Sur les l-classes d'idéaux des extensions non galoisiennes de Q de degré premier impair l a clôture galoisienne diédrale de degré 2l

Par Georges GRAS

(Reçu le 31 mai, 1973) (Revisé le 3 oct, 1973)

Introduction.

Dans [3], S. Kobayashi donne une intéressante construction du groupe de Galois de l'extension abélienne non ramifiée maximale d'exposant 3 du corps $Q(\sqrt{-3}, \sqrt[8]{m})$, pour certains $m \in \mathbb{Z}$. La valeur du 3-rang du groupe des classes de $Q(\sqrt[8]{m})$ est alors une conséquence de l'étude de ce groupe de Galois.

Les résultats de Kobayashi suggèrent l'existence de relations entre les l-rangs des groupes des classes d'une extension de degré l de Q non galoisienne et de sa clôture galoisienne, lorsque celle-ci est diédrale de degré 2l. C'est ce que nous essayons de préciser dans cette note.

Je tiens à remercier ici S. Kobayashi qui m'a communiqué ses résultats avant leur parution et le Professeur S. Iyanaga auquel je dois cet échange.

§ 1. Généralités.

Soit L/Q une extension de degré l de Q (l premier impair) non galoisienne, ayant une clôture galoisienne K diédrale de degré 2l sur Q. On notera σ et τ des générateurs de $G = \operatorname{Gal}(K/Q)$ vérifiant les relations:

$$\sigma^l = \tau^2 = 1$$
 et $\sigma \tau = \tau \sigma^{-1}$.

Soient $H=\langle \sigma \rangle$ et $T=\langle \tau \rangle$ les sous-groupes de G engendrés par σ et τ . On note k le sous-corps de K fixe par H (c'est une extension quadratique de Q); on peut supposer que L est fixe par T (les l conjugués L_i de L (i définit modulo l) sont fixes par les sous-groupes $\{1, \sigma^i \tau \sigma^{-i}\}$); enfin la restriction de τ à k définit l'élément d'ordre 2 de Gal(k/Q).

On note A_L , A_k et A_K les anneaux d'entiers de L, k et K, $\mathfrak{I}(L)$, $\mathfrak{I}(k)$ et $\mathfrak{I}(K)$ les groupes des idéaux fractionnaires de L, k et K, $\mathfrak{I}(L)$, $\mathfrak{I}(k)$ et $\mathfrak{I}(K)$ les l-groupes des classes des corps L, k et K. On note j l'homomorphisme canonique $\mathfrak{I}(k) \to \mathfrak{I}(K)$ et ν l'expression $1+\sigma+\cdots+\sigma^{l-1}$.

678 G. GRAS

L'extension K/k étant cyclique de degré l, on peut lui appliquer les méthodes que nous avons développées dans [2] et qui concernent $\mathcal{H}(K)$ (notamment en introduisant la filtration des sous-groupes de $\mathcal{H}(K)$ définis par $\mathcal{H}_i(K) = \operatorname{Ker}(\sigma - 1)^i$).

§ 2. Étude de $\mathcal{H}(L)$.

Comme l'homomorphisme canonique $\mathcal{H}(L) \to \mathcal{H}(K)$ est injectif, nous convenons d'identifier $\mathcal{H}(L)$ à son image dans $\mathcal{H}(K)$. On peut donc considérer $\mathcal{H}(L)$ comme sous-groupe de $\mathcal{H}(K)$.

PROPOSITION 1. On a $\mathcal{H}(L) = \mathcal{H}(K)^T$ (sous-groupe de $\mathcal{H}(K)$ formé par les classes invariantes par τ) et les groupes $\mathcal{H}(L_i)$ sont isomorphes entre eux.

DÉMONSTRATION. Les éléments de $\mathcal{H}(L)$ sont fixes par T. Soit $h \in \mathcal{H}(K)$ une classe fixe par τ ; $h = \mathcal{C}l_K(\mathfrak{A})$ et $\mathcal{C}l_K(\mathfrak{A}^\tau) = \mathcal{C}l_K(\mathfrak{A})$, soit $\mathcal{C}l_K(\mathfrak{A}^{1+\tau}) = \mathcal{C}l_K(\mathfrak{A}^2)$, or $\mathcal{C}l_K(\mathfrak{A}^{1+\tau})$ est la classe dans K de l'étendu de l'idéal $N_{K/L}(\mathfrak{A})$, d'où $\mathcal{C}l_K(\mathfrak{A})$ $\in \mathcal{H}(L)$ car 2 est premier à l. La seconde assertion est immédiate.

Par analogie avec le cas cyclique, on peut définir la filtration:

$$\mathcal{H}_i(L) = \mathcal{H}_i(K)^T = \{h \in \mathcal{H}_i(K), h^{\tau} = h\}$$
;

les $\mathcal{H}_i(L)$ sont des T-modules mais non des H-modules; ils constituent une suite croissante de sous-groupes de $\mathcal{H}(L)$ et $\mathcal{H}_i(L) = \mathcal{H}(L)$ pour i assez grand. On appellera $\mathcal{H}_i(L)$ le groupe des "l-classes ambiges" de L (définition différente de celle de [1]).

On se propose d'abord de donner un encadrement pour la valeur de l'ordre de $\mathcal{H}_1(L)$ (noté $|\mathcal{H}_1(L)|$), encadrement qui conduit, dans certains cas, à une expression simple pour $|\mathcal{H}_1(L)|$, et ensuite d'étudier $\mathcal{H}_2(L)$.

REMARQUE 1. Soit \bar{t} (resp. t) le nombre d'idéaux premiers totalement ramifiés dans L/Q (resp. K/k). Alors $t-\bar{t}$ représente le nombre de nombres premiers ramifiés dans K/k et décomposés dans k/Q (en effet, d'après [4] p. 32, un nombre premier est totalement ramifié dans L/Q si et seulement si il est totalement ramifié dans K/k).

Considérons la suite exacte suivante ([2] p. 28):

$$1 \longrightarrow \mathcal{H}_1^0(K) \longrightarrow \mathcal{H}_1(K) \longrightarrow E_k \cap NK^*/NE_K \longrightarrow 1$$

où E_k et E_K sont les groupes des unités de k et K, $\mathcal{H}_1^0(K)$ est le sous-groupe de $\mathcal{H}_1(K)$ engendré par les classes des idéaux de K invariants par H; posons:

$$(E_k \cap NK^*: NE_K) = l^{\delta};$$

comme k est un corps quadratique et que l est impair, δ est égal à 0 ou à 1. Nous distinguerons les deux cas suivants:

Cas A: $\delta = 0$,

Cas B: $\delta = 1$.

DÉFINITION. On pose $l^a = (E_k : E_k \cap NK^*)$ et $l^b = (E_k : NE_K)$; on a alors $b = a + \delta$.

DÉFINITION DU GROUPE \mathfrak{F} . Dans le cas A, on définit le groupe $\mathfrak{F}=\langle \mathfrak{P}_1,\cdots,\mathfrak{P}_t\rangle$, sous-groupe de $\mathfrak{F}(K)$ engendré par les t idéaux premiers de K ramifiés dans K/k. Dans le cas B, l'ordre du quotient $\mathfrak{K}_1(K)/\mathfrak{K}_1^0(K)$ étant égal à l, il existe un idéal \mathfrak{A}_0 de K tel que $\mathcal{C}l_K(\mathfrak{A}_0) \in \mathfrak{K}_1(K) \setminus \mathfrak{K}_1^0(K)$. On a alors $\mathcal{C}l_K(\mathfrak{A}_0) = \mathcal{C}l_K(\mathfrak{A}_0)$ et on peut même supposer \mathfrak{A}_0 premier ([2] p. 43). On définit alors le groupe $\mathfrak{F}=\langle \mathfrak{F}_1,\cdots,\mathfrak{F}_t,\mathfrak{A}_0^{1+\tau}\rangle$. Dans tous les cas \mathfrak{F} est un sous T-module de $\mathfrak{F}(K)$ et on a en outre la propriété suivante:

LEMME 1. Le T-module \Im vérifie: $\Im \cap \Im(K)^{\tau-1} = \Im^{\tau-1}$.

Soit $\mathfrak{A} \in \mathfrak{F} \cap \mathfrak{F}(K)^{\tau-1}$; alors $\mathfrak{A} = \mathfrak{B}^{\tau-1}$, $\mathfrak{B} \in \mathfrak{F}(K)$, et on peut supposer que \mathfrak{B} ne contient pas de diviseurs premiers invariants par τ . Soit \mathfrak{F} un idéal premier figurant dans \mathfrak{B} ; si \mathfrak{F} est l'un des \mathfrak{F}_i alors $\mathfrak{F} \in \mathfrak{F}$. Si \mathfrak{F} n'était ni \mathfrak{A}_0 , ni \mathfrak{A}_0^{τ} , ni l'un des \mathfrak{F}_i , alors \mathfrak{A} contiendrait le facteur $\mathfrak{F}^{\tau-1}$ (avec $\mathfrak{F}^{\tau} \neq \mathfrak{F}$) ce qui est absurde car $\mathfrak{A} \in \mathfrak{F}$. Le seul cas qui reste à étudier est $\mathfrak{F} = \mathfrak{A}_0$ ou \mathfrak{A}_0^{τ} ; écrivons $\mathfrak{B} = \mathfrak{A}_0^{x+y\tau}\mathfrak{A}'$, $x, y \in \mathbb{Z}$, \mathfrak{A}' premier à $\mathfrak{A}_0^{1+\tau}$, donc d'après ce qui précède $\mathfrak{A}' \in \mathfrak{F}$; $\mathfrak{B}^{\tau-1} = \mathfrak{A}_0^{(x+y\tau)(\tau-1)}\mathfrak{A}'^{\tau-1} \in \mathfrak{F}$, donc $\mathfrak{A}_0^{(x+y\tau)(\tau-1)} \in \mathfrak{F}$ et il existe $z \in \mathbb{Z}$ tel que $\mathfrak{A}_0^{(x+y\tau)(\tau-1)} = \mathfrak{A}_0^{x(1+\tau)}$; or ceci entraine x = y et z = 0, donc $\mathfrak{B} = \mathfrak{A}_0^{(1+\tau)x}\mathfrak{A}' \in \mathfrak{F}$.

PROPOSITION 2. On a les suites exactes de T-modules:

$$1 \longrightarrow \operatorname{Ker} \theta \longrightarrow \Im/\Im^{l} \stackrel{\theta}{\longrightarrow} \mathcal{H}_{1}(K)/j(\mathcal{H}(k)) \longrightarrow 1, \tag{1}$$

$$1 \longrightarrow \operatorname{Ker} \mu \longrightarrow \mathfrak{J}^{1+\tau}/\mathfrak{J}^{l(1+\tau)} \xrightarrow{\mu} \mathcal{H}_{1}(L) \longrightarrow 1, \qquad (2)$$

$$1 \longrightarrow \operatorname{Ker} \mu \longrightarrow \operatorname{Ker} \theta , \tag{3}$$

$$1 \longrightarrow (\mathfrak{F}^{1-\tau}/\mathfrak{F}^{l(1-\tau)}) \cap \operatorname{Ker} \theta \longrightarrow \operatorname{Ker} \theta \xrightarrow{1+\tau} \operatorname{Ker} \mu. \tag{4}$$

DÉMONSTRATION. (i) Définition de θ : Notons $q(\mathfrak{A}), \mathfrak{A} \in \mathfrak{F}$, un élément de $\mathfrak{F}/\mathfrak{F}^l$; si $q(\mathfrak{A}) \in \mathfrak{F}/\mathfrak{F}^l$, alors $\theta(q(\mathfrak{A}))$ est l'image de $\mathcal{C}l_K(\mathfrak{A})$ dans $\mathcal{H}_1(K)/j(\mathcal{H}(k))$. Vérifions que la classe d'un élément de \mathfrak{F}^l est contenue dans $j(\mathcal{H}(k))$: pour un \mathfrak{F}_i , c'est évident; soit $\mathfrak{A}_0^{1+\tau} \in \mathfrak{F}$ (cas B), on sait que $\mathfrak{A}_0^{\sigma} = \mathfrak{A}_0 \alpha A_K$, $\alpha \in K^*$, d'où $\mathfrak{A}^{\nu} = \mathfrak{A}_0^l \beta A_K$, $\beta \in K^*$, par conséquent $\mathcal{C}l_K(\mathfrak{A}_0)^l \in j(\mathcal{H}(k))$ et, à fortiori, $\mathcal{C}l_K(\mathfrak{A}_0^l)^{1+\tau} = 1 \in j(\mathcal{H}(k))$. Montrons la surjectivité: Dans le cas A, elle est évidente; dans le cas B, il faut montrer que $\mathcal{C}l_K(\mathfrak{A}_0^{1+\tau})$ permet de retrouver $\mathcal{C}l_K(\mathfrak{A}_0)$: on a $\mathfrak{A}_0^{\sigma-1} = \alpha A_K$, $\alpha \in K^*$; $N_{K/k}(\alpha)$ est donc une unité $\varepsilon \in E_k$ et on peut toujours supposer $N_{k/Q}(\varepsilon) = 1$. On aura $\mathfrak{A}_0^{(\sigma-1)\tau} = \alpha^{\tau} A_K$ soit $\mathfrak{A}_0^{(\sigma-1)\tau+\sigma-1} = \alpha \alpha^{\tau} A_K$, avec $N_{K/k}(\alpha \alpha^{\tau}) = N_{K/Q}(\alpha) = N_{k/Q}(\varepsilon) = 1$; donc $\alpha \alpha^{\tau} = \gamma^{\sigma-1}$, $\gamma \in K^*$ (théorème 90 de Hilbert) et $\mathfrak{A}_0^{(\sigma-1)\tau+\sigma-1} = \gamma^{\sigma-1} A_K$. On peut écrire $(\sigma-1)\tau = \sigma\tau - \tau = \tau(\sigma^{l-1}-1)$ soit $\gamma^{\sigma-1} A_K = (\mathfrak{A}_0^{\tau(\sigma^{l-2}+\dots+\sigma+1)+1})^{\sigma-1}$; l'idéal $\mathfrak{M} = \gamma^{-1} A_K \mathfrak{A}_0^{\tau(\sigma^{l-2}+\dots+\sigma+1)+1}$ est invariant

G. Gras

par H, il est donc de la forme $\mathfrak{M}=\mathfrak{M}_0\mathfrak{a}A_K$, \mathfrak{M}_0 produit d'idéaux ramifiés dans K/k, $\mathfrak{a}\in \mathfrak{J}(k)$. On a alors $\tau(\sigma^{l-2}+\cdots+\sigma+1)=(1+\sigma^{-1}+\cdots+\sigma^{-(l-2)})\tau$ et $\mathfrak{M}=\mathfrak{M}_0^{(1+\sigma^{-1}+\cdots+\sigma^{-(l-2)})^{\tau+1}}\gamma^{-1}A_K=\mathfrak{M}_0^{(l-1)\tau+1}\beta A_K$, $\beta\in K^*$ (compte tenu de la relation $\mathfrak{M}_0^{\epsilon}=\mathfrak{M}_0\alpha A_K$); on peut écrire $\mathfrak{M}_0^{1-\tau}=\mathfrak{M}_0(\mathfrak{b}\beta)A_K$, $\mathfrak{b}\in \mathfrak{J}(k)$, car on a déjà vu que \mathfrak{M}_0^{l} est équivalent à l'étendu d'un idéal de k. Par conséquent, dans $\mathfrak{K}_1(K)/j(\mathfrak{K}(k))$, les images de $\mathcal{C}l_K(\mathfrak{M}_0^{1-\tau})$ et $\mathcal{C}l_K(\mathfrak{M}_0^{1+\tau})$ sont atteintes, donc celle de $\mathcal{C}l_K(\mathfrak{M}_0)$ aussi (d'où (1)).

- (ii) Définition de μ : Soit $\bar{q}(\mathfrak{A}^{1+\tau})$, $\mathfrak{A} \in \mathfrak{F}$, un élément de $\mathfrak{F}^{1+\tau}/\mathfrak{F}^{l(1+\tau)}$; alors $\mu(\bar{q}(\mathfrak{A}^{1+\tau}))$ est la classe $\mathcal{C}l_{\mathbf{K}}(\mathfrak{A}^{1+\tau})$; c'est bien un élément de $\mathcal{H}_1(L)$. Les classes des éléments de $\mathfrak{F}^{l(1+\tau)}$ sont égales à 1: en effet, si $\mathfrak{A} \in \mathfrak{F}$, $\mathcal{C}l_{\mathbf{K}}(\mathfrak{A}^{l}) \in j(\mathcal{H}(k))$, donc on aura $\mathcal{C}l_{\mathbf{K}}(\mathfrak{A}^{l(1+\tau)}) \in j(\mathcal{H}(k))^{1+\tau} = \{1\}$. On vérifie que la surjectivité provient de la surjectivité de θ et du fait que $\mathcal{H}(K)^T = \mathcal{H}(K)^{1+\tau}$.
- (iii) L'application considérée est la restriction à Ker μ de l'application canonique $\mathfrak{Z}^{1+\tau}/\mathfrak{Z}^{l(1+\tau)} \to \mathfrak{Z}/\mathfrak{Z}^l$; si $\bar{q}(\mathfrak{A}^{1+\tau}) \in \text{Ker } \mu$, $\mathfrak{A} \in \mathfrak{Z}$, $q(\mathfrak{A}^{1+\tau}) \in \mathfrak{Z}/\mathfrak{Z}^l$ et $\mathcal{C}l_{\mathbb{K}}(\mathfrak{A}^{1+\tau}) = 1$, donc $q(\mathfrak{A}^{1+\tau}) \in \text{Ker } \theta$. Si $q(\mathfrak{A}^{1+\tau}) = 1$ alors $\mathfrak{A}^{1+\tau} \in \mathfrak{Z}^l$; on vérifie facilement que $\mathfrak{A}^{1+\tau} \in \mathfrak{Z}^{l(1+\tau)}$ d'où l'injectivité.
- (iv) A $q(\mathfrak{A}) \in \operatorname{Ker} \theta$ on associe $\bar{q}(\mathfrak{A}^{1+\tau})$; comme $Cl_{K}(\mathfrak{A}) \in j(\mathcal{A}(k))$, $Cl_{K}(\mathfrak{A}^{1+\tau}) = 1$ donc $\bar{q}(\mathfrak{A}^{1+\tau}) \in \operatorname{Ker} \mu$. Si $\bar{q}(\mathfrak{A}^{1+\tau}) = 1$, $\mathfrak{A}^{1+\tau} \in \mathfrak{F}^{l(1+\tau)}$ soit $\mathfrak{A}^{1+\tau} = \mathfrak{B}^{l(1+\tau)}$, $\mathfrak{B} \in \mathfrak{F}$; $(\mathfrak{A}/\mathfrak{B}^{l})^{1+\tau} = A_{K}$, donc il existe $\mathfrak{A}_{1} \in \mathfrak{F}(K)$ tel que $\mathfrak{A}/\mathfrak{B}^{l} = \mathfrak{A}_{1}^{1-\tau}$ et $q(\mathfrak{A}) = q(\mathfrak{A}_{1}^{1-\tau})$ dans $\mathfrak{F}/\mathfrak{F}^{l}$; comme $\mathfrak{A}_{1}^{1-\tau} \in \mathfrak{F}$ on peut supposer que $\mathfrak{A}_{1} \in \mathfrak{F}$ (Lemme 1) donc $q(\mathfrak{A})$ appartient à l'image de $\mathfrak{F}^{1-\tau}$ dans $\mathfrak{F}/\mathfrak{F}^{l}$ que l'on peut identifier à $\mathfrak{F}^{1-\tau}/(\mathfrak{F}^{l} \cap \mathfrak{F}^{1-\tau}) = \mathfrak{F}^{1-\tau}/(\mathfrak{F}^{l(1-\tau)})$. D'où la dernière suite exacte.

COROLLAIRE 1. On a $|\operatorname{Ker} \theta| = l^{b+1}/|\operatorname{Ker} j|$.

En effet, $|\Im/\Im^l| = l^{t+\delta}$ et, d'après (1),

$$|\operatorname{Ker} \theta| = \frac{l^{t+\delta}|j(\mathcal{H}(k))|}{|\mathcal{H}_1(K)|} = \frac{l^{t+\delta}|\mathcal{H}(k)|\,l^a}{|\mathcal{H}(k)|\,l^{t-1}|\operatorname{Ker} j|} \quad \text{soit} \quad |\operatorname{Ker} \theta| = \frac{l^{\delta+a+1}}{|\operatorname{Ker} j|} \;.$$

Or on a $b=a+\delta$, donc $|\operatorname{Ker} \theta|=l^{b+1}/|\operatorname{Ker} j|$.

REMARQUE 2. Comme k est un corps quadratique, on a $b \le 1$, d'où $|\operatorname{Ker} \theta| \le l^2$.

REMARQUE 3. Dans le cas B, $\mathfrak{F}^{1-\tau}$ est engendré par les $\mathfrak{F}_{i}^{1-\tau}$ (car $\mathfrak{U}_{0}^{(1+\tau)(1-\tau)}$ =(1)) donc, dans tous les cas, on aura $\mathfrak{F}^{1-\tau}=\mathfrak{F}_{0}^{1-\tau}$ où \mathfrak{F}_{0} est le sous-groupe de \mathfrak{F}_{0} engendré par les idéaux premiers ramifiés dans K/k et décomposés dans k/Q (il y en a $2(t-\overline{t})$); $\mathfrak{F}_{0}^{1-\tau}/\mathfrak{F}_{0}^{2(1-\tau)}$ est donc d'ordre $l^{t-\overline{t}}$.

THÉORÈME 1. On a les inégalités:

$$|\operatorname{Ker} j|\, l^{\overline{t}-a-1} \leqq |\mathcal{H}_1(L)| \leqq |\operatorname{Ker} j|\, l^{\overline{t}-a-1}|\operatorname{Ker} \theta \cap \Im_0^{1-\tau}/\Im_0^{l(1-\tau)}| \; .$$

DÉMONSTRATION. C'est une conséquence immédiate des suites exactes (1), (2), (3), (4), du corollaire 1, des remarques 1 et 3 et du fait que $|\mathfrak{F}^{1+\tau}/\mathfrak{F}^{l(1+\tau)}| = l^{\delta+\bar{t}}$:

D'après (2), $|\mathcal{H}_1(L)| = \frac{l^{\delta+\bar{t}}}{|\operatorname{Ker}\mu|}$; (3) permet une minoration et (4) une majoration de $|\mathcal{H}_1(L)|$:

$$|\mathcal{H}_1(L)| \geqq \frac{l^{\delta + \bar{t}}}{|\operatorname{Ker} \theta|} = \frac{l^{\delta + \bar{t}} |\operatorname{Ker} j|}{l^{b+1}} = l^{\delta + \bar{t} - b - 1} |\operatorname{Ker} j| = l^{\bar{t} - a - 1} |\operatorname{Ker} j| \; ;$$

$$|\mathcal{A}_{\mathbf{1}}(L)| \leq \frac{l^{\delta + \bar{t}}}{|\operatorname{Ker} \theta|} |\operatorname{Ker} \theta \cap \mathfrak{I}^{1 - \tau}/\mathfrak{I}^{l(1 - \tau)}| = l^{\bar{t} - a - 1} |\operatorname{Ker} j| |\operatorname{Ker} \theta \cap \mathfrak{I}^{1 - \tau}/\mathfrak{I}^{l(1 - \tau)}| .$$

COROLLAIRE 2. On a les inégalités:

$$|\operatorname{Ker} j| l^{\bar{t}-a-1} \leq |\mathcal{H}_1(L)| \leq l^{\bar{t}-a+1}$$
.

COROLLAIRE 3. Si $|\operatorname{Ker} j| = l^2$ on si $t = \overline{t}$ alors $|\mathcal{H}_1(L)| = |\operatorname{Ker} j| l^{\overline{t} - a - 1}$.

COROLLAIRE 4. Dans le cas où K/k est non ramifiée, on obtient $|\mathcal{H}_1(L)| = \frac{|\operatorname{Ker} j|}{l} = l^b$.

(cf. [2] p. 28:
$$|\operatorname{Ker} j| = l |E_k/NE_K| = l^{b+1}$$
).

Par exemple, dans le cas où k est imaginaire et K/k non ramifiée (ce qui exclue $k=Q(\sqrt{-3})$ pour l=3), on a b=0 soit $|\mathcal{H}_1(L)|=1$ (il faut remarquer que ceci n'implique pas $|\mathcal{H}(L)|=1$ car $\mathcal{H}(L)$ n'est pas un H-module).

Passons maintenant à l'étude de $\mathcal{H}_2(L)$.

LEMME 2. On a $\mathcal{H}_2(L)^{\sigma-1} \subset \mathcal{H}_1(K)^{1-\tau}$ et $\mathcal{H}_2(L)^{\sigma-1} \cap \mathcal{H}_1(L) = \{1\}$.

Soit $h^{\sigma-1} \in \mathcal{H}_2(L)^{\sigma-1}$, $h \in \mathcal{H}_2(L)$ (on a donc $h^{(\sigma-1)^2} = 1$ et $h^{\tau} = h$); $h^{(\sigma-1)\tau} = h^{\sigma\tau-\tau} = h^{\tau(\sigma^{-1}-1)} = h^{\sigma^{-1}-1} = h^{(\sigma-1)(\sigma^{l-2}+\cdots+\sigma+1)}$ or $h^{\sigma-1} \in \mathcal{H}_1(K)$ donc $h^{(\sigma-1)(1+\sigma+\cdots+\sigma^{l-2})} = h^{(\sigma-1)(l-1)} = h^{l(\sigma-1)}h^{-(\sigma-1)}$. Si on démontre que $h^{l(\sigma-1)} = 1$, on aura $h^{(\sigma-1)(\tau+1)} = 1$ soit $h^{\sigma-1} \in \mathcal{H}_1(K)^{1-\tau}$. Or ceci résulte du fait que $\nu = (\sigma-1)^{l-1} - lA(\sigma)$ ($A(\sigma)$ inversible dans $Z_l[H]$, cf. [2] p. 30), donc $h^{lA(\sigma)(\sigma-1)} = h^{(\sigma-1)^l} = 1$ car $h \in \mathcal{H}_2(L)$. Comme $\mathcal{H}_1(L) = \mathcal{H}_1(K)^T = \mathcal{H}_1(K)^{1+\tau}$ et que $\mathcal{H}_1(K)^{1+\tau} \cap \mathcal{H}_1(K)^{1-\tau} = \{1\}$, il en résulte que $\mathcal{H}_2(L)^{\sigma-1} \cap \mathcal{H}_1(L) = \{1\}$.

 $\text{Th\'eor\`eme 2.} \quad On \ a \ |\mathcal{H}_{\mathbf{2}}(L)/\mathcal{H}_{\mathbf{1}}(L)| \leqq \frac{l^{t-\overline{t}}|\mathcal{H}(k)|}{|\operatorname{Ker} j|} l^{t-\overline{t}}|j(\mathcal{H}(k))|.$

DÉMONSTRATION. Le lemme 2 conduit, grace à la suite exacte de groupes

$$1 \longrightarrow \mathcal{H}_1(L) \longrightarrow \mathcal{H}_2(L) \stackrel{\sigma-1}{\longrightarrow} \mathcal{H}_2(L)^{\sigma-1} \longrightarrow 1$$
 ,

à

$$|\mathcal{H}_{\mathfrak{d}}(L)/\mathcal{H}_{\mathfrak{d}}(L)| = |\mathcal{H}_{\mathfrak{d}}(L)^{\sigma-1}| \leq |\mathcal{H}_{\mathfrak{d}}(K)^{\mathbf{1}-\tau}|$$
:

or

$$|\,\mathcal{H}_{\mathbf{1}}\!(K)| \!=\! |\,\mathcal{H}_{\mathbf{1}}\!(K)^{{\scriptscriptstyle 1+\tau}}|\,|\,\mathcal{H}_{\mathbf{1}}\!(K)^{{\scriptscriptstyle 1-\tau}}| \!=\! |\,\mathcal{H}_{\mathbf{1}}\!(L)|\,|\,\mathcal{H}_{\mathbf{1}}\!(K)^{{\scriptscriptstyle 1-\tau}}|$$

et, en utilisant la minoration de $|\mathcal{H}_1(L)|$ du théorème 1, on obtient

$$|\mathcal{H}_{\mathbf{1}}(K)^{\mathbf{1}-\tau}| = |\mathcal{H}_{\mathbf{1}}(K)|/|\mathcal{H}_{\mathbf{1}}(L)| = \frac{|\mathcal{H}(k)| \, l^{t-1-a}}{|\mathcal{H}_{\mathbf{1}}(L)|} \leq l^{t-\overline{t}} \, \frac{|\mathcal{H}(k)|}{|\operatorname{Ker} j|} .$$

PROPOSITION 3. Pour l=3 on a $\mathcal{H}_2(L) = \{h \in \mathcal{H}(L), h^3 = 1\}$.

682 G. Gras

DÉMONSTRATION. Soit $h \in \mathcal{H}(L)$, alors $h \in \mathcal{H}(K)^{1+\tau}$ et $h^{\nu} \in \mathcal{H}(K)^{(1+\tau)\nu} = \{1\}$; donc $h^{(\sigma-1)^{l-1}} = h^{lA(\sigma)}$ et, pour l = 3, on a bien $h^3 = 1$ si et seulement si $h^{(\sigma-1)^2} = 1$, donc si et seulement si $h \in \mathcal{H}_2(L)$.

COROLLAIRE 5. Si l=3, le 3-rang $\rho(L)$ de $\mathcal{A}(L)$ vérifie les inégalités:

$$|\operatorname{Ker} j| 3^{\bar{t}-a-1} \leq 3^{\rho(L)} \leq |\mathcal{H}(k)| 3^{t-a-1} |\operatorname{Ker} \theta \cap \mathfrak{J}_0^{1-\tau}/\mathfrak{J}_0^{3(1-\tau)}|$$
.

COROLLAIRE 6. Si l=3 et si $t=\overline{t}$, le 3-rang $\rho(L)$ de $\mathcal{H}(L)$ vérifie les inégalités: $|\operatorname{Ker} j| 3^{t-a-1} \leq 3^{\rho(L)} \leq |\mathcal{H}(k)| 3^{t-a-1}$; si en outre $|\mathcal{H}(k)| = 1$, on obtient $\rho(L) = t-a-1$.

Théorème 3. On suppose l=3, $t=\bar{t}$ et $|\mathcal{H}(k)|=1$; on a donc $\rho(L)=t-a-1$. Alors le 3-rang $\rho(K)$ du groupe $\mathcal{H}(K)$ est égal à $2(t-a-1)=2\rho(L)$.

DÉMONSTRATION. Il suffit, pour calculer $\rho(K)$, d'appliquer la méthode décrite dans [2]. Comme $\mathcal{H}(k) = \{1\}$, le groupe \mathfrak{F} que nous avons défini, représente $\mathcal{H}_1(K)$ (Dans [2], il est nécéssaire que \mathfrak{F} soit un H-module et vérifie $\mathfrak{F} \cap \mathfrak{F}(K)^{\sigma-1} = \mathfrak{F}^{\sigma-1}$; on prendra donc ici $\mathfrak{F}_1 = \langle \mathfrak{F}_1, \cdots, \mathfrak{F}_t, \mathfrak{N}_0^{1+\tau}, \mathfrak{N}_0^{(1+\tau)\sigma}, \cdots, \mathfrak{N}_0^{(1+\tau)\sigma^{l-1}} \rangle$ en convenant que $\mathfrak{U}_0 = A_K$ dans le cas A). Posons $k = Q(\sqrt{m})$, $m \in \mathbb{Z}$, et soit \tilde{k} le corps $Q(\sqrt{-3m})$ ($\tilde{k} = Q$ si $k = Q(\sqrt{-3})$).

Lemme 3. Soit $p \neq 3$ un nombre premier ramifié dans K/k; alors p est inerte dans $Q(\sqrt{-3})$ (i. e. $p \equiv -1 \mod 3$) et son degré résiduel dans \tilde{k}/Q est égal à 1.

D'après [4] (Proposition III. 3) un tel nombre premier $p \neq 3$ ne peut pas se ramifier dans k/\mathbf{Q} ; donc, puisque $t = \overline{t}$, p est inerte dans k/\mathbf{Q} et, d'après [4] (Proposition IV. 3 et Corollaire 2 à la Proposition IV. 15), on a $p \equiv \left(\frac{m}{p}\right) \mod 3$ (symbole de Legendre), où $k = \mathbf{Q}(\sqrt{m})$; or $\left(\frac{m}{p}\right) = -1$ et on obtient $p \equiv -1 \mod 3$, d'où la première partie du lemme; la seconde résulte alors du fait que \mathfrak{p} est nécéssairement de degré résiduel 1 dans l'extension $k(\sqrt{-3})/k$ (cf. [2] p. 20).

On calcule maintenant $I_1=N_{K/k}\Im_1\cap \Im_0(k)$ (cf. [2] p. 36); ici I_1 sera de la forme $\langle p_1A_k,\cdots,p_tA_k,a_0A_k\rangle$, où $a_0\in \mathbf{Z}$ avec $a_0\mathbf{Z}=N_{K/\mathbf{Q}}\Im_0$. Par conséquent, le groupe de nombres Λ_1 associé sera : $\Lambda_1=\langle \varepsilon,p_1,p_2,\cdots,p_t,a_0\rangle$, où ε est une unité convenable de k ($\varepsilon=1$ si k est imaginaire et est différent de $\mathbf{Q}(\sqrt{-3})$, $\varepsilon=\frac{1}{2}(1+\sqrt{-3})$ si $k=\mathbf{Q}(\sqrt{-3})$ et ε est l'unité fondamentale de k si k est réel). Soit $\gamma\in \tilde{k}$ tel que $K(\sqrt{-3})=k(\sqrt{-3},\sqrt[3]{\gamma})$ (cf. [4], Prop. IV. 3); alors le rang du système linéaire associé à Λ_1 par l'intermédiaire du symbole de Hilbert $(\gamma,u)_{\mathfrak{P}},\ u\in \Lambda_1$, $\mathfrak{p}}$ idéal premier de k ramifié dans K/k, est une conséquence du résultat suivant :

LEMME 4. Si u est un rationnel, on a $(\gamma, u)_{\mathfrak{p}} = 1$ pour tout idéal premier \mathfrak{p} de k ramifié dans K/k (cf. [3]).

D'après les formules explicites pour le symbole de Hilbert, calculé dans

 $k(\sqrt{-3})$ ([2] p. 14), on a pour $\mathfrak{p}=pA_k$ ne divisant pas $3:(\gamma,u)_{\mathfrak{p}}\equiv c^{\frac{q-1}{3}} \mod \mathfrak{p}$ avec $q=p^2$ puisque p est inerte dans k/Q. D'après le lemme précédent p (donc p) est congru modulo p à un rationnel, et comme $\frac{p+1}{3}$ est entier, p0 est congru à 1 modulo p1. Si p1 divise 3, cela résulte alors de la formule du produit, compte tenu du fait que 3 n'est pas decomposé dans p1. Le rang du système linéaire associé à p2 est donc égal à p3. D'après [2] p. 41, on obtient $|\mathcal{H}_2(K)/\mathcal{H}_1(K)|=3^{t-a-1}$, d'où le théorème.

On retrouve ainsi les résultats de Kobayashi ([3]) qui a demontré ce théorème pour $k = \mathbf{Q}(\sqrt{-3})$ et $K = k(\sqrt[3]{m})$ avec des hypothèses sur m qui coïncident, dans ce cas, avec celles de notre énoncé.

§ 3. Exemple numérique.

On considère l'extension cubique non galoisienne $L = \mathbf{Q}(\sqrt[3]{2 \cdot 7 \cdot 13}) = \mathbf{Q}(\sqrt[3]{182})$ dont la clôture galoisienne est $K = \mathbf{Q}(\sqrt{-3}, \sqrt[3]{182})$.

Soit $k = \mathbf{Q}(\sqrt{-3})$; on vérifie facilement que 3 est ramifié dans K/k, que 2 est inerte dans k/\mathbf{Q} , 7 et 13 sont decomposés dans k/\mathbf{Q} et que si ζ_3 est une racine cubique de l'unité, primitive, alors $\zeta_3 \in k$ et n'est pas norme dans K/k.

Avec les notations des paragraphes I et II, on a t=6 et $\bar{t}=4$. On notera $\mathfrak{p}_2=2A_k$, $\mathfrak{p}_3=\sqrt{-3}\,A_k$, $\mathfrak{p}_7=(2+\sqrt{-3}\,)A_k$, $\mathfrak{p}_7^{\mathfrak{r}}=(2-\sqrt{-3}\,)A_k$, $\mathfrak{p}_{13}=(1+2\sqrt{-3}\,)A_k$ et $\mathfrak{p}_{13}^{\mathfrak{r}}=(1-2\sqrt{-3}\,)A_k$ les idéaux premiers de k ramifiés dans K/k.

a) Détermination de $\mathcal{H}_1(K)$.

D'après la formule de Chevalley (cf. [2] p. 25), on a $|\mathcal{A}_1(K)| = \frac{3^{t-1}}{(E_k : E_k \cap NK^*)} = 3^4$ et, d'après [2] p. 28, toute classe invariante est, ici, classe d'un idéal invariant (autrement dit $\delta = 0$); par conséquent, il existe deux relations indépendantes non triviales entre les classes des six idéaux premiers de K ramifiés dans K/k: \mathfrak{P}_2 , \mathfrak{P}_3 , \mathfrak{P}_7 , \mathfrak{P}_7 , \mathfrak{P}_{13} et \mathfrak{P}_{13}^* . La première est donnée par $\sqrt[8]{2 \cdot 7 \cdot 13} A_K = \mathfrak{P}_2 \mathfrak{P}_7^{1+\tau} \mathfrak{P}_{13}^{1+\tau}$; la seconde s'obtient à partir d'une unité du corps (via le théorème 90 de Hilbert): On trouve que $\eta = -17 + 3\sqrt[8]{182}$ est une unité de K de norme relative 1. On a donc $\eta = \varphi^{\sigma-1}$ avec, par exemple, $\varphi = 1 + \eta + \eta \eta^{\sigma}$; on vérifie facilement que $\frac{\varphi}{3}$ est encore un entier et que sa norme relative est $N_{K/k} \left(\frac{\varphi}{3}\right) = -7 \cdot 13(8 + 3\sqrt{-3}) = -7 \cdot 13(2 - \sqrt{-3})(1 + 2\sqrt{-3})$; il en résulte que $\frac{\varphi}{3} A_K = \mathfrak{P}_7^{1+2\tau} \mathfrak{P}_{13}^{2+\tau}$. En utilisant les notations de la proposition 2, on a $\mathfrak{F} = \langle \mathfrak{P}_2, \mathfrak{P}_3, \mathfrak{P}_7, \mathfrak{P}_7, \mathfrak{P}_{13}, \mathfrak{P}_{13}^{\tau} \rangle$ et K et θ (qui est d'ordre 9) est engendré par les images de $\mathfrak{P}_2 \mathfrak{P}_7^{1+\tau} \mathfrak{P}_{13}^{1+\tau}$ et de $\mathfrak{P}_7^{1+2\tau} \mathfrak{P}_{13}^{2+\tau}$ dans $\mathfrak{F}/\mathfrak{F}_3$. On peut, par exemple, prendre pour F_3 -base de $\mathfrak{H}_1(K): \mathcal{C}l_K(\mathfrak{P}_2), \mathcal{C}l_K(\mathfrak{P}_3), \mathcal{C}l_K(\mathfrak{P}_7)$ et $\mathcal{C}l_K(\mathfrak{P}_7^\tau)$.

•684 G. GRAS

b) Calcul de $\rho(K)$.

On applique encore la méthode décrite dans [2]: le groupe Λ_1 associé à \Im_1 est de la forme $\Lambda_1 = \langle \zeta_3, 2, 3, \alpha, \alpha^r, \beta, \beta^r \rangle$ avec $\alpha = 2 + \sqrt{-3}$, $\alpha^r = 2 - \sqrt{-3}$, $\beta = 1 + 2\sqrt{-3}$, $\beta^r = 1 - 2\sqrt{-3}$; le calcul des symboles de Hilbert (182, u), $u \in \Lambda_1$, α idéal premier de α ramifié dans α conduit à la matrice (en notation additive):

chaque ligne étant formée des symboles $(182, \zeta_3)_{\mathfrak{p}}$, $(182, 2)_{\mathfrak{p}}$, $(182, 3)_{\mathfrak{p}}$, $(182, \alpha)_{\mathfrak{p}}$, $(182, \alpha^{\mathfrak{r}})_{\mathfrak{p}}$, $(182, \beta)_{\mathfrak{p}}$ et $(182, \beta^{\mathfrak{r}})_{\mathfrak{p}}$ où \mathfrak{p} parcourt l'ensemble $\{\mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_7, \mathfrak{p}_7^{\mathfrak{r}}, \mathfrak{p}_{18}, \mathfrak{p}_{18}^{\mathfrak{r}}\}$. Le rang de cette matrice est 4; les 3 solutions indépendantes du système sont, par exemple:

$$2\alpha\alpha^{\tau}\beta\beta^{\tau} = 182 \in NK^*$$
,
 $\alpha\alpha^{2\tau}\beta^{2}\beta^{\tau} = 7 \cdot 13(8 + 3\sqrt{-3}) \in NK^*$,
 $\beta\beta^{\tau} = 13 \in NK^*$;

les deux premières provenant des relations entre les "classes ambiges" trouvées plus haut.

On aura donc (cf. [2] p. 41): $|\mathcal{A}_2(K)/\mathcal{A}_1(K)|=3$ soit $|\mathcal{A}_2(K)|=3^5$; c'est-à-dire que le 3-rang de $\mathcal{A}(K)$ est égal à 5.

c) Détermination de $\rho(L)$, $\mathcal{H}(K)$ et $\mathcal{H}(L)$.

Déterminons d'abord $\mathcal{H}_2(K)$. Pour trouver un groupe \mathfrak{Z}_2 associé à $\mathcal{H}_2(K)$, il suffit de résoudre l'équation $N_{K/k}(x) = 13$, $x \in K^*$. On trouve que $x = 5 \cdot 13 + 9 \sqrt[8]{182} + 5(\sqrt[8]{182})^2$ a pour polynome irréductible

$$X^3 - 3 \cdot 5 \cdot 13X^2 - 3 \cdot 5 \cdot 13 \cdot 61X - 13 \cdot 61^3$$
:

on en déduit, compte tenu aussi du fait que $x \in L$, que $xA_K = \mathfrak{P}_{13}^{1+\tau}\mathfrak{P}_{61}^{(1+2\sigma)(1+\tau)}$, où \mathfrak{P}_{61} est un idéal premier au-dessus de 61 (61 étant totalement décomposé dans K/Q). Comme $\frac{x}{61}$ est de norme 13, on écrit $\frac{x}{61}A_K = \mathfrak{P}_{13}^{1+\tau}\mathfrak{A}^{\sigma-1}$ soit, ici, $\mathfrak{A} = \mathfrak{P}_{61}^{\sigma+\tau+\sigma\tau}$; d'où:

$$\mathfrak{J}_2 = \langle \mathfrak{P}_2, \mathfrak{P}_3, \mathfrak{P}_7, \mathfrak{P}_7^{\tau}, \mathfrak{P}_{13}, \mathfrak{P}_{13}^{\tau}, \mathfrak{P}_{61}^{\sigma+\tau+\sigma\tau}, \cdots \rangle$$

٠et

$$\Lambda_2 = \langle \zeta_3, 2, 3, \alpha, \alpha^{\tau}, \beta, \beta^{\tau}, 61 \frac{1+9\sqrt{-3}}{2} \rangle$$
.

En fait $\mathcal{A}_2(K)$ admet, par exemple, pour base:

$$\{\mathcal{C}l_K(\mathfrak{P}_2), \mathcal{C}l_K(\mathfrak{P}_3), \mathcal{C}l_K(\mathfrak{P}_7), \mathcal{C}l_K(\mathfrak{P}_7^1), \mathcal{C}l_K(\mathfrak{P}_{61}^{\sigma+\tau+\sigma\tau})\}$$
.

La détérmination de $\mathcal{H}_2(L)$ est immédiate: on a $\mathcal{H}_2(L) = \mathcal{H}_2(K)^{1+\tau}$, soit:

$$\begin{split} \mathcal{H}_2(L) &= \langle \mathcal{C}l_K(\mathfrak{P}_2^{1+\tau}),\, \mathcal{C}l_K(\mathfrak{P}_3^{1+\tau}),\, \mathcal{C}l_K(\mathfrak{P}_7^{1+\tau}),\, \mathcal{C}l_K(\mathfrak{P}_{61}^{(\sigma+\tau+\sigma\tau)(1+\tau)}) \rangle \\ &= \langle \mathcal{C}l_K(\mathfrak{P}_2),\, \mathcal{C}l_K(\mathfrak{P}_3),\, \mathcal{C}l_K(\mathfrak{P}_7^{1+\tau}) \rangle \ \text{car} \ \mathfrak{P}_{61}^{(\sigma+\tau+\sigma\tau)(1+\tau)} {\sim} \mathfrak{P}_{13}^{1+\tau} \,. \end{split}$$

Les trois classes engendrant $\mathcal{H}_2(L)$ sont indépendantes, d'où $\rho(L) = 3$.

Enfin, le calcul des symboles $(182, 61 \frac{1+9\sqrt{-3}}{2})_p$ montre que la matrice

associée à Λ_2 se déduit de la précédente en rajoutant la colonne $\begin{pmatrix} 1\\0\\2\\2\\2\\2\end{pmatrix}$ ce qui

fait que le rang de cette nouvelle matrice est 5, donc que $|\mathcal{H}_3(K)/\mathcal{H}_2(K)|=1$, soit $\mathcal{H}(K)=\mathcal{H}_2(K)\cong (\mathbf{Z}/3\mathbf{Z})^5$ et $\mathcal{H}(L)=\mathcal{H}_2(L)\cong (\mathbf{Z}/3\mathbf{Z})^3$.

Bibliographie

- [1] A. Fröhlich, The genus field and genus group in finite number fields, Mathematika, 6 (1959), 40-4 et Mathematika, 6 (1959), 142-146.
- [2] G. Gras, Sur les *l*-classes d'idéaux dans les extensions cycliques relatives de degré premier *l* (Thèse, Grenoble 1972), Ann. Inst. Fourier, 23, Fasc. 3 et 4.
- [3] S. Kobayashi, On the 3-rank of the ideal class groups of certain pure cubic fields, J. Fac. Sci. Univ. Tokyo Sec. IA, 20 (1973), 209-216.
- [4] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p (Thèse, Grenoble 1968), Ann. Inst. Fourier, 19 (1969), 1-80.

Georges GRAS

Institut de Mathématiques pures Laboratoire associé au C. N. R. S. n°188 Boîte postale n°116 38402 Saint-Martin-d'Hères France