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Introduction.

In this paper we shall study certain families of foliations with structures
defined below. Our purpose is to prove a vanishing theorem for their charac-
teristic classes.

Let $M$ be a smooth n-manifold and $TM$ its tangent bundle. Let $E$ be an
integrable smooth $(n-q)$ -subbundle of $TM$. A foliated structure is then given
on $M$ by a system of local integrals $\mathcal{F}=\{f_{\lambda}\}$ of $E$ , which satisfies the atlas
condition: for each pair of local submersions $f_{\lambda}$ : $U_{\lambda}\rightarrow R^{q}$ and $f_{\mu}$ : $U_{\mu}\rightarrow R^{q}$ , and
for each $x\in U_{\lambda}\cap U_{\mu}$ , there exists a local diffeomorphism $\gamma_{\mu\lambda}^{x}$ with $f_{\mu}=\gamma_{\mu\lambda}^{x}\circ f_{\lambda}$ in
some neighborhood of $x$. $\mathcal{F}$ is called a G-foliation if we can take the $\{\gamma_{\mu\lambda}^{x}\}$ as
local automorphisms of some G-structure. The principal object of this paper
is a study of G-foliations associated with second order G-structures. Among
those structures the conformal or projective ones have been known to be the
most significant (cf. Ochiai [19]).

Our main theorem is stated as follows:
MAIN THEOREM. Let $\mathcal{F}$ be a conformal (resp. projective) foliation of codi-

mension $q$ on a smooth manifold $M$ (see \S 1 for the precise definition). SuPpose
$q\geqq 3$ (resp. $q\geqq 2$). Then for the normal bundle $\nu=TM/E$ of $\mathcal{F}$ , we have

$(^{*})$ Pont $(\nu;R)=0$ for $k>q$ ,

where Pont $(\nu;R)$ contained in $H^{k}(M;R)$ is the k-th homogeneous part of the
Pontrjagin ring generated by the real Pontrjagin classes of $\nu$ .

Note that each riemannian foliation (see \S 1) may be regarded as a con-
formal as well as a projective one. In the course of the proof of the Main
Theorem, it can be seen that $(^{*})$ holds for every riemannian foliation (cf. \S 4).
This is a theorem of Pasternack [21]. A riemannian foliation is a G-foliation
associated with the riemannian structure, a first order G-structure, and is
nothing but a foliation with bundle-like metric in the sense of Reinhart [23].

Our theorem may be illustrated as follows. As is well-known, smooth
fibre bundles serve as trivial examples of foliations. It is not difficult to verify
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that this foliation is riemannian and $(^{*})$ holds trivially. Then our result says
that as far as the vanishing of real Pontrjagin classes is concerned, rieman-
nian, conformal and projective foliations are similar $\mathfrak{t}q$ those induced by smooth
fibre bundles. However, the phenomena change considerably in the exotic
characteristic classes defined by Bott-Haefliger [7] (see the Introduction of
Bott [4]). That is, every exotic characteristic class for riemannian foliations
is trivial (cf. \S 4), while conformal or projective foliations have examples with
non-trivial ones. Indeed consider a horocyclic foliation of the geodesic flow on
the unit tangent bundle of a compact riemannian manifold of constant nega-
tive curvature (see \S 1, Example 2). It is a typical example which is conformal
and has non-trivial exotic characteristic classes (Godbillon-Vey [11], Yamato
[28]). This was also noticed by Roussarie and Thurston.

With the aid of our vanishing theorem, we can investigate the relation
between the Pontrjagin numbers of the virtual normal bundle and the behavior
near singularities of conformal or projective foliations. Similar problems can
be seen in Baum-Bott [1] and Obata [18]. We will take up this problem on
another occasion.

This paper is divided into four sections with the following titles:
1. Definitions and examples
2. Cartan connections on the normal bundle
3. Pontrjagin ring of the normal bundle
4. Final miscellany
The manifolds under consideration are always smooth of class $C^{\infty}$ and

paracompact. For the basic knowledge of characteristic classes and of the
Chern-Weil theory, see Borel-Hirzebruch [3], Bott [6], Kobayashi-Nomizu [16,

vol. II]. For general background material on foliations, see Haefliger [12].

Lawson [17], Reeb [22].

\S 1. Definitions and examples.

We will begin with the precise definition of folitions considered in this
paper in the way relevant to our purpose.

DEFINITION 1.1. Let $M$ be a smooth n-manifold. On $M$ a riemannian
(resp. conformal, Projective) foliation of codimension $q\mathcal{F}=\{B, U_{\lambda}, f_{\lambda}, \gamma_{\mu\lambda}^{x}\}$ is
given by the following data:

(1) An auxiliary (not necessarily connected) riemannian q-manifold $B^{*)}$ .
(2) An open covering $\{U_{\lambda}\}_{\lambda\in\Lambda}$ of $M$ for some index set $\Lambda$ and for each $\lambda$

a smooth submersion $f_{\lambda}$ : $U_{\lambda}\rightarrow B$ called a distinguished mapping.

$*)$ In the case of projective foliation, we may only assume that $B$ is a smooth
manifold with a projective structure.
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(3) For $x\in U_{\lambda}\cap U_{\mu}$ there is a local isometry (resp. conformal transforma-
tion, projective transformation) $\gamma_{\mu\lambda}^{x}$ from a neighborhood of $f_{\lambda}(x)$ onto a neigh-
borhood of $f_{\mu}(x)$ satisfying $f_{\mu}=\gamma_{\mu\lambda^{\circ}}^{x}f_{\lambda}$ on a neighborhood of $x$.

Notice that if we drop the condition that $B$ is riemannian and require the
$t\gamma_{\mu\lambda}^{x}\}$ only to be local diffeomorphisms of $B$ , then we recover a definition of
ordinary foliations (see, for example, [12]).

Given a riemannian, conformal or Projective foliation $\mathcal{F}$ on $M$, let $E$ be
the subbundle of the tangent bundle $TM$ of $M$ satisfying $E_{x}=Ker(df_{\lambda}|_{x})$ for
$x\in U_{\lambda}$ . Then $E$ is tangent to the leaves of $\mathcal{F}$ and the quotient bundle $\nu=TM/E$

is referred to as the normal bundle of $\mathcal{F}$ . $E$ is integrable, that is, its space
of (local) smooth sections is closed under the bracket operation.

Before proceeding let us examine some examples of these foliations.
EXAMPLE 1 (Riemannian foliations). It should be noted that riemannian

foliations are nothing but foliations with bundle-like metrics in the sense of
Reinhart [23]. Smooth fibre bundles are primary examples of riemannian
foliations. One of the distinctive properties of riemannian foliations is that
these occur frequently from compact Lie group actions. In fact a Lie group
acting by isometries on a riemannian n-manifold $M$ having all orbits of dimen-
sion $n-q$ generates a riemannian foliation of codimension $q$ on $M$ (cf. Paster-
nack [21], Reinhart [23]). A locally free action of a compact Lie group is of
this sort.

There are many other examples of riemannian foliations [23], although
riemannian ones place severe restrictions on themselves. For instance a rie-
mannian foliation of codimension one has a strong stability [23], which the
Reeb foliation of $S^{3}$ fails to satisfy.

EXAMPLE 2 (Conformal foliations). Let

$L=O(q+1,1)/\{\pm identity\}$

$\cong\{X\in GL(q+2;R);{}^{t}XSX=S\}/\{\pm identity\}$ , where

$S=(-100$ $00I_{n}$ $-0J^{1}$

$L_{0}=\{\left(\begin{array}{lll}a & 0 & 0\\* & A & 0\\* & * & a^{-1}\end{array}\right)\in O(q+1,1);A\in O(q),$ $a\in R^{*\}}/\{\pm identity\}$ .

Define subgroups $K\subset H\subset G$ of the Lie group $L$ respectively by

$G=$ the identity component of $L$ ,
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$H=L_{0\cap}G$ ,

$K=\{\left(\begin{array}{lll}1 & 0 & 0\\0 & A & 0\\0 & 0 & 1\end{array}\right);A\in SO(q)\}$ .

Then a conformal foliation of codimension $q$ is constructed as follows (see

Yamato [28], also Tomter [27]). $G/K$ is an open orientable $(2q+1)$ -manifold,
and $G/H$ is a q-manifold. Note that the manifold $B=G/H$ is diffeomorphic to
the unit q-sphere $S^{q}$ in $R^{q+1}$ , and each element of $L$ acts on $B$ as a conformal
transformation with respect to the riemannian structure naturally induced
from $S^{q}$ (see, for example, Kobayashi [14], Obata [18]). Set $\tilde{M}=G/K$. $\tilde{M}$ is
foliated by the fibres of the fibre bundle $\pi;\tilde{M}=G/K\rightarrow B=G/H$. We denote
this foliation by $\tilde{\mathcal{F}}$ . It is clear that $\tilde{\mathcal{F}}$ is a G-invariant foliation of codimension
$q$ on $\tilde{M}$. By a theorem of Borel [2], $G$ admits a discrete subgroup $D$ such
that the quotient space $M=D\backslash \tilde{M}$ is a closed orientable $(2q+1)$ -manifold and
the natural projection $p;\tilde{M}\rightarrow M$ is a covering mapping of $M$ with $D$ as the
group of covering transformations. In fact, since $G$ is connected and semi-
simple, $G$ has a discrete uniform subgroup $D^{\prime}$ and $D^{\prime}$ has a proper, normal
torsionfree subgroup of finite index $D$ . Since the foliation $\tilde{\mathcal{F}}$ is G-invariant,
$M$ has a codimension $q$ foliation $\mathcal{F}$ induced naturally from $\tilde{\mathcal{F}}$ . $\mathcal{F}$ is a desired
conformal foliation of codimension $q$ on $M$. To prove this we have only to
recall that each element of $D$ is a conformal transformation on $B$ . In fact a
system of local submersions $f_{\lambda}$ : $U,\rightarrow B$ can be defined in a way that each $U_{\lambda}$

is an open neighborhood of $M$ evenly covered by $p;\tilde{M}\rightarrow M$ and each $f_{\lambda}$ is a
composition mapping $\pi\circ p^{-1}$ which is determined up to $D$ . Then each $\gamma_{\mu\lambda}^{x}$

with $f_{\mu}=\gamma_{\mu\lambda^{\circ}}^{x}f_{\lambda}$ is an element of $D$ .
The importance of this example is two-fold. First, Yamato [28] proved

that for each integer $q\geqq 1$ all the exotic characteristic classes for this foliation
of codimension $q$ which correspond to the canonical generators of $H^{2q+1}(WO_{q})$

are non-zero in $H^{2q+1}(M;C)$ (see also Fuks [10], Haefliger [13]). Second,
this foliation may be regarded as a horocyclic foliation of the geodesic flow
on the unit tangent bundle of a compact riemannian $(q+1)$ -manifold of con-
stant negative curvature $[27, 28]^{*)}$

EXAMPLE 3 (Projective foliations). By a slight modification of the proce-
dure of Example 2 we can give a family of projective foliations. Let

$*)$ The horocyclic foliation is the integration of the distribution given by the
geodesic flow vector and the stable vectors.



On characteristic classes of folialions 227

$L=PGL(q-\vdash 1;R)$

$=GL(q+1;R)/center$ ,

$L_{0}=\{$ $\left(\begin{array}{ll}A & 0\\* & a\end{array}\right)\in GL(q+1;R);A\in GL(q;R),$ $a\in R^{*\}}/center$ .

Define subgroups $K\subset H\subset G$ of $L$ by

$G=the$ identity component of $L$ ,

$H=L_{0\cap}G$ ,

$K=\{$ $\left(\begin{array}{ll}A & 0\\0 & 1\end{array}\right);A\in SO(q)\}$ .

Then the manifold $\tilde{M}=G/K$ has a G-invariant foliation $\tilde{\mathcal{F}}$ whose leaves are the
fibres of the fibre bundle $\tilde{M}=G/K\rightarrow G/H$. Notice that the manifold $B=G/H$

is diffeomorphic to a real projective q-space $RP^{q}$ and each element of $L$

operates on $B$ as a projective transformation with respect to the riemannian
structure induced naturally from $RP^{q}[14]$ . Let $D$ be a discrete subgroup of
$G$ such that $M=D\backslash \tilde{M}$ is a closed manifold [2]. Then a projective foliation $\mathcal{F}$

of codimension $q$ on $M$ is induced naturally from $\tilde{\mathcal{F}}$ .
Another simple construction of a family of projective foliations can be

obtained as a generalization of Roussarie’s example $[6, 11]$ . These are folia-
tions on $\Gamma\backslash SL(q+1;R)$ , where $\Gamma$ is a discrete uniform subgroup[2]. The
foliation is naturally induced from the fibering $G\rightarrow G/H$.

The above two families of foliations also provide examples of foliations
with non-trivial exotic characteristic classes (see [10, 13]).

REMARK 1.2. It is obvious that every riemannian foliation is a conformal
one as well as a projective one. However, as will be seen in \S 4, the converse
is generally not true. In fact those foliations described in Example2 and 3
do not admit any structure of a riemannian foliation.

Finally note a rather trivial fact that every smooth foliation of codimen-
sion one may be regarded as a conformal as well as a projective foliation. But
we do not know how this helps the study of codimension one foliations.

\S 2. Cartan connections on the normal bundle.

The goal of this section is roughly speaking to introduce Cartan connec-
tions on the normal bundles of the foliations under consideration. Since the
theory of Cartan connections seems not so familiar as that of linear connections,
the exposition of this section is more self-contained than is usually expected.
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For the complete development, see Kobayashi [14], Kobayashi-Nagano [15],
Ogiue [20]. A slightly different aPproach can be found in Tanaka $[24, 25]$ .

For our purpose we construct bundles of higher order contact, in parti-
cular, of second order contact. First some general concepts are recalled. Let
$N$ be a smooth n-manifold. Let $U$ and $V$ be neighborhoods of the origin $0$ in
$R^{m}$. Two mappings $f:U\rightarrow N$ and $g:V\rightarrow N$ such that $x=f(O)=g(O)$ give rise
to the same r-jet at $x$ if they have the same partial derivatives up to order $r$

at $0$ . The r-jet at $x$ given byfis denoted by $j_{x}^{r}(f)$ . If $f$ is a diffeomorphism
of a neighborhood of $0$ in $R^{n}$ onto an open subset of $N$, then the r-jet $j_{x}^{r}(f)$

at $x$ is called an r-frame at $x=f(O)$ . Clearly, a l-frame is an ordinary linear
frame.

Let $\mathcal{F}=\{B, U_{\lambda}, f_{\lambda}, \gamma_{\mu\lambda}^{x}\}$ be a conformal or projective foliation of codimen-
sion $q$ on a smooth n-manifold $M$. We first construct the bundle of r-frames
on $B$ . Define $G^{r}(q)$ by the set of r-frames $j_{0}^{r}(g)$ of $R^{q}$ at $0$ , where $g$ is a
diffeomorphism from a neighborhood of $0\in R^{q}$ onto a neighborhood of $0\in R^{q}$ .
Then $G^{r}(q)$ is a group with multiplication defined by

$j_{0}^{r}(g)\cdot j_{0}^{r}(g^{\prime})=j_{0}^{r}(g\circ g^{\prime})$ .
The set of r-frames of $B$ , denoted by $P^{r}(B)$ , is a principal bundle over $B$ with
projection $\pi,$ $\pi(j_{x}^{r}(f))=x=f(0)$ , and with group $G^{r}(q)$ , which acts on $P^{r}(B)$ on
the right by

$j_{x}^{r}(f)\cdot j_{0}^{r}(g)=j_{x}^{r}(f\circ g)$ for $j_{x}^{r}(f)\in P^{r}(B),$ $j_{0}^{r}(g)\in G^{r}(g)$ .
$P^{r}(B)$ is called the bundle of r-frames of $B$ . Note that $P^{1}(B)$ is nothing but
the bundle of linear frames of $B$ with group $G^{1}(q)=GL(q;R)$ . It is sufficient
for our purpose to consider only $P^{2}(B)$ and $P^{1}(B)$ .

Now we consider the foliated manifold $M$. We will define the bundle of
transversal r-frames of $M$. Let $U$ be a neighborhood of the origin $0$ in $R^{q}$

and $(x^{1}, \cdots , x^{q})$ the natural coordinate system in $R^{q}$ . Let $f:U\rightarrow M$ be a map-
ping transversal to the foliation $\mathcal{F}$ in the sense that for each $x\in U$ and for
each distinguished mapping $f_{\lambda}$ : $U_{\lambda}\rightarrow B$ with $y=f(x)\in U_{\lambda},$ $f_{\lambda}\circ f$ is a submersion.
Take a local coordinate system $(y^{1}, \cdots , y^{n- q}, y^{n- q+1}, \cdots , y^{n})$ of $M$ distinguished
by the $f_{\lambda}$ , that is, with respect to this coordinate system $f_{\lambda}$ is given by the
mapping

$(y^{1}, y^{n-q}, y^{n- q+1}, y^{n})\rightarrow(y^{n- q+1}, y^{n})$ .
Let $g:V\rightarrow M$ be a mapping transversal to $\mathcal{F}$ defined on a neighborhood $V$ of
$0$ in $R^{q}$ such that $g(O)=y=f(O)$ . Then the r-jets $u=j_{y}^{r}(f)$ and $v=j_{y}^{r}(g)$ at $y$

defined by $f$ and $g$ respectively are expressed as follows:

$u:y^{1}I\circ f(x)=u^{A}+\Sigma u_{J1}^{A}x^{j_{1}}+\cdots+\sum u_{j_{1}\cdots jr}^{A}x^{j_{1}}\cdots x^{Jr}$

(2.1)
$v:y^{A}\circ g(x)=v^{A}+\sum v_{J1}^{A}x^{j_{1}}+\cdots+\sum v_{J1j_{r}}^{A}x^{j_{1}}\cdots x^{Jr}$
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where $u_{j_{1}\cdots j_{k}}^{A}$ and $v_{j_{1}\cdots j_{k}}^{A}$ are symmetric with respect to $j_{1},$ $\cdots$ , $j_{k}$ and $1\leqq A\leqq n$ ,
$1\leqq j_{1},$ $j_{k},$ $j_{r}\leqq q$ .

DEFINITION 2.1. Two maPpings $f:U\rightarrow M$ and $g:V\rightarrow M$ such that $y=f(O)$

$=g(O)$ which are transversal to a codimension $q$ foliation $\mathcal{F}$ is said to define
the same transversal r-frame at $x$ if in the above expression (2.1) we have

$u^{A}=v^{A}$ , $u_{j_{1}j_{2}}^{a}=v_{j_{1}j_{2}}^{a}$ , $u_{J\cdots Jr}^{\alpha_{1}}=v_{j_{1}\cdots jr}^{a}$ ,

where $1\leqq A\leqq n,$ $n-q+1\leqq\alpha\leqq n$ and $1\leqq j_{1},$ $\cdots$ , $j_{r}\leqq q$ . The transversal r-frame
of $M$ dePned by $f$ at $y$ is written as $j_{y}^{\sim_{r}}(f)$ .

Notice that if $(y^{1}, y^{n-q}, y^{n- q+1}, \cdots , y^{n})$ and $(z^{1}, \cdots , z^{n- q}, z^{n- q+1}, \cdots , z^{n})$

are two distinguished local coordinate systems defined by local submersions
$f_{\lambda}$ : $U_{\lambda}\rightarrow B$ and $f_{\mu}$ : $U_{\mu}\rightarrow B$ respectively, then the functions giving the change of
coordinates

$z^{A}=z^{A}(y^{1}, y^{n})$ on $U_{\lambda}\cap U_{\mu}$

must satisfy the equations

$\partial z^{a}/\partial y^{a}=0$ for $1\leqq a\leqq n-q<\alpha\leqq n$

(see, for example, [17]). Thus the dePnition of a transversal r-frame is inde-
pendent of the choice of distinguished coordinate systems and hence is well-
defined.*)

The set of transversal r-frames on $M$, denoted by $P^{r}(\nu)$ , is a principal

bundle over $M$ with projection $\pi,$
$\pi(j_{y}^{r}(f))=y=f(0)\sim$ , and with group $G^{r}(q)$ .

Here $G^{r}(q)$ is the set of r-frames $j_{0}^{r}(g)$ of $R^{q}$ at $0$ , which acts on $P^{r}(\nu)$ on the
right by

$j_{y}^{\sim_{r}}(f)\cdot i_{0}^{r}(g)=j_{y}^{\sim_{r}}(f\circ g)$ for $j_{y}^{\sim_{r}}(f)\in P^{r}(\nu),$ $j_{0}^{r}(g)\in G^{r}(q)$ .
$P^{r}(\nu)$ is called the bundle of transversal r-frames on $M$. In particular $P^{1}(\nu)$

is regarded as the bundle of linear frames of the normal bundle $\nu$ of the folia-
tion $\mathcal{F}$ with group $G^{1}(q)=GL(q;R)$ .

From the construction it is almost obvious that we have the following
lemma, whose proof is routine.

LEMMA 2.2. Let $\mathcal{F}$ be a foliation as above. Then for each distinguished
maPping $f_{\lambda}$ : $U_{\lambda}\rightarrow B$

$P^{r}(\nu)|U_{\lambda}=f_{\lambda}^{-1}(P^{r}(B)|_{f_{\lambda}(U_{\lambda})})$

holds, where $f_{\overline{\lambda}^{1}}()$ denotes the bundle induced by $f_{\lambda}$ .
REMARK 2.3. It should be noticed that in the above construction the

assumption that a given foliation $\mathcal{F}$ is conformal or projective is irrelevant.

$*)$ By a coordinate free expression, $ j_{y}^{r}(f)\sim$ can be written as $j_{y}^{r}(f_{\lambda}of)$ . The well-
definedness follows directly from this expression.
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Indeed the construction of the above bundles can be done for any foliation,
and Lemma 2.2 is also true in that case.

From now on we are mainly interested in $P^{2}(\nu)$ and $P^{1}(\nu)$ .
Let $L$ and $L_{0}$ be as in Example 2 or 3 in \S 1. $L_{0}$ can be considered as a

subgroup of the group $G^{2}(q)$ defined above. The correspondence is given as
follows. Let $0$ denote the origin of the homogeneous space $L/L_{0}$ . We con-
sider each element $g$ of $L_{0}$ as a transformation of $L/L_{0}$ leaving $0$ fixed, and
thus as a diffeomorphism from a neighborhood of $0\in R^{q}$ onto a neighborhood of
$0\in R^{q}$ . It can be easily verified that $j_{0}^{2}(g)=identity$ if and only if $g=identity$ ,
that is, every element of $L_{0}$ is determined by its partial derivatives of order
1 or 2 at $0$ (cf. [15, 20]). Hence $L_{0}$ is isomorphic to the group of 2-jets
$\{j_{0}^{2}(g);g\in L_{0}\}$ . Identify $R^{q}$ with the subspace $V$ of the Lie algebra I of $L$

defined respectively by

$V=\{\left(\begin{array}{lll}0 & {}^{t}v & 0\\0 & 0 & v\\0 & 0 & 0\end{array}\right)\}$ in the case of Example 2,

$V=\{$ $\left(\begin{array}{ll}0 & v\\0 & 0\end{array}\right)\}$ in the case of Example 3.

Then the mapping
exp proj

$R^{q}=V\rightarrow L\rightarrow L/L_{0}$

gives a diffeomorphism from a neighborhood of $0\in R^{q}$ onto a neighborhood of
$o\in L/L_{0}$ , a local coordinate system around $0\in L/L_{0}$ . With respect to this co-
ordinate system, each 2-jet $j_{0}^{2}(g)$ is an element of the group $G^{2}(q)$ . Therefore
$L_{0}$ can be considered as a subgroup of $G^{2}(q)$ .

Then a conformal or projective structure is defined as follows.
DEFINITION 2.4. Let $N$ be a smooth q-manifold and $P^{2}(N)$ the bundle of

2-frames on $N$ with group $G^{2}(q)$ . A principal subbundle $P$ of $P^{2}(N)$ with
group $L_{0}\subset G^{2}(q)$ is called a conformal or projective structure on $N$ according as
whether $L_{0}$ is as in Example 2 or Example 3 in \S 1.

Let $P$ be a conformal or projective structure. We will introduce a con-
formal or projective connection on $P$ respectively. This can be done in a
unified manner from the viewpoint of Cartan connections.

Since $L_{0}$ acts on $P$ on the right, every element $A$ of the Lie algebra $I_{0}$ of
$L_{0}$ defines a vertical vector field on $P$, called the fundamental vector field cor-
responding to $A$ (see [16; vol. I]). This vector field will be denoted by $A^{*}$ .
For each element $a\in L_{0}$ , the right translation by $a$ acting on $P$ will be denoted
by $R_{a}$ .
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DEFINITION 2.5. A Cartan connection in the bundle $P$ is a l-form $\omega$ on $P$

with values in the Lie algebra I of $L$ satisfying the following conditions:
(a) $\omega(A^{*})=A$ for every $A\in I_{0}$ ,
(b) $(R_{a})^{*}\omega=ad(a^{-1})\omega$ for every $a\in L_{0}$ , where $ad(a^{-1})$ is the adjoint action

of $a^{-1}$ on I,
(c) $\omega(X)\neq 0$ for every non-zero vector $X$ of $P$.
Note that the condition (c) implies an absolute parallelizability of $P$. More-

over
REMARK 2.6. A Cartan connection in $P$ is not a connection in $P$ in the

usual sense, for $\omega$ is not $I_{0}$-valued (cf. [16; vol. I]). It can be however con-
sidered as a connection in a larger bundle $P^{L}$ obtained by enlarging the struc-
ture group of $P$ to $L$ , namely,

$P^{L}=P\times L_{0}L$ .

Then $P$ is a subbundle of $P^{L}$ and a Cartan connection in $P$ can be uniquely
extended to a usual connection form on $P^{L}$ , also denoted by $\omega$ . In fact, if $Y$

is a vector of $P^{L}$ , then $Y=R_{a*}(X)+Z$ where $X$ is a vector tangent to $P$ and
$a\in L$ and, consequently, $Z$ is a vector tangent to a Pbre of $P^{L}$ so that $Z$ can
be extended to a unique fundamental vector field $A^{*}$ of $P^{L}$ with $A\in I$ . We
then set

$\omega(Y)=ad(a^{-1})(\omega(X))+A$ .

It is an easy matter to verify that $\omega(Y)$ is well-dePned and is a connection
form on $P^{L}$ .

Then the following have been well-known [14, 15, 20].

PROPOSITION 2.7. Let $P$ be a conformal (resp. Projective) structure on a
smooth q-manifold. Suppose $q\geqq 3$ (resp. $q\geqq 2$). Then there is a unique Cartan
connection on $P$ called the normal conformal ( $resp$ normal projective) connection.

Since the precise definition of the normal conformal or normal projective
connection is not used in the subsequent discussion, we omit the description
but emphasize that their uniqueness is essential and implies the property (3)
of the following Proposition 2.8.

PROPOSITION 2.8. Let $N$ be a riemannian q-manifold and $f$ a (local) con-
formal ($resp$ . prOjective) transformation on N. Then

(1) $N$ has a conformal structure as well as a projective structure, each of
which is induced naturally from a riemannian structure of $N$.

(2) The isomorphism $f_{*}$ of the bundle $P^{2}(N)$ of 2-frames induced from $f$

preserves a conformal (resp. projective) structure $P$ on $N$ in (1).
(3) Assume that $q\geqq 3$ (resp. $q\geqq 2$), then $f^{*}$ (restricted to $P$ ) preserves the

normal conformal ($resp$ . normal projective) connection $\omega$ on $P$.
We are now in a position to prove the theorem fundamental to our proof
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of the Main Theorem.
THEOREM 2.9. Let $\mathcal{F}=\{B, f_{\lambda}, U_{\lambda}, \gamma_{u\lambda}^{x}\}$ be a conformal (resp. Projective)

foliation of codimension $q$ on a smooth n-manifold M. Suppose $q\geqq 3$ (resp.
$q\geqq 2)$ . Then the following hold.

(1) There is the normal conformal (resp. normal projective) connection $\omega$

on a natural conformal ($resP$ . projective) structure $P(B)$ of $B$ .
(2) There is induced a subbundle $P(\nu)$ of $P^{2}(\nu)$ of the transversal 2-frames

with group $L_{0}$ , which is lifted in the sense that for each distinguished mapping
$f_{\lambda}$ : $U_{\lambda}\rightarrow B$ we have

$P(\nu)|_{U_{\lambda}}=f_{\lambda}^{-1}(P(B)|_{f_{\lambda}(U_{\lambda})})$ ,

where $f_{\lambda}^{-1}()$ denotes the bundle induced by $f_{\lambda}$ .
(3) There is induced a Projectable connection form $\tilde{\omega}$ on the extended bundle

$P(\nu)^{L}=P(\nu)\times_{L_{0}}L$ , that is, for each distinguished maPping $f_{\lambda}$ : $U_{\lambda}\rightarrow B$ we have

$\tilde{\omega}=f_{\lambda}^{*}\omega$ ,

where $\omega$ is a connection form on the extended bundle $P(B)^{L}=P(B)\times_{L_{0}}L$ and is
obtained naturally from the normal conformal ( $resP$ . normal projective) connec-
tion on $P(B)$ in a way as in Remark 2.6, and $f_{\lambda}^{*}$ is the maPping from the
l-forms on $P(B)^{L}$ to that of $P(\nu)^{L}$ induced naturally from $f_{\lambda}$ .

PROOF. (1) Since $B$ is a riemannian q-manifold with $q$ sufficiently large,
this is a consequence of Proposition 2.8 (1) combined with Proposition 2.7.

(2) It is known in Lemma 2.2 that for each distinguished mapping $f_{\lambda}$ we
have

$P^{2}(\nu)|_{U_{\lambda}}=f_{\lambda}^{-1}(P^{2}(B)|_{f_{\lambda}(U_{\lambda})})$ .

Since $\mathcal{F}$ is a conformal (resp. projective) foliation, each $\gamma_{\mu\lambda}^{x}$ is a conformal
(resp. projective) transformation on $B$ . Thus the isomorphism $\gamma_{\mu\lambda*}^{x}$ induced
from $\gamma_{\mu\lambda}^{x}$ on $P^{2}(B)$ preserves a natural conformal (resp. projective) structure
$P(B)$ . Hence on $U_{\lambda}\cap U_{\mu}$

$f_{\mu}^{-1}(P(B)|_{f(U\cap U)}\mu)=f_{\lambda}^{-1}(\gamma_{\mu\lambda}^{x-1}(P(B)|_{f(U\cap U)}))$

$=f_{\lambda}^{-1}(P(B)|_{f_{\lambda}(U_{\lambda}\cap U\mu)})$

holds. From this it is not difficult to see that the pull back data $\{f_{\lambda}^{-1}(P(B)|_{f_{\lambda}(U_{\lambda)}})\}$

define a subbundle $P(\nu)$ of $P^{2}(\nu)$ with group $L_{0}$ .
(3) First we prove that the normal conformal (resp. normal projective)

connection $\omega$ on $P(B)$ can be lifted to a l-form $\tilde{\omega}$ on $P(\nu)$ . By virtue of Pro-
position 2.8 (3), each $\gamma_{\mu\lambda}^{x*}$ preserves $\omega$ , since $\gamma_{\alpha\lambda}^{x}$ is a local conformal (resp.
projective) transformation on $B$ . Then on $U_{\lambda}\cap U_{\mu}$ we see that

$f_{\mu^{*}}(\omega)=f_{\lambda}^{*}(\gamma_{\mu\lambda}^{x*}\omega)=f_{\lambda^{*}}(\omega)$ .
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Hence $\omega$ is pulled back to a l-form $\tilde{\omega}$ on $P(\nu)$ , and $\tilde{\omega}=f_{\lambda}^{*}\omega$ holds for each $f_{\lambda}$ .
Then we extend $\omega$ and tu to l-forms on $P(B)^{L}$ and $P(\nu)^{L}$ respectively in the
same way as in Remark 2.6, which are also denoted by $\omega$ and $\tilde{\omega}$ . We extend
the induced mappings $f_{\lambda*}$ and $f_{\lambda}^{*}$ naturally outside the subbundles $P(\nu)$ and
$P(B)$ of the corresponding bundles $P(\nu)^{L}$ and $P(B)^{L}$ . It is now obvious that
for each thus extended mapPing $f_{\lambda^{*}}$ we have

$\tilde{\omega}=f_{\lambda}^{*}\omega$ .
This completes the proof. Q. E. D.

\S 3. Pontrjagin ring of the normal bundle.

The aim of this section is to prove the Main Theorem stated in the intro-
duction. Our proof is based on the Chern-Weil construction of characteristic
classes from the curvature of a connection.

Let $G$ be a Lie group with finitely many components. We denote by $B_{G}$

the classifying space for $G$ . In the following only principal bundles with group
$G$ over a smooth manifold $M$ of fixed dimension $n$ are considered, so it can
be assumed that $B_{G}$ is the N-classifying space by taking $N$ large. For later
convenience we will always assume this for every $B_{G}$ under consideration.

Our first goal is to compare the real cohomology of $B_{L}$ with that of $B_{O(q+1)}$

or $B_{GL(q+1)}$ , where $L$ is as in Example 2 or 3 in \S 1. We treat the conformal
case and the projective case separately, for there are some differences between
them in the details.

(I) Conformal case
Let $\mathcal{F}$ be a conformal foliation of codimension $q$ on $M$ with normal bundle

$\nu$ . Let $L$ and $L_{0}$ be as in Example 2 in \S 1. Our first assertion is that there
are isomorphisms

$H^{*}(B_{o(q)} ; R)\cong H^{*}(B_{L_{0}} ; R)$ ,

$H^{*}(B_{O(q+1)} ; R)=H^{*}(B_{L} ; R)$ .

To see this, let $i:O(q)\rightarrow L_{0}$ and $j:O(q+1)\rightarrow O(q+1,1)$ be the natural injections.
Then we have fibrations and a bundle map such that the following diagram
is commutative.

Note that there are diffeomorphisms
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$L_{0}/O(q)\cong R^{q+1}$ $L/O(q+1)\cong R^{q+1}$ ,

which imply that $i$ and $i$ are homotopy equivalences, for $R^{q+1}$ is contractible.
Hence we have the homotopy equivalences

$i_{*}:$ $B_{o(q)}\cong B_{L_{0}}$ , $j_{*}:$ $B_{O(q+1)}\cong B_{L}$ ,

from which our first assertion follows.
Let $P(\nu)$ be the principal bundle defined in Theorem 2.9 (2) and $P(\nu)^{L}$ its

extended bundle $P(\nu)\times_{L_{0}}L$ . Let $f_{\nu}$ : $M\rightarrow B_{GL(q)},$ $f_{\nu\oplus 1}$ : $M\rightarrow B_{GL(q+1)},$ $f_{L_{0}}$ : $M\rightarrow B_{L_{0}}$

and $f_{L}$ : $M\rightarrow B_{L}$ be the classifying maps of the principal bundles $\nu,$
$\nu\oplus 1,$ $P(\nu)$

and $P(\nu)^{L}$ respectively. Then it follows from the construction of $P(\nu)^{L}$ (cf.

Tanaka [25]) that the following diagram is homotopy commutative

where the vertical arrows are homotopy equivalences and three horizontal
arrows on the right are mappings induced by the respective natural inclusions.*)

Our second assertion is as follows. For each Pontrjagin class $p_{i}(\nu)$ of $\nu$

in $H^{i}(M:R)$ , there exists an element $\tilde{p}_{i}$ in $H^{i}(B_{L} ; R)$ such that $f_{L}^{*}\tilde{p}_{i}$ coincides
with $p_{i}(\nu)$ . To prove this, recall that

$H^{*}(B_{GL(q+1)} ; R)\cong H^{*}(B_{O(q+1)} ; R)\cong H^{*}(B_{L} ; R)$ .
Then it is easy to find an element $\tilde{p}_{i}\in H^{*}(B_{L} ; R)$ with the property

$*)$ Without reference to the construction, the commutativity of the diagram can
be seen by the fact that $P(\nu)$ is a reduction of the bundle $P^{2}(\nu)$ and that $0(q)$ is a
deformation retract of $G^{2}(q)$ . There exists a unique reduction of $P^{2}(\nu)$ to an $O(q)$ .
principal bundle.
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$p_{i}(\nu)=P_{i}(\nu\oplus 1)=f_{\nu\oplus 1^{*}}\beta_{i}=f_{L}^{*}\beta_{i}$ ,

by virtue of the above diagram.
(II) Projective case
Let $\mathcal{F}$ be a projective foliation of codimension $q$ on $M$ with normal bundle

$\nu$ . Let $L$ and $L_{0}$ be as in Example 3 in \S 1. Then we have the following
commutative diagram

$i$

$PGL(q+1)GL(q)\rightarrow L_{0}\downarrow\downarrow--L\rightarrow L_{0}/GL(q)$

where $i:GL(q)\rightarrow L_{0}$ is the natural injection and the horizontal sequence is a
fibration. The space $L_{0}/GL(q)$ is diffeomorphic to $R^{q+1}$ and hence is con-
tractible. Therefore the homomorphism $i$ is a homotopy equivalence

$i:GL(q)\cong L_{0}$ ,

which then induces the homotopy equivalence

$i_{*}:$ $B_{GL(q)}\cong B_{L_{0}}$ .
Note that the center of $GL(q+1;R)$ is the subgroup defined by

$\{aI_{q+1} ; a\in R^{*}\}$ ,

where $R^{*}$ denotes the multiplicative group of non-zero reals. Since $R^{*}$ is
homotopy equivalent to $Z_{2}$ , the natural map

$B_{GL(q+1)}\rightarrow B_{PGL(q+1)}$

induces the following isomorphism in real cohomology

$H^{*}(B_{L} ; R)\cong H^{*}(B_{GL(q+1)} ; R)$ .

Consider the following diagram
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where $f_{\nu},$ $f_{v\oplus 1},$ $f_{L_{0}}$ and $f_{L}$ are classifying maps of the principal bundles $\nu,$
$\nu\oplus 1$ ,

$P(\nu)$ and $P(\nu)^{L}$ respectively as in Case (I). On account of the construction of
the principal bundle $P(\nu)^{L}$ defined in Theorem 2.9 (2) (cf. Tanaka [24]), the
diagram is homotopy commutative. Hence, for each Pontrjagin class $p_{l}(\nu)$ of
$\nu$ in $H^{i}(M;R)$ , there exists an element $\tilde{p}_{i}$ in $H^{i}(B_{L} ; R)$ with the property

$P_{i}(\nu)=P_{i}(\nu\oplus 1)=f_{\nu\oplus 1^{*}}p_{i}=f_{L}^{*}p_{i}$ .
Thus we have shown the following

PROPOSITION 3.1. Let $\mathcal{F}$ be a conformal or prOjective foliation on $M$ with
normal bundle $\nu$ . Let $P(\nu)^{L}$ be the Principal bundle defined in Theorem 2.9 (2)

and $f_{L}$ : $M\rightarrow B_{L}$ its classifying map. Then, for each Pontrjagin class $p_{i}(\nu)$ of $\nu$

in $H^{i}(M;R)$ , there exists an element $\beta_{i}$ in $H^{i}(B_{L} ; R)$ such that $p_{i}(\nu)$ coincides
with $f_{L}^{*p_{i}}$ .

Let Pont $(P(\nu)^{L} ; R)$ denote the i-dimensional homogeneous part of the
Pontrjagin ring of $P(\nu)^{L}$ generated by the elements $p_{j}(P(\nu)^{L})=f_{L^{*}}\beta_{j},$ $ p_{j}\in$

$H^{j}(B_{L} ; R)$ , for $j\leqq i$ . Then Proposition 3.1 claims that

(3.1) Pont $(\nu;R)\cong Pont^{i}(P(\nu)^{L} ; R)$ .

This is our second goal.
Before going into the proof of the Main Theorem, recall some basic facts

about the Chern-Weil theory. Let $I(L)$ be the set of $ad(L)$ -invariant sym-
metric multilinear mappings on the Lie algebra I of L. $I(L)$ is a commutative
graded algebra over $R$ , whose elements are called characteristic maps. $I(L)$

gives information about the real cohomology of $B_{L}$ . This is done by the (N-
universal) Chern-Weil homomorphism
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$w:I(L)\rightarrow H^{*}(B_{L} ; R)$ .
Ccnsider the following sequence

$w$ $i^{*}$

$I(L)\rightarrow H^{*}(B_{L} ; R)\rightarrow H^{*}(B_{o(q)} ; R)$

where $i^{*}$ is the induced mapping from the natural inclusion $i:O(q)\rightarrow L$ . Our
third assertion is that $i^{*}\circ w$ is a surjection. In fact, we have the following
diagram

where $r$ denotes the restriction mapping. First, notice that the square on the
right is commutative. This follows from standard properties of N-universal
connections (cf. Narasimhan and Ramanan [29]). It is well-known that the
Chern-Weil homomorphism

$w$ : $I(O(q))\rightarrow H^{*}(B_{O(q)} ; R)$

is an isomorphism. More precisely, the i-th real Pontrjagin class $p_{i}\in H^{4i}(B_{o(q)} ; R)$

is given by $w$ as
$p_{i}=w(P_{i})$ ,

where $P_{i}\in I(O(q))$ is the characteristic map defined by the formula

det $(\lambda I-(1/2\pi)A)=\sum_{k=0}^{[n/2]}P_{k}(A, \cdots, A)\lambda^{n-2k}+Q\overline{2k}$

$Q$ denoting the terms involving the $n$ –odd powers of $\lambda$ . It is now easy to
see that $P_{i}\in I(O(q))$ lies in the image $r(I(L))$ and $i^{*}\circ w$ is surjective.

Recall that from our previous discussion the triangle on the left in the
above diagram is commutative. The fundamental consequence of the Chern-
Weil theory is then summerized as follows:

PROPOSITION 3.2. For each element $p_{i}(\nu)\in Pont^{i}(\nu;R)$ , there exists a charac-
teristic map $\phi\in I(L)$ of degree $i/2$ such that

$p_{i}(\nu)=[\phi((1/2\pi)\tilde{\Omega})]$ ,

where $\tilde{\Omega}$ is the curvature form of a connection on $P(\nu)^{L}$ and $[\cdot]$ denotes cohomo-
logy class in $H^{*}(M;R)$ .

As the final goal, we will now prove our Main Theorem.
PROOF OF MAIN THEOREM.
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First recall the data of the theorem. $\mathcal{F}=\{B, U_{\lambda}, f_{\lambda}, \gamma_{\mu\lambda}^{x}\}$ is a conformal
(resp. projective) foliation of codimension $q\geqq 3$ (resp. $\geqq 2$) on $M$ with normal
bundle $\nu$ .

Let $\omega$ and $\tilde{\omega}$ be the connection forms on $P(B)^{L}$ and $P(\nu)^{L}$ respectively as
in (3) of Theorem 2.9. Recall that $\tilde{\omega}=f_{\lambda}^{*}\omega$ holds for each distinguished map-
ping $f_{\lambda}$ . Then we have by naturality of the exterior derivative

$\tilde{\Omega}=f_{\lambda}^{*}\Omega$ ,

where $f_{\lambda}^{*}$ is the natural induced maPping on 2-forms. Thus, for any charac-
teristic map $\phi\in I(L)$ and each $f_{\lambda}$

(3.2) $\phi((1/2\pi)\tilde{\Omega})|_{U_{\lambda}}=f_{\lambda}^{*}(\phi((1/2\pi)\Omega))$ .

Note here that $\phi((1/2\pi)\Omega)$ , and hence $\phi((1/2\pi)\tilde{\Omega})$ vanishes by (3.2), if the
degree of $\phi>q/2$ , since dim $B=q$ . Consequently, by virtue of Proposition 3.2,

Pont $(\nu;R)=0$ for $k>q$ .

This completes the proof. Q. E. D.

\S 4. Final miscellany.

1. Let $\mathcal{F}$ be a smooth codimension $q$ foliation with normal bundle $\nu$ .
Then the Bott vanishing theorem or integrability criterion [4, 5, 6] asserts
that

Pont $(\nu;R)=0$ for $k>2q$ .

It is recently known that this gives a sharp bound on dimensions. For details,
see Thurston [26].

2. Bott and Haefliger [7] constructed new computable characteristic
classes, called secondary or exotic, of foliations (see also Bott [6], Haefliger
[12]). We gave in \S 1 some examples of foliations with non-trivial such
characteristic classes. On the other hand, we have a theorem, which may
be well-known;

THEOREM 4.1. Let $\mathcal{F}$ be a riemannian foliation on a smooth manifold $M$.
Then every exotic characteristic class for $\mathcal{F}$ is trivial.

Before the proof, we will recall the Bott-Haefliger construction. For details,

see [6]. Consider the graded differential algebra over $R$

$WO_{q}=E(u_{1}, u_{3}, \cdots , u_{2[q/2]-1})\otimes R_{q}[c_{1}, \cdots , c_{q}]$

with $d(u_{i}\otimes 1)=c_{i}$ for odd $i$ and $d(1\otimes c_{i})=0$ for all $i$ (degree $u_{i}=2i-1$ , degree
$c_{i}=2i)$ , where $E$ denotes an exterior algebra and $R_{q}[c_{1}, \cdots , c_{q}]$ is the poly-
nomial algebra in the $c_{i}’ s$ modulo elements of total degree $>2q$ . Then, given
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a smooth codimension $q$ foliation $\mathcal{F}$ on $M$, there is a graded algebra homo-
morphism

$\lambda_{g}$ ; $WO_{q}-\Lambda^{*}(M)$

into the de Rham algebra on $M$, defined in terms of two connections, called
metric*) and basic**) respectively, on the normal bundle $\nu$ of $\mathcal{F}$ and unique up
to chain homotopy. Its key feature is that $\lambda_{f}$ restricted to $E(u_{1}, u_{3}, u_{2[q/2]-1})$

is a trivial mapping if two such connections are identical. The elements of
$\lambda_{\Xi}(H^{*}(WO_{q}))$ in $H^{*}(M;C)$ except the Pontrjagin classes of $\nu$ are called the
exotic characteristic classes for $\mathcal{F}$ .

It is now clear that to prove Theorem 4.1 it suffices to show the following
LEMMA 4.2. Let $\mathcal{F}=\{B, U_{\lambda}, f_{\lambda}, \gamma_{\mu\lambda}^{x}\}$ be a riemannian foliation of codimen-

sion $q$ on M. Then on the normal bundle $\nu$ of $\mathcal{F}$ we can choose a metric con-
nection $\omega_{0}$ and a basic connection $\omega_{1}$ in such a way that $\omega_{0}$ and $\omega_{1}$ are identical.

PROOF. Let $g$ and $\omega$ be a riemannian metric and a riemannian connection
on $B$ respectively. Since $g$ and $\omega$ are both invariant under local isometries on
$B$ , in particular under the $\gamma_{\mu\lambda}^{x}$ , it is easily seen that they are pulled back to a
metric on $\nu$ and a metric connection on $\nu$ respectively. We take this metric
connection as $\omega_{0}$ . Now, remark that by dePnition a basic connection on $\nu$

is the connection given by glueing together by a partition of unity the con-
nections induced on each restricted bundle $\nu|U_{\lambda}$ from a connection on $B$ by
the submersion $f_{\lambda}$ : $U_{\lambda}\rightarrow B$ (see Bott [4]; it should be noted that Bott’s defini-
tion in [6] is equivalent to that in [4]). Hence the above $\omega_{0}$ is also a basic
connection on $\nu$ . This completes the proof.

3. Let $\mathcal{F}=\{B, U_{\lambda}, f_{\lambda}, \gamma_{\mu\lambda}^{x}\}$ be a riemannian foliation of codimension $q$ on
$M$. Although $\mathcal{F}$ is considered as a conformal as well as a projective foliation,
the construction of the bundle of 2-frames is extra baggage in this case,
at least to obtain the vanishing theorem. Indeed, in the course of the proof
of Lemma 4.2, we have seen that a riemannian connection $\omega$ on $B$ can be
pulled back to a metric connection $\omega_{0}$ of the normal bundle $\nu$ of $\mathcal{F}$ . With
this projectable connection $\omega_{0}$ it is immediately verified by the Chern-Weil
construction that

Pont $(\nu;R)=0$ for $k>q$ .
$*)$ A metric connection $\nabla^{0}$ on the normal bundle $\nu=T(M)/E$ with a metric $g$ is

one such that
$dg(Z_{1}, Z_{2})(X)=g(\nabla_{X}^{0}(Z_{1}), Z_{2})+g(Z_{1}, \nabla_{X}^{0}(Z_{2}))$ ,

for any $X\in\Gamma(T(M)),$ $Z_{1},$ $Z_{2}\in\Gamma(\nu)$ .
$**)$ A basic connection $\nabla^{1}$ on $\nu$ is one such that

$\nabla_{X}^{1}(Z)=\pi[X,\tilde{Z}]$ ,

for any $X\in\Gamma(E),$ $z\in\Gamma(\nu)$ , where $\tilde{z}\in\Gamma(T(M))$ is such that $\pi(\tilde{Z})=Z,$ $\pi;T(M)\rightarrow\nu$ de $\cdot$

noting the natural projection.
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This is nothing but an idea of Pasternack [21].

In the case of a conformal or projective foliation, however, we need the
bundle of 2-frames to introduce a certain projectable connection on the normal
bundle, since a riemannian connection on $B$ is in general not preserved under
local conformal or projective transformations on $B$ .

The existence and uniquness of a normal Cartan connection are proved in
Ochiai [19] in a general setting. Indeed they are related to the vanishing of
certain Spencer cohomology groups. One can expect to generalize our method
to G-foliations associated with such second order G-structures.
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