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Introduction.

’

In the present paper we shall define a class S/%# of multiple symbol
as an extension of the class S of double symbol in our previous paper
[6], where #,=(m,, ---, m,) and %, =(mj, m}, ---, m,) are real vectors and
m;=0, 7=0,1,---,v. The multiple symbol has the form p(x°, &, »y=p(x° &',
x!, -+, &, x¥) and the associated pseudo-differential operator P=p(X°, Dz, X”)
is defined as the map P: 33— 3 by using oscillatory integrals developed in
Kumano-go and Kumano-go-Taniguchi [8], where 8 denotes the set of
C~>-functions with bounded derivatives of any order in R*. Then, the (single)
symbol o(P)(x, €) is given by a(P)(x, &) =e "¢ P (i),

We shall give a theorem which represents o(P)(x, &) by the oscillatory
integral of the multiple symbol p(x°, £”, %) and the asymptotic expansion
formula for o(P)(x, &) will be given. As an application we shall prove the
Calderdn-Vaillancourt theorem in (see also for the L%-continuity of
pseudo-differential operators of class S%s,5(0=0 <1) only by symbol calculus.
Another application is found in Tsutsumi [10], where our theorem is used
to construct the fundamental solution U(t) for a degenerate parabolic pseudo-
differential operator in the class S% s with a parameter &

We believe that our theorem will be useful when we try to solve operator-
valued integral equations with pseudo-differential operators as their kernels.

§1. Oscillatory integrals.

DEFINITION 1.1. We say that a C®-function p(7, y) in R3, belongs to a
class Afz for —co<m< oo, <1 and a sequence 7; 0=¢, S, < - =7 < -,
when for any multi-index «, 3 we have
(1L.1) 158 (1, YY1 = Coy g™ )7 181
for a constant C,s and set ;= \J U AF: where p§ =05Djp, Dy, =

cme =
—co{m<loo £

—10/0y;, 0n;=0/0n;, j=1, -+, n, =1+, (P =VI+1Inl* (cf. [7], [8D.
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DEFINITION 1.2. For a p(n, y) € A¥: we define the oscillatory integral by
(1.2) OsLe=™p(y, y)] = Os—ﬂe“'”‘”p(v, y)dydy

=lim j j e X (1, p(n, ¥)dydy ,

e—0

where dyp=(2x)""dy, y-np=y9:+ -+ +¥.0, and Xy, ) =A(en, ey), 0<e <1, for
a X< S (the class of rapidly decreasing functions) in R}, such that 2(0)=1
(cf. [4] for the general form).

Then, the following propositions are found in [7], [8].

ProrosITION 1.1. For a p= APz we choose positive integers I, I such that
—2(1—0)+m< —n, =247, < —n. Then, we can write OLe”¥7p(n, ¥)] as

(1.3) 0,Le-v7p]= [ [e= 973 = <D™ { Gy =KDy 0, y)}dydy,

and for ly=2(1+0") and a constant C we have |OLe"*¥7p]| <C|p|f™, where
[pli™ is a semi-norm defined by Iplfgn)zlgjgéloinf {Cap of (1.1)}.
PROPOSITION 1.2. Let {p.}ocec: be a bounded set of AF=z in the sense:
sup {|p.|i@} =My, 1,=0,1, 2, -+, for constants M,
: Suppose that there exists a pye AFz such that p(n, y)—po(n, ¥) as e—0
uniformly on any compact set of Ry, Then we have imO,[ e *¥7p,]=0,Le *¥"7p,].

e—0

PROPOSITION 1.3. For pe JA; we have O, e ¥ 7y*p1=0,[e ¥ 7D¢p] and
OLepfp]l=0,Le=*7DEp].

§2. Multiple symbols and theorems.

Let A(§) is a C™-function in R} such that for constants A, and A,
(2.1) 1S5 =AKE and [29(E)I= A (cf. [BD.

Let (x% #)=(x° x!, -+, x*) and &"=(£}, ---, £”) be a (v-+1)-tuple of points
x°, x! -+, x*< R* and a v-tuple of &% ---, &< RZ respectively. By (B, §*)=
B B -+, B and @& =(a’, -, a”) we denote a (v+1)-tuple of multi-indices
B B, -+, B’ in R® and a v-tuple of a', ---, a” of R" respectively.

DEFINITION 2.1. i) For 0<6=<p=1, 6<1, real vectors m,=(m,, Ry m,)
and 7, = (m}, ---, m,) (mj;=0,7=0, ---, v) we say that a C*-functions p(x°, &, £*)
=p(x°, €, x, -+, £, x¥) in R®*P" is a multiple symbol of class S7%¥, when
for any & and (8 £*) we have for a constant C=C(&", f°, f*)

22) |6 | S CAE ™22 LA™ A&+ 2 )ms +2 6
(EXJ-I-I — O) s

where pég.({)gn) = piorit eny = o DRDEp=0% --- 03D --- DEp. When 7, =0 we
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denote S}Tf’;,f% simply by ST, (cf. S of [13, [2D.
ii) The associated pseudo-differential operator P=p(X, Dz, X*)=p(X",
D, X%, -, D_,, X*) with symbol p(x°, &, #) is defined by

(23)  Pu(x)=0,—[[e¥p(x, & x4+, -, &, x+7u(x+5)d5dE* for ucs

where dy””dé”:dyldél N yv.év:‘yl.gl_jf_ ey Y )71:-‘3’1, e §”=y1+
+3*. In case v=1 we often write P=p(X, D,, X’) as in [6]

REMARK 1°. For p= S P we define semi-norms |p|{#™, [ I'=0,1, -,
by

(2.4) || =  max  inf {C=C@, B §) of (2.2)}.

iad it 197 s

Then S{%% makes a Fréchet space.

2°. For Pj:pj(X, Da:’ X,) & SZ%.B, j:ly =0, v, set p(xo’ gv’ %v):p1<x0, Sla xl)
e p(x¥7Y £%, x¥). Then p(x° €%, #)e S™ 5 for M, =(m,, -, m,) and we have
(2.5) P, - Pau(x)=p(X°, D3, X*)u(x).
In fact, take X.(&, 7*) =X(c&, ey?) - X(e&”, ey*) for X(§, x) €S in R¥, such that
X(0, 0)=1, and set

pjﬁ(-x, Sy x’):pj(x, 8’ x')x(ﬁﬁ E(X/'—x)) ’ J:ly R

Then by the change of variables x+3'=2 -+, x+5"=2" in (2.3) we have

(2.6) p(x*, Dy, BYu(D=lim [ - [ T (" 757p, (2772, &, 2 yu(e”)d2dE>
g—oo i=1
(2°=x),

and have

ﬁei(”_l'zj)'fjpj,s(zj'l, &', Z(27)dzds’ —> (p(X, Dy, X' W)(27)
in $ for veS. So we have [2.5).

3°. For P=p(X, D,)= ST, s we have

(2.7) p(x, &) = e ' P(eH),
since

e—ir.EP(ei.r-E) — e—ix-fos[e—iy-ﬁp(_x’ 77>ei(20+1/).$]

=0,Le" 7 p(x, )] =0, [ [e-7p(x, E+7)dydy=p(x, ).

The following lemma is fundamental in the present paper.
LEMMA A. For a symbol p(x° &, %)eS™E define a single symbol
qﬂ(xy S, x,)y Iai é 1, by
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(28) 9o, &, 1) =0,— [ [P 1p(x, £407", 345"
L B T £ ) dP

Then there exists a constant C>0, depending on M:yi(lmﬂ—{—lné N+mgy but
Jj=1
independent of v, such that

(2.9) lga(x, & x')| < C| pl T gym+m™  (|9|<1),
where ,=m,+ --- +m,, W, =my+mi+ - +m,, and
(2.10) [=2[n/2+1], I'=2[(n+M)/(20—0)+1].

Proof will be given in §3.

THEOREM 2.1. For P=p(X°, D3, X*) & SEf, set

9(x, & x) (=aqux, & 1) of (2.8))
(2.11)

=0, [[er P70 plx, g, 53, e, ™, 2T &, 2N d AT

Then we have

(2.12) P=q(X, D, X)) and q(x & )= SPF™.
Furthermore, for any [, I’ there exists a constant C such that
(2.13) g™ < Co pl T

where

l,=1+2[n/2+17,
(2.14) {

o=U+2[(n+ Z(im |+ mj 1) +my+pl+6l")/(2(1—0)+1].

PROOF. As we got (2.6), by the change of variables x'=x4+37"=x-+3""14y*,
E=¢, pi=8&—£ j=1,-,v—1, we have

Pu(x)_ IELIE j‘j‘ ir— z)g{j‘je—iﬂv—l-fwlxs(é_*_771, x_}_J-}l' . S_}_vv—l, x+3—}v-1

& X' —x—FYP(x, E4, o, xHF & XA ) do g,
and using [Proposition 1.2l we get P=¢q(X, D,, X’). Since

qgg?ﬂ’)(x! év x,)
:Os_yjle_igv-l'iy-l'a? DﬁDﬁlp(x, E+7]1, .-, x_l_j-)u—l’ E, x/)dﬁ”_ldﬁ”"l ,

we have by Lemma A [2.13) and g = STs5™. Q.E.D.
THEOREM 2.2. Let P;=pi(X, D,. XY= Si}s j=1,--,v. Then,Q=P, - P,
ES}T,LZ.B and for any [, I’ there exists a constant C=C(, ') such that
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(2.15) |01 =C 1T 1615,

where 1y, [; is defined by (2.14).

Proof is clear from [Theorem 2.1l

THEOREM 2.3 (CalderOn-Vaillancourt [3]). Let P=p(X, D,, X")& S0,
(0=0<1). Then there exists a constant C such that

(2.16) [Pull e = Clpliilluli. for ues,
where 1,=2[n/2-+17, 1,=2[n/(2(1—4))+1].

PrROOF. 1) For P,=p(X, D,, X') <S5 we first assume that p,(x, & x")
=0 for |x|+]&|+|x'|= R (>0). Then setting K,(x, x’):j.e“"“”')“fpo(x, g, x"dE
we have Pu(x)=[Ky(x x)u(x)dx’, and |K,(x, ¥)| Cglpo| for Cp=the

volume of {|&|=<R}. So, noting K,(x, x)=0 for |x|+|x'|= R, we have

(217) [Poulle = ChIpolthllull 2 for unes.

II) Consider Q,=P*P .. P*P for y=2', [=1,2, . Then we have |P|”
=1Q.ll. Note that ¢(Q,)(x, & x)=0 for |x|+|&|+|x'|=R if p(x & x)=0
for |x|+|€]+|x'|= R, and that o(P*)(x, & x)=p(x, &, x). Then we get by
(2.17) and

IP” = Q.1 = C&l (@) 18 = CRC* (1 b liT)”

and by letting v—oco we get [2.16). For the general P=p(X, D,, X)= S%0.s
we have Pu=lim Pu in L* for uec S, if we set a(P.)(x, &, x')=X(ex, €€, ex’)

&—0

plx, &, x") for X(x, &, x)=Cy in {| x| +|§]+|x"| <1} such that X(0)=1. Hence,
noting ¢(P)=0 for |x|+|&|+|x'|=e' we get for the general case.
Q.E.D.
THEOREM 24. For P=p(X°, Dsv, X*) = SFsf set

(218> bar—1 (JC, g, x/):p(al,---,ay—l,o) 1 e w—1 (x, & , % &, xl) ’
1+ Tay ,0)

(0.a} a}+a2, ~al_
which belongs to ST =01 yypere
@t=(a), e, 0, @ =t e et
a=af{+ - +ai; (=10, 0-0).

Then for any N there exists ry(x, & x') € SToiw'=w-ON oych that

(2.20) SN 2T p——

=1
iey—1 <N Wi i
o’ jil(\a{ l... aﬁ—j l)

(2.19)

p&vﬁl (x’ S, xl)

+rylx, & x7) (cf. the expansion form in [9)).
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Proor. We take Taylor’s expansion for p(x, £+»!, .-+, x+5°71, & x/) with
respect to 7. Then by [Proposition 1.3 and Lemma A we get easily [(2.20).

§3. Proof of Lemma A.

For n,=[n/2+1] we first write by integration by parts
L~ - v—1 .
(L) aolx & ) =0,= [[er T L (U (— Ay (AE+07)70%)
yv—1 i . . 3
X H1 (L+AE+O 972 mo8 |y 2P0yt p(x, EO7, -, x+5770, &, x)dF* A7
J:

Then by the change of variables: (¥!, -+, y*")— (3!, ---, 7*°') such that ¥'=
yl e JUl=y14 ... 49"~ and by integration by parts we have for 0=k;=k,
(p?, p*H S U/2

(3:2) ol & )= [ [eEF = (A pi—gret] 240
X T (= dy)binas, & x5 7778, - 0df ™ (=0),
where
(3.3 o & 3 77 5 = T (L (— 4, (G407
X T (L 20727700 | 71— 00)pl, §4-07, -+, x4, &, )

(7°=0).
Noting that

[ 24077y 37— g71 20y 1dyr < €A +O77) ™
we have for a constant C=C(, [’
B4)  1g0x & )| S pl ™ @y G+ G
X T (1! =003 |2 G072 UG+ 0)+ KE-+ 077 ) ) =

(7¥=0).
We have from

(3.5) AE+0771) /2= 2(E+077) = 22(E+077)

for |7/—ni*| < e, A(E+097FY),
and

(3.6) AE+O) S Colpi =™ for |9/—9/*' Z ¢, A(E+077D)
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for a small constant ¢,>0 and a large constant C,>0.

Set 2= {77; 19— 77| < ¢ AE+077 ), Q=117 ; cAE+O7 < i — P
S A E+HONY and 2, ,={n7; |pI—9/*| = ¢, A(E+O%)}, and set k;=0 for
e;, and =1'/2 for p’e2,,UR2;,. Then we can prove by induction

BN A= a0y T (1ni— g i+ 0y

X (HE+077)+ A(E+077+ )"+ 245%) dp?
= COMAEHO YT, (y=1,2, -, v—1)

for a large constant C, independent of j, and ». To get we have only
to prove that

[imto—piors|24io2(E -+ ooy hsg e =2

X (AE 40770+ A(E + O o)™ 15+ 2k1e%} dpio < C,A(E+O7 0 ) ig* ™ iy,

which can be done by dividing the integrand into three parts £2;,,, £;,. and
2;,, and using and [3.6). Here we use the condition to obtain

AE+OH0) ™10+ ™ 10170 < C A6+ 0+ )T+t
'—l/(l“5)+n+(m]o>+ g mjoy jo = ]-y B ))—'1, <7leo)+ =max (O’ mio) *

Finally setting j,=v—1 in [3.7) we get from (3.4). Q.E.D.

References

[17] R. Beals and C. Fefferman, Spatially inhomogeneous pseudodifferential opera-
tors, I, Comm. Pure Appl. Math., 27 (1974), 1-27.

[2] R. Beals, Spatially inhomogeneous pseudodifferential operators, II, Comm. Pure
Appl. Math., 27 (1974), 161-205.

[3] A.P. Calderén and R. Vaillancourt, A class of bounded pseudo-differential
operators, Proc. Nat. Acad. Sci. U.S. A., 69 (1972), 1185-1187.

[4] L. Hérmander, Fourier integral operators, I, Acta Math., 127 (1971), 79-183.

[5] H. Kumano-go, Pseudo-differential operators and the uniqueness of the Cauchy
problem, Comm. Pure Appl. Math., 22 (1969), 73-129.

[6] H. Kumano-go, Algebras of pseudo-differential operators, J. Fac. Sci. Univ.
Tokyo Sect. IA, 1T (1970), 31-51.

[7]1 H. Kumano-go, Oscillatory integrals of symbols of pseudo-differential operators
and the local solvability theorem of Nirenberg and Tréves, Katata Simposium
on Partial Differential Equation, 1972, 166-191.

[8] H. Kumano-go and K. Taniguchi, Oscillatory integrals of symbols of pseudo-
differential operators on R™ and operators of Fredholm type, Proc. Japan Acad.,
49 (1973), 397-402.

[9] M. Nagase and K. Shinkai, Complex powers of non-elliptic operators, Proc.
Japan Acad., (1970), 779-783.



120 H. KumaNo-Go

[10] C. Tsutsumi, The fundamental solution for a degenerate parabolic pseudo-
differential operator, Proc. Japan Acad., 49 (1974), 11-15.

[11] K. Watanabe, On the boundedness of pseudo-differential operators of type p, ¢
with 0=p=4d<1, T6hoku Math. J., 25 (1973), 339-345.

Hitoshi KUMANG-GO

Department of Mathematics
Faculty of Science

Osaka University
Toyonaka, Osaka

Japan




	Introduction.
	\S 1. Oscillatory integrals.
	\S 2. Multiple symbols ...
	THEOREM 2.1. ...
	THEOREM 2.2. ...
	THEOREM 2.3 ...
	THEOREM 2.4. ...

	\S 3. Proof of Lemma A.
	References

