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1. Introduction.

Let $X$ be a complex Banach space and let $A$ be an m-accretive operator
with domain $D(A)\subseteqq X$ and range $R(A)\subseteqq X$. Then a rather common problem
in nonlinear perturbation theory is the following: given an accretive operator
$B:D(B)\rightarrow X(D(B)\subseteqq D(A))$ , what additional assumptions on $B$ ensure the m-
accretiveness of $A+B^{p}$ This problem can be rephrased as follows: let $U(v)u$

$=Au+Bv,$ $(u, v)\in D(A)\times D(A)$ . Assume thatU is m-accretive inuandaccretive
in $v$ . What additional assumptions on $Uw$ . $r$ . $t$ . $v$ ensure the m-accretiveness
of the operator $U_{1}$ : $u\rightarrow U(u)u^{p}$ Our main purpose here is to present such a
result for operators $U(v)u$ which are not necessarily equal to the sum of two
operators $A$ and $B$ as above. This result will be shown after we establish
the existence of solutions to quasi-linear problems of the form

(I) $x^{\prime}(t)+U(x(t))x(t)=0$ , $x(0)=x_{0}$ , $ t\in[0, \infty$).

The method here employs the contraction principle on an operator $T$

associated with the equation

(II) $x^{\prime}(t)+U(u(t))x(t)=0$ , $x(O)=x_{0}$ , $t\in[0, T]$ ,

where $u$ is taken from a suitable family of continuous functions. This
operator $T$ maps $u(t)$ into the unique solution $x_{u}(t),$ $t\in[0, T]$ of $(II)_{u}$ which
is assumed to exist by known results. In case $U(v)u$ is linear in $u$ , the
problem $(II)_{u}$ is linear, and this is why problems like (I) are called “quasi-
linear”.

Quasi-linear problems for ordinary differential equations go at least as
far back as Corduneanu [1]. The reader is also referred to the papers of
Lasota and Opial [11], Opial [15], Avramescu [2], Kartsatos [4-6] and
Kartsatos and Ward [7] for some further results. For quasi-linear problems
concerning partial differential equations, the reader is referred to Kato [10],

Ward [16] and the references therein. Ward employed in [16] the Schauder-
Tychonov theorem for a suitable space of functions associated with the weak
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topology of $X$.
The second purpose of this paper is to obtain solutions in a Banach

function space of

$(^{**})$ $x^{\prime}+A(t)x=G(t, x)$ , $ t\in[0, +\infty$ )

where $A(t)$ is now linear and m-accretive. This result extends in a certain
direction the applicability of Theorem 2.2 of Massera and Sch\"affer [13, $p$ .
292]. These authors assumed that $A(t)$ is a bounded linear operator, exclud-
ing thus large classes of linear partial differential operators.

2. Preliminaries.

In what follows, $X$ will be a complex Banach space with uniformly con-
vex dual $x*$ . By $F$ we denote the duality map of $X,$ $i$ . $e.$ , for each $x\in X$,
$F(x)$ is the unique functional in $x*$ with $\langle x, F(x)\rangle=\Vert$ $x||2=\Vert F(x)\Vert^{2}$ . Here $\langle x, f\rangle$

denotes the value of $f\in X^{*}$ at $x$ and $\Vert\cdot\Vert$ is the norm in $X$ or $x*$ . This
map $F$ is well defined and uniformly continuous on bounded subsets of $X$

(cf. Kato [8]). An operator $A:D(A)\rightarrow X$ with (domain) $D(A)\subseteqq X$ is said to
be “accretive“ if

${\rm Re}$ \langle Ax--Ay, $ F(x-y)\rangle$ $\geqq 0$ for every $x,$ $y\in D(A)$ .
An accretive operator Ais said to be “m-accretive” if the range $R(I+\lambda A)=X$

for every $\lambda>0$ . Here $I$ is the identity operator. Now consider the Cauchy
problem

(2.1) $x^{\prime}+A(t)x=0$ , $x(O)=x_{0}$ , $t\in[0, T]$ ,

where $T$ is a positive constant and $x_{0}\in D(A(0))=D(A(t)),$ $t\in[0, T]$ . By a
”strong solution” of (2.1) we mean a function $x(t),$ $t\in[0, T]$ which is strongly
continuous on $[0, T]$ , strongly differentiable $a$ . $e.$ , and satisfies (2.1) $a$ . $e$ .

3. Main results.

We shall first establish a theorem concerning the existence of a unique
strong solution of the problem

(I) $x^{\prime}(t)+A(t, x(t))x(t)=0$ , $x(O)=x_{0}$ ,

where $A(t, u)v$ is Lipschitzian in $t,$ $u$ and m-accretive in $v$ .
THEOREM 3.1. Let (I) satisfy the following:

(i) the domain of the operator $U(t, \cdot, \cdot)$ with $U(t, u, v)=A(t, u)v$ is the set
$\overline{D}\times D$ , $D\subseteqq X$ for every $t\in[0, T$), and the range $R(U(t, \cdot, \cdot))\subseteqq X$. Moreover,
$x_{0}\in D$ ,

(ii) for every $(t, u)\in[0, T)\times\overline{D},$ $A(t, u)v$ is m-accretive in $v$ ,
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(iii) $\Vert A(t, u_{1})v-A(s, u_{2})v\Vert$

$\leqq r(\Vert u_{1}\Vert, \Vert u_{2}\Vert, \Vert v\Vert)[|t-s|(1+\Vert A(s, u_{2})v\Vert)+\Vert u_{1}-u_{2}\Vert]$

for every $t,$ $s\in[0, T$), $u_{1},$ $u_{2},$
$v\in\overline{D}$ . Here $\gamma;R_{+}^{3}\rightarrow R_{+}=[0, +\infty$ ) is increasing in

all three variables. Then there exists $T_{1}<T$ such that (I) has a unique strong
solution $x(t),$ $t\in[0, T_{1}]$ which is also uniformly Lipschjtz continuous on $[0, T_{1}]$ .

PROOF. Let $ M=1+\Vert A(0, x_{0})x_{0}\Vert$ and $L$ be a positive constant with $L/M<T$ .
Let0 $<T_{1}\leqq L/M$. Consider the set S $=\{u:[0, T_{1}]\rightarrow X;u(O)=x_{0},$ $u(t)\in\overline{D},$ $t\in[0, T_{1}]$ ,
$\Vert u(t)-u(t^{\prime})\Vert\leqq M|t-t^{\prime}$ , $t,$ $t^{\prime}\in[0, T_{1}]$ }. Then for every $u\in S$ we have $\Vert u(t)-x_{0}\Vert$

$\leqq Mt\leqq MT_{1}\leqq L$ . Moreover, $ S\neq\emptyset$ because $u(t)\equiv x_{0}\in S$. Now let $u\in S$ and con-
sider the problem

(I) $x^{\prime}(t)+A(t, u(t))x(t)=0$ , $x(O)=x_{0}$ , $t\in[0, T_{1}]$ .
This problem has a unique strong solution $x_{u}(t)$ because the operator

$B_{u}(t)v\equiv A(t, u(t))v$ satisfies all the assumptions of Theorem 1 in [8]. Actually,
this solution $x_{u}(t)$ is also weakly continuously differentiable on $[0, T_{1}]$ and
such that $A(t, u(t))x(t)$ is weakly continuous in $t$ . Furthermore, $x(t)$ satisfies
(I) everywhere if $x^{\prime}(t)$ denotes now the weak derivative of $x(t)$ . We are
planning to show that the operator $T:u\rightarrow x_{u}$ is a contraction mapping on $S$

if $T_{1}$ is chosen small enough. To this end, fix $u\in S$ and consider the approxi-
mating equations

(3.1) $x_{n}^{\prime}+A_{n}(t)x_{n}=0$ , $x_{n}(0)=x_{0}$ .
Here $A_{n}(t)=A_{n}(t, u(t))\equiv A(t, u(t))[I+(1/n)A(t, u(t))]^{-1},$ $n=1,2,$ $\cdots$ , are defined

and Lipschitz-continuous on $X$ with Lipschitz constants not exceeding $2n$ .
Moreover, the operators $J_{n}(t)\equiv[I+(1/n)A(t, u(t))]^{-1}$ : $X\rightarrow D$ are also Lipschitz-
continuous on $X$ with Lipschitz constants not exceeding 1. Each one of the
equations $(3.1)_{n}$ has a unique strongly continuously differentiable solution
$x_{n}(t)$ defined on $[0, T_{1}]$ , and such that $\lim_{n\rightarrow\infty}x_{n}(t)=x_{u}(t)$ strongly and uniformly
$w$ . $r$ . $t$ . $t$ on $[0, T_{1}]$ (cf. Kato [8]). We are planning to show that the sequence
$\{x_{n}(t)\},$ $n=1,2,$ $\cdots$ , is uniformly bounded on $[0, T_{1}]$ independently of $u\in S$, and
that $\{x_{n}(t)\}$ is also uniformly Lipschitz-continuous on $[0, T_{1}]$ independently of
$u\in S$ . To this end, let us first note that the following inequality holds as in
Kato [8, Lemma 4.1]:

$\Vert A_{n}(t, u(t))v-A_{n}(s, u(s))v\Vert$

$\leqq r(\Vert u(t)\Vert, \Vert u(s)\Vert,$ $\Vert v\Vert$ ) $|t-s|(1+M+\Vert v1+211A_{n}(s, u(s))v\Vert)$

for any $t,$ $s\in[0, T_{1}],$ $v\in D$ . Now we have

(3.1) $(d/dt)\Vert x_{n}(t)-x_{0}\Vert^{2}=2{\rm Re}\langle x_{n}^{\prime}(t), F(x_{n}(t)-x_{0})\rangle$

$=-2{\rm Re}\langle A_{n}(t, u(t))x_{n}(t)-A_{n}(t, u(t))x_{0} , F(x_{n}(t)-x_{0})\rangle$
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$-2{\rm Re}\langle A_{n}(t, u(t))x_{0}, F(x_{n}(t)-x_{0})\rangle$

$\leqq 2\Vert A_{n}(t, u(t))x_{0}\Vert\Vert x_{n}(t)-x_{0}\Vert$

$\leqq 2[\Vert A_{n}(0, x_{0})x_{0}\Vert+r(\Vert u(t)\Vert, \Vert x_{0}\Vert, \Vert x_{0}\Vert)\cdot$

$[(1+M+\Vert x_{0}\Vert+2\Vert A_{n}(0, x_{0})\Vert)T_{1}+\Vert u(t)-x_{0}\Vert]]$ $|x_{n}(t)-x_{0}\Vert$

$\leqq 2[\Vert A_{n}(0, x_{0})x_{0}\Vert+r(\Vert x_{0}\Vert+L, \Vert x_{0}\Vert, \Vert x_{0}\Vert)\cdot$

$[(1+\Vert x_{0}\Vert+M+2\Vert A_{n}(0, x_{0})x_{0}\Vert)(L/M)+L]]\Vert x_{n}(t)-x_{0}\Vert$ .
This inequality holds almost everywhere in $[0, T_{1}]$ . Dividing by2 $\Vert x_{n}(t)-x_{0}\Vert$

and integrating from $0$ to $t\leqq T_{1}$ we obtain

(3.2) $\Vert x_{n}(t)-x_{0}\Vert\leqq[\Vert A_{n}(0, x_{0})x_{0}\Vert+r(\Vert x_{0}\Vert+L, \Vert x_{0}\Vert, \Vert x_{0}\Vert)\cdot$

$(1+M+\Vert x_{0}\Vert+2\Vert A_{n}(0, x_{0})x_{0}\Vert)(L/M)+L)]T_{1}=K_{1}T_{1}$

where the constant $K_{1}>0$ is independent of $T_{1},$ $u\in S$, but depends on $n$ . In
order to find an upper bound for the derivative $x_{n}^{\prime}(t)$ , consider first the func-
tion $z_{n}(t)\equiv x_{n}(t+h)-x_{n}(t),$ $0\leqq t,$ $t+h<T_{1}$ . Then we have

(3.3) $(1/2)(d/dt)\Vert z_{n}(t)\Vert^{2}={\rm Re}\langle z_{n}^{\prime}(t), F(z_{n}(t))\rangle$

$=-{\rm Re}\langle A_{n}(t+h, u(t+h))x_{n}(t+h)$

$-A_{n}(t, u(t))x_{n}(t),$ $ F(z_{n}(t))\rangle$

$=-{\rm Re}\langle A_{n}(t+h, u(t+h))x_{n}(t+h)$

$-A_{n}(t+h, u(t+h))x_{n}(t),$ $ F(z_{n}(t))\rangle$

$-{\rm Re}\langle A_{n}(t+h, u(t+h))x_{n}(t)-A_{n}(t, u(t))x_{n}(t), F(z_{n}(t))\rangle$

$\leqq r(\Vert u(t+h)\Vert, \Vert u(f)\Vert,$ $\Vert x_{n}(t)\Vert)[(1+M+\Vert x_{n}(t)\Vert$

$+2\Vert A_{n}(t, u(t))x_{n}(t)\Vert)|h|+\Vert u(t+h)-u(t)\Vert]\Vert z_{n}(t)\Vert$

$\leqq r(\Vert x_{0}\Vert+L, \Vert x_{0}\Vert+L, \Vert x_{0}\Vert+K_{1}T_{1})$ .
$[(1+\Vert x_{n}^{\prime}(t)\Vert+2M+\Vert x_{0}\Vert+K_{1}T_{1})]\Vert z_{n}(t)\Vert|h|$ .

Dividing above by $\Vert z_{n}(t)\Vert|h|$ and integrating we obtain, after passage to
the limit for $h\rightarrow 0$,

(3.4) II $\chi_{n}^{\prime}(t)\Vert\leqq\Vert x_{n}^{\prime}(0)$ I
$+\int_{0}^{t}r(\Vert x_{0}\Vert+L, \Vert x_{0}\Vert+L, \Vert x_{0}\Vert+K_{1}T_{1})\cdot\Vert_{X_{n}^{\prime}}(s)\Vert ds$

$+r(\Vert x_{0}\Vert+L, \Vert x_{0}\Vert+L, \Vert x_{0}\Vert+K_{1}T_{1})(1+2M+\Vert x_{0}\Vert+K_{1}T_{1})T_{1}$ .

Thus, by Gronwall’s inequality, we have

(3.5) $\Vert x_{n}^{\prime}(t)\Vert\leqq[K_{2}T_{1}+\Vert A_{n}(0, x_{0})x_{0}\Vert]e^{\kappa_{2}\tau_{1}}$ ,
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where $K_{2}$ is independent of $T_{1},$ $u\in S$ . Now sinoe $\Vert A_{n}(0, x_{0})x_{0}\Vert\leqq\Vert A(0, x_{0})x_{0}\Vert$

(cf. Kato [8]), we obtain from (3.2), (3.5) that $\Vert x_{n}(t)\Vert\leqq\Vert x_{0}\Vert+K_{3}T_{1}$ , $\Vert x_{n}^{\prime}(t)\Vert\leqq$

$(K_{2}T_{1}+K_{4})e^{K_{2}T_{1}}$ with $K_{2},$ $K_{3},$ $K_{4}$ independent of $T_{1},$ $u\in S$ and $n$ . Moreover, we
also have $\Vert x_{u}(t)\Vert\leqq\Vert x_{0}\Vert+K_{3}T_{1},$ $\Vert x_{u}(t)-x_{u}(t^{\prime})\Vert\leqq(K_{2}T_{1}+K_{4})e^{K_{2}T_{1}}|t-t^{\prime}|$ for every
$t,$ $t^{\prime}\in[0, T_{1}]$ .

New let $u_{1},$ $u_{2}\in S$ and $x_{1},$ $x_{2}$ be the corresponding solutions of $(I)_{u}$ . Then
we have

(3.6) $(1/2)(d/dt)\Vert x_{1}(t)-x_{2}(t)\Vert^{2}$

$=-{\rm Re}\langle A(t, u_{1}(t))x_{1}(t)-A(t, u_{2}(t))x_{2}(t)$ ,

$ F(x_{1}(t)-x_{2}(t))\rangle$

$=-{\rm Re}\langle A(t, u_{1}(t))x_{1}(t)-A(t, u_{1}(t))x_{2}(t), F(x_{1}(t)-x_{2}(t))\rangle$

$-{\rm Re}\langle A(t, u_{1}(t))x_{2}(t)-A(t, u_{2}(t))x_{2}(t), F(x_{1}(t)-x_{2}(t))\rangle$

$\leqq r(\Vert u_{1}(t)\Vert, \Vert u_{2}(i)\Vert,$ $\Vert x_{2}(t)\Vert)\cdot\Vert u_{1}(t)-u_{2}(t)\Vert\Vert x_{1}(t)-x_{2}(t)\Vert$

from which, by division by $\Vert x_{1}(t)-x_{2}(t)\Vert$ and integration, we get

(3.7)
$\sup_{t\in[0.T_{1}]}\Vert x_{1}(t)-x_{2}(t)\Vert$

$\leqq T_{1}r(\Vert x_{0}\Vert+L, \Vert x_{0}\Vert+L, \Vert x_{0}\Vert+K_{3}L/M)\sup_{t\in[0.T_{1}]}\Vert u_{1}(t)-u_{2}(t)\Vert$

$=K_{5}\sup_{t\in[0.1]}\Vert u_{1}(t)-u_{2}(t)\Vert$ .

Now we may (and do) choose $T_{1}$ small enough so that

$[K_{2}T_{1}+K_{4}]e^{K_{2}T_{1}}\leqq M$

and $K_{5}<1$ ; then the operator $T:u\rightarrow x_{u}$ maps the set $S$ into itself and is a
contraction. Since $S$ is a complete metric space under the sup-norm, $T$ has
a fixed point $x(t),$ $t\in[0, T_{1}]$ . This is the desired strong solution of (I). Uni-
queness follows from 3.6 by replacing $u_{1},$ $u_{2}$ by $x_{1},$ $x_{2}$ respectively.

The above result generalizes the existence result in the proof of Theorem
11.2 of Kato [9]. Kato considered the case $A(t, u, v)\equiv Au+Bv$ under a $t$‘loca-
lized” Lipschitz condition on $B$ and m-accretiveness of a multi-valued $A$ .

It should be noted that if $U(t, u, u)\equiv A(u)u$ (independent of t) and accre-
tive in $u$ , then the solution guaranteed by Theorem 3.1 is extendable to
$[0, \infty)$ if we further assume that $A(u)u$ is ”demiclosed” ( $i$ . $e.$ , if $u_{n}\in D,$ $n=1,2$ ,
$\ldots$ , and $u_{n}\rightarrow u$ and $A(u_{n})u_{n}-v\in X$ then $u\in D$ and $A(u)u=v)$ . In fact, (cf.

proof of Theorem 11.2 of [9]) in this case, if [ $0,$ $T$ ‘) is the maximal interval
of existence of $x(t)$ with $ T^{\prime}<+\infty$ , then $\lim_{t\rightarrow T}x(t)=x(T^{\prime})\in D$ exists.

Now we are ready for the following perturbation result:
THEOREM 3.2. Let $D$ be a subset of X. Let $A$ : $\overline{D}\times D\rightarrow X$ be such that

$A(u)v$ is m-accretive in $v$ and $\Vert A(u_{1})v-A(u_{2})v\Vert\leqq r(\Vert u_{1}\Vert, \Vert u_{2}\Vert, \Vert v\Vert)\Vert u_{1}-u_{2}\Vert$ for
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any $u_{1},$
$u_{2}\in\overline{D},$ $v\in D$ . Then if $A(u)u$ is demiclosed and accretive, it is m-accretive.

PROOF. Taking into consideration the proof of Theorem 11.2 in Kato’s
paper [9] (cf. also Mermin [14, Lemma 4.2]), it suffices to show the existence
of some $x_{0}\in D$ such that for all $p\in x$ the Cauchy problem

(3.8) $x^{\prime}(t)+A(x(t))x(t)+x(t)-p=0,$ $x(O)=x_{0}$

has a unique strong solution on $[0, \infty$ ). To show this, we simply remark
that the operator $B(u)v\equiv A(u)v+v-p$ satisfies the assumptions placed on $A$ in
Theorem 3.1, and that the local strong solution obtained there is extendable
to $[0, \infty$ ) by the discussion above.

Theorem 3.1 holds of course if we perturb Equation (I) by a Lipschitzian
function. This is the content of the following

COROLLARY 3.1. Let the operatOr $A(u)v$ be as in Theorem 3.1, and let $G$ :
$[0, T)\times\overline{D}\rightarrow X$ satisfy:

$\Vert G(t_{1}, u_{1})-G(t_{2}, u_{2})\Vert\leqq r_{1}(\Vert u_{1}\Vert, \Vert u_{2}\Vert)[|t_{1}-t_{2}|+\Vert u_{1}-u_{2}\Vert]$

for every $t_{1},$ $t_{2}\in[0, T$) and $u_{1},$
$u_{2}\in\overline{D}$ . Then the conclusion of Theorem 1 is true

for the equation

(I) $x^{\prime}(t)+A(t, x(t))x(t)=G(t, x(t))$ .
PROOF. It suffices to consider instead of $A(t, u)v$ the operator $ B(t, u)v\equiv$

$A(t, u)v-G(t, u)$ .
The above corollary has points of contact with the main result of Gr\"oger

[3] who considered $A(t, u)v\equiv A(t)v$ and $G$ Lipschitzian and defined on the
whole of $Xw$ . $r$ . $t$ . the second variable.

4. Linear M-accretive $A(t)$ .
Let $C$ be the space of all X-valued continuous functions on $R_{+}$ with the

topology of uniform convergence on finite intervals. Then $C$ is a Fr\’echet
space. Now consider the differential equation

$(^{*})$ $x^{\prime}+A(t)x=f(t),$ $x(O)=x_{0}\in D,$ $ t\in[0, \infty$),

where $D(A(t))=D(A(O))=D,$ $R(A(t))\subseteqq X$ with $A$ linear, closed and $f\in C$. Let $f$

be Lipschitzian on $[0, +\infty$ ) and, moreover, let

(S) $\Vert A(t)v-A(s)v\Vert\leqq L|t-s|\cdot\Vert A(s)v\Vert$

for every $s,$ $t\in R_{+},$ $v\in D$ , where $L$ is a positive constant. Then the operator
$A_{1}(t):D\rightarrow X$ with $A_{1}(t)x\equiv A(t)x-f(t)$ satisfies all the hypotheses of Theorem 2.1
of Mermin’s dissertation [14] (cf. also Kato [8, Theorems 1, 2]). Consequently,
the equation $(*)$ has a unique solution $x(t),$ $t\in R_{+}$ which is strongly differenti-
able $a$ . $e.$ , weakly continuously differentiable, and satisfying $(^{*})(x^{\prime}(t)$ here is
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the weak derivative) on $R_{+}$ . Thus, under the above assumptions on $A(t)$ ,
Equation(*) has always solutions on $[0, \infty$ ) if $f$ belongs to a proper Banach
space of Lipschitzian functions. The Banach spaces $B$ considered below con-
sist of functions $ f:[0, +\infty$ ) $\rightarrow X$ which are at least Lipschitzian on $[0, +\infty$ ).

Let $B,$ $E$ be two complex Banach spaces in $C$ which are stronger than $C$

(convergence in $B$ or $E$ implies convergence in $C$). Then the pair $(B, E)$ is
”admissible” if for every $f\in B$ there exists al least one solution $x\in Eof(*)$ .
We denote by $X_{0E}$ the linear manifold of $X$ consisting of all initial values of
E-solutions of the homogeneous Cauchy problem

(4.1) $x^{\prime}+A(t)x=0$ .
Now let $X_{1}$ be any (but fixed) subspace of $X$ supplementary to $X_{0E}$ and

let $X_{1E}$ be the linear manifold consisting of all initial values of E-solutions
of $(^{*})$ belonging to $X_{1}$ and corresponding to all possible $f\in B$ . We have the
following theorem which extends a variation of Theorem 2.2 of Massera and
Sch\"affer [13] to unbounded operators:

THEOREM 4.1. Let $D(A(i))=D(A(O))=D$ with A linear, closed m-accretive
and satisfying (S). Moreover, let $B,$ $E$ be two complex Banach spaces such that
the pair $(B, E)$ is admissible, $X_{0E},$ $X_{1E}$ as above and $P_{1}(D)=\{P_{1}u;u\in D\}\subseteqq D$ ,

where $P_{1}$ is the projeciion of $X_{1}$ . Then there exists a constant $K>0$ such that
for every $f\in B$ Equation $(*)$ has a unique solution $x\in E$ with $x(0)\in X_{1E}$ and
satisfying $\Vert x\Vert_{E}\leqq K\Vert f\Vert_{B}$ .

PROOF. We partially follow the steps of Massera and Sch\"affer in [12].

Let $Y$ be the linear manifold consisting of all possible E-solutions of $(^{*})$ with
initial values in $X_{1E}$ while $f$ ranges in $B$ . Now let $x\in Y$ . We define

$\Vert x\Vert_{Y}=\Vert x\Vert_{E}+\Vert x^{\prime}(0)\Vert+\Vert x^{\prime}+A(\cdot)x\Vert_{B}$ ,

where $x^{\prime}(O)$ is the weak derivative of the solution $x(t)$ .
Then $\Vert\cdot\Vert_{Y}$ is a norm on $Y$, and we show that under this norm $Y$ is

complete. Let $x_{n}\in Y,$ $n=1,2,$ $\cdots$ be a Cauchy sequence. Then for every $\epsilon>0$

there exists $N(\epsilon)>0$ such that

(4.2) $\Vert x_{m}-x_{n}\Vert_{Y}=\Vert x_{m}-x_{n}\Vert_{E}+\Vert x_{m}^{\prime}(0)-x_{n}^{\prime}(0)\Vert+\Vert x_{m}^{\prime}+A(\cdot)x_{m}-[x_{n}^{\prime}+A(\cdot)x_{n}]\Vert_{B}<\epsilon$

for every $m,$ $n$ with $m,$ $n>N(\epsilon)$ . Thus, in particular, $\{x_{n}\}$ is a Cauchy sequence
in $E$ and, since $E$ is stronger than $C$ (which is complete), there is a continuous
function $x(t),$ $t\in R_{+}$ such that $x_{n}\rightarrow x$ in $C$. In particular, $x_{n}(0)\rightarrow x(0)$ as $ n\rightarrow\infty$ .
On the other hand, since $X$ is a Banach space, there exists a vector $y\in X$

such that the sequence $\{x_{n}^{\prime}(0)\}$ converges strongly to $y$ as $ n\rightarrow\infty$ . It is also
true that there exists $f\in B$ such that

(4.3) $\lim_{n\rightarrow\infty}\Vert f_{n}-f\Vert_{B^{--o}}$ , $C-\lim_{n\rightarrow\infty}f_{n}=f$ ,
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where $f_{n}(t)=x_{n}^{\prime}(t)+A(t)x_{n}(t)$ . Since $A(O)$ is closed and $x_{n}^{\prime}(0)+A(0)x_{n}(0)=f_{n}(0)$

with $x_{n}^{\prime}(O)\rightarrow y\in X$ and $f_{n}(0)\rightarrow f(0)$ , we obtain $x(O)\in D$ and $A(O)x(O)=-y+f(O)$ .
Now let $\overline{x}(t),$ $t\in R_{+}$ be the solution of $(^{*})$ with $\overline{x}(0)=x(0)$ . This solution exists
because $x(O)\in D$ . Then we have

(4.4) $x_{n}^{\prime}(t)+A(t)x_{n}(t)=f_{n}(t)$ , $t\in R_{+},$

(4.5) $\overline{x}^{\prime}(t)+A(t)\overline{x}(t)=f(t)$ , $t\in R_{+}$ .

Subtracting (4.5) from (4.4) and applying the functional $F(x_{n}(t)-\overline{x}(t))$ on
both members of the resulting equation, we easily obtain

(4.6) $(d/dt)\Vert x_{n}(t)-\overline{x}(t)\Vert^{2}=2{\rm Re}\langle x_{n}^{\prime}(t)-\overline{x}^{\prime}(t), F(x_{n}(t)-\overline{x}(t))\rangle$

$=-2{\rm Re}\langle A(t)x_{n}(t)-A(t)\overline{x}(t), F(x_{n}(t)-\overline{x}(t))\rangle$

$-2{\rm Re}\langle f_{n}(t)-f(t), F(x_{n}(t)-\overline{x}(t))\rangle$

$\leqq\Vert f_{n}(t)-f(t)\Vert\Vert x_{n}(t)-\overline{x}(t)\Vert$

almost everywhere in $[0, c]$ , where $c$ is a fixed positive constant. From (4.6)

we obtain

\langle 4.7) $(d/dt)\Vert x_{n}(t)-\overline{x}(t)\Vert\leqq\Vert f_{n}(t)-f(t)\Vert$ , $a.e$ . in $[0, c]$ ,

which implies

\langle 4.8) $\Vert x_{n}(t)-\overline{x}(t)\Vert\leqq\Vert x_{n}(0)-\overline{x}(0)\Vert+\int_{0}^{c}\Vert f_{n}(s)-f(s)\Vert ds$

$\leqq\Vert x_{n}(0)-\overline{x}(0)\Vert+c\sup_{t\in[0,c]}\Vert f_{n}(t)-f(i)\Vert$ .

Consequently, $x_{n}(t)$ converges strongly and uniformly to $x(t)$ on the
interval of $[0, c]$ . Since $c>0$ is arbitrary $\overline{x}(t)\equiv x(t)$ and $x^{\prime}(t)+A(t)x(t)=f(t)$ .
Consequently, $x^{\prime}(O)=y$ and

$\lim_{n\rightarrow\infty}\Vert x_{n}-x\Vert_{Y}=0$

which proves the completeness of $Y$. Now consider the operator $T:Y\rightarrow B$

with $(Tx)(t)=x^{\prime}(t)+A(t)x(t)$ .
The operator $T$ is linear and bounded. In fact, $\Vert Tx\Vert_{B}\leqq\Vert x\Vert_{Y}$ . $T$ is one-

to-one. To this end, let $x_{1},$ $x_{2}\in Y$ with $Tx_{1}=Tx_{2}$ . Then since $T(x_{1}-x_{2})=0$ and
$x_{1}-x_{2}\in E$, we must have $x_{1}(0)-x_{2}(0)\in X_{0E}$ . Since $X_{0E}\cap X_{1E}=\{0\},$ $x_{1}(0)=x_{2}(0)$

which implies $x_{1}(t)\equiv x_{2}(t),$ $t\in R_{+}$ . To show that $T$ is onto, let $f\in B$, and let
$x\in E$ with $x^{\prime}+A(t)x=f$. Then since $P_{1}(D)\subseteqq D,$ $P_{1}x(0)\in D$ . Let $x_{1}(t)$ be the
solution of $(*)$ with $x_{1}(0)=P_{1}x(0)$ . Then $x(O)-x_{1}(0)=P_{0}x(0)\in X_{0E}$ . Here $P_{0}$ is
the projection of $X_{0E}$ . Thus, $x-x_{1}\in E$ which implies $x_{1}\in E$ . Since $x_{1}(0)\in X_{1E}$ ,
$Tx_{1}=f$, which proves the ontoness of $T$ . Now it follows from a well known
theorem in Functional Analysis that the operator $T^{-1}$ : $B\rightarrow Y$ is bounded and
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since $\Vert T\Vert\leqq 1$ , we must have $\Vert T^{-1}\Vert\geqq 1$ . Let $K=\Vert T^{-1}\Vert-1$ . Then $\Vert x||_{E}\leqq\Vert x\Vert_{Y}-$

$\Vert f\Vert_{B}\leqq\Vert T^{-1}f\Vert_{B}-\Vert f\Vert_{B}\leqq(\Vert T^{-1}\Vert-1)\Vert f\Vert\leftarrow--K\Vert f\Vert_{B}$ . This completes the proof.
As an application of the above considerations, we show the existence of

solutions in $E$ of a perturbed linear equation of the form

(4.9) $x^{\prime}+A(t)x=G(t, x)$ , $ t\in[0, +\infty$).

COROLLARY 4.1. Let $A(t),$ $B,$ $E$ satisfy the hypotheses of Theorem 4.1. Let
$M=\{u\in E;\Vert u\Vert\leqq r\}$ , where $r$ is a positive constant. Let $G:R_{+}\times\{v\in X;\Vert v\Vert\leqq r\}$

$\rightarrow X$ satisfy:
(i) the operator $U$ defined by $(Ux)(t)=G(t, x(t))$ maps $M$ into $B$ ,

(ii) $\Vert G(\cdot, u_{1}(\cdot))-G(\cdot, u_{2}(\cdot))\Vert_{B}\leqq L\Vert u_{1}-u_{2}\Vert_{E}$

for every $u_{1},$ $u_{2}\in M$ and $\Vert G(\cdot, 0)\Vert_{B}\leqq\lambda$ with the constants $\lambda,$ $L,$ $r$ satisfying
$(\lambda+Lr)K\leqq r$ and $KL<1$ . Here $K$ is the constant of Theorem 4.1. Then (4.9)

has at least one solution $x(t),$ $ t\in[0, \infty$ ) with $x(0)\in X_{1E}$ .
PROOF. Consider the operator $T:M\rightarrow E$ which maps the function $u\in M$

into the unique solution $x_{u}\in E(x_{u}(0)\in X_{1E})$ of the equation

$x^{\prime}+A(t)x=G(t, u(t))$ .
The solution $x_{u}(t)$ is guaranteed by Theorem 4.1. Moreover,

$\Vert x_{u}\Vert_{E}\leqq K\Vert G(\cdot, u(\cdot))\Vert_{B}$

$\leqq K(\Vert G(\cdot, 0)\Vert_{B}+L\Vert u\Vert_{E})\leqq K(\lambda+Lr)\leqq r$ .
Thus, $T(M)\subseteqq M$. We also have

$\Vert Tu_{1}-Tu_{2}\Vert\leqq K\Vert G(\cdot, u_{1}(\cdot))-G(\cdot, u_{2}(\cdot))\Vert_{B}$

$\leqq KL\Vert u_{1}-u_{2}\Vert$ .
This proves that $T$ is a contraction on $M$ and completes the proof.
In Theorem 3.1 we assumed that $P_{1}(D)\subseteqq D$ to ensure that $P_{1}x(0)\in D$ ,

otherwise the existence of $x_{1}(t)$ cannot be shown. In view of the usual spaces
of definition of partial differential operators, this is not really a strong
assumption. It is actually true that $A(s)$ generates (for any but fixed
$s\in[0, +\infty))$ a linear contraction semigroup $T(t)$ on $\overline{D}$ . Thus, we may assume
without loss of generality that $X=\overline{D}$ and that $A$ is densely defined in $X$.

In the results considered in this section we could have restricted our-
selves to finite intervals. Systems of the form

(4.10) $x^{\prime}+A(t)x=G(t, x)$ , $Tx=0,$ $t\in[0, T]$

can be considered, where $T$ is a bounded linear operator mapping $C[0, T]$

into X. $E$ now would consist of all $u\in C[0, T]$ with $Tu=0$ and satisfying
other suitable conditions.
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