Non-singular bilinear maps which come from some positively filtered rings

By Yôichi MIYASHITA

(Received Dec. 18, 1975)

Let K be a commutative ring, and K[X] the polynomial ring over K. Then it is known that K[X]/(f(X)) is a free Frobenius extension of K (in the sense of [3]) for a monic polynomial f(X) ([5],[2]). The purpose of this paper is to extend this result to non-commutative rings. To this end we take a "positively filtered ring" satisfying some condition in place of a "polynomial ring" K[X], and an ideal generated by a monic polynomial is replaced by a one sided ideal generated by a monic submodule, which is a generalization of a monic polynomial. Main results are Theorem 9, 11, and 12. In particular, Theorem 12 yields that K[X] is a free Frobenius extension of K[f(X)] for a monic polynomial f(X) over a commutative ring K, and Corollary to Theorem 12 is a generalization of [5; Theorem 2.1].

§ 1.

All rings are associative, but not necessarily commutative. Every ring has 1, which is preserved by homomorphisms, inherited by subrings and acts as the identity operator on modules. Let $_AM$, $_AN$ be left A-modules over a ring A. By $\operatorname{Hom}_r(_AM,_AN)$ we denote the module of left A-homomorphisms from $_AM$ to $_AN$ acting on the right side. We denote $\operatorname{Hom}_r(_AM,_AM)$ by $\operatorname{End}_r(_AM)$. Similarly Hom_l is used for right A-modules and right A-homomorphisms acting on the left side. Let $_AM_{A'}$ be a left A, right A'-module. If $_AM$ is finitely generated, projective, and generator, and $\operatorname{End}_r(_AM) \cong A'$ under the mapping induced by $M_{A'}$, we call $_AM_{A'}$ an invertible module. It is well known that this is right-left symmetric.

Let $R \supseteq K$ be rings, and $R_0 = K \subseteq R_1 \subseteq R_2 \subseteq \cdots$ an ascending sequence of additive subgroups such that $R = \bigcup R_i$ and $R_i \cdot R_j \subseteq R_{i+j}$ for all $i, j \ge 0$. We call $R = \bigcup R_i$ a positively filtered ring over K. If, further, $R = \bigcup R_i$ satisfies the following condition we call $R = \bigcup R_i$ a (*)-positively filtered ring over K:

(*) Each R_n/R_{n-1} $(n \ge 1)$ is an invertible module as a K-bimodule, and $(R_n/R_{n-1}) \bigotimes_K (R_m/R_{m-1}) \cong R_{n+m}/R_{n+m-1}$ canonically, for all $n, m \ge 1$.

We denote this by $K[R_1]$, and put $R_i=0$, if i<0. For any $i\geq 0$, we put $gr_iR=R_i/R_{i-1}$. It is easily seen that the latter half of (*) can be replaced by

the condition that $R_n = R_1^n$ for all $n \ge 1$, because both sides are invertible K-bimodules.

For example, let K be a ring, σ an automorphism of K, and D a σ -derivation (i. e. an additive endomorphism of K satisfying $(ab)^D = a^Db^\sigma + ab^D$). Then the skew polynomial ring $R = K [X; \sigma, D]$ defined by $aX = Xa^\sigma + a^D$ ($a \in K$) is a (*)-positively filtered ring over K, where $R_n = K + XK + \dots + X^nK$ ($n \ge 1$) (cf. [1]). This is the case that $R_1/K \cong K$ as right K-modules (or equivalently, as left K-modules). If f(X) is a monic polynomial of degree n then $R_n = R_{n-1} \oplus Kf(X) = R_{n-1} \oplus f(X)K$. Another example is the tensor K-ring T(M) generated by an invertible K-bimodule M. For any $n \ge 1$, we put $R_n = K \oplus M \oplus M^2 \oplus \dots \oplus M^n$, where $M^i = M \otimes_K \dots \otimes_K M$ (i-times). It is evident that $R_{n-1} \oplus M^n = R_n$.

In what follows, $R=K[R_1]$ is always a (*)-positively filtered ring, and unadorned \otimes means \otimes_K . Since $\operatorname{gr}_n R$ is right K-projective, there is a right K-submodule P_n of R_n such that $R_n=R_{n-1}\oplus P_n$ (direct sum). We call P_n a monic right K-submodule of degree n. Symmetrically we define a monic left K-submodule of degree n. Evidently $P_n \cong \operatorname{gr}_n R$ canonically, as right K-modules. In the sequel P_n and Q_n denote always a monic right K-submodule and a monic left K-submodule, respectively. Then $R_n=K\oplus P_1\oplus \cdots \oplus P_n=K\oplus Q_1\oplus \cdots \oplus Q_n$, and so $R=K\oplus P_1\oplus P_2\oplus \cdots = K\oplus Q_1\oplus Q_2\oplus \cdots$. Therefore, if n< m then $R_n\cap (P_m+P_{m+1}+\cdots)=R_n\cap (Q_m+Q_{m+1}+\cdots)=0$.

PROPOSITION 1. For all $n, m \ge 0$, $R_{n+m} = R_{n+m-1} \oplus (P_n \otimes Q_m)$.

PROOF. There are canonical isomorphisms $P_n \otimes Q_m \cong gr_n R \otimes gr_m R \cong gr_{n+m} R$, and therefore $R_{n+m} = R_{n+m-1} \oplus (P_n \otimes Q_m)$.

COROLLARY 1. For all $n, m \ge 1$, $R_{n+m} = R_{n-1} \oplus (P_n \otimes R_m)$, and so $R = R_{n-1} \oplus (P_n \otimes R)$. Similar facts hold for monic left K-submodules.

PROOF. $R_{n+m} = R_{n-1} \oplus P_n \oplus (P_n \otimes Q_1) \oplus \cdots \oplus (P_n \otimes Q_m) = R_{n-1} \oplus (P_n \otimes R_m)$.

COROLLARY 2. Let Y be a monic K-bisubmodule of degree n. Then $R=R_{n-1}\otimes K[Y]=K[Y]\otimes R_{n-1}$, where $K[Y]=K+Y+Y^2+\cdots$.

PROOF. $P_i \otimes Y^j$ is a monic right K-submodule of degree $nj+i(i,j \ge 0)$, and $R_{n-1} \otimes Y^j = Y^j \oplus (P_1 \otimes Y^j) \oplus (P_2 \otimes Y^j) \oplus \cdots \oplus (P_{n-1} \otimes Y^j)$. Hence $R = \bigoplus_{j \ge 0} (R_{n-1} \otimes Y^j) = R_{n-1} \otimes K[Y]$. Similarly we have $R = K[Y] \otimes R_{n-1}$.

Let I be a right ideal of R such that $R=R_{n-1}\oplus I$. Put $P=I\cap R_n$. Then $R_n=R_{n-1}\oplus P$, and so P is a monic right K-submodule of degree n. Therefore $R=R_{n-1}\oplus (P\otimes R)$. Hence $I=P\otimes R$.

PROPOSITION 2. If $R_1x \subseteq R_n$ then $x \in R_{n-1}$. Therefore if $R_rx \subseteq R_n$ for some $r \ge 1$ then $x \in R_{n-r}$.

PROOF. We may assume that $n \ge 0$. Consider a left K-submodule $(Kx+R_{n-1})/R_{n-1}=U$ of gr_nR . Then, under the canonical isomorphism $gr_1R \otimes gr_nR \simeq gr_{n+1}R$, the image of $gr_1R \otimes U$ is equal to 0. Hence U=0, that is, $x \in R_{n-1}$, because gr_1R is invertible.

PROPOSITION 3. For any $n, m \ge 0$, $gr_m R \cong \text{Hom}_r(\kappa gr_n R, \kappa gr_{n+m} R)$, by right

multiplication.

PROOF. This follows easily from that $gr_nR \otimes gr_mR \simeq gr_{n+m}R$ canonically, and that gr_nR is invertible.

PROPOSITION 4. Let M be a K-bisubmodule of R_n such that $M \supseteq R_{r-1}$, and such that $gr_rR \oplus (M/R_{r-1}) = R_n/R_{r-1}$, where $0 \le r \le n-1$. Let $0 \le v \le r$, and Q_v a monic left K-submodule of degree v, and let x be an element of R_{n-v} . Then $Q_v(x-x_{r-v}) \subseteq M$ for some x_{r-v} in R_{r-v} .

PROOF. $qx \in R_n = R_r + M$ for all $q \in Q_v$, and so qx is written as qx = c + d $(c \in R_r, d \in M)$. Then the map $q \mapsto c + R_{r-1}$ is a left K-homomorphism from Q_v to gr_rR . Since $Q_v \cong gr_vR$ canonically, as left K-modules, Proposition 3 implies that there is an element x_{r-v} in R_{r-v} such that $c + R_{r-1} = qx_{r-v} + R_{r-1}$ for all $q \in Q_v$. Then $Q_v(x - x_{r-v}) \subseteq M$, as desired.

PROPOSITION 5. Assume that M is as in Proposition 4. Put $K_s = \{x \in R_n | R_s x \subseteq M\}$ and $K_s^* = \{x \in R_n | xR_s \subseteq M\}$, where $0 \le s \le n$. Then $K_s \cap R_r = K_s^* \cap R_r = R_{r-1-s}$.

PROOF. Since $R_{r-1} \subseteq M$, it is evident that $R_{r-1-s} \subseteq K_s \cap R_r$. Let $x \in K_s \cap R_r$. If s=0 then $K_s=M$, and so $K_s \cap R_r = M \cap R_r = R_{r-1}$. Thus we may assume that $s \ge 1$. Since $M \cap R_r \subseteq R_{r-1}$, we have $x \in R_{r-1}$, and so $R_1 x \subseteq R_r \cap M \subseteq R_{r-1}$. Then by Proposition 2, $x \in R_{r-2}$. Therefore $R_2 x \subseteq R_r \cap M \subseteq R_{r-1}$, and hence $x \in R_{r-3}$, Finally $x \in R_{r-1-s}$. Hence $K_s \cap R_r = R_{r-1-s}$. Symmetrically $K_s^* \cap R_r = R_{r-1-s}$.

PROPOSITION 6. Let M be as in Proposition 4, and $0 \le s \le r$, $r+1+s \le n$. Then $R_r+K_s=R_{n-s}$, $R_{r-1}+R_sK_s=M$, and $R_r\cap K_s=R_{r-1-s}$.

PROOF. Put $K_s = Y$. To prove the first assertion we use Proposition 4. Evidently $R_r + Y \subseteq R_{n-s}$. If s = 0 then Y = M. Therefore we may assume that $s \ge 1$. Let $x \in R_{n-s}$ and each Q_v a monic left K-submodule of degree v. Then, since $x \in R_n = R_r + M$, $Q_0(x - x_r) \subseteq M$ for some $x_r \in R_r$, where $Q_0 = K$. Then $Q_1(x - x_r - x_{r-1}) \subseteq M$ for some $x_{r-1} \in R_{r-1}$. If $s \ge 2$ then $Q_2(x - x_r - x_{r-1} - x_{r-2}) \subseteq M$ for some $x_{r-2} \in R_{r-2}$, and so on. Eventually $Q_s(x - x_r - \cdots - x_{r-s}) \subseteq M$ for some $x_{r-s} \in R_{r-s}$. Then, since $R_{r-1} \subseteq M$, $Q_v(x - x_r - \cdots - x_{r-s}) \subseteq M$ for all $v = 0, \cdots, s$. Therefore $R_s(x - x_r - \cdots - x_{r-s}) \subseteq M$, or equivalently, $x - x_r - \cdots - x_{r-s} \in Y$, and hence $x \in R_r + Y$. Thus $R_{n-s} = R_r + Y$. To prove the second assertion we put n - s = t. Then, as $R_r \subseteq R_{t-1}$, $R_t = R_{t-1} + Y$, and so $R_{t+1} = R_t + R_1 Y = R_{t-1} + R_1 Y$, because $K \subseteq R_1$. Then $R_{t+2} = R_t + R_2 Y = R_{t-1} + R_2 Y$, and so on. Eventually $R_n = R_t + R_s Y = R_r + R_s Y = R_r + (R_{r-1} + R_s Y)$, because $R_t = R_r + Y$. Since $R_{r-1} + R_s Y \subseteq M$, the assumption for M yields that $R_{r-1} + R_s Y = M$. The last assertion follows from Proposition 5.

Let $0 \le s \le r, r+1+s \le n$, and let Y be a K-bisubmodule of R_{n-s} such that $R_s Y \cap R_r \subseteq R_{r-1}, R_r + Y = R_{n-s}$, and $Y \supseteq R_{r-1-s}$. Then, as in the proof of Proposition 6, we can prove that $R_n = R_r + R_s Y$. Therefore if we put $R_{r-1} + R_s Y = M$ then M satisfies the conditions in Proposition 4, and so $Y \cap R_r = R_{r-1-s}$ by Proposition 5. Then, by Proposition 5 and Proposition 6, $Y = \{x \in R_n | R_s x \subseteq M\}$.

Let U be a left B, right A-module, and V a left A, right B'-module, and

let W be an invertible left B, right B'-module. If φ is a bilinear map from $U \times V$ to W such that $\varphi(bu, v) = b\varphi(u, v)$, $\varphi(ua, v) = \varphi(u, av)$, and $\varphi(u, vb') = \varphi(u, v)b'$ ($u \in U, v \in V, b \in B, a \in A, b' \in B'$), φ is called a (B, A, B')-bilinear map. Then φ induces a left A, right B'-homomorphism μ from V to $\operatorname{Hom}_r(_BU, _BW)$. If $_BU$ is finitely generated and projective, and μ is an isomorphism, we call φ a non-singular (B, A, B')-bilinear map from $U \times V$ to W. To be easily seen, this is right-left symmetric. In fact $V \cong \operatorname{Hom}_r(_BU, _BW)$ yields a left B, right A-isomorphism $\operatorname{Hom}_l(V_{B'}, W_{B'}) \cong \operatorname{Hom}_l(\operatorname{Hom}_r(_BU, _BW)_{B'}, W_{B'})$. And, as is well known, the latter is isomorphic to $_BU_A$ canonically. Further, since $\operatorname{Hom}_r(_BU, _BW)_{B'} \cong \operatorname{Hom}_r(_BU, _BB) \otimes_B W_{B'}, V_{B'}$ is finitely generated and projective.

LEMMA 7. Let φ be a non-singular (B, A, B')-bilinear map from $U \times V$ to W, and let I, I' be ideals of B, B' respectively such that IW = WI'. Then φ induces a non-singular (B/I, A, B'/I')-bilinear map φ_0 from $U/IU \times V/VI'$ to W/IW = W/WI'.

PROOF. To be easily seen U/IU is finitely generated and projective as a left B/I-module, and the homomorphism $V/VI' \rightarrow \operatorname{Hom}_r(_{B/I}U/IU,_{B/I}W/IW)$ induced by φ_0 is given by a sequence of isomorphisms $V/VI' \cong V \otimes_{B'}(B'/I') \cong \operatorname{Hom}_r(_BU,_BW) \otimes_{B'}(B'/I') \cong \operatorname{Hom}_r(_BU,_BW) \cong \operatorname{Hom}_r(_BU,_BU,_BU) \cong \operatorname{Hom}_r(_BU,_BU) \cong \operatorname{Hom}_r(_BU) \cong \operatorname{Hom}_r(_BU) \cong \operatorname{Hom}_r(_BU) \cong \operatorname{Hom}_r(_BU) \cong \operatorname{Hom}_r(_BU) \cong \operatorname{Hom}_r$

LEMMA 8. Let C/B and C'/B' be extension rings over B and B' respectively, and assume that C/B and C'/B' are Morita equivalent by a pair of invertible modules ${}_BW_{B'} \subseteq {}_CW_{1C'}$, in the sense of $[4; \S 3]$. Then φ induces a nonsingular (C, A, C')-bilinear map φ_1 from $C \otimes_B U \times V \otimes_{B'} C'$ to W_1 .

PROOF. Noting that $W_1 = C \otimes_B W = W \otimes_{B'} C'$, the proof proceeds as in the proof of Lemma 7. (In fact, if we take ring homomorphisms in place of ring extensions, Lemma 7 is a special case of Lemma 8. Cf. [4].)

THEOREM 9. Let M be as in Proposition 4, and let $0 \le s \le r$, $0 \le t \le r$, and $r \le s + t \le n$. Then the multiplication in R induces a non-singular (K, K, K)-bilinear map ψ from $R_s/R_{r-1-t} \times R_t/R_{r-1-s}$ to R_n/M $(\cong gr_rR)$.

To prove this we need the following proposition, in which we use the following definition. Let $-1 \le i < j$, and A a left K-submodule such that $A \supseteq R_i$, $R_{j-1}/R_i \oplus A/R_i = R_j/R_i$. Then we call A a monic left K-submodule of degree j over R_i . Since $A/R_i \cong (R_j/R_i)/(R_{j-1}/R_i) \cong gr_j R$, $K_i = k$ is projective, and so $K_i = k$ is written as $K_i = k$ with some monic left K-submodule $K_i = k$ of degree $K_i = k$ (and conversely). Similarly we define a monic right K-submodule of degree $K_i = k$ over $K_i = k$ (and conversely).

PROPOSITION 10. Assume the same assumptions as in Theorem 9, and let each A_i be a monic left K-submodule of degree i over R_{r-t-1} ($i=r-t, \dots, s$). Then there are monic right K-submodules B_j ($j=r-s, \dots, t$) of degree j over R_{r-s-1} such that $A_iB_j\subseteq M$ provided $i+j\neq r$.

PROOF. Put $B_{r-j} = \{x \in R_t | A_{r-t}x, \dots, A_{j-1}x, A_{j+1}x, \dots, A_sx \subseteq M\}$ for j=r-t,

..., s. Then $R_{r-s-1}\subseteq B_{r-j}$ for all j, because $R_{r-1}\subseteq M$. If $x\in R_{r-j-1}\cap B_{r-j}$ then $A_jx\subseteq R_{r-1}\subseteq M$. Further, since $x\in R_t$, $R_{r-t-1}x\subseteq R_{r-1}\subseteq M$. Therefore $R_sx\subseteq M$. Hence $x\in R_{r-s-1}$, by Proposition 5. Thus $R_{r-j-1}\cap B_{r-j}=R_{r-s-1}$. Next we shall show that $R_{r-j-1}+B_{r-j}=R_{r-j}$ ($r-t\le j< s$). Since $R_{j-1}B_{r-j}\subseteq M$, we have $B_{r-j}\subseteq K_{j-1}\cap R_r=R_{r-1-(j-1)}=R_{r-j}$ by Proposition 5. Let $A_i=R_{r-t-1}\oplus Q_i$, where Q_i is a monic left K-submodule of degree i (i=r-t, ..., s). Let x be any element of R_{r-j} ($r-t\le j< s$). Then $Q_{j+1}(x-x_{r-j-1})\subseteq M$ for some $x_{r-j-1}\in R_{r-j-1}$, by Proposition 4. Then $Q_{j+2}(x-x_{r-j-1}-x_{r-j-2})\subseteq M$ for some $x_{r-j-2}\in R_{r-j-2}$, Finally $Q_s(x-x_{r-j-1}-\cdots-x_{r-s})\subseteq M$ for some $x_{r-s}\in R_{r-s}$, because $s+t\le n$. On the other hand, if $v\le j-1$ then $R_vx\subseteq R_{r-1}\subseteq M$. Thus $x-x_{r-j-1}-\cdots-x_{r-s}\in B_{r-j}$, and so $x\in R_{r-j-1}+B_{r-j}$. Hence $R_{r-j-1}+B_{r-j}=R_{r-j}$ for all j=r-t, ..., s. Finally $B_{r-s}=\{x\in R_t\mid R_{s-1}x\subseteq M\}\subseteq R_r\cap K_{s-1}=R_{r-s}\subseteq B_{r-s}$ by Proposition 5, and so $B_{r-s}=R_{r-s}$. Thus each B_j is a monic right K-bisubmodule of degree j over R_{r-s-1} such that $A_iB_j\subseteq M$ provided $i+j\ne r$.

PROOF OF THEOREM 9. By the assumption for M, $gr_rR \cong R_n/M$ canonically, and $gr_{r-t}R \oplus \cdots \oplus gr_sR \cong Q_{r-t} \oplus \cdots \oplus Q_s \cong R_s/R_{r-t-1}$ as left K-modules. Therefore $\operatorname{Hom}_r({}_KR_s/R_{r-t-1}, {}_KR_n/M)$ is right K-isomorphic to $\operatorname{Hom}_r({}_Kgr_{r-t}R \oplus \cdots \oplus gr_sR, {}_Kgr_rR)$. Then, by Proposition 3, the latter is isomorphic to $gr_tR \oplus gr_{t-1}R \oplus \cdots \oplus gr_{r-s}R \cong R_t/R_{r-s-1}$. Thus we have an isomorphism τ from R_t/R_{r-s-1K} to $\operatorname{Hom}_r({}_KR_s/R_{r-t-1}, {}_KR_n/M)_K$. Take A_i $(i=r-t, \cdots, s)$ and B_j $(j=r-s, \cdots, t)$ as in Proposition 10. Then ${}_KR_s/R_{r-t-1} = A_{r-t}/R_{r-t-1} \oplus \cdots \oplus A_s/R_{r-t-1}$ and $R_t/R_{r-s-1K} = B_{r-s}/R_{r-s-1} \oplus \cdots \oplus B_t/R_{r-s-1}$. Note that A_i and B_i are written as $A_i = R_{r-t-1} \oplus Q_i$ and $B_i = R_{r-s-1} \oplus P_i$ with a monic left K-submodule Q_i and a monic right K-submodule P_i of degree i. Then the isomorphism τ implies that $\operatorname{Hom}_r({}_KR_s/R_{r-t-1}, {}_KR_n/M)$ is equal to the set of all homomorphisms $(a_{r-t}+\cdots+a_s+R_{r-t-1}\to \Sigma_i a_i b_{r-i}+M)$, where $a_i \in A_i, b_{r-i} \in B_{r-i}$ $(i=r-t, \cdots, s)$. But $A_iB_j \subseteq M$ provided $i+j\neq r$, and so Σ_i $a_ib_{r-i}+M=(\Sigma_i a_i)(\Sigma_j b_j)+M$. Hence ψ is non-singular.

THEOREM 11. Let M be as in Proposition 4, and let $0 \le s \le r < t < n$, and $r \le s + t \le n$. Put $Y = \{x \in R_t | R_s x \subseteq M\}$. Then $M = R_{r-1} + R_s K_s$, and the multiplication in R induces a non-singular (K, K, K)-bilinear map φ from $R_s \times R_t / Y$ to R_n / M $(\preceq g r_r R)$.

PROOF. By Proposition 6, $R_r/R_{r-1-s} \cong R_{n-s}/K_s$ canonically, $M=R_{r-1}+R_sK_s$, and $R_{n-s}=R_r+K_s$. Therefore $R_t=R_r+(R_t\cap K_s)=R_r+Y$. Then $R_r/R_{r-1-s}\cong R_t/Y$ canonically, because $R_r\cap Y=R_r\cap R_t\cap K_s=R_r\cap K_s=R_{r-1-s}$. Then, by Theorem 9, φ is non-singular.

Let Y be a monic K-bisubmodule of degree r+1 ($r \ge 0$). Then $R_r + R_r Y = R_{2r+1}$, and $R_r \cap R_r Y = \{0\} \subseteq R_{r-1}$ (Corollary 1 to Proposition 1). Therefore, if we put $M = R_{r-1} + R_r Y$ then M satisfies the condition in Proposition 4, where n = 2r + 1. By Proposition 5 and Proposition 6, there exists uniquely a monic K-bisubmodule Y^* of degree r+1 such that $R_{r-1} + R_r Y = R_{r-1} + Y^* R_r$. (In fact, $Y = K_r$ and $Y^* = K_r^*$.) The notation Y^* for a monic submodule Y will be used

in the remainder of this paper. Since $R=K[Y^*]R_r=R_rR[Y]$ (Corollary 2 to Proposition 1), we obtain $Y^*R=Y^*R_rK[Y]\subseteq (R_{r-1}+R_rY)K[Y]\subseteq R_{r-1}+RY$, and so $R_{r-1}+Y^*R\subseteq R_{r-1}+RY$. Similarly $R_{r-1}+RY\subseteq R_{r-1}+Y^*R$, and hence $R_{r-1}+RY=R_{r-1}+Y^*R$. Conversely this equality implies that $R_{r-1}+R_rY=R_{r-1}+Y^*R_r$, because $R_{r-1}+R_rY=R_{2r+1}\cap (R_{r-1}+RY)=R_{2r+1}\cap (R_{r-1}+Y^*R)=R_{r-1}\oplus Y^*R_r$ by Corollary 1 to Proposition 1. Similarly we can see that $R_{r-1}\oplus R_{r-1}Y=R_{r-1}\oplus Y^*R_{r-1}$ and $R_{r-1}\oplus Y=R_{r-1}\oplus Y^*$. And, the former implies that $R_{r-1}K[Y]=K[Y^*]R_{r-1}$, where $K[Y]=K+Y+Y^2+\cdots$. Therefore two ring extensions $K[Y^*]/K$ and K[Y]/K are Morita equivalent by a pair of invertible modules $R_r/R_{r-1}\subseteq K[Y^*]\otimes (R_r/R_{r-1})=(R_r/R_{r-1})\otimes K[Y]$, in the sense of [4], where $R=K[Y^*]\otimes R_r=R_r\otimes K[Y]$. Apply Lemma 8 and Theorem 9 for s=t=r, n=2r+1. Then we obtain the following

THEOREM 12. Let Y be a monic K-bisubmodule of degree r+1 ($r \ge 0$). Then there exists uniquely a monic K-bisubmodule Y* of degree r+1 such that $R_{r-1} \oplus R_r Y = R_{r-1} \oplus Y * R_r$, and the multiplication in R induces a non-singular ($K[Y^*]$, R, K[Y])-bilinear map $R \times R \to R/R_{r-1}K[Y]$.

COROLLARY. Assume the same assumptions as in Theorem 12. Then, for any $i \ge 1$, the multiplication in R induces a non-singular $(K[Y^*]/Y^{*i}K[Y^*]$, R, $K[Y]/K[Y]Y^i)$ -bilinear map $R/Y^{*i}R \times R/RY^i \rightarrow R/L_i$, where $L_i = Y^{*i}R + K[Y^*]R_{r-1} = RY^i + R_{r-1}K[Y]$.

PROOF. We have already seen that $R_{r-1} + Y * R = R_{r-1} + RY$, and $R_{r-1} + Y * R_{r-1} = R_{r-1} + R_{r-1}Y$. Assume that $Y *^i R + K [Y *] R_{r-1} = RY^i + R_{r-1}K [Y]$. Then $Y *^{i+1}R + K [Y *] R_{r-1} = Y * (Y *^i R + K [Y *] R_{r-1}) + R_{r-1} = Y * RY^i + Y * R_{r-1}K [Y] + R_{r-1} \subseteq RY^{i+1} + R_{r-1}K [Y]$. Symmetrically $RY^{i+1} + R_{r-1}K [Y] \subseteq Y *^{i+1} + K [Y *] R_{r-1}$. Hence $Y *^i R + K [Y *] R_{r-1} = RY^i + R_{r-1}K [Y]$ for all $i=1,2,3,\cdots$. Then, by virtue of Lemma 7, this corollary follows from Theorem 12.

PROPOSITION 13. Let Y and W be monic K-bisubmodules of degree r+1 and s+1 $(r, s \ge 0)$ respectively. Then YW is a monic K-bisubmodule of degree r+s+2, and $(YW)^*=Y^*W^*$.

PROOF. The first half is evident from Proposition 1. Now, $R_{r-1}+RY=R_{r-1}+Y*R$ and $R_{s-1}+RW=R_{s-1}+W*R$, and these yield $R_{r-1}W+RYW=R_{r-1}W+Y*RW$ and $Y*R_{s-1}+Y*RW=Y*R_{s-1}+Y*W*R$. Then $R_{r+s}+RYW=R_{r+s}Y*RW=R_{r+s}+Y*W*R$, and hence (YW)*=Y*W*, as desired.

PROPOSITION 14. Let Y and W be monic K-bisubmodules of degree r+1 $(r\geq 0)$. Then $R/RY \cong R/RW$ as left R, right K-modules if and only if $R/Y*R \cong R/W*R$ as left K, right R-modules.

PROOF. Since $R=R_r\oplus RY$ and $RY+R_{r-1}K[Y]=R_{r-1}\oplus RY$, $R/(RY+R_{r-1}K[Y])$ is isomorphic to gr_rR as K-bimodules, and gr_rR is uniquely determined by r. Hence this proposition follows from Corollary to Theorem 12.

PROPOSITION 15. Let M be as in Proposition 4.

(i) Let $1 \le s \le n$, and $s \le n-r-1$, and assume that $R_r + K_s = R_{n-s}$. Then

 $R_r + K_{s-1} = R_{n-s+1}$, and $R_{r-s} + R_1 K_s = K_{s-1}$. In particular, if $r < s \le n-r-1$, then $R_1 K_s = K_{s-1}$.

- (ii) Let $1 \leq s \leq r-1$ and $s \leq n-r-1$. Then $R_1K_s = K_{s-1}$.
- (iii) If $n \ge 2r+1$ then $K+R_1K_r=K_{r-1}$.
- (iv) If $n-r \leq s$ and $r \leq s$ then $K_s = 0$.
- (v) If $R_r+K_s=R_{n-s}$ for some s such that $r < s \le n-r-1$, then $R_r \oplus K_{n-r-1} = R_{r+1}$. Therefore, by (i), $R_1K_i=K_{i-1}$ for all $i=r+1, \dots, n-r-1$.

PROOF. (i) $R_r+K_s=R_{n-s}$ yields $R_{r+1}+R_1K_s=R_{n-s+1}$. But $r+1 \le n-s$ by assumption, and so $R_{r+1} \subseteq R_{n-s} = R_r + K_s$. Hence $R_{n-s+1} = R_r + R_1 K_s$. Evidently $R_1K_s \subseteq K_{s-1}$. Hence $R_r + K_{s-1} = R_{n-s+1}$. Since $R_{r-s} + R_1K_s \subseteq K_{s-1}$ and $R_r \cap K_{s-1}$ $=R_{r-s}$ (Proposition 6), we obtain $K_{s-1}=R_{r-s}+R_1K_s$. In particular, if s>r then $R_1K_s=K_{s-1}$, because $R_{r-s}=0$. (ii), (iii) Assume $0 \le s \le r$. Then, by Proposition 6, $R_r+K_s=R_{n-s}$. Then, by (i), $R_{r-s}+R_1K_s=K_{s-1}$. But, since $K_s\supseteq R_{r-1-s}$, we have $R_1K_s \supseteq R_1R_{r-1-s}$. Thus $R_1K_s = K_{s-1}$, if $s \le r-1$. On the other hand, if s=r then $K+R_1K_r=K_{r-1}$. (iv) Since $K_s\subseteq R_{n-s}\subseteq R_r$, we have $K_s=K_s\cap R_r=$ $R_{r-1-s}=0$ by Proposition 5. (v) By Proposition 5, $R_r \oplus K_s = R_{n-s}$, and so $R_{r+1}=$ $R_r \oplus (R_{r+1} \cap K_s)$. Hence $R_{r+1} \cap K_s$ is a monic K-bisubmodule of degree r+1. Since $K_{s-1} \supseteq K_s$, $R_{n-s} \cap K_{s-1} = (R_r + K_s) \cap K_{s-1} = (R_r \cap K_{s-1}) \oplus K_s$. But, since r < s, $R_r \cap K_{s-1} = R_{r-s} = 0$ by Proposition 5. Hence $R_{n-s} \cap K_{s-1} = K_s$, that is, $R_1(R_{n-s} \cap K_{n-s})$ $K_{s-1} \subseteq K_{s-1}$. Then $R_{n-r-1-s}(R_{r+1} \cap K_{s-1}) \subseteq R_{n-r-2-s}(R_{r+2} \cap R_{s-1}) \subseteq \cdots \subseteq R_1(R_{n-s-1} \cap R_{n-r-1-s})$ K_{s-1}) $\subseteq R_{n-s} \cap K_{s-1} = K_s$, and so $R_{n-r-1}(R_{r+1} \cap K_{s-1}) \subseteq R_s K_s \subseteq M$, that is, $R_{r+1} \cap K_{s-1}$ $\subseteq K_{n-r-1}$. Since $R_{r+1} \cap K_{s-1} \supseteq K_{n-r-1}$ is evident, we obtain $K_{n-r-1} = R_{r+1} \cap K_{s-1}$. Hence $R_{r+1}=R_r\oplus (R_{r+1}\cap K_s)=R_r\oplus K_{n-r-1}$, as desired.

§ 2. Examples.

EXAMPLE 1. Let K be a (commutative) field, σ an automorphism of K such that $\sigma \neq id$ and $\sigma^2 = id$. Take an element a of K such that $\sigma(a) \neq a$. We consider the skew polynomial ring $R = K[X; \sigma]$ defined by $Xb = \sigma(b)X$ ($b \in K$). Put $y = a + X^2$ and $y^* = \sigma(a) + X^2$. Then $Xy^* = yX$, and $Xy = y^*X$. It is easy to see that $Ry \subseteq K + y^*R$, and similarly $y^*R \subseteq K + Ry$. Hence $K + Ry = K + y^*R$. But $K + Ry \neq K + yR$, because $\sigma(a) \neq a$.

EXAMPLE 2. Let K be a field of characteristic 2, and D a derivation from K to K such that $D \neq 0$ and $D^2 = 0$. We consider the skew polynomial ring R = K[X; D] defined by $Xb = bX + D(b)(b \in K)$. Take an element a of K with $D(a) \neq 0$. Put $W = a + X^2$. Then, as $D^2 = 0$, we have bW = Wb for all $b \in K$, and it is easy to see that $RW \subseteq K + WR$, and similarly $WR \subseteq K + RW$. But $XW \in WR$, because $D(a) \neq 0$. Hence $RW \subseteq WR$.

EXAMPLE 3. Let K be a field of characteristic 3, and D_1 a derivation from K to K such that $D_1 \neq 0$ and $D_1^3 = 0$. Then $X^3 a = aX^3$ for all $a \in K$, in $K[X; D_1]$. Put $M = R_1 \oplus (X^2 + X^3)K$, where $R_1 = K + XK$. Then M is a K-

bisubmodule of R_3 . Assume that $M=R_1\oplus U$ for some K-bisubmodule U. Then, as in easily seen, U is a monic K-bisubmodule of degree 3, and so U is generated by a monic polynomial f(X) of degree 3 such that f(X)a=af(X) for all $a\in K$, because $U\cong R_3/R_2\cong K$ as K-bimodules. It is easy to see that $f(X)=a_0+X^3$ for some a_0 in K. Then $M=R_1+f(X)K=R_1\oplus X^3K$. But X^2+X^3 does not belong to $R_1\oplus X^3K$, a contradiction.

References

- [1] P.M. Cohn, Free rings and their relations, Academic Press, 1971.
- [2] N. Jacobson, Generation of separable and central simple algebras, J. Math. Pures Appl., (9), 36 (1957), 217-227.
- [3] F. Kasch, Projective Frobenius-Erweiterungen, Sitzungsber Heidelberger Akad., 89-109 (1960/1961).
- [4] Y. Miyashita, On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ., Ser. I, 21 (1970), 97-121.
- [5] Y. Miyashita, Commutative Frobenius algebras generated by a single element, J. Fac. Sci. Hokkaido Univ., Ser. I, 21 (1971), 166-176.

Yôichi MIYASHITA
Department of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, Japan