0$

$S^{\prime}$ – $S^{\prime}$

$ 0\downarrow$ $ 0\downarrow$

The second row and column of this diagram split and so
$L\oplus S\oplus S^{\prime}\cong X\cong T_{\Pi}\oplus S\oplus S^{\prime}$ .

Using the cancelation theorem we get $L\cong T_{\Pi}$ . This shows that $|\gamma_{\tau_{\Pi}}|=1$ .
REMARK 2.3. Let $\Pi$ be a finite abelian group. Let $\mathfrak{S}$ be the set of a1I

subgroups, $\Pi^{\prime}$ , of $\Pi$ such that $\Pi/\Pi^{\prime}$ is cyclic and put $T=\bigoplus_{\Pi\in \mathfrak{S}}Z\Pi/\Pi^{\prime}$ . In [5],

(4.2) we have shown that if $\mathfrak{A}$ is a quasi-permutation projective ideal of $ Z\Pi$

then $\mathfrak{U}\oplus T\cong Z\Pi\oplus T$. However the proof of it in [5] was fairly complicated.
To prove this it suffices to show that $|\gamma_{T}|=1$ because $\tilde{C}(Z\Pi)=C^{q}(Z\Pi)$ by
[5], (2.5). Using $\Omega_{Z\Pi}$ instead of $N$ in the proof of (2.2), (2) $\Rightarrow(1)$ we can easily
show that $|\gamma_{T}|=1$ along the same line as in the proof of (2.2).

LEMMA 2.4. Let $\Pi$ be a finite group and let $\Lambda$ be a hereditary order in $ Q\Pi$

containing $ Z\Pi$ . Then $|\gamma_{A^{(2)}}|=1$ . Let $\Omega$ be a maximal order in $ Q\Pi$ containing
$\Lambda$ . Then the natural map $i:C(\Lambda)\rightarrow C(\Omega)$ is an isomorPhism.

PROOF. First we will prove the second assertion. It is clear that $i$ is
an epimorphism. Hence we only need to show that $i$ is a monomorphism.
Let $\mathfrak{U}$ be a locally free ideal of $\Lambda$ such that $ Q\mathfrak{A}\cong Q\Pi$ . Then we can show
as in [5], (2.4) that $\mathfrak{A}\oplus\Omega\cong\Lambda\oplus\Omega \mathfrak{A}$ . If $\Omega \mathfrak{A}\oplus\Omega\cong\Omega\oplus\Omega$ , then $\mathfrak{A}\oplus\Omega^{(2)}\cong\Lambda\oplus\Omega^{(2)}$ .
Since $\Lambda$ is hereditary, $\Omega$ is $\Lambda$ -projective, and therefore $\mathfrak{U}\oplus\Lambda^{(l)}\cong\Lambda\oplus\Lambda^{(l)}$ for
some $l\geqq 0$ . This implies that $i$ is a monomorphism. Let $M$ be a $\Pi$ -module
such that $M\approx\Lambda^{(2)}$ . Then $M$ can be regarded as a $\Lambda$ -module. Since $\Lambda^{(2\rangle}$

satisfies $(\epsilon)$ , we have $\Omega M\cong\Omega^{(2)}$ . Hence the second assertion shows that
$M=\Lambda M\cong\Lambda^{(2)}$ . This proves that $|\gamma_{A^{(2)}}|=1$ .

PROPOSITION 2.5. Let $\Pi$ be a finite group and $suPPose$ that there exists a
hereditary order $\Lambda$ in $ Q\Pi$ containing $ Z\Pi$ which is a quasi-permutatiOn $\Pi_{-}$
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module. Then $C(Z\Pi)=C^{q}(Z\Pi)$ .
PROOF. By (2.4) we have $|\gamma_{\Lambda^{(2)}}|=1$ . Hence the $\Pi$ -module $\Lambda^{(2)}$ satisfies

the condition (2) in (2.2).
Let $\Pi$ be a finite group. As usual we define the representation ring

$A(Z\Pi)$ of $ Z\Pi$ to be the abelian group with one generator for each $M\in C_{\Pi}$

and relations $[M_{1}\oplus M_{2}]=[M_{1}]+[M_{2}]$ and $[M]=[M^{\prime}]$ when $M\cong M^{\prime}$ . There
exists the natural ring homomorphism $\omega_{\Pi}$ : $B(Z\Pi)\rightarrow A(Z\Pi)$ . We denote the
image of $\omega_{\Pi}$ by $B^{A}(Z\Pi)$ .

The torsion part of an abelian group $A$ is denoted by $t(A)$ .
PROPOSITION 2.6. For any finite group $\Pi$ the following statements are

equivalent:
(1) Any quasi-permutation $\Pi$ -module $L$ with $L\sim T_{\Pi}$ satisfies $L\approx\tau_{\pi}$ .
(2) $t(B^{A}(Z\Pi))=0$ .
(3) $C^{q}(Z\Pi)\subseteqq\tilde{C}(Z\Pi)$ .
PROOF. (1) $\Rightarrow(2)$ : Let $[S]-[S^{\prime}]\in t(B^{A}(Z\Pi))$ . Then we have $S\sim S^{\prime}$ .

There is a quasi-permutation $\Pi$ -module $L$ such that $T_{\Pi}\oplus S\cong L\oplus S^{\prime}$ . Since
$L\sim T_{\Pi},$ $L\approx T_{\Pi}$ by assumption. Hence $[S]-[S^{\prime}]=[L]-[T_{\Pi}]=0$ in $A(Z\Pi)$ .
Thus $t(B^{A}(Z\Pi))=0$ . (2) $\Rightarrow(3)$ : Let $\mathfrak{A}$ be a quasi-permutation projective ideal
of $ Z\Pi$ . Then there is a quasi-permutation $\Pi$ -module $L$ such that $\mathfrak{A}\oplus T_{\Pi}$

$\cong Z\Pi\oplus L$ . By definition there exist permutation $\Pi$ -modules $S,$ $S^{\prime}$ such that
$L\oplus S^{\prime}\cong S$. Hence $[\mathfrak{A}]-[Z\Pi]=[L]-[T_{\Pi}]=[S]-[T_{\pi}\oplus S^{\prime}]=0$ in $A(Z\Pi)$ . This
shows that $[\mathfrak{A}]-[Z\Pi]\in\tilde{C}(Z\Pi)$ . (3) $\Rightarrow(1)$ : Let $L$ be a quasi-permutation $\Pi_{-}$

module with $L\sim T_{\Pi}$ . Then we can find a quasi-permutation projective ideal
$\mathfrak{U}$ of $ Z\Pi$ such that $L\oplus Z\Pi\cong T_{\Pi}\oplus \mathfrak{A}$ . Since $C^{q}(Z\Pi)\subseteqq\tilde{C}(Z\Pi),$ $\mathfrak{A}\oplus Z\Pi\cong Z\Pi\oplus Z\Pi$ .
Therefore $L\oplus Z\Pi^{(2)}\approx T_{\Pi}\oplus Z\Pi^{(2)}$ so that $L\approx T_{\Pi}$ .

PROPOSITION 2.7. For any finite group $\Pi$ the following statements are
equivalent:

(1) Any quasi-permutation $\Pi$ -module $L$ with $L\sim T_{\Pi}$ is isomorphic to $T_{\Pi}$ .
(2) $t(B(Z\Pi))=0$ .
(3) $C^{q}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .
PROOF. This can be proved in the same way as in (2.6).

REMARK 2.8. We can show that $\omega_{\Pi}$ : $B(Z\Pi)\rightarrow A(Z\Pi)$ is a monomorphism
\langle $i$ . $e.,$ $B^{A}(Z\Pi)=B(Z\Pi))$ if and only if $\tilde{C}^{q}(Z\Pi)=\tilde{C}(Z\Pi)\cap C^{q}(Z\Pi)$ .

\S 3. Nilpotent groups and cyclic extensions of $p$-groups.

We begin with
PROPOSITION 3.1. Let $\Pi$ be a finite group which is a cyclic extension of a

$P$-subgroup. Then $C^{q}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .
PROOF. By the Conlon’stheorem ([3], (8.1)), we have t$(B(Z\Pi))=0$ . There-
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fore this follows immediately from (2.7).

The following theorem is a generalization of [5], (3.4), (1) and (3.9), (1).

THEOREM 3.2. Let $\Pi$ be a finite nilpotent group. Then $C^{q}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .
Furthermore suppOse that the 2-Sylow subgroup of $\Pi$ is of split type over $Q$ .
Then $C^{q}(Z\Pi)=\tilde{C}^{q}(Z\Pi)=\tilde{C}(Z\Pi)$ .

PROOF. For each prime $p||\Pi|$ we denote the $p$-Sylow subgroup of $\Pi$ by
$\Pi^{(p)}$ . By (1.1) and (1.6) it suffices to prove the theorem in the case of $\Pi=$

$\Pi^{(p)}\times\Pi^{\prime}$ where $\Pi^{\prime}$ is a cyclic group with $ p+m=|\Pi$ ’ . In this case the Prst
part of the theorem follows directly from (3.1). Further, if $p$ is odd, we
have shown in the proof of [5], (3.4), (1) that there is a faithful quasi-
permutation $\Pi$ -module $N$ such that $|\gamma_{N}|=1$ . Hence (2.2) implies that $\tilde{C}(Z\Pi)$

$=\tilde{C}^{q}(Z\Pi)$ .
Now it remains to prove that $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ under the assumption that

$\Pi=\Pi^{(2)}\times\Pi^{\prime}$ where $\Pi^{(2)}$ is of split type over $Q$ and $\Pi^{\prime}$ is a cyclic group of
odd order $m$ . Let $U_{1},$ $U_{2},$ $\cdots$ , $U_{t}$ be the isomorphism types of irreducible $Q\Pi-$

modules. We will construct a quasi-permutation $\Pi$-module $N_{i}$ such that
$Q\bigotimes_{Z}N_{i}\cong U_{i}$ and $|\gamma_{N_{i}}|=1$ . Since 2 $\dagger m$ there exist an irreducible $Q\Pi^{(2)}$ -module
$V_{i}$ and $m_{i}|m$ such that $U_{i}\cong V_{i}\bigotimes_{Q}Q[\zeta_{m_{i}}]$ . Let $\xi_{i}$ be the rational character

of $\Pi^{(2)}$ afforded by $V_{i}$ and let $\chi_{t}$ be an absolutely irreducible character of
$\Pi^{(2)}$ such that $(\chi_{i}\xi_{i})\neq 0$ . By the Feit’s theorem ([6], (14.3)) there exist a
subgroup $\Pi_{i}^{\prime}$ of $\Pi^{(2)}$ and an absolutely irreducible character $\chi_{i}^{\prime}$ of $\Pi_{i}^{\prime}$ such
that $\chi_{i}=x_{i}^{\prime}*,$ $Q(\chi_{i})=Q(\chi_{i}^{\prime})$ and $\Pi_{i}^{\prime\prime}=\Pi_{i}^{f}/Ker\chi_{i}^{\prime}$ has a cyclic normal subgroup
of index 2. Then it is clear that $m_{Q}(\chi_{i})=m_{Q}(x_{i}^{\prime})$ . Accordingly we can find
a rational character $\xi_{i}^{\prime}$ such that $\xi_{i}=\xi_{i^{*}}^{f}$ and $(\chi_{i}^{\prime}\xi_{i}^{\prime})\neq 0$ . Since $\Pi^{(2)}$ is of
split type over $Q,$ $m_{Q}(\chi_{i})=m_{Q}(x_{i}^{\prime})=1$ , and so each $\Pi_{i}^{\prime\prime}$ must be cyclic, dihedral
or semidihedral. Let $V_{i}^{\prime}$ be the irreducible $Q\Pi_{i}^{f}$-module with character $\xi_{i}^{f}$

and let $A_{i}$ be the maximal order in $Q(\chi_{i}^{f})$ . Then there exists a quasi-permuta-
tion $\Pi_{i}^{\prime}$ -module $N_{i}^{\prime}$ such that $V_{i}^{f}=Q\bigotimes_{Z}$ N\’i and $End_{Z\Pi}\acute{i}$ $(N\text{{\it \’{i}}})=A_{i}$ (see the proof

of [5], (3.4)). We put
$N_{i}=(Z\Pi^{(2)}\bigotimes_{z\Pi_{l}^{\prime}}N_{i}^{\prime})\bigotimes_{Z}Z[\zeta_{m_{i}}]$

. Then $N_{1}$ is clearly a quasi-

permutation $\Pi$ -module. Because 2 $m, $A_{i}\bigotimes_{Z}Z[\zeta_{m_{i}}]$ is a Dedekind domain. It

is easily seen that $End_{Z\Pi}(N_{i})=A_{i}\bigotimes_{z}Z[\zeta_{m_{i}}]$ and therefore, by [5], \S 3, (E),

$|\gamma_{N_{i}}|=1$ . Finally put $N=\bigoplus_{i=1}^{t}N_{i}$ . Then $N$ is a faithful quasi-permutation $\Pi_{-}$

module such that $|\gamma_{N}|=1$ . Again by (2.2) this concludes that $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .
REMARK 3.3. J. Ritter proved that, if $\Pi$ is a finite nilpotent group whose

2-Sylow subgroup is of split type over $Q$ , then $B(Q\Pi)=G(Q\Pi)$ . However
this result follows immediately from (1.4) and [6], (14.3).

Let $\Pi$ be a finite group which is a semidirect product of a cyclic normal
subgroup $ C=\langle\sigma\rangle$ of order $n$ and an abelian $p$-subgroup $P$ such that $p\{n$ .
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Then we have $Q\Pi=\bigoplus_{m|n}Q\Pi/(\Phi_{m}(\sigma))$ . For every $m|n$ the abelian $p$-group $P$

acts naturally on $C$. Denote the kernel of this action by $P_{m}$ and let $QP_{m}$

$=\bigoplus_{i=1}^{s^{(m)}}Q(\zeta_{p^{l_{i^{m))}}^{(}}}$ be the decomposition of $QP_{m}$ into simple algebras. Then

$Q\Pi/(\Phi_{m}(\sigma))$ can be expressed as the direct sum of the crossed products

$\Sigma_{m,i}=\Delta(\varphi\downarrow^{m)}, Q(\zeta_{mp^{l\downarrow m)}}),$ $P/P_{m}$)

where each $\varphi_{l}^{(m)}$ is a $\langle\zeta_{p^{l_{i}^{(m)}}}\rangle$ -valued 2-cocycle of $P/P_{m}$ . Now it is easily seen
that the image of $ Z\Pi$ in $\Sigma_{m,i}$ coincides with the crossed product

$\Lambda_{m,i}=\Delta(\varphi_{i}^{(m)}, Z[\zeta_{mp^{l_{i}^{(m)}}}], P/P_{m})$ .
Put $\Lambda=\bigoplus_{m|n}\bigoplus_{i=1}^{s^{(m)}}\Lambda_{m,i}$ . Then $\Lambda$ is an order of $ Q\Pi$ containing $ Z\Pi$ .

LEMMA 3.4. Let $\Pi,$ $\Sigma_{m,i}$ and $\Lambda_{m,i}$ be as above. Then each $\Lambda_{m,i}$ is a here-
ditary order in $\Sigma_{m,i}$ which is a quasi-Permutation $\Pi$ -module.

PROOF. Since p$n the extension $Q(\zeta_{mp}\iota_{i}^{(m)})/Q(\zeta_{mp^{l_{i}^{(m))^{P/Pm}}}}$ is tamely

ramified. Hence the crossed product $\Lambda_{m,i}$ is a hereditary order in $\Sigma_{m,i}(e$ . $g_{\sim}$

[18]). We denote the kernel of the natural projection $P_{m}\rightarrow Q(\zeta_{pl_{i}^{(m))}}$ by $P_{m,i}$ .
Then $P_{m}/P_{m,i}$ is cyclic and $\Lambda_{m,i}=\Delta(\varphi_{i}^{(m)}, Z[\zeta_{mpl_{i}^{(m)}}], P/P_{m,i}/P_{m}/P_{m,i})$ . There-
fore we may assume that $P_{m}$ is cyclic. Let $|P_{m}|=p^{l}$ and $ P_{m}=\langle\tau\rangle$ . Then
$\Lambda_{m,i}\cong Z\Pi/(\Phi_{mp^{l}}(\sigma\tau))$ . As in the proof of [5], (2.3) we can show that
$Z\Pi/(\Phi_{mp^{l}}(\sigma\tau))$ is a quasi-permutation $\Pi$ -module. Consequently $\Lambda_{m,i}$ is a
quasi-permutation $\Pi$ -module.

PROPOSITION 3.5. Let $\Pi$ be a finite group whose Sylow subgroups are abelian.
Then $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .

PROOF. To prove this we may assume by (1.1) and (1.6) that $\Pi$ is hyper-
elementary. Then $\Pi$ is expressible as the semidirect product of a cyclic
normal subgroup $C$ and an abelian $p$-subgroup $P$ such that $P\dagger n=|C|$ . Let
$\Lambda$ be the order of $ Q\Pi$ containing $ Z\Pi$ as given in the preceding lines of (3.4).

Then (3.4) shows that $\Lambda$ is a hereditary order in $ Q\Pi$ which is a quasi-
permutation $\Pi$ -module. By (2.5) this concludes that $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .

THEOREM 3.6. Let $\Pi$ be a finite group which is an extension of a $p$-group
$P$ by a cyclic group $C$ with $p+|C|$ . In case $p=2$ suPpose that all subgroups of
$P$ are of split type over Q. Then $C^{q}(Z\Pi)=C^{q}(Z\Pi)=C(Z\Pi)$ .

PROOF. By (3.1) we have $C^{q}(Z\Pi)=C^{q}(Z\Pi)$ . Hence we only need to show
that $C^{q}(Z\Pi)=C(Z\Pi)$ . Let $\Pi$ ’ be a hyperelementary subgroup of $\Pi$ . We
can write

$1\rightarrow C^{\prime}\rightarrow\Pi’\rightarrow P^{\prime}\rightarrow 1$

where $C^{\prime}$ is a cyclic group and $P^{\prime}$ is a $p^{f}$ -group such that $p^{f}+|C^{\prime}$ . When
$p^{\prime}=p,$ $P^{\prime}\subseteqq P$ so that $\Pi\prime_{=P^{\prime}}\times C^{\prime}$ . Hence $\tilde{C}^{q}(Z\Pi’)=\tilde{C}(Z\Pi’)$ by (3.2). On the
other hand, when $p^{\prime}\neq p,$

$P^{\prime}$ can be considered as a subgroup of $C^{\prime}$ and there-



Quasi-permutation modules over finite groups 707

fore $P^{\prime}$ is cyclic. So we can deduce the same conclusion from (3.5). Using
(1.1) and (1.6) we get $\tilde{C}^{q}(Z\Pi)=\tilde{C}(Z\Pi)$ .

\S 4. Metacyclic groups.

Let $\Pi$ be a finite group which is a semidirect product of a cyclic normal
subgroup $ C=\langle\sigma\rangle$ of order $n$ and an abelian $p$-subgroup $P$ with $p+n$ . Then for
each $m|n$ there exists the natural homomorphism $\mu_{m}$ : $ P\rightarrow AutC/\langle\sigma^{n/m}\rangle$ . We
denote the kernel of $\mu_{m}$ by $P_{m}$ .

Now we suppose that $P_{n}=\{1\}$ . Then both $Q\Pi/(\Phi_{n}(\sigma))$ and $Z\Pi/(\Phi_{n}(\sigma))$

can be identiPed with the trivial crossed products $\Delta(1, Q(\zeta_{n}),$ $P$ ) and
$\Delta(1, Z[\zeta_{n}], P)$ , respectively. We denote $\Delta(1, Q(\zeta_{n}),$ $P$ ) and $\Delta(1, Z[\zeta_{n}], P)$ by
$\Sigma_{n}$ and $\Lambda_{n}$ , respectively. By (3.4) $\Lambda_{n}$ is a hereditary order in $\Sigma_{n}$ . Further
let $A_{n}=Z[\zeta_{n}]$ and $R_{n}=Z[\zeta_{n}]^{P}$ . Then $A_{n}$ can be considered as a $\Lambda_{n}$-module.
If $M$ is a $\Lambda_{n}$-module, $Hom_{\Lambda_{n}}(A_{n}, M)$ can be regarded as an $R_{n}$ -module.

LEMMA 4.1. Let $\Pi,$ $\Lambda_{n},$ $A_{n},$ $R_{n}$ be as above.
(1) Let $\Pi$ ’ be a subgroup of $\Pi$ . If $|\Pi’|$ is a Power of $p$ , then

$Hom_{\Lambda_{n}}(A_{n}, \Lambda_{n}\bigotimes_{Z\Pi}Z\Pi/\Pi/)\cong A_{n}^{\Pi}$

‘ as $R_{n}$-modules, while, if $|\Pi’|$ is not a Power of
$p,$ $Hom_{\Lambda_{n}}(A_{n},$

$\Lambda_{n}\ovalbox{\tt\small REJECT}_{\Pi}’$ is a torsion $R_{n}$-module.
(2) Let $\mathfrak{A}$ be a prOjective ideal of $ Z\Pi$ . Then $\Lambda_{n}\mathfrak{A}\cong\Lambda_{n}$ as $\Lambda_{n}$ -modules if

and only if $Hom_{\Lambda_{n}}(A_{n}, \Lambda_{n}\mathfrak{A})\cong A_{n}$ as $R_{n}$-modules.
PROOF. The Prst assertion can easily be proved, and the second assertion

is only a special case of the Rosen’s theorem ([14], p. 22, Theorem 8).

Here we return to the general situation. Let $n=q_{1}^{k_{1}}q_{2}^{k_{2}}\cdots q_{s^{s}}^{k}$ be the de-
composition of $n=|C|$ into prime factors where $q_{1},$ $q_{2},$ $\cdots$ , $q_{s}$ are distinct primes,
and put $r_{i}=\prod_{j\Leftrightarrow}q_{J^{j}}^{k}$ and $ C_{i}=\langle\sigma^{r_{i}}\rangle$ . Then $P$ acts on each $C_{i}$ . We denotes the

number of the suffixes, $i$ , such that $P$ acts nontrivially on $C_{i}$ by $m(\Pi)$ .
THEOREM 4.2. Let $\Pi$ be a finite group which is a semidirect pr0duct of a

cyclic normal subgroup $C$ and a cyclic $P$-subgroup $P$ with $p+|C|$ . SuPpose that
$\Pi$ satisfies one of the following conditions:

a) $p$ is odd;
b) $p=2$ and $m(\Pi)\leqq 1$ ;
c) $P=2$ and $P_{n}\neq\{1\}$ ;
d) $p=2$ and $|P|=2$ .

Then $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)=C^{q}(Z\Pi)$ .
PROOF. By (3.5) we have $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ . Hence we only need to prove

that $C^{q}(Z\Pi)\subseteqq\tilde{C}(Z\Pi)$ . Let $n=|C|$ . Let $\Lambda=\bigoplus_{m|n}\bigoplus_{i=1}^{s^{(m)}}\Lambda_{m,i}$ be the order of $ Q\Pi$

containing $ Z\Pi$ as given in the preceding line of (3.4). Let $\mathfrak{A}$ be a projective
ideal of $ Z\Pi$ such that $\mathfrak{A}\oplus S_{1}\cong Z\Pi\oplus S_{2}$ for some permutation $\Pi$ -modules $S_{1}$
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$andS_{2}$ . Now to prove that C $(Z\Pi)\subseteqq\tilde{C}(Z\Pi)$ it suffices to show that $\Lambda_{m,i}\mathfrak{A}\oplus\Lambda_{m,i}$

$\cong\Lambda_{m,i}\oplus\Lambda_{m,i}$ for each $m|n$ and each $1\leqq i\leqq s^{(m)}$ . Using the induction on $n$ it
suffices to show this in case $m=n$ . Let $\Pi’\neq\{1\}$ be a subgroup of $\Pi$ . If
$|\Pi’|$ is not a power of $p$ , then $\Pi’\cap C\neq\{1\}$ , hence $\Lambda_{n,i}\bigotimes_{Z\Pi}Z\Pi/\Pi$

’ is a torsion
module. If $|\Pi’|$ is a power of $p$ , then $\Pi$ ’ is conjugate to a subgroup $P^{\prime}$ of
$P$ . Suppose that $P_{n}\neq\{1\}$ . Because $P$ is cyclic, we have $P^{\prime}\cap P_{n}\neq\{1\}$ , and
therefore $\Lambda_{n,i}\bigotimes_{Z\Pi}Z\Pi/\Pi’\cong\Lambda_{n,i}\bigotimes_{Z\Pi}Z\Pi/P^{\prime}$ is also a torsion module. Tensoring
$\mathfrak{A}\oplus S_{1}\cong Z\Pi\oplus S_{2}$ with $\Lambda_{n,i}$ over $ Z\Pi$ and eliminating the torsion parts from
both sides, we get $\Lambda_{n,i}\mathfrak{A}\oplus\Lambda_{n,i}\cong\Lambda_{n,i}\oplus\Lambda_{n,i}$ .

Next suppose that $P_{n}=\{1\}$ . Then $s^{(n)}=1$ and $\Lambda_{n}=\Lambda_{n,1}$ is the trivial
crossed product $\Delta(1, Z[\zeta_{n}], P)$ . We put $A_{n}=Z[\zeta_{n}]$ and $R_{n}=Z[\zeta_{n}]^{P}$ . Let

$\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\cdots$ , $\mathfrak{p}_{r}$ be all the primes of $A_{n}$ ramified over $R_{n}$ , and, for each $1\leqq i\leqq r$ ,

denote by $T_{j}$ the inertia group of $\mathfrak{p}_{j}$ . Since $P$ is a cyclic $P$-group, the set of
all subgroups of $P$ is linearly ordered. Therefore there is the largest sub-
group $T=T_{j_{0}}$ in $\{T_{j}\}_{1\leqq j\leqq r}$ . Then the extension $A_{n}^{T}/R_{n}$ is unramified and the
prime ideal $\mathfrak{p}=\mathfrak{p}_{j_{0}}$ has the ramification index $|T|$ in $A_{n}/A_{n}^{T}$ . Let $\Lambda_{n}^{f}=\sum_{\tau\subset T}A_{n}u_{\tau}$

$\subseteqq\Lambda_{n}$ . Then $\Lambda_{n}^{\prime}$ is the $R_{n}$-subalgebra of $A_{n}$ . Let $\Pi$ ’ be a $P$-subgroup of $\Pi$ .
Then $\Pi$ ’ is conjugate to a subgroup $P^{\prime}$ of $P$. Regarding $ A_{n}\bigotimes_{Z\Pi}Z\Pi/\Pi$

’ as a
$\Lambda_{n}^{\prime}$ -module, we easily see that

$\Lambda_{n}\bigotimes_{Z\Pi}Z\Pi/\Pi^{\prime}\cong\Lambda_{n}\bigotimes_{z\Pi}Z\Pi/P^{\prime}\cong\left\{\begin{array}{l}A_{n}^{\zeta PP^{\prime}J} when T\subseteqq P^{\prime}\\(^{*})\\[\Lambda_{n^{\prime}}\otimes ZCT/P^{\prime}]^{[P:P]} when T\supseteqq P^{\prime}.\end{array}\right.$

$ zc\tau$

Tensor $\mathfrak{A}\oplus S_{1}\cong Z\Pi\oplus S_{2}$ with $\Lambda_{n}$ over $ Z\Pi$ and eliminate the torsion parts from
both sides. Then we have

$\Lambda_{n}\mathfrak{A}\bigoplus_{P’}\bigoplus_{P\subseteqq}[\Lambda_{n}\bigotimes_{z\Pi}Z\Pi/P^{\prime}]^{(r_{P^{\prime}})}\cong\Lambda_{n}\oplus_{P’}\bigoplus_{P\subseteqq}[A_{n}\bigotimes_{Z\Pi}Z\Pi/P^{\prime}]^{(s_{P^{l}})}$

for some integers $r_{P^{\prime}}$ and $s_{P^{\prime}}$ . Localize both sides at $\mathfrak{p}$ and regard them as
$(\Lambda_{n}^{\prime})_{\mathfrak{p}}$ -modules. Using the same argument as in [14], pp. 14\sim 15, it follows from
$(^{*})$ that $r_{P^{\prime}}=s_{P^{\prime}}$ for any $P^{\prime}\subset T$. Hence we may assume that $r_{P^{}}=s_{P^{\prime}}=0$ when
$P^{\prime}\subset T$ . Applying the functor $Hom_{\Lambda_{n}}(A_{n}, )$ to them, we get, by (4.1), (1),

$Hom_{\Lambda_{n}}(A_{n}, \Lambda_{n}\mathfrak{A})\bigoplus_{\tau\subseteqq}\bigoplus_{\Leftarrow}[A_{n}^{P^{\prime}}]^{(r_{P^{\prime}})}\cong A_{n}\oplus_{\tau P}\bigoplus_{PP’\subset P\subseteqq\subseteqq}[A_{n}^{P^{\prime}}]^{(s_{P^{\prime}})}$ .

Here every $A_{n}^{P^{\prime}}/R_{n}$ is unramified because $T\subseteqq P^{f}\subseteqq P$. Therefore, if $p$ is odd,

it follows from the Artin’s theorem ([1], [7]) that every $A_{n}^{P}$

‘ is $R_{n}$-free. Hence
we have $Hom_{\Lambda_{n}}(A_{n}, \Lambda_{n}\mathfrak{A})\cong A_{n}$ as $R_{n}$ -modules. By (4.1), (2) this shows that
$\Lambda_{n}\mathfrak{U}\cong\Lambda_{n}$ . If $p=2$ and $|P|=2$ , we have $P^{\prime}=P$ or $P^{f}=\{1\}$ and, if $p=2$ and
$m(\Pi)=1$ , we have $T=P$ . In each of these cases we also have $Hom_{\Lambda_{n}}(A_{n},$ $\Lambda_{n}\mathfrak{U}\rangle$

$\cong A_{n}$ as $R_{n}$ -modules. Hence it follows from (4.1), (2) that $\Lambda_{n}\mathfrak{A}\cong\Lambda_{n}$ . In the
case where $p=2$ and $P_{n}\neq\{1\}$ , the assertion has already been proved. Thus
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the proof of the theorem is completed.
If $\Pi$ does not satisfy any of the conditions $a$) $\sim d$ ) in (4.2), it does not

always hold that $\tilde{C}^{q}(Z\Pi)=C^{q}(Z\Pi)$ . In fact we have
EXAMPLE 4.3. Let $ C=\langle\sigma\rangle$ be a cyclic group of order 15 and let $ P=\langle\tau\rangle$

be a cyclic group of order 4. Define the homomorphism $\mu$ : $P\rightarrow AutC$ by
$\mu(\tau)(\sigma)=\sigma^{2}$ and let $\Pi$ be the semidirect product of $C$ and $P$ defined by $\mu_{\sim}$

Then we have $P_{15}=\{1\}$ and $m(\Pi)=2$ . $R_{15}=A_{15}^{P}$ is the maximal order in
$Q(\sqrt{-15})$ . Further we haveT $=\langle\sigma^{2}\rangle$ . $ItiseasilyseenthatA_{16}^{T}$ is the maximal
order in $Q(\sqrt{-3}, \sqrt{5})$ . Using the Artin’s theorem we can show that $A_{15}^{T}$ is
not $R_{16}$-free. Then by (4.1) and $(^{*})$ in the proof of (4.2) there exists a non-
principal ideal $\mathfrak{b}$ of $R_{15}$ such that $\Lambda_{15}\bigotimes_{z\Pi}Z\Pi/T\cong A_{15}\oplus A_{15}\mathfrak{b}$ as $\Lambda_{15}$-modules.

Since both $\Lambda_{15}\bigotimes_{Z\Pi}Z\Pi/T$ and $A_{15}$ are quasi-permutation $\Pi$ -modules, $A_{15}\mathfrak{b}$ is also

a quasi-permutation $\Pi$ -module. Now there exists a projective ideal $\mathfrak{U}$ of $ Z\Pi$

such that $\mathfrak{U}\oplus A_{15}\cong Z\Pi\oplus A_{15}\mathfrak{b}$ . Then $\mathfrak{A}$ is clearly a quasi-permutation $\Pi$ -module..
However we have $\Lambda_{15}\mathfrak{A}\ovalbox{\tt\small REJECT}\Lambda_{16}$ . This implies that $C^{q}(Z\Pi)\not\leqq\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .

COROLLARY 4.4. If $\Pi$ is a finite group of squarefree order, then $\tilde{C}(Z\Pi\lambda$

$=\tilde{C}^{q}(Z\Pi)=C^{q}(Z\Pi)$ .
PROOF. This follows directly from (1.1), (1.6) and (4.2).

Next we consider another type of metacyclic groups.
PROPOSITION 4.5. Let $\Pi$ be a finite group which is a semidirect producf

of a cyclic normal subgroup $C$ and a $P$-subgroup $P$ of order $p$ . Then $C(Z\Pi)$

$=C^{q}(Z\Pi)$ .
PROOF. Let $n=|C|$ and put $ C=\langle\sigma\rangle$ and $ P=\langle\tau\rangle$ . There exists an integer

$r$ such that $\tau^{-1}\sigma\tau=\sigma^{r}$ . Then $(n, r)=1$ and $r^{p}\equiv 1mod n$ . Now we have
$Q\Pi=\bigoplus_{m|n}Q\Pi/(\Phi_{m}(\sigma))$ . For $m|nQ\Pi/(\Phi_{m}(\sigma))$ is commutative if and only if

$m|r-1$ . If $m|r-1$ we denote the maximal order in $Q\Pi/(\Phi_{m}(\sigma))$ by $A_{m}$ . Then
$A_{m}$ is clearly a quasi-permutation $\Pi$ -module. On the other hand, if $m\dagger r-1_{r}$

$Q\Pi/(\Phi_{m}(\sigma))=M_{p}(Q(\zeta_{m})^{P})$ . Put $\Lambda_{m}=Z\Pi/(\Phi_{m}(\sigma))$ and $A_{m}=Z[\zeta_{m}]$ . Then $\Lambda_{m}$

can be considered as an order in $M_{p}(Q(\zeta_{m})^{P})$ . Regarding $A_{m}$ as a $\Lambda$ -module,,
we easily see that $A_{m}\cong\Lambda_{m}\bigotimes_{Z\Pi}Z\Pi/P$ as $\Lambda_{m}$ -modules. Hence $A_{m}$ is also a quasi-

permutation $\Pi$ -module. Further it is seen that $End_{A}m(A_{m})=A_{m}^{P}$ . Therefore.
by [5], \S 3, (E), we have $|\gamma_{Am}|=1$ . Let $N=\bigoplus_{m|n}A_{m}$ . Then $N$ is a faithful

quasi-permutation $\Pi$ -module such that $|\gamma_{N}|=1$ . Therefore it follows from
(2.2) that $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)$ .

It should be noted that (4.5) is not a special case of (3.5).
THEOREM 4.6. Let $D_{n}$ be the dihedral group of order $2n$ . Then $\tilde{C}(ZD_{n}\rangle$

$=\tilde{C}^{q}(ZD_{n})=C^{q}(ZD_{n})$ .
PROOF. By (4.5) we have $\tilde{C}(ZD_{n})=\tilde{C}^{q}(ZD_{n})$ . If $2+n$ , we have $\tilde{C}(ZD_{n})$

$=C^{q}(ZD_{n})$ by (4.2) and, if $n$ is a power of 2, we also have $\tilde{C}(ZD_{n})=C^{q}(ZD_{n}\rangle$
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by [5], (3.9). Hence we only need to prove that $C^{q}(ZD_{n})\subseteqq\tilde{C}(ZD_{n})$ under the
assumption that $2|n$ and $n$ is not a power of 2. Let $\{\sigma, \tau\}$ be the generators
of $D_{n}$ satisfying the relations $\sigma^{n}=\tau^{2}=1$ and $\tau^{-1}\sigma\tau=\sigma^{-1}$ . The group $D_{n}$ con-
tains subgroups $\langle\sigma^{i}\tau\rangle,$ $0\leqq i\leqq n-1$ , of order 2 and every $\langle\sigma^{i}\tau\rangle$ is conjugate
to $\langle\tau\rangle$ or $\langle\sigma\tau\rangle$ . Now we have $QD_{n}=\bigoplus_{m|n}QD_{n}/(\Phi_{m}(\sigma))$ . When $m=1$ or 2,

$QD_{n}/(\Phi_{m}(\sigma))$ is commutative and we denote by $\Omega_{m}$ the maximal order in
$\prime QD_{n}/(\Phi_{m}(\sigma))$ . On the other hand, when $m>2,$ $QD_{n}/(\Phi_{m}(\sigma))=\Delta(1, Q(\zeta_{m}),$ $\langle\tau\rangle$ )
$=M_{2}(Q(\zeta_{m}+\zeta_{m}^{-1}))$ . Put $\Lambda_{m}=ZD_{n}/(\Phi_{m}(\sigma))=\Delta(1, Z[\zeta_{m}], \langle\tau\rangle)$ . Then $\Lambda_{m}$ is a
$Z[\zeta_{m}+\zeta_{m}^{-1}]$ -order in $QD_{n}/(\Phi_{m}(\sigma))$ . Let $\Omega_{m}$ be a maximal order in $QD_{n}/(\Phi_{m}(\sigma))$

containing $\Lambda_{m}$ . We put $\Omega=\bigoplus_{m|n}\Omega_{m}$ . Then $\Omega$ is a maximal order in $QD_{n}$

$containingZD_{n}$ . Let $\mathfrak{A}beaprojectiveidealofZD_{n}$ such that $\mathfrak{A}\oplus S_{1}\cong ZD_{n}\oplus S_{n}$

for some permutation $D_{n}$-modules $S_{1}$ and $S_{2}$ . To prove that $C^{q}(ZD_{n})\subseteqq\tilde{C}(ZD_{n})$

it suffices to show that $\Omega_{m}\mathfrak{A}\cong\Omega_{m}$ for each $m|n$ . Using the induction on $n$

we only need to show that $\Omega_{n}\mathfrak{U}\cong\Omega_{n}$ .
Suppose that $\frac{n}{2}$ is odd. Then $\Lambda_{n}$ is a hereditary order in $QD_{n}/(\Phi_{n}(\sigma))$ .

Regarding $A_{n}=Z[\zeta_{n}]$ as a $\Lambda_{n}$ -module, we have $Hom_{\Lambda_{n}}(A_{n}, \Lambda_{n}\bigotimes_{ZD_{n}}ZD_{n}/\langle\tau\rangle)=A_{n}<\tau>$

and $Hom_{\Lambda_{n}}(A_{n}, \Lambda_{n}\bigotimes_{ZD_{n}}ZD_{n}/\langle\sigma\tau\rangle)=A_{n}<\sigma\tau>$ by (4.1). However we have $A_{n}<\sigma>=$

$A_{n}^{<\sigma\tau>}=Z[\zeta_{n}+\zeta_{n}^{-1}]$ . Therefore, as in the proof of (4.2), we get $\Lambda_{n}\mathfrak{A}\cong\Lambda_{n}$ , hence
$\Omega_{n}\mathfrak{A}\cong\Omega_{n}$ .

Next suppose that $4|n$ . Now put $v=\zeta_{n}-\zeta_{n}^{-1}$ and $w=1+\zeta_{n}$ . Then $\sigma(v)$

$=-v$ and $\sigma(w)=\zeta_{n}^{-1}w$ . Since $n$ is not a power of 2, both $v$ and $w$ are units of
$A_{n}$ . We can define $\Lambda_{n}$-homomorphisms $f;\Lambda_{n}(1+\tau)\rightarrow\Lambda_{n}(1-\tau)$ and $g;\Lambda_{n}(1+\sigma\tau)$

$\rightarrow\Lambda_{n}(1+\tau)$ by $f(1+\tau)=v(1-\tau)$ and $g(1+\sigma\tau)=w(1+\tau)$ , respectively. Then it
is easily seen that both $f$ and $g$ are isomorphisms. Accordingly we have
$\Lambda_{n}(1-\tau)\cong\Lambda_{n}(1+\tau)\cong\Lambda_{n}(1+\sigma\tau)$ as $\Lambda_{n}$ -modules. Let $\Pi’\neq\{1\}$ be a subgroup of
$D_{n}$ . If $\Pi’\cap\langle\sigma\rangle\neq\{1\},$

$\Lambda_{n}\bigotimes_{ZD_{n}}ZD_{n}/\Pi$

’ is a torsion module. On the other hand, if
$\Pi’\cap\langle\sigma\rangle=\{1\},$ $\Pi$ ’ is conjugate to $\langle\tau\rangle$ or $\langle\sigma\tau\rangle$ and so $\Lambda_{n}\bigotimes_{ZD_{n}}ZD_{n}/\Pi’\cong\Lambda_{n}(1+\tau)$

$\cong\Lambda_{n}(1+\sigma\tau)$ . Tensoring $\mathfrak{U}\oplus S_{1}\cong ZD_{n}\oplus S_{2}$ with $\Lambda_{n}$ over $ZD_{n}$ and eliminating
the torsion parts from both sides, we get

$\Lambda_{n}\mathfrak{A}\oplus\Lambda_{n}^{\mathfrak{c}\iota_{1)}}\oplus[\Lambda_{n}(1+\tau)]^{(l_{2})}\cong\Lambda_{n}\oplus\Lambda_{n}^{(k_{1})}\oplus[\Lambda_{n}(1+\tau)]^{(k_{2})}$ .
Hence we have

$\Omega_{n}\mathfrak{A}\oplus\Omega_{n}^{(l1)}\oplus[\Omega_{n}(1+\tau)]^{(l_{2})}\cong\Omega_{n}\oplus\Omega_{n}^{(k_{1})}\oplus[\Omega_{n}(1+\tau)]^{(k_{2})}$ .
There exists an exact sequence:

$0\rightarrow\Lambda_{n}(1-\tau)\rightarrow\Lambda_{n}\rightarrow\Lambda_{n}(1+\tau)\rightarrow 0$ .
From this we get $\Omega_{n}\cong\Omega_{n}(1-\tau)\oplus\Omega_{n}(1+\tau)$ . Since $\Lambda_{n}(1-\tau)\cong\Lambda_{n}(1+\tau)$ , this
shows that $\Omega_{n}\cong[\Omega_{n}(1+\tau)]^{(2)}$ . Thus we get $\Omega_{n}\mathfrak{A}\cong\Omega_{n}$ .
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\S 5. The projective special linear group, the symmetric group,
the alternating group, etc.

In this section we will aPply the induction theorems to some types of
finite groups.

LEMMA 5.1. Let $\Pi$ be a finite group and let $P$ be an elementary abelian
2-group. If $\tilde{C}(Z\Pi)=\tilde{C}^{q}(Z\Pi)=C^{q}(Z\Pi)$ , then $\tilde{C}(Z(\Pi\times P))=\tilde{C}^{q}(Z(\Pi\times P))=$

$C^{q}(Z(\Pi\times P))$ .
PROOF. As this is easy, we omit it.
THEOREM 5.2. Let $\Pi$ be one of the following groups:
(1) the Projective special linear group $PSL(2, P^{f})$ where $p$ is a prime and

$f\geqq 0$ ;
(2) the Janko simple group $J_{1}$ ;
(3) the symmetric group $S_{n},$ $n\leqq 7$ .

Then $C(Z\Pi)=6^{q}(Z\Pi)=C^{q}(Z\Pi)$ .
PROOF. By the induction theorems (1.1) and (1.6) it suffices to show that

$\tilde{C}(Z\Pi’)=\tilde{C}^{q}(Z\Pi’)=C^{q}(Z\Pi’)$ for every (maximal) hyperelementary subgroup
$\Pi$ ’ of $\Pi$ .

(1) Let $\Pi=PSL(2, p^{f})$ . Then all the subgroups of $\Pi$ are completely
determined by the Dickson’s theorem $(e. g. [8], (8.27))$ . It can easily be shown
that any hyperelementary subgroup $\Pi$ ’ of $\Pi$ has one of the following forms:

a) an abelian group;
b) a dihedral group;
c) a semidirect product of a cyclic normal subgroup of order $p$ and a

cyclic q-subgroup where $q$ is a prime such that $q|p-1$ .
Therefore the result follows from (3.2), (4.6) and (4.2).

(2) Let $\Pi=J_{1}$ be the Janko simple group ([10]). The order of $\Pi$ is
$2^{3}\cdot 3\cdot 5\cdot 7\cdot 11\cdot 19$ . A 2-Sylow subgroup of $\Pi$ is elementary abelian and all Sylow
subgroups of $\Pi$ of odd order are cyclic. All the maximal subgroups of $\Pi$

are given in [10]. We easily see that each maximal hyperelementary sub-
group $\Pi$ ’ of $\Pi$ has one of the following forms:

a) an abelian group;
b) a semidirect product of a cyclic normal subgroup of order $m$ and a

cyclic $p$-group of order $p$ such that $p+m$ ;
c) a direct product of a cyclic group of order 2 and a dihedral group;
d) a maximal hyperelementary subgroup of $PSL(2,11)$ ;
e) a semidirect product of a cyclic normal subgroup $C$ of order 15 and

an elementary abelian 2-subgroup $P$ of order 4 such that $P$ acts faith-
fully on $C$.

In the cases a), b) and c) the assertion follows from (3.2), (4.2), (4.6) and (5.1),
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and in the case d) the assertion has been proved in (1). Suppose that $\Pi$ ‘

has the form e). Then, for every subgroup $P^{\prime}$ of $P,$ $Z[\zeta_{15}]^{P^{}}$ is $Z[\zeta_{15}]^{P}$-free.
Therefore we can prove the assertion in the same way as in the proof of
(4.1).

(3) All the maximal hyperelementary subgroups of $S_{n},$ $n\leqq 7$ , can easily
be determined. If $n\leqq 6$, the assertion follows directly from (3.2), (4.2), (4.6)
and (5.1). A maximal hyperelementary subgroup $\Pi$ ’ of $S_{7}$ for which the
assertion does not follow directly from the preceding results is conjugate to
$\langle(123), $(23)$\rangle\times\langle(4567), $(46) $\rangle(\cong D_{3}\times D_{4})$ . However, in this case, it is clear
that $C^{q}(Z\Pi’)\subseteqq C(Z\Pi’)=\tilde{C}(Z\Pi/)$ . Further, using [5], \S 3, $(E^{\prime})$ , we can construct
a faithful quasi-permutation $\Pi$ ’-module $N$ such that $|\gamma_{N}|=1$ . Therefore we
get $\tilde{C}^{q}(Z\Pi’)=\tilde{C}(Z\Pi/)$ by (2.2).

REMARK 5.3. It can be shown that $B(Q\Pi)=G(Q\Pi)$ for $\Pi$ as in (5.2), (1)

and (2), and it is well known that $B(QS_{n})=G(QS_{n})$ for any $n$ . We will show
in our forthcoming paper that $C(ZS_{n})=\tilde{C}(ZS_{n})=\tilde{C}^{q}(ZS_{n})=C^{q}(ZS_{n})$ for any $n$ .

LEMMA 5.4. Let $\Pi$ be a finite group and let $\Pi$ ’be a subgroup of $\Pi$ such
that $N_{\Pi}(\Pi’)=\Pi’$ . SuPpose that $C^{q}(Z\Pi^{\prime})\not\leqq\tilde{C}(Z\Pi^{\prime})$ and that $C^{q}(Z\Pi^{\prime\prime})\subseteqq\tilde{C}(Z\Pi^{\prime\prime})$

for every pr0per subgroup $\Pi\prime\prime$ of $\Pi$ ’ Then $C^{q}(Z\Pi)\not\leqq\tilde{C}(Z\Pi)$ .
PROOF. Let $\mathfrak{A}^{\prime}$ be a quasi-permutation projective ideal of $Z\Pi/such$ that

$[\mathfrak{A}^{\prime}]-[Z\Pi/]\not\in\tilde{C}(Z\Pi’)$ . Then $Z\Pi\bigotimes_{z\Pi}\mathfrak{A}^{\prime}$ is a quasi-permutation projective ideal

of $ Z\Pi$ . Suppose that $[Z\Pi\bigotimes_{Z\Pi^{0}}\mathfrak{A}^{\prime}]-[Z\Pi]\in\tilde{C}(Z\Pi)$ . According to [5], (2.4),

there exists a $\Pi$ -module $M$ such that $(Z\Pi\bigotimes_{Z\Pi^{\prime}}\mathfrak{A}^{\prime})\oplus M\cong Z\Pi\oplus M$. Regarding

both sides as $\prod$ ’-modules, the Mackey’s subgroup theorem shows that

$\Pi’\sigma\Pi\oplus[Z\Pi’\bigotimes_{)Z(\Pi^{\prime}}(\sigma Z\Pi/\bigotimes_{Z\Pi^{\prime}}\mathfrak{A}^{\prime})]\oplus M\cong\bigoplus_{\Pi^{\prime}\sigma\Pi\prime}[Z\Pi/\bigotimes_{)Z(\Pi^{\prime}\cap\sigma\Pi^{\prime}\sigma^{-1}}(\sigma Z\Pi/\bigotimes_{z\Pi^{\prime}}Z\Pi/)]\oplus M$ ,

where the sum is taken over all $(\Pi/, \Pi’)$ -double cosets of $\Pi$ . Since $ N_{\Pi}(\Pi^{\prime}\rangle$

$=\Pi’\Pi f\cap\sigma\Pi’\sigma^{-1}\subsetneqq\Pi/$ for any $\Pi’\sigma\Pi’\neq\Pi’$ . However each $\sigma Z\Pi’\bigotimes_{Z\Pi^{\prime}}\mathfrak{A}^{\prime}$ is a
quasi-permutation projective $\Pi’\cap\sigma\Pi/\sigma^{-1}$ -module. Hence by hypothesis
$[\sigma Z\Pi’\bigotimes_{Z\Pi^{\prime}}\mathfrak{A}^{\prime}]-[\sigma Z\Pi’\bigotimes_{Z\Pi},Z\Pi’]\in\tilde{C}(Z(\Pi’\cap\sigma\Pi_{\sigma^{-1}}’))$ for any $\Pi/_{\sigma}\Pi’\neq\Pi$ ’ so that

$[Z\Pi’\bigotimes_{)Z(\Pi^{\prime}\cap\sigma\Pi\sigma^{-1}},(\sigma Z\Pi/\bigotimes_{Z\Pi},\mathfrak{A}^{\prime})]-[Z\Pi’\bigotimes_{)Z(\Pi\cap\sigma\Pi^{\prime}\sigma^{-1}}(\sigma Z\Pi’\bigotimes_{Z\Pi},Z\Pi’)]\in\tilde{C}(Z\Pi/)$ for any
$\Pi/\sigma\Pi’\neq\Pi^{\prime}$ . Therefore we can Pnd a $\Pi$ ’-module $M^{\prime}$ such that $\mathfrak{A}^{\prime}\oplus M^{\prime}\cong$

$Z\Pi’\oplus M^{\prime}$ . This implies that $[\mathfrak{A}^{\prime}]-[Z\Pi/]\in\tilde{C}(Z\Pi/)$ which is a contradiction.
Thus we have $[Z\Pi\otimes \mathfrak{A}^{\prime}]-[Z\Pi]\not\in\tilde{C}(Z\Pi)$ .

PROPOSITION 5.5. Let $A_{n}$ be the alternating group of degree $n$ . For $n\leqq 6$

$\delta(ZA_{n})=C^{q}(ZA_{n})=C^{q}(ZA_{n})$ . But, for $n=8,9,$ $C^{q}(ZA_{n})$ $ $C(ZA_{n})$ .
PROOF. It is well known that $A_{6}\cong PSL(2,9)$ . Hence the first part of the

proposition follows directly from (the proof of) (5.2), (1). Suppose that $\Pi=A_{8}$

or $A_{9}$ and put $\Pi‘=\langle(12345)(678), (2354)(67)\rangle$ . Then $\Pi/$ is a subgroup

of $\Pi$ with $N_{\pi}(\Pi’)=\Pi/which$ is isomorphic to the group as in (4.3). Hence
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we have $C^{q}(Z\Pi/)\not\leqq\tilde{C}(Z\Pi/)$ . Furthermore by (4.2) $C^{q}(Z\Pi\prime\prime)=\tilde{C}(Z\Pi\prime\prime)$ for any
proper subgroup $\Pi\prime\prime$ of $\Pi$ ’ Thus (5.4) concludes that $C^{q}(Z\Pi)\not\leqq\tilde{C}(Z\Pi)$ .
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