Perturbations of M-accretive operators and quasi-linear evolution equations

By Athanassios G. Kartsatos

(Received June 29, 1976)

1. Introduction.

Let X be a complex Banach space and let A be an m-accretive operator with domain $D(A) \subseteq X$ and range $R(A) \subseteq X$. Then a rather common problem in nonlinear perturbation theory is the following : given an accretive operator $B: D(B) \rightarrow X(D(B) \cong D(A))$, what additional assumptions on B ensure the m accretiveness of $A+B$? This problem can be rephrased as follows: let $U(v) u$ $=A u+B v,(u, v) \in D(A) \times D(A)$. Assume that U is m-accretive in u and accretive in v. What additional assumptions on U w.r.t. v ensure the m-accretiveness of the operator $U_{1}: u \rightarrow U(u) u$? Our main purpose here is to present such a result for operators $U(v) u$ which are not necessarily equal to the sum of two operators A and B as above. This result will be shown after we establish the existence of solutions to quasi-linear problems of the form

$$
\begin{equation*}
x^{\prime}(t)+U(x(t)) x(t)=0, \quad x(0)=x_{0}, \quad t \in[0, \infty) . \tag{I}
\end{equation*}
$$

The method here employs the contraction principle on an operator T associated with the equation

$$
\begin{equation*}
x^{\prime}(t)+U(u(t)) x(t)=0, \quad x(0)=x_{0}, \quad t \in[0, T], \tag{II}
\end{equation*}
$$

where u is taken from a suitable family of continuous functions. This operator T maps $u(t)$ into the unique solution $x_{u}(t), t \in[0, T]$ of (II) ${ }_{u}$ which is assumed to exist by known results. In case $U(v) u$ is linear in u, the problem (II) $)_{u}$ is linear, and this is why problems like (I) are called "quasilinear".

Quasi-linear problems for ordinary differential equations go at least as far back as Corduneanu [1]. The reader is also referred to the papers of Lasota and Opial [11], Opial [15], Avramescu [2], Kartsatos [4-6] and Kartsatos and Ward [7] for some further results. For quasi-linear problems concerning partial differential equations, the reader is referred to Kato [10], Ward [16] and the references therein. Ward employed in [16] the SchauderTychonov theorem for a suitable space of functions associated with the weak
topology of X.
The second purpose of this paper is to obtain solutions in a Banach function space of

$$
\begin{equation*}
x^{\prime}+A(t) x=G(t, x), \quad t \in[0,+\infty) \tag{**}
\end{equation*}
$$

where $A(t)$ is now linear and m-accretive. This result extends in a certain direction the applicability of Theorem 2.2 of Massera and Schäffer [13, p. 292]. These authors assumed that $A(t)$ is a bounded linear operator, excluding thus large classes of linear partial differential operators.

2. Preliminaries.

In what follows, X will be a complex Banach space with uniformly convex dual X^{*}. By F we denote the duality map of X, i. e., for each $x \in X$, $F(x)$ is the unique functional in X^{*} with $\langle x, F(x)\rangle=\|x\|^{2}=\|F(x)\|^{2}$. Here $\langle x, f\rangle$ denotes the value of $f \in X^{*}$ at x and $\|\cdot\|$ is the norm in X or X^{*}. This map F is well defined and uniformly continuous on bounded subsets of X (cf. Kato [8]). An operator $A: D(A) \rightarrow X$ with (domain) $D(A) \cong X$ is said to be "accretive" if

$$
\operatorname{Re}\langle A x-A y, F(x-y)\rangle \geqq 0 \quad \text { for every } \quad x, y \in D(A)
$$

An accretive operator A is said to be " m-accretive" if the range $R(I+\lambda A)=X$ for every $\lambda>0$. Here I is the identity operator. Now consider the Cauchy problem

$$
\begin{equation*}
x^{\prime}+A(t) x=0, \quad x(0)=x_{0}, \quad t \in[0, T] \tag{2.1}
\end{equation*}
$$

where T is a positive constant and $x_{0} \in D(A(0))=D(A(t)), t \in[0, T]$. By a "strong solution" of (2.1) we mean a function $x(t), t \in[0, T]$ which is strongly continuous on $[0, T]$, strongly differentiable a.e., and satisfies (2.1) a. e.

3. Main results.

We shall first establish a theorem concerning the existence of a unique strong solution of the problem

$$
\begin{equation*}
x^{\prime}(t)+A(t, x(t)) x(t)=0, \quad x(0)=x_{0} \tag{I}
\end{equation*}
$$

where $A(t, u) v$ is Lipschitzian in t, u and m-accretive in v.
THEOREM 3.1. Let (I) satisfy the following:
(i) the domain of the operator $U(t, \cdot, \cdot)$ with $U(t, u, v)=A(t, u) v$ is the set $\bar{D} \times D, \quad D \subseteq X$ for every $t \in[0, T)$, and the range $R(U(t, \cdot, \cdot)) \subseteq X$. Moreover, $x_{0} \in D$,
(ii) for every $(t, u) \in[0, T) \times \bar{D}, A(t, u) v$ is m-accretive in v,
(iii) $\left\|A\left(t, u_{1}\right) v-A\left(s, u_{2}\right) v\right\|$

$$
\leqq r\left(\left\|u_{1}\right\|,\left\|u_{2}\right\|,\|v\|\right)\left[|t-s|\left(1+\left\|A\left(s, u_{2}\right) v\right\|\right)+\left\|u_{1}-u_{2}\right\|\right]
$$

for every $t, s \in[0, T), u_{1}, u_{2}, v \in \bar{D}$. Here $r: R_{+}{ }^{3} \rightarrow R_{+}=[0,+\infty)$ is increasing in all three variables. Then there exists $T_{1}<T$ such that (I) has a unique strong solution $x(t), t \in\left[0, T_{1}\right]$ which is also uniformly Lipschitz continuous on $\left[0, T_{1}\right]$.

Proof. Let $M=1+\left\|A\left(0, x_{0}\right) x_{0}\right\|$ and L be a positive constant with $L / M<T$. Let $0<T_{1} \leqq L / M$. Consider the set $S=\left\{u:\left[0, T_{1}\right] \rightarrow X ; u(0)=x_{0}, u(t) \in \bar{D}, t \in\left[0, T_{1}\right]\right.$, $\left.\left\|u(t)-u\left(t^{\prime}\right)\right\| \leqq M\left|t-t^{\prime}\right|, t, t^{\prime} \in\left[0, T_{1}\right]\right\}$. Then for every $u \in S$ we have $\left\|u(t)-x_{0}\right\|$ $\leqq M t \leqq M T_{1} \leqq L$. Moreover, $S \neq \emptyset$ because $u(t) \equiv x_{0} \in S$. Now let $u \in S$ and consider the problem

$$
\begin{equation*}
x^{\prime}(t)+A(t, u(t)) x(t)=0, \quad x(0)=x_{0}, \quad t \in\left[0, T_{1}\right] \tag{I}
\end{equation*}
$$

This problem has a unique strong solution $x_{u}(t)$ because the operator $B_{u}(t) v \equiv A(t, u(t)) v$ satisfies all the assumptions of Theorem 1 in [8]. Actually, this solution $x_{u}(t)$ is also weakly continuously differentiable on $\left[0, T_{1}\right]$ and such that $A(t, u(t)) x(t)$ is weakly continuous in t. Furthermore, $x(t)$ satisfies (I) ${ }_{u}$ everywhere if $x^{\prime}(t)$ denotes now the weak derivative of $x(t)$. We are planning to show that the operator $T: u \rightarrow x_{u}$ is a contraction mapping on S if T_{1} is chosen small enough. To this end, fix $u \in S$ and consider the approximating equations

$$
\begin{equation*}
x_{n}^{\prime}+A_{n}(t) x_{n}=0, \quad x_{n}(0)=x_{0} . \tag{3.1}
\end{equation*}
$$

Here $A_{n}(t)=A_{n}(t, u(t)) \equiv A(t, u(t))[I+(1 / n) A(t, u(t))]^{-1}, n=1,2, \cdots$, are defined and Lipschitz-continuous on X with Lipschitz constants not exceeding $2 n$. Moreover, the operators $J_{n}(t) \equiv[I+(1 / n) A(t, u(t))]^{-1}: \quad X \rightarrow D$ are also Lipschitzcontinuous on X with Lipschitz constants not exceeding 1. Each one of the equations (3.1) $)_{n}$ has a unique strongly continuously differentiable solution $x_{n}(t)$ defined on $\left[0, T_{1}\right]$, and such that $\lim _{n \rightarrow \infty} x_{n}(t)=x_{u}(t)$ strongly and uniformly w.r.t. t on $\left[0, T_{1}\right]$ (cf. Kato [8]). We are planning to show that the sequence $\left\{x_{n}(t)\right\}, n=1,2, \cdots$, is uniformly bounded on $\left[0, T_{1}\right]$ independently of $u \in S$, and that $\left\{x_{n}(t)\right\}$ is also uniformly Lipschitz-continuous on [0, T_{1}] independently of $u \in S$. To this end, let us first note that the following inequality holds as in Kato [8, Lemma 4.1]:

$$
\begin{aligned}
& \left\|A_{n}(t, u(t)) v-A_{n}(s, u(s)) v\right\| \\
& \quad \leqq r(\|u(t)\|,\|u(s)\|,\|v\|)|t-s|\left(1+M+\|v\|+2\left\|A_{n}(s, u(s)) v\right\|\right)
\end{aligned}
$$

for any $t, s \in\left[0, T_{1}\right], v \in D$. Now we have

$$
\begin{align*}
& (d / d t)\left\|x_{n}(t)-x_{0}\right\|^{2}=2 \operatorname{Re}\left\langle x_{n}^{\prime}(t), F\left(x_{n}(t)-x_{0}\right)\right\rangle \tag{3.1}\\
& \quad=-2 \operatorname{Re}\left\langle A_{n}(t, u(t)) x_{n}(t)-A_{n}(t, u(t)) x_{0}, F\left(x_{n}(t)-x_{0}\right)\right\rangle
\end{align*}
$$

$$
\begin{aligned}
& \quad-2 \operatorname{Re}\left\langle A_{n}(t, u(t)) x_{0}, F\left(x_{n}(t)-x_{0}\right)\right\rangle \\
& \leqq \\
& 2\left\|A_{n}(t, u(t)) x_{0}\right\|\left\|x_{n}(t)-x_{0}\right\| \\
& \leqq \\
& 2\left[\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\|+r\left(\|u(t)\|,\left\|x_{0}\right\|,\left\|x_{0}\right\|\right) .\right. \\
& \left.\quad\left[\left(1+M+\left\|x_{0}\right\|+2\left\|A_{n}\left(0, x_{0}\right)\right\|\right) T_{1}+\left\|u(t)-x_{0}\right\|\right]\right]\left\|x_{n}(t)-x_{0}\right\| \\
& \leqq 2\left[\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\|+r\left(\left\|x_{0}\right\|+L,\left\|x_{0}\right\|,\left\|x_{0}\right\|\right) .\right. \\
& \left.\quad\left[\left(1+\left\|x_{0}\right\|+M+2\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\|\right)(L / M)+L\right]\right]\left\|x_{n}(t)-x_{0}\right\| .
\end{aligned}
$$

This inequality holds almost everywhere in $\left[0, T_{1}\right]$. Dividing by $2\left\|x_{n}(t)-x_{0}\right\|$ and integrating from 0 to $t \leqq T_{1}$ we obtain

$$
\begin{align*}
& \left\|x_{n}(t)-x_{0}\right\| \leqq\left[\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\|+r\left(\left\|x_{0}\right\|+L,\left\|x_{0}\right\|,\left\|x_{0}\right\|\right) .\right. \tag{3.2}\\
& \left.\left.\quad\left(1+M+\left\|x_{0}\right\|+2\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\|\right)(L / M)+L\right)\right] T_{1}=K_{1} T_{1}
\end{align*}
$$

where the constant $K_{1}>0$ is independent of $T_{1}, u \in S$, but depends on n. In order to find an upper bound for the derivative $x_{n}^{\prime}(t)$, consider first the function $z_{n}(t) \equiv x_{n}(t+h)-x_{n}(t), 0 \leqq t, t+h<T_{1}$. Then we have

$$
\begin{gather*}
(1 / 2)(d / d t)\left\|z_{n}(t)\right\|^{2}=\operatorname{Re}\left\langle z_{n}^{\prime}(t), F\left(z_{n}(t)\right)\right\rangle \tag{3.3}\\
=-\operatorname{Re}\left\langle A_{n}(t+h, u(t+h)) x_{n}(t+h)\right. \\
\left.\quad-A_{n}(t, u(t)) x_{n}(t), F\left(z_{n}(t)\right)\right\rangle \\
=-\operatorname{Re}\left\langle A_{n}(t+h, u(t+h)) x_{n}(t+h)\right. \\
\left.\quad-A_{n}(t+h, u(t+h)) x_{n}(t), F\left(z_{n}(t)\right)\right\rangle \\
-\operatorname{Re}\left\langle A_{n}(t+h, u(t+h)) x_{n}(t)-A_{n}(t, u(t)) x_{n}(t), F\left(z_{n}(t)\right)\right\rangle \\
\leqq r\left(\|u(t+h)\|,\|u(t)\|,\left\|x_{n}(t)\right\|\right)\left[\left(1+M+\left\|x_{n}(t)\right\|\right.\right. \\
\left.\left.\quad+2\left\|A_{n}(t, u(t)) x_{n}(t)\right\|\right)|h|+\|u(t+h)-u(t)\|\right]\left\|z_{n}(t)\right\| \\
\leqq r\left(\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+K_{1} T_{1}\right) . \\
\quad\left[\left(1+\left\|x_{n}^{\prime}(t)\right\|+2 M+\left\|x_{0}\right\|+K_{1} T_{1}\right)\right]\left\|z_{n}(t)\right\||h| .
\end{gather*}
$$

Dividing above by $\left\|z_{n}(t)\right\||h|$ and integrating we obtain, after passage to the limit for $h \rightarrow 0$,

$$
\begin{align*}
\left\|x_{n}^{\prime}(t)\right\| \leqq & \left\|x_{n}^{\prime}(0)\right\| \tag{3.4}\\
& \quad+\int_{0}^{t} r\left(\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+K_{1} T_{1}\right) \cdot\left\|x_{n}^{\prime}(s)\right\| d s \\
& +r\left(\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+K_{1} T_{1}\right)\left(1+2 M+\left\|x_{0}\right\|+K_{1} T_{1}\right) T_{1}
\end{align*}
$$

Thus, by Gronwall's inequality, we have

$$
\begin{equation*}
\left\|x_{n}^{\prime}(t)\right\| \leqq\left[K_{2} T_{1}+\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\|\right] e^{K_{2} T_{1}}, \tag{3.5}
\end{equation*}
$$

where K_{2} is independent of $T_{1}, u \in S$. Now since $\left\|A_{n}\left(0, x_{0}\right) x_{0}\right\| \leqq\left\|A\left(0, x_{0}\right) x_{0}\right\|$ (cf. Kato [8]), we obtain from (3.2), (3.5) that $\left\|x_{n}(t)\right\| \leqq\left\|x_{0}\right\|+K_{3} T_{1},\left\|x_{n}^{\prime}(t)\right\| \leqq$ $\left(K_{2} T_{1}+K_{4}\right) e^{K_{2} T_{1}}$ with K_{2}, K_{3}, K_{4} independent of $T_{1}, u \in S$ and n. Moreover, we also have $\left\|x_{u}(t)\right\| \leqq\left\|x_{0}\right\|+K_{3} T_{1},\left\|x_{u}(t)-x_{u}\left(t^{\prime}\right)\right\| \leqq\left(K_{2} T_{1}+K_{4}\right) e^{K_{2} T_{1}}\left|t-t^{\prime}\right|$ for every $t, t^{\prime} \in\left[0, T_{1}\right]$.

New let $u_{1}, u_{2} \in S$ and x_{1}, x_{2} be the corresponding solutions of $(\mathrm{I})_{u}$. Then we have

$$
\begin{align*}
& (1 / 2)(d / d t)\left\|x_{1}(t)-x_{2}(t)\right\|^{2} \tag{3.6}\\
& =-\operatorname{Re}\left\langle A\left(t, u_{1}(t)\right) x_{1}(t)-A\left(t, u_{2}(t)\right) x_{2}(t),\right. \\
& \left.\quad F\left(x_{1}(t)-x_{2}(t)\right)\right\rangle \\
& =-\operatorname{Re}\left\langle A\left(t, u_{1}(t)\right) x_{1}(t)-A\left(t, u_{1}(t)\right) x_{2}(t), F\left(x_{1}(t)-x_{2}(t)\right)\right\rangle \\
& \quad-\operatorname{Re}\left\langle A\left(t, u_{1}(t)\right) x_{2}(t)-A\left(t, u_{2}(t)\right) x_{2}(t), F\left(x_{1}(t)-x_{2}(t)\right)\right\rangle \\
& \leqq r\left(\left\|u_{1}(t)\right\|,\left\|u_{2}(t)\right\|,\left\|x_{2}(t)\right\|\right) \cdot\left\|u_{1}(t)-u_{2}(t)\right\|\left\|x_{1}(t)-x_{2}(t)\right\|
\end{align*}
$$

from which, by division by $\left\|x_{1}(t)-x_{2}(t)\right\|$ and integration, we get

$$
\begin{align*}
& \sup _{t \in\left[0, T_{1}\right]}\left\|x_{1}(t)-x_{2}(t)\right\| \tag{3.7}\\
& \quad \leqq T_{1} r\left(\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+L,\left\|x_{0}\right\|+K_{3} L / M\right) \sup _{t \in\left[0, T_{1}\right]}\left\|u_{1}(t)-u_{2}(t)\right\| \\
& \quad=K_{5} \sup _{t \in\left[0, T_{1}\right]}\left\|u_{1}(t)-u_{2}(t)\right\| .
\end{align*}
$$

Now we may (and do) choose T_{1} small enough so that

$$
\left[K_{2} T_{1}+K_{4}\right] e^{K_{2} T_{1}} \leqq M
$$

and $K_{5}<1$; then the operator $T: u \rightarrow x_{u}$ maps the set S into itself and is a contraction. Since S is a complete metric space under the sup-norm, T has a fixed point $x(t), t \in\left[0, T_{1}\right]$. This is the desired strong solution of (I). Uniqueness follows from 3.6 by replacing u_{1}, u_{2} by x_{1}, x_{2} respectively.

The above result generalizes the existence result in the proof of Theorem 11.2 of Kato [9]. Kato considered the case $A(t, u, v) \equiv A u+B v$ under a "localized" Lipschitz condition on B and m-accretiveness of a multi-valued A.

It should be noted that if $U(t, u, u) \equiv A(u) u$ (independent of t) and accretive in u, then the solution guaranteed by Theorem 3.1 is extendable to $[0, \infty)$ if we further assume that $A(u) u$ is "demiclosed" (i. e., if $u_{n} \in D, n=1,2$, \cdots, and $u_{n} \rightarrow u$ and $A\left(u_{n}\right) u_{n} \rightarrow v \in X$ then $u \in D$ and $A(u) u=v$). In fact, (cf. proof of Theorem 11.2 of [9]) in this case, if [$0, T^{\prime}$) is the maximal interval of existence of $x(t)$ with $T^{\prime}<+\infty$, then $\lim _{t \rightarrow T^{\prime}} x(t)=x\left(T^{\prime}\right) \in D$ exists.

Now we are ready for the following perturbation result:
Theorem 3.2. Let D be a subset of X. Let $A: \bar{D} \times D \rightarrow X$ be such that $A(u) v$ is m-accretive in v and $\left\|A\left(u_{1}\right) v-A\left(u_{2}\right) v\right\| \leqq r\left(\left\|u_{1}\right\|,\left\|u_{2}\right\|,\|v\|\right)\left\|u_{1}-u_{2}\right\|$ for
any $u_{1}, u_{2} \in \bar{D}, v \in D$. Then if $A(u) u$ is demiclosed and accretive, it is m-accretive.
Proof. Taking into consideration the proof of Theorem 11.2 in Kato's paper [9] (cf. also Mermin [14, Lemma 4.2]), it suffices to show the existence of some $x_{0} \in D$ such that for all $p \in X$ the Cauchy problem

$$
\begin{equation*}
x^{\prime}(t)+A(x(t)) x(t)+x(t)-p=0, x(0)=x_{0} \tag{3.8}
\end{equation*}
$$

has a unique strong solution on $[0, \infty)$. To show this, we simply remark that the operator $B(u) v \equiv A(u) v+v-p$ satisfies the assumptions placed on A in Theorem 3.1, and that the local strong solution obtained there is extendable to $[0, \infty)$ by the discussion above.

Theorem 3.1 holds of course if we perturb Equation (I) by a Lipschitzian function. This is the content of the following

Corollary 3.1. Let the operator $A(u) v$ be as in Theorem 3.1, and let G : $[0, T) \times \bar{D} \rightarrow X$ satisfy:

$$
\left\|G\left(t_{1}, u_{1}\right)-G\left(t_{2}, u_{2}\right)\right\| \leqq r_{1}\left(\left\|u_{1}\right\|,\left\|u_{2}\right\|\right)\left[\left|t_{1}-t_{2}\right|+\left\|u_{1}-u_{2}\right\|\right]
$$

for every $t_{1}, t_{2} \in[0, T)$ and $u_{1}, u_{2} \in \bar{D}$. Then the conclusion of Theorem 1 is true for the equation
$(\mathrm{I})_{G}$

$$
x^{\prime}(t)+A(t, x(t)) x(t)=G(t, x(t)) .
$$

Proof. It suffices to consider instead of $A(t, u) v$ the operator $B(t, u) v \equiv$ $A(t, u) v-G(t, u)$.

The above corollary has points of contact with the main result of Gröger [3] who considered $A(t, u) v \equiv A(t) v$ and G Lipschitzian and defined on the whole of X w.r.t. the second variable.
4. Linear M-accretive $A(t)$.

Let C be the space of all X-valued continuous functions on R_{+}with the topology of uniform convergence on finite intervals. Then C is a Fréchet space. Now consider the differential equation

$$
\begin{equation*}
x^{\prime}+A(t) x=f(t), x(0)=x_{0} \in D, t \in[0, \infty), \tag{*}
\end{equation*}
$$

where $D(A(t))=D(A(0))=D, R(A(t)) \subseteq X$ with A linear, closed and $f \in C$. Let f be Lipschitzian on $[0,+\infty)$ and, moreover, let

$$
\begin{equation*}
\|A(t) v-A(s) v\| \leqq L|t-s| \cdot\|A(s) v\| \tag{S}
\end{equation*}
$$

for every $s, t \in R_{+}, v \in D$, where L is a positive constant. Then the operator $A_{1}(t): D \rightarrow X$ with $A_{1}(t) x \equiv A(t) x-f(t)$ satisfies all the hypotheses of Theorem 2.1 of Mermin's dissertation [14] (cf. also Kato [8, Theorems 1, 2]). Consequently, the equation (*) has a unique solution $x(t), t \in R_{+}$which is strongly differentiable a.e., weakly continuously differentiable, and satisfying (*) $\left(x^{\prime}(t)\right.$ here is
the weak derivative) on R_{+}. Thus, under the above assumptions on $A(t)$, Equation(*) has always solutions on $[0, \infty)$ if f belongs to a proper Banach space of Lipschitzian functions. The Banach spaces B considered below consist of functions $f:[0,+\infty) \rightarrow X$ which are at least Lipschitzian on $[0,+\infty)$.

Let B, E be two complex Banach spaces in C which are stronger than C (convergence in B or E implies convergence in C). Then the pair (B, E) is "admissible" if for every $f \in B$ there exists al least one solution $x \in E$ of $(*)$. We denote by $X_{0 E}$ the linear manifold of X consisting of all initial values of E-solutions of the homogeneous Cauchy problem

$$
\begin{equation*}
x^{\prime}+A(t) x=0 . \tag{4.1}
\end{equation*}
$$

Now let X_{1} be any (but fixed) subspace of X supplementary to $X_{0 E}$ and let $X_{1 E}$ be the linear manifold consisting of all initial values of E-solutions of (*) belonging to X_{1} and corresponding to all possible $f \in B$. We have the following theorem which extends a variation of Theorem 2.2 of Massera and Schäffer [13] to unbounded operators:

Theorem 4.1. Let $D(A(t))=D(A(0))=D$ with A linear, closed m-accretive and satisfying (S). Moreover, let B, E be two complex Banach spaces such that the pair (B, E) is admissible, $X_{0 E}, X_{1 E}$ as above and $P_{1}(D)=\left\{P_{1} u ; u \in D\right\} \subseteq D$, where P_{1} is the projection of X_{1}. Then there exists a constant $K>0$ such that for every $f \in B$ Equation (*) has a unique solution $x \in E$ with $x(0) \in X_{1 E}$ and satisfying $\|x\|_{E} \leqq K\|f\|_{B}$.

Proof. We partially follow the steps of Massera and Schäffer in [12]. Let Y be the linear manifold consisting of all possible E-solutions of (*) with initial values in $X_{1 E}$ while f ranges in B. Now let $x \in Y$. We define

$$
\|x\|_{Y}=\|x\|_{E}+\left\|x^{\prime}(0)\right\|+\left\|x^{\prime}+A(\cdot) x\right\|_{B},
$$

where $x^{\prime}(0)$ is the weak derivative of the solution $x(t)$.
Then $\|\cdot\|_{Y}$ is a norm on Y, and we show that under this norm Y is complete. Let $x_{n} \in Y, n=1,2, \cdots$ be a Cauchy sequence. Then for every $\varepsilon>0$ there exists $N(\varepsilon)>0$ such that

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|_{Y}=\left\|x_{m}-x_{n}\right\|_{E}+\left\|x_{m}^{\prime}(0)-x_{n}^{\prime}(0)\right\|+\left\|x_{m}^{\prime}+A(\cdot) x_{m}-\left[x_{n}^{\prime}+A(\cdot) x_{n}\right]\right\|_{B}<\varepsilon \tag{4.2}
\end{equation*}
$$

for every m, n with $m, n>N(\varepsilon)$. Thus, in particular, $\left\{x_{n}\right\}$ is a Cauchy sequence in E and, since E is stronger than C (which is complete), there is a continuous function $x(t), t \in R_{+}$such that $x_{n} \rightarrow x$ in C. In particular, $x_{n}(0) \rightarrow x(0)$ as $n \rightarrow \infty$. On the other hand, since X is a Banach space, there exists a vector $y \in X$ such that the sequence $\left\{x_{n}^{\prime}(0)\right\}$ converges strongly to y as $n \rightarrow \infty$. It is also true that there exists $f \in B$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{B}=0, \quad C-\lim _{n \rightarrow \infty} f_{n}=f, \tag{4.3}
\end{equation*}
$$

where $f_{n}(t)=x_{n}^{\prime}(t)+A(t) x_{n}(t)$. Since $A(0)$ is closed and $x_{n}^{\prime}(0)+A(0) x_{n}(0)=f_{n}(0)$ with $x_{n}^{\prime}(0) \rightarrow y \in X$ and $f_{n}(0) \rightarrow f(0)$, we obtain $x(0) \in D$ and $A(0) x(0)=-y+f(0)$. Now let $\bar{x}(t), t \in R_{+}$be the solution of $\left(^{*}\right)$ with $\bar{x}(0)=x(0)$. This solution exists because $x(0) \in D$. Then we have

$$
\begin{align*}
& x_{n}^{\prime}(t)+A(t) x_{n}(t)=f_{n}(t), \quad t \in R_{+}, \tag{4.4}\\
& \bar{x}^{\prime}(t)+A(t) \bar{x}(t)=f(t), \quad t \in R_{+} . \tag{4.5}
\end{align*}
$$

Subtracting (4.5) from (4.4) and applying the functional $F\left(x_{n}(t)-\bar{x}(t)\right)$ on both members of the resulting equation, we easily obtain

$$
\begin{align*}
(d / d t)\left\|x_{n}(t)-\bar{x}(t)\right\|^{2}= & 2 \operatorname{Re}\left\langle x_{n}^{\prime}(t)-\bar{x}^{\prime}(t), F\left(x_{n}(t)-\bar{x}(t)\right)\right\rangle \tag{4.6}\\
= & -2 \operatorname{Re}\left\langle A(t) x_{n}(t)-A(t) \bar{x}(t), F\left(x_{n}(t)-\bar{x}(t)\right)\right\rangle \\
& -2 \operatorname{Re}\left\langle f_{n}(t)-f(t), F\left(x_{n}(t)-\bar{x}(t)\right)\right\rangle \\
\leqq & \left\|f_{n}(t)-f(t)\right\|\left\|x_{n}(t)-\bar{x}(t)\right\|
\end{align*}
$$

almost everywhere in [$0, c$], where c is a fixed positive constant. From (4.6) we obtain

$$
\begin{equation*}
(d / d t)\left\|x_{n}(t)-\bar{x}(t)\right\| \leqq\left\|f_{n}(t)-f(t)\right\|, \quad \text { a.e. in }[0, c], \tag{4.7}
\end{equation*}
$$

which implies

$$
\begin{align*}
\left\|x_{n}(t)-\bar{x}(t)\right\| & \leqq\left\|x_{n}(0)-\bar{x}(0)\right\|+\int_{0}^{c}\left\|f_{n}(s)-f(s)\right\| d s \tag{4.8}\\
& \leqq\left\|x_{n}(0)-\bar{x}(0)\right\|+c \sup _{t \in[0, c]}\left\|f_{n}(t)-f(t)\right\| .
\end{align*}
$$

Consequently, $x_{n}(t)$ converges strongly and uniformly to $x(t)$ on the interval of $[0, c]$. Since $c>0$ is arbitrary $\bar{x}(t) \equiv x(t)$ and $x^{\prime}(t)+A(t) x(t)=f(t)$. Consequently, $x^{\prime}(0)=y$ and

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{Y}=0
$$

which proves the completeness of Y. Now consider the operator $T: Y \rightarrow B$ with $(T x)(t)=x^{\prime}(t)+A(t) x(t)$.

The operator T is linear and bounded. In fact, $\|T x\|_{B} \leqq\|x\|_{Y} . T$ is one-to-one. To this end, let $x_{1}, x_{2} \in Y$ with $T x_{1}=T x_{2}$. Then since $T\left(x_{1}-x_{2}\right)=0$ and $x_{1}-x_{2} \in E$, we must have $x_{1}(0)-x_{2}(0) \in X_{0 E}$. Since $X_{0 E} \cap X_{1 E}=\{0\}, x_{1}(0)=x_{2}(0)$ which implies $x_{1}(t) \equiv x_{2}(t), t \in R_{+}$. To show that T is onto, let $f \in B$, and let $x \in E$ with $x^{\prime}+A(t) x=f$. Then since $P_{1}(D) \cong D, P_{1} x(0) \in D$. Let $x_{1}(t)$ be the solution of $(*)$ with $x_{1}(0)=P_{1} x(0)$. Then $x(0)-x_{1}(0)=P_{0} x(0) \in X_{0 E}$. Here P_{0} is the projection of $X_{0 E}$. Thus, $x-x_{1} \in E$ which implies $x_{1} \in E$. Since $x_{1}(0) \in X_{1 E}$, $T x_{1}=f$, which proves the ontoness of T. Now it follows from a well known theorem in Functional Analysis that the operator $T^{-1}: B \rightarrow Y$ is bounded and
since $\|T\| \leqq 1$, we must have $\left\|T^{-1}\right\| \geqq 1$. Let $K=\left\|T^{-1}\right\|-1$. Then $\|x\|_{E} \leqq\|x\|_{Y}-$ $\|f\|_{B} \leqq\left\|T^{-1} f\right\|_{B}-\|f\|_{B} \leqq\left(\left\|T^{-1}\right\|-1\right)\|f\|_{B}=K\|f\|_{B}$. This completes the proof.

As an application of the above considerations, we show the existence of solutions in E of a perturbed linear equation of the form

$$
\begin{equation*}
x^{\prime}+A(t) x=G(t, x), \quad t \in[0,+\infty) . \tag{4.9}
\end{equation*}
$$

Corollary 4.1. Let $A(t), B, E$ satisfy the hypotheses of Theorem 4.1. Let $M=\{u \in E ;\|u\| \leqq r\}$, where r is a positive constant. Let $G: R_{+} \times\{v \in X ;\|v\| \leqq r\}$ $\rightarrow X$ satisfy:
(i) the operator U defined by $(U x)(t)=G(t, x(t))$ maps M into B,
(ii) $\left\|G\left(\cdot, u_{1}(\cdot)\right)-G\left(\cdot, u_{2}(\cdot)\right)\right\|_{B} \leqq L\left\|u_{1}-u_{2}\right\|_{E}$
for every $u_{1}, u_{2} \in M$ and $\|G(\cdot, 0)\|_{B} \leqq \lambda$ with the constants λ, L, r satisfying $(\lambda+L r) K \leqq r$ and $K L<1$. Here K is the constant of Theorem 4.1. Then (4.9) has at least one solution $x(t), t \in[0, \infty)$ with $x(0) \in X_{1 E}$.

Proof. Consider the operator $T: M \rightarrow E$ which maps the function $u \in M$ into the unique solution $x_{u} \in E\left(x_{u}(0) \in X_{1 E}\right)$ of the equation

$$
x^{\prime}+A(t) x=G(t, u(t)) .
$$

The solution $x_{u}(t)$ is guaranteed by Theorem 4.1. Moreover,

$$
\begin{aligned}
\left\|x_{u}\right\|_{E} & \leqq K\|G(\cdot, u(\cdot))\|_{B} \\
& \leqq K\left(\|G(\cdot, 0)\|_{B}+L\|u\|_{E}\right) \leqq K(\lambda+L r) \leqq r .
\end{aligned}
$$

Thus, $T(M) \cong M$. We also have

$$
\begin{aligned}
\left\|T u_{1}-T u_{2}\right\| & \leqq K\left\|G\left(\cdot, u_{1}(\cdot)\right)-G\left(\cdot, u_{2}(\cdot)\right)\right\|_{B} \\
& \leqq K L\left\|u_{1}-u_{2}\right\| .
\end{aligned}
$$

This proves that T is a contraction on M and completes the proof.
In Theorem 3.1 we assumed that $P_{1}(D) \cong D$ to ensure that $P_{1} x(0) \in D$, otherwise the existence of $x_{1}(t)$ cannot be shown. In view of the usual spaces of definition of partial differential operators, this is not really a strong assumption. It is actually true that $A(s)$ generates (for any but fixed $s \in[0,+\infty)$) a linear contraction semigroup $T(t)$ on \bar{D}. Thus, we may assume without loss of generality that $X=\bar{D}$ and that A is densely defined in X.

In the results considered in this section we could have restricted ourselves to finite intervals. Systems of the form

$$
\begin{equation*}
x^{\prime}+A(t) x=G(t, x), \quad T x=0, t \in[0, T] \tag{4.10}
\end{equation*}
$$

can be considered, where T is a bounded linear operator mapping $C[0, T]$ into X. E now would consist of all $u \in C[0, T]$ with $T u=0$ and satisfying other suitable conditions.

The autho: wishes to express his thanks to Prof. J. Ward for pointing out an error in the original proof of Theorem 3.1.

References

[1] C. Corduneanu, Sur les systèmes différentiels de la forme $y^{\prime}=A(x, y) y+b(x, y)$, An. Sti. Univ. "A1 I. Cuza", Iasi, (N. S) 4 (1958), 45-52.
[2] C. Avramescu, Sur une équation non linéaire dans les espaces de Banach, Act. Conf. Intern. "Equa-Diff 73", Bruxelles et Louvain-La-Neuve, (1973), 97-107.
[3] K. Gröger, Zur Theorie von Evolutionsgleichungen, in den die "Vorgeschichte" eine Rolle spielt, Math. Nachr., 56 (1973), 63-72.
[4] A.G. Kartsatos, Nonzero solutions to boundary value problems for nonlinear systems, Pacific J. Math., 52 (1974), 425-433.
[5] A.G. Kartsatos, Bounded solutions to perturbed nonlinear systems and asymptotic relationships, J. Reine Angew. Math., 273 (1975), 170-177.
[6] A.G. Kartsatos, Stability via Tychonov's theorem, Internat. J. Systems Sci., 5 (1974), 933-937.
[7] A.G. Kartsatos, and J.R. Ward, Boundedness and existence of periodic solutions of quasi-linear systems, J. Inst. Math. Appl., 15 (1975), 187-194.
[8] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 503-520.
[9] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. Pure Math., 18 (1970), 138-161.
[10] T. Kato, Quasi-linear equations of evolution with applications to partial differential equations, Proc. Symp. Spectral Theory Differential Equations, Lecture Notes No. 448, Springer-Verlag, New York, 1975.
[11] A. Lasota and Z. Opial, Sur les solutions periodiques des équations différentielles ordinaires, Ann. Polon. Math., 16 (1964), 69-94.
[12] J.L. Massera and J. J. Schäffer, Linear differential equations and functional analysis, I., Ann. of Math., 67 (1958), 517-573.
[13] J.L. Massera and J. J. Schäffer, Linear differential equations and functional analysis, IV, Math. Ann., 139 (1960), 287-342.
[14] J. Mermin, Accretive operators and nonlinear semigroups, Doct. Dissert., University of California, Berkeley, 1968.
[15] Z. Opial, Linear problems for systems of nonlinear differential equations, J. Differential Equations, 3 (1967), 580-594.
[16] J.R. Ward, Existence of solutions to quasi-linear differential equations in a Banach space, to appear.

Athanassios G. Kartsatos
Department of Mathematics
University of South Florida Tampa, Florida 33620, U.S.A.

