Weakly closed cyclic 2-groups in finite groups

By Hiroshi FUKUSHIMA

(Received Feb. 22, 1977) (Revised May, 24, 1977)

1. Introduction.

In this paper we shall prove the following results.

THEOREM 1. Let G be a finite group. Let S_0 be a subgroup of a Sylow 2-subgroup S of G such that $|S:S_0| \leq 2$. If there exists an element x such that $\langle x \rangle \triangleleft S$, $x^2 = z$, |z| = 2, and $z^G \cap S_0 = \{z\}$, then $Z^*(G) \neq 1$ or a Sylow 2-subgroup of $\langle z^G \rangle$ is dihedral or semidihedral.

COROLLARY 1. Let X be a cyclic subgroup of a Sylow 2-subgroup S of G. If X is weakly closed in S with respect to G, then $Z^*(G) \neq 1$ or a Sylow 2-subgroup of $\langle \Omega_1(X)^G \rangle$ is dihedral or semidihedral.

D. M. Goldschmidt determined the structure of the finite groups with weakly closed four-groups. Jonathan I. Hall determined the structure of the finite groups with weakly closed cyclic group of order 4. This corollary is a generalization of Jonathan I. Hall's result.

COROLLARY 2. Let S be a Sylow 2-subgroup of a finite group G. Suppose $S=R_1*\cdots*R_n$ and the following conditions hold;

(1) R_1 has a cyclic subgroup of index 2 for $i=1, 2, \dots, n$.

(2) Z(S) is cyclic.

Then $\Omega_1(Z(S)) \subseteq Z^*(G)$ or a Sylow 2-subgroup of $\langle \Omega_1(Z(S))^G \rangle$ is dihedral or semidihedral.

We shall write A*B for a central product of A and B.

THEOREM 2. Let G be a finite group. Let S_0 be a subgroup of a Sylow 2subgroup S of G, such that $|S:S_0| \leq 2$. If every involution of S_0 is isolated each other, then $Z^*(G) \neq 1$ or there exists an involution z of S_0 such that a Sylow 2subgroup of $\langle z^G \rangle$ is dihedral or semidihedral.

In fact we find an example in symmetric group of degree 6 which has an involution z such that a Sylow 2-subgroup of $\langle z^{a} \rangle$ is neither dihedral nor semidihedral.

We shall say elements x, y of G are isolated if x any y are not conjugate in G.

2. Preliminaries.

LEMMA 2.1. If A and B are conjugate subsets of a Sylow p-subgroup P of G, then there exist Sylow p-subgroups Q_i with $H_i = P \cap Q_i$ a time intersection, $1 \leq i \leq n$ such that

- (1) $C_P(H_i) \subseteq H_i$
- (2) H_i ; Sylow p-subgroup of $O_{p,p'}(N(H_i))$
- (3) $H_i = P$ or $N(H_i)/H_i$ is p-isolated

(4) $A \subseteq H_1$, $A^{x_1 \cdots x_i} \subseteq H_{i+1}$ for some $x_i \in N(H_i)$ if $H_i = C_P(\mathcal{Q}(Z(H_i)))$ and for some $x_i \in N(H_i) \cap C_G(\mathcal{Q}(Z(H_i)))$ if $H_i \neq C_P(\mathcal{Q}(Z(H_i)))$, and $A^{x_1 \cdots x_{n-1}} = B$ for some $y \in N_G(P)$.

This fusion lemma may be found in Goldschmidt [2].

LEMMA 2.2. If element t, z of a Sylow p-subgroup P of G are conjugate and $z \in Z(P)$, then there exists an element g of G such that $t^g = z$ and $C_s(t)^g \subseteq S$.

PROOF. Since t and z are conjugate in G, there exists an element k such that $t^k = z$. Since $C_S(t)^k \subseteq C_G(t^k) = C_G(z)$ and $S \subseteq C_G(z)$, by Sylow's theorem there exists an element h of $C_G(z)$ such that $C_S(t)^{kh} \subseteq S$. we set g = kh, then $t^g = t^{kh} = z^h = z$. So the lemma is proved.

We say that, for a subgroup K of a Sylow 2-subgroup S of G, K is strongly involution closed if $k \in I(K)$ and $k^g \in S$ for some $g \in G$ implies that $k^g \in K$.

In [3], Goldschmidt proved the following result.

LEMMA 2.3. Suppose D is a strongly involution closed dihedral 2-subgroup of G. Then a Sylow 2-subgroup of $\langle D^{g} \rangle$ is dihedral or semidihedral.

3. Proof of Theorem 1.

Let G be a finite group which satisfies the assumption of Theorem 1. We may assume that $Z^*(G)=1$.

LEMMA 3.1. There exists an involution t such that t, tz and z are conjugate each other in G.

PROOF. By Z*-theorem there exists an involution t of S which is conjugate to z and distinct from z. Let x be as in Theorem 1. Suppose t centralizes x. By Lemma 2.2 there exists an element g such that $t^g = z$, $C_S(t)^g \subseteq S$. Since $z^g = (x^g)^2 \in S_0$, $z^g = z$, this implies t = z, which contradicts the choice of t. By hypothesis $\langle x \rangle \triangleleft S$, so $x^t = x^{-1}$. Thus $t^x = x^{-1}txtt = tz$, which proves Lemma 3.1.

LEMMA 3.2. Let D be weakly closed in $N_s(D)$ with respect to G, then we have $S \triangleright D$.

PROOF. Let g be an element of $N_s(N_s(D))$, then we have $D^g \subseteq N_s(D)$. Since D is weakly closed in $N_s(D)$, we have $D^g = D$. Thus $g \in N_s(D)$, this implies $N_s(N_s(D)) = N_s(D)$. Hence we have $S = N_s(D)$, which proves Lemma 3.2.

LEMMA 3.3. G has a strongly involution closed dihedral 2-subgroup.

PROOF. Let $D_0 = \langle t \rangle \times \langle z \rangle$, where t and z are as in Lemma 3.1. If $z^G \cap N_S(D_0) \subseteq D_0$, then D_0 is weakly closed in $N_S(D_0)$ since $D_0 = \langle z^G \cap N_S(D_0) \rangle$. By Lemma 3.2 we have $D_0 \triangleleft S$, hence $z^G \cap S \subseteq D_0$, this implies that D_0 is strongly involution closed. Then the Lemma is proved. Therefore we may assume that $z^G \cap N_S(D_0) \not\equiv D_0$. Thus there exists an involution u such that $u \in z^G \cap N_S(D_0) - D_0$. Assume $C_{D_0}(u) = D_0$, then u centralizes t. Since u is conjugate to z, there exists an element g such that $u^g = z$ and $C_S(u)^g \subseteq S$ by Lemma 3.2.

Assume $t^g \in S_0$, so that $t^g = z$ by hypothesis of Theorem 1. This implies u=t, which contradicts the choice of u. Similarly we have $z^{g} \in S_{0}$. Therefore $(tz)^{g} \in S_{0}$, and hence $(tz)^{g} = z$ since tz is conjugate to z. This implies tz = u, which contradicts the choice of u. Thus $\langle u \rangle D_0$ is a dihedral group of order 8, and all involutions of $\langle u \rangle D_0$ are conjugate. Let D_1 be $\langle u \rangle D_0$. Assume $z^{G} \cap N_{S}(D_{1}) \subseteq D_{1}$, then it is easy that D_{1} is strongly involution closed. Thus we may assume $z^{G} \cap N_{S}(D_{1}) \oplus D_{1}$. We shall repeat this method. Assume that D_{n} is a dihedral subgroup of S, all involutions are conjugate to z, and that $z^{G} \cap N_{S}(D_{n})$ $\equiv D_n$. Let $v \in z^G \cap N_S(D_n) - D_n$. By previous method it is easy proved that $C_{D_n}(v)$ is cyclic group. Next we shall prove that $C_{D_n}(v) = \langle z \rangle$. Suppose false. Then there exists an element y of D_n such that |y|=4 and [v, y]=1. Clearly $y^2 = z$. Since v is conjugate to z and $z \in Z(S)$, there exists an element g such that $v^{g} = z$ and $C_{s}(v)^{g} \subseteq S$ by Lemma 2.2. In particular we have $y^{g} \in S$, hence $z^{g} = (x^{g})^{2} \in S_{0}$. By hypothesis of Theorem 1 we have $z^{g} = z$. This implies v = z, which contradicts the choice of v. Therefore we have $C_{D_n}(v) = \langle z \rangle$. Let D_{n+1} $=\langle v \rangle D_n$, then D_{n+1} is dihedral. If we repeat this method, we have a dihedral subgroup D such that $z^{G} \cap N_{S}(D) \subseteq D$ and $I(D) \subseteq z^{G}$. This implies that D is a strongly involution closed dihedral subgroup. Hence Lemma 3.3 is proved.

Since all involutions of D are conjugate, $\langle D^{g} \rangle = \langle z^{g} \rangle$. By Lemma 2.3 a Sylow 2-subgroup of $\langle D^{g} \rangle$ is dihedral or semidihedral. This completes the proof of Theorem 1.

4. Proof of Theorem 2.

Let G be a finite group which satisfies the assumption of Theorem 2.

LEMMA 4.1. There exists an involution z of S_0 which is conjugate to an involution t of S, moreover conjugate to tz.

PROOF. Let z_0 be an involution of S_0 . By Z*-theorem we have an involution t_0 of S which is conjugate to z_0 and distinct from z_0 . Since $S \triangleright S_0$, we have $\Omega_1(S_0) \subseteq Z(S)$ by hypothesis of Theorem 2. In particular $z_0 \in Z(S)$. By Lemma 2.1 there exist an element g and 2-subgroup H such that $t_0^g = z_0$, $g \in$ $N_G(H)$ and $H = C_S(\Omega_1(Z(H)))$. Since $z_0 \in Z(S)$, $t_0 \in \Omega_1(Z(H))$. Set $K = \Omega_1(Z(H))$, then $g \in N(K)$. Since H is a tame intersection, we may assume that g is an

H. FUKUSHIMA

odd order element. Let $K_0 = [K, g]$, then $|K_0: K_0 \cap S_0| = 2$. Since every involution of S_0 is isolated each other, $|K_0^*| \ge |(K_0 \cap S_0)^*| \times 3$. This implies that K_0 is four-group and $g^3 \in C_G(K_0)$. Let z be an involution of $K_0 \cap S_0$ and t be an involution of $K_0 - S_0$, then Lemma 4.1 is proved.

Then it is easy that Theorem 2 can be proved by using of Lemma 3.2 and Lemma 3.3. Thus Theorem 2 is proved.

5. Proof of Corollary 1.

If |X|=2, then $Z^*(G) \neq 1$ by Z^* -theorem. Assume |X|=4. Let $S_0=C_S(X)$, then $|S:S_0|\leq 2$. Let $\Omega_1(X)=\langle z \rangle$. If $t\in z^G \cap S_0$, then [t, X]=1. Since $z\in Z(S)$, we have an element g such that $t^g=z$ and $C_S(t)^g\subseteq S$ by Lemma 2.2. Then $X^g\subseteq S$ since $X\subseteq C_S(t)$. Since X is weakly closed in S, we have $X^g=X$, this implies that $z^g=z$. Hence t=z, thus we have $z^G \cap S_0=\{z\}$. Since $X \triangleleft S$, the assumption of Theorem 1 is satisfied, which implies a conclusion of Corollary 1.

Assume $|X| \ge 8$. Let $|X| = 2^n$, $n \ge 3$. We set $X = \langle x \rangle$, $y = x^2$, $y_0 \in \langle x \rangle$ such that $|y_0| = 4$. Let $S_0 = C_S(y_0)$, then $|S: S_0| \le 2$. Let $t \in z^G \cap S_0$. Since |t| = 2 and $\langle x \rangle \triangleleft S$, $x^t = x$ or x^{-1} , $x^{-1}z$, xz. Since t centralizes y_0 , $x^t = x$ or xz. Thus $y^t = y$ in each cases. By Lemma 2.2 there exists an element g such that $t^g = z$ and $C_S(t)^g \subseteq S$. Since $y \in C_S(t)$, $y^g \in S$, hence y^g acts on X. Since $|X| \ge 8$, automorphism of X is type of $(2^{n-2}, 2)$. Hence $(y^g)^{2^{n-2}}$ centralizes X. Since $|y| = 2^{n-1}$, $(y^g)^{2^{n-1}} = z^g$. Let $t_0 = z^g$, t_0 centralizes X. Since t_0 is conjugate to z, there exists an element k such that $t_0^k = z$ and $C_S(t)^k \subseteq S$. Since $X \subseteq C_S(t_0)$, $X^k = X$. Hence $z^k = z$. This implies $t_0 = z$, hence t = z. Thus $z^G \cap S_0 = \{z\}$. Since $\langle y_0 \rangle \triangleleft S$, the assumption of Theorem 1 is satisfied. This completes the proof of Corollary 1.

6. Proof of Corollary 2.

We set $\langle z \rangle = \Omega_1(Z(S))$. We may assume that exponent of $R_1 \ge \text{exponent}$ of R_i for $i=1, \dots, n$. R_1 has a maximal cyclic subgroup $\langle x \rangle$ such that $|R_1:\langle x \rangle| \le 2$. We set $|x|=2^m$ and $S_0=\langle x \rangle * R_2 * \dots * R_n$, then $|S:S_0|\le 2$. Assume $t \in z^G \cap S_0$, then there exists an element g such that $t^g=z$ and $C_S(t)^g\subseteq S$ by Lemma 2.2. Since $t \in S_0$, [x, t]=1. Therefore $x^g\subseteq S$. Then $z^g=(x^g)^{2^{m-1}}\in Z(S)$ by the assumption (1) of Corollary 2. By the assumption (2) of Corollary 2 we have $z^g=z$. This implies t=z, hence $z^G \cap S_0=\{z\}$. By Theorem 1 Corollary 2 is proved.

References

- [1] G. Glauberman, Central element in core-free groups, J. Algebra, 4 (1966), 403-420.
- [2] D.M. Goldschmidt, A conjugation family for finite groups, J. Algebra, 16 (1970), 138-142.
- [3] D.M. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. of Math., 102 (1975), 475-489.
- [4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
- [5] J.I. Hall, Strongly closed dihedral 2-subgroups, to appear.

Hiroshi FUKUSHIMA Department of Mathematics Faculty of Science Hokkaido University Sapporo, Japan