Weakly closed cyclic 2 -groups in finite groups

By Hiroshi Fukushima

(Received Feb. 22, 1977)
(Revised May, 24, 1977)

1. Introduction.

In this paper we shall prove the following results.
Theorem 1. Let G be a finite group. Let S_{0} be a subgroup of a Sylow 2 -subgroup S of G such that $\left|S: S_{0}\right| \leqq 2$. If there exists an element x such that $\langle x\rangle \triangleleft S, x^{2}=z,|z|=2$, and $z^{G} \cap S_{0}=\{z\}$, then $Z^{*}(G) \neq 1$ or a Sylow 2-subgroup of $\left\langle z^{G}\right\rangle$ is dihedral or semidihedral.

Corollary 1. Let X be a cyclic subgroup of a Sylow 2-subgroup S of G. If X is weakly closed in S with respect to G, then $Z^{*}(G) \neq 1$ or a Sylow 2-subgroup of $\left\langle\Omega_{1}(X)^{G}\right\rangle$ is dihedral or semidihedral.
D. M. Goldschmidt determined the structure of the finite groups with weakly closed four-groups. Jonathan I. Hall determined the structure of the finite groups with weakly closed cyclic group of order 4. This corollary is a generalization of Jonathan I. Hall's result.

Corollary 2. Let S be a Sylow 2-subgroup of a finite group G. Suppose $S=R_{1} * \cdots * R_{n}$ and the following conditions hold;
(1) R_{1} has a cyclic subgroup of index 2 for $i=1,2, \cdots, n$.
(2) $Z(S)$ is cyclic.

Then $\Omega_{1}(Z(S)) \subseteq Z^{*}(G)$ or a Sylow 2-subgroup of $\left\langle\Omega_{1}(Z(S))^{G}\right\rangle$ is dihedral or semidihedral.

We shall write $A * B$ for a central product of A and B.
Theorem 2. Let G be a finite group. Let S_{0} be a subgroup of a Sylow 2subgroup S of G, such that $\left|S: S_{0}\right| \leqq 2$. If every involution of S_{0} is isolated each other, then $Z^{*}(G) \neq 1$ or there exists an involution z of S_{0} such that a Sylow 2subgroup of $\left\langle z^{G}\right\rangle$ is dihedral or semidihedral.

In fact we find an example in symmetric group of degree 6 which has an involution z such that a Sylow 2 -subgroup of $\left\langle z^{G}\right\rangle$ is neither dihedral nor semidihedral.

We shall say elements x, y of G are isolated if x any y are not conjugate in G.

2. Preliminaries.

Lemma 2.1. If A and B are conjugate subsets of a Sylow p-subgroup P of G, then there exist Sylow p-subgroups Q_{i} with $H_{i}=P \cap Q_{i}$ a time intersection, $1 \leqq i \leqq n$ such that
(1) $C_{P}\left(H_{i}\right) \cong H_{i}$
(2) H_{i}; Sylow p-subgroup of $O_{p, p^{\prime}}\left(N\left(H_{i}\right)\right)$
(3) $H_{i}=P$ or $N\left(H_{i}\right) / H_{i}$ is p-isolated
(4) $A \subseteq H_{1}, A^{x_{1} \cdots x_{i}} \leqq H_{i+1}$ for some $x_{i} \in N\left(H_{i}\right)$ if $H_{i}=C_{P}\left(\Omega\left(Z\left(H_{i}\right)\right)\right)$ and for some $x_{i} \in N\left(H_{i}\right) \cap C_{G}\left(\Omega\left(Z\left(H_{i}\right)\right)\right)$ if $H_{i} \neq C_{P}\left(\Omega\left(Z\left(H_{i}\right)\right)\right)$, and $A^{x_{1} \cdots x_{n-1}}=B$ for some $y \in N_{G}(P)$.

This fusion lemma may be found in Goldschmidt [2].
Lemma 2.2. If element t, z of a Sylow p-subgroup P of G are conjugate and $z \in Z(P)$, then there exists an element g of G such that $t^{g}=z$ and $C_{S}(t)^{g} \cong S$.

Proof. Since t and z are conjugate in G, there exists an element k such that $t^{k}=z$. Since $C_{S}(t)^{k} \cong C_{G}\left(t^{k}\right)=C_{G}(z)$ and $S \subseteq C_{G}(z)$, by Sylow's theorem there exists an element h of $C_{G}(z)$ such that $C_{S}(t)^{k h} \cong S$. we set $g=k h$, then $t^{g}=t^{k h}$ $=z^{h}=z$. So the lemma is proved.

We say that, for a subgroup K of a Sylow 2 -subgroup S of G, K is strongly involution closed if $k \in I(K)$ and $k^{g} \in S$ for some $g \in G$ implies that $k^{g} \in K$.

In [3], Goldschmidt proved the following result.
Lemma 2.3. Suppose D is a strongly involution closed dihedral 2-subgroup of G. Then a Sylow 2-subgroup of $\left\langle D^{G}\right\rangle$ is dihedral or semidihedral.

3. Proof of Theorem 1.

Let G be a finite group which satisfies the assumption of Theorem 1.
We may assume that $Z^{*}(G)=1$.
Lemma 3.1. There exists an involution t such that $t, t z$ and z are conjugate each other in G.

Proof. By Z^{*}-theorem there exists an involution t of S which is conjugate to z and distinct from z. Let x be as in Theorem 1. Suppose t centralizes x. By Lemma 2.2 there exists an element g such that $t^{g}=z, C_{S}(t)^{g} \subseteq S$. Since $z^{g}=$ $\left(x^{g}\right)^{2} \in S_{0}, z^{g}=z$, this implies $t=z$, which contradicts the choice of t. By hypothesis $\langle x\rangle \triangleleft S$, so $x^{t}=x^{-1}$. Thus $t^{x}=x^{-1} t x t t=t z$, which proves Lemma 3.1.

Lemma 3.2. Let D be weakly closed in $N_{S}(D)$ with respect to G, then we have $S \triangleright D$.

Proof. Let g be an element of $N_{S}\left(N_{S}(D)\right.$), then we have $D^{g} \subseteq N_{S}(D)$. Since D is weakly closed in $N_{S}(D)$, we have $D^{g}=D$. Thus $g \in N_{S}(D)$, this implies $N_{S}\left(N_{S}(D)\right)=N_{S}(D)$. Hence we have $S=N_{S}(D)$, which proves Lemma 3.2.

Lemma 3.3. G has a strongly involution closed dihedral 2 -subgroup.
Proof. Let $D_{0}=\langle t\rangle \times\langle z\rangle$, where t and z are as in Lemma 3.1. If $z^{G} \cap N_{S}\left(D_{0}\right)$ $\subseteq D_{0}$, then D_{0} is weakly closed in $N_{S}\left(D_{0}\right)$ since $D_{0}=\left\langle z^{G} \cap N_{S}\left(D_{0}\right)\right\rangle$. By Lemma 3.2 we have $D_{0} \triangleleft S$, hence $z^{G} \cap S \subseteq D_{0}$, this implies that D_{0} is strongly involution closed. Then the Lemma is proved. Therefore we may assume that $z^{G} \cap N_{S}\left(D_{0}\right) \subseteq D_{0}$. Thus there exists an involution u such that $u \in z^{G} \cap N_{S}\left(D_{0}\right)-D_{0}$. Assume $C_{D_{0}}(u)=D_{0}$, then u centralizes t. Since u is conjugate to z, there exists an element g such that $u^{g}=z$ and $C_{S}(u)^{g} \cong S$ by Lemma 3.2.

Assume $t^{g} \in S_{0}$, so that $t^{g}=z$ by hypothesis of Theorem 1. This implies $u=t$, which contradicts the choice of u. Similarly we have $z^{g^{\prime}} \in S_{0}$. Therefore $(t z)^{g} \in S_{0}$, and hence $(t z)^{g}=z$ since $t z$ is conjugate to z. This implies $t z=u$, which contradicts the choice of u. Thus $\langle u\rangle D_{0}$ is a dihedral group of order 8 , and all involutions of $\langle u\rangle D_{0}$ are conjugate. Let D_{1} be $\langle u\rangle D_{0}$. Assume $z^{G} \cap N_{S}\left(D_{1}\right) \cong D_{1}$, then it is easy that D_{1} is strongly involution closed. Thus we may assume $z^{G} \cap N_{S}\left(D_{1}\right) \subseteq D_{1}$. We shall repeat this method. Assume that D_{n} is a dihedral subgroup of S, all involutions are conjugate to z, and that $z^{G} \cap N_{S}\left(D_{n}\right)$ ΦD_{n}. Let $v \in z^{G} \cap N_{S}\left(D_{n}\right)-D_{n}$. By previous method it is easy proved that $C_{D_{n}}(v)$ is cyclic group. Next we shall prove that $C_{D_{n}}(v)=\langle z\rangle$. Suppose false. Then there exists an element y of D_{n} such that $|y|=4$ and $[v, y]=1$. Clearly $y^{2}=z$. Since v is conjugate to z and $z \in Z(S)$, there exists an element g such that $v^{g}=z$ and $C_{S}(v)^{g} \cong S$ by Lemma 2.2. In particular we have $y^{g} \in S$, hence $z^{g}=\left(x^{g}\right)^{2} \in S_{0}$. By hypothesis of Theorem 1 we have $z^{g}=z$. This implies $v=z$, which contradicts the choice of v. Therefore we have $C_{D_{n}}(v)=\langle z\rangle$. Let D_{n+1} $=\langle v\rangle D_{n}$, then D_{n+1} is dihedral. If we repeat this method, we have a dihedral subgroup D such that $z^{G} \cap N_{S}(D) \cong D$ and $I(D) \cong z^{G}$. This implies that D is a strongly involution closed dihedral subgroup. Hence Lemma 3.3 is proved.

Since all involutions of D are conjugate, $\left\langle D^{G}\right\rangle=\left\langle z^{G}\right\rangle$. By Lemma 2.3 a Sylow 2-subgroup of $\left\langle D^{G}\right\rangle$ is dihedral or semidihedral. This completes the proof of Theorem 1.

4. Proof of Theorem 2.

Let G be a finite group which satisfies the assumption of Theorem 2.
Lemma 4.1. There exists an involution z of S_{0} which is conjugate to an involution t of S, moreover conjugate to $t z$.

Proof. Let z_{0} be an involution of S_{0}. By Z^{*}-theorem we have an involution t_{0} of S which is conjugate to z_{0} and distinct from z_{0}. Since $S \triangleright S_{0}$, we have $\Omega_{1}\left(S_{0}\right) \subseteq Z(S)$ by hypothesis of Theorem 2. In particular $z_{0} \in Z(S)$. By Lemma 2.1 there exist an element g and 2-subgroup H such that $t_{0}{ }^{g}=z_{0}, g \in$ $N_{G}(H)$ and $H=C_{S}\left(\Omega_{1}(Z(H))\right.$. Since $z_{0} \in Z(S), t_{0} \in \Omega_{1}(Z(H))$. Set $K=\Omega_{1}(Z(H))$, then $g \in N(K)$. Since H is a tame intersection, we may assume that g is an
odd order element. Let $K_{0}=[K, g]$, then $\left|K_{0}: K_{0} \cap S_{0}\right|=2$. Since every involution of S_{0} is isolated each other, $\left|K_{0}{ }^{\#}\right| \geqq\left|\left(K_{0} \cap S_{0}\right)^{\#}\right| \times 3$. This implies that K_{0} is four-group and $g^{3} \in C_{G}\left(K_{0}\right)$. Let z be an involution of $K_{0} \cap S_{0}$ and t be an involution of $K_{0}-S_{0}$, then Lemma 4.1 is proved.

Then it is easy that Theorem 2 can be proved by using of Lemma 3.2 and Lemma 3.3. Thus Theorem 2 is proved.

5. Proof of Corollary 1.

If $|X|=2$, then $Z^{*}(G) \neq 1$ by Z^{*}-theorem. Assume $|X|=4$. Let $S_{0}=C_{S}(X)$, then $\left|S: S_{0}\right| \leqq 2$. Let $\Omega_{1}(X)=\langle z\rangle$. If $t \in z^{G} \cap S_{0}$, then $[t, X]=1$. Since $z \in Z(S)$, we have an element g such that $t^{g}=z$ and $C_{S}(t)^{g} \cong S$ by Lemma 2.2. Then $X^{g} \subseteq S$ since $X \subseteq C_{S}(t)$. Since X is weakly closed in S, we have $X^{g}=X$, this implies that $z^{g}=z$. Hence $t=z$, thus we have $z^{G} \cap S_{0}=\{z\}$. Since $X \triangleleft S$, the assumption of Theorem 1 is satisfied, which implies a conclusion of Corollary 1.

Assume $|X| \geqq 8$. Let $|X|=2^{n}, n \geqq 3$. We set $X=\langle x\rangle, y=x^{2}, y_{0} \in\langle x\rangle$ such that $\left|y_{0}\right|=4$. Let $S_{0}=C_{s}\left(y_{0}\right)$, then $\left|S: S_{0}\right| \leqq 2$. Let $t \in z^{G} \cap S_{0}$. Since $|t|=2$ and $\langle x\rangle \triangleleft S, x^{t}=x$ or $x^{-1}, x^{-1} z, x z$. Since t centralizes $y_{0}, x^{t}=x$ or $x z$. Thus $y^{t}=y$ in each cases. By Lemma 2.2 there exists an element g such that $t^{g}=z$ and $C_{S}(t)^{g} \subseteq S$. Since $y \in C_{S}(t), y^{g} \in S$, hence y^{g} acts on X. Since $|X| \geqq 8$, automorphism of X is type of $\left(2^{n-2}, 2\right)$. Hence $\left(y^{g}\right)^{2 n-2}$ centralizes X. Since $|y|=2^{n-1}$, $\left(y^{g}\right)^{2 n-1}=z^{g}$. Let $t_{0}=z^{g}, t_{0}$ centralizes X. Since t_{0} is conjugate to z, there exists an element k such that $t_{0}{ }^{k}=z$ and $C_{S}(t)^{k} \subseteq S$. Since $X \subseteq C_{S}\left(t_{0}\right), X^{k}=X$. Hence $z^{k}=z$. This implies $t_{0}=z$, hence $t=z$. Thus $z^{G} \cap S_{0}=\{z\}$. Since $\left\langle y_{0}\right\rangle \triangleleft S$, the assumption of Theorem 1 is satisfied. This completes the proof of Corollary 1.

6. Proof of Corollary 2.

We set $\langle z\rangle=\Omega_{1}(Z(S))$. We may assume that exponent of $R_{1} \geqq$ exponent of R_{i} for $i=1, \cdots, n . \quad R_{1}$ has a maximal cyclic subgroup $\langle x\rangle$ such that $\left|R_{1}:\langle x\rangle\right|$ $\leqq 2$. We set $|x|=2^{m}$ and $S_{0}=\langle x\rangle * R_{2} * \cdots * R_{n}$, then $\left|S: S_{0}\right| \leqq 2$. Assume $t \in$ $z^{G} \cap S_{0}$, then there exists an element g such that $t^{g}=z$ and $C_{s}(t)^{g} \subseteq S$ by Lemma 2.2. Since $t \in S_{0},[x, t]=1$. Therefore $x^{g} \cong S$. Then $z^{g}=\left(x^{g}\right)^{2 m-1} \in Z(S)$ by the assumption (1) of Corollary 2, By the assumption (2) of Corollary 2 we have $z^{g}=z$. This implies $t=z$, hence $z^{G} \cap S_{0}=\{z\}$. By Theorem 1 Corollary 2 is proved.

References

[1] G. Glauberman, Central element in core-free groups, J. Algebra, 4 (1966), 403-420.
[2] D.M. Goldschmidt, A conjugation family for finite groups, J. Algebra, 16 (1970), 138-142.
[3] D. M. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. of Math., 102 (1975), 475-489.
[4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[5] J.I. Hall, Strongly closed dihedral 2-subgroups, to appear.

Hiroshi Fukushima

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo, Japan

