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1. Introduction. The conditional expectation has been studied by several
authors, $e$ . $g$ . $[1]$ F. Combes, [5] I. Kov\’acs and J. Sz\"uces, [6] M. Nakamura
and T. Turumaru and [9] H. Umegaki. Here in this note, we shall make a
detailed study on the conditional expectation $T_{\phi}$ from $M$ to $(M^{\Sigma}\phi)e_{\phi}$ (See [1]).

We then apply it to the strict semi-finiteness of weight.
The author wishes to thank Professors O. Takenouchi and S. Kitagawa

for their helpful suggestions.

2. Conditional expectation. Given a weight $\phi$ on a von Neumann algebra
$M$, we denote by $m_{\phi}$ the $*$-subalgebra spanned by $n_{\phi}^{*}n_{\phi}$ where $n_{\phi}=\{x\in M$ ;
$\phi(x^{*}x)<+\infty\}$ . The linear extension on $m_{\phi}$ of $\phi|_{(m_{\psi)+}}$ will be denoted by $\dot{\phi}$ .

The following theorem is a slight modification of [8] Theorem 3, which
plays a crucial role in our study. The $\sigma_{t}$ -invariance of $T$ follows from the
uniqueness of $T$ .

THEOREM 1. Let $M$ be a von Neumann algebra, $\phi$ a faithful normal semi-
finite weight on $M,$ $N$ a von Neumann subalgebra of $M$ on which $\phi|_{N+}$ is semi-
finite.

Then the following two statements are equivalent;
(i) $N$ is invariant under the modular automorphism group $\sigma_{t}$ associated with $\phi$ .

(ii) There exists a unique a-weakly continuous conditional expectation $T$ from
$M$ on $N$ such that $\phi(x)=\phi\circ T(x)$ for all $x\in M_{+}$ .

By excluding the condition $\phi|_{N+}$ is semi-finite” in the above Theorem 1,
we get the following proposition.

PROPOSITION 2. Let $M$ be a von Neumann algebra, $\phi$ a faithful normal
semi-finite weight on $M,$ $N$ a von Neumann subalgebra, $e_{0}$ the greatest projection
in the $\sigma$-weak closure of $m_{\phi}|N+$

Then the following two statements are equivalent;
(i) $e_{0}$ Ne $0$ is invariant under the modular automorphism group $\Sigma=\{\sigma_{t}\}$ asso-

ciated with $\phi$ .
(ii) $e_{0}$ is a projection of the subalgebra $M^{\Sigma}$ of fixed points of $M$ for $\Sigma$ and
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there exists a unique o-weakly continuous conditional exPectation $T$ from $M$

on $e_{0}Ne_{0}$ such that $\phi(e_{0}xe_{0})=\phi\circ T(x)$ for all $x\in M_{+}$ .
PROOF. $(i)\rightarrow(ii)$ .
Since $e_{0}Ne_{0}$ is invariant under $\Sigma,$ $\sigma_{t}(e_{0})\leqq e_{0}$ for all $t$ and hence $e_{0}\in M^{\Sigma}$ .

We define a weight $\psi$ by $\psi=\phi|_{(M)}e_{0+}$ . Then it follows from [7] Theorem
3.6 that $\psi$ is a faithful normal semi-finite weight on $M_{e_{0}}$ . Moreover by the
construction of $e_{0},$ $\psi|_{(N_{e_{0}+}}$) is also semi-finite on $N_{e_{0}}$ .

The modular automorphism group $\sigma_{t}^{\psi}$ associated with $\psi$ is the restriction
$\sigma_{t}|_{M_{e_{0}}}$ on $M_{e_{0}}$ , therefore $N_{e_{0}}$ is invariant under $\sigma_{t}^{\psi}$ . By Theorem 1 there exists
a $\sigma$-weakly continuous conditional expectation $T_{1}$ from $M_{e_{0}}$ on $N_{e_{0}}$ such that
$\psi(x)=\psi\circ T_{1}(x)$ for all $x\in(M_{e_{0}})_{+}$ . Then putting a $\sigma$-weakly continuous con-
ditional expectation $T$ by $T(x)=T_{1}(e_{0}xe_{0})$ for all $x\in M$, we get;

$\phi(e_{0}xe_{0})=\phi\circ T(x)$

for all $x$ in $M_{+}$ .
Let $T^{\prime}$ be another conditional expectation of the same properties.
For each $x\in(m_{\phi})_{+}$ , we get;

$\phi((T(x)-T^{\prime}(x))^{*}(T(x)-T^{\prime}(x)))$

$=\phi[(T\{T(x)-T^{\prime}(x))^{*}x\}-T^{\prime}\{(T(x)-T^{\prime}(x))^{*}x\}]$

$=\dot{\phi}[e_{0}\{(T(x)-T^{\prime}(x))^{*}\}e_{0}]-\dot{\phi}[e_{0}\{(T(x)-T^{\prime}(x))^{*}x\}e_{0}]$

$=0$ .
Since $\phi$ is faithful, we get;

$T(x)-T^{\prime}(x)=0$ for all $x\in(m_{\phi})_{+}$

Since $m_{\phi}$ is a-weakly dense in $M,$ $T_{1}$ and $T_{2}$ are $\sigma$-weakly continuous $T_{1}(x)=$

$T_{2}(x)$ for all $x\in M$.
$(ii)\rightarrow(i)$ The first part of statement (ii) implies that $\psi$ is semi-finite as

before. By applying Theorem 1 to $M_{e_{0}},$ $N_{e_{0}},$ $\psi,$ $\psi|_{(N_{e_{0}}}$ ) $+andT|_{(M_{e_{0}}}$ ) instead of
$M,$ $N,$ $\phi,$ $\phi|_{N+}$ and $T$, it follows from Theorem 1 that $N_{e_{0}}$ is invariant under

$\sigma_{t}^{\psi}$ for all $t\in R$ . On the other hand, $e_{0}Ne_{0}$ is invariant under $\Sigma$ since $\sigma_{t}^{\psi}=$

$\sigma_{t}|_{M_{\theta_{0}}}$ .
We shall recall some definitions from [1]. Let $\phi$ be a faithful normal

semi-finite weight on $M_{+}$ . $P|Jt$

$A_{\phi}=$ { $x\in n_{\phi}^{*}\cap n_{\phi}$ ; $\dot{\phi}(xy)=\dot{\phi}(yx)$ for all $y\in n_{\phi}^{*}\cap n_{\phi}$ }

and let $M_{\phi}$ denote the a-weak closure of $A_{\phi}$ .
COROLLARY 3. Let $M$ be a von Neumann algebra, $\phi$ a faithful normal

semi-finite weight on $M_{+}$ with the modular automorphism group $\Sigma=\{\sigma_{t}\},$
$e_{0}$ the
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greatest projection of $m_{\phi}|_{M^{\Sigma}}$ .
Then there exists a unique o-weakly continuous conditional expectational $T$

from $M$ onto $(M^{\Sigma})_{e_{0}}$ such that;

$\phi(e_{0}xe_{0})=\phi(Tx)$

for all $x\in M_{+}$ . Moreover $M_{\phi}=e_{0}M^{\Sigma}e_{0}$ .
PROOF. The first part of statement can be proved by replacing $M^{\Sigma}$ in ex-

change for $N$ in Proposition 2. Therefore we may have only to show that $M_{\phi}$

is the $\sigma$-weak closure of $m_{\phi}|_{(}M^{\Sigma+}$) $.$

For each $x\in m_{\dot{\varphi}}|_{(M^{\Sigma)}+}$ we see by [7] Theorem 3.6

$\dot{\phi}(xz)=\dot{\phi}(zx)$ for all $z\in m_{\phi}$ ,

which implies $\phi(x(y^{*}z))=\phi((y^{*}z)x)$ for all $z,$ $y\in n_{\phi}^{*}\cap n_{\phi}$

$<\pi_{\phi}(y^{*})\eta_{\phi}(z)|\eta(x^{*})>$

$=<\eta_{\phi}(x)|\pi_{\phi}(z^{*})\eta_{\phi}(y)>$

$=<\eta_{\phi}(x)|S\pi_{\phi}(y^{*})\eta_{\phi}(z)>$

$=<\Delta^{1/2}\phi\pi_{\phi}(y^{*})\eta_{\phi}(z)|J_{\phi}\eta_{\phi}(x)>$ .
Since $m_{\phi}$ is a $0$-weakly dense $*$-subalgebra of $M$, there exists a net $\{u_{\lambda}\}$ in
$(m_{\phi})_{+}$ such that $\{u_{\lambda}\}$ converges a-strongly to 1 with $\Vert u_{\lambda}\Vert\leqq 1$ for all $\lambda$ . Put
$y_{\lambda}=\pi^{-1/2}\int_{-\infty}^{\infty}(\exp-t^{2})o_{t}(u_{\lambda})dt$, then $y_{\lambda}$ is an element of $(m_{\phi})_{+}$ which is analytic

for $0_{t}$ , moreover $o_{\alpha}(y_{\lambda})$ converges strongly to 1 and $\sigma_{\alpha}(y_{\lambda})$ is bounded for all
$\alpha\in C$. [See [7] Lemma 5.2.1

Replacing $y_{\lambda}$ by $y$, we get;

$<\pi_{\phi}(y_{\lambda}^{*})\eta_{\phi}(z)|\eta_{\phi}(x^{*})>$

$=<\pi_{\phi}(\sigma_{-i/2}(y_{\lambda}))\Delta_{\phi}^{1/2}\eta_{\phi}(z)|J_{\phi}\eta_{\phi}(x)>$ .

Therefore $<\eta_{\phi}(z)|\eta_{\phi}(x^{*})>=\lim_{\lambda}<\pi_{\phi}(y_{\lambda}^{*})\eta_{\phi}(z)|\eta_{\phi}(x^{*})>$

$=\lim_{\lambda}<\pi_{\phi}(\sigma_{-i/2}(y_{\lambda}))\Delta_{\phi}^{1/2}\eta_{\phi}(z)|J_{\phi}\eta_{\phi}(x)>$

$=<\Delta_{\phi}^{1/2}\eta_{\phi}(z)|J_{\phi}\eta_{\phi}(x)>$ ,

which implies di $(xz)=\dot{\phi}(zx)$ for all $z\in n_{\phi}^{*}\cap n_{\phi}$ . By the dePnition of $M_{\phi}$ we get
$m_{\phi}|_{(M^{\Sigma)}+}\subset M_{\phi}$ .

Conversely for $x\in A_{\phi}$ , it follows from [7] Theorem 3.6 that $x\in M^{\Sigma}$, then
by [1] Lemma 2.2 the $0$-weak closure of $m_{\phi}|_{(M^{\Sigma)}+}$ contains $A_{\phi}$ .

DEFINITION 4. $T$ and $e_{0}$ in Corollary 3 are written by $T_{\phi}$ and $e_{\phi}$ respecti-
vely and $T_{\phi}$ is called the conditional expectation associated with $\phi$ .

THEOREM 5. (The characterization of $e_{\phi}.$ )
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The projection $e_{\phi}$ is the greatest projeciion in { $e\in(M^{\Sigma})_{p}$ ; $M_{e}$ is $\Sigma_{-}finite$ }.
PROOF. We shall show that $M_{e\phi}$ is $\Sigma_{-}finite$ . It follows from the unique-

ness of $T_{\phi}$ that $T_{\phi}\sigma_{t}(x)=T_{\phi}(x)$ for all $x\in M$ and $t\in R$ . If $x\in(m_{\phi})_{+},$ $y-$

$\phi(T_{\phi}(x)yT_{\phi}(x))$ is $\Sigma$ -invariant normal positive linear functional on $M$ since $T_{\phi}(x)$

is in $M^{\Sigma}\cap(m_{\phi})_{+}$ for $x\in(m_{\phi})_{+}$ [See [7] Theorem 3.6].

We suppose; $y\in(e_{\phi}Me_{\phi})_{+}$ and $\phi(T_{\phi}(x)yT_{\phi}(x))=0$ for all $x\in(m_{\phi})_{+}$ .
$T_{\phi}(x)yT_{\phi}(x)=0$ for all $x\in(m_{\phi})_{+}$ since $\phi$ is faithful. Since $m_{\phi}$ is a o-weakly
dense $*$-subalgebra of $M,$ $T_{\phi}$ is o-weakly continuous and $T_{\phi}(1)=e_{\phi}$, we get
$y=e_{\phi}ye_{\phi}=0$, which implies $M_{e_{\phi}}$ is $\Sigma_{-}finite$ .

Conversely we suppose that $M_{e}$ is $\Sigma_{-}finite$ with $e\in M^{\Sigma}$ . By the definition
of $\Sigma_{-}finiteness$, there exists a family of $\Sigma$ -invariant normal positive linear
functional $\{\omega_{i}\}_{i\in I}$ on $M_{e}$ such that the support $s(\omega_{i})$ of $\omega_{i}$ is mutually ortho-
gonal with $\sum_{i\in I}s(\omega_{i})=e$ [See [5]].

Put

$\psi=\sum_{i\in I}\omega_{i}$ .

Then $\psi$ is a $\{0_{t}|_{Me}\}$ -invariant faithful normal semi-finite weight on $(M_{e})_{+}$ .
On the other hand $\phi|_{(M)}e+is$ semi-finite on $(M_{e})_{+}$ and its modular automor
phism group $\{o_{t}^{\phi 1}M\}$ proves to be $\{0_{t}^{\phi}|_{M_{e}}\}$ .

By Radon-Nikodym Theorem in [7], there exists a unique non-singular
positive self-adjoint operator $h$ is affiliated with $(M^{\Sigma})_{e}$ such that $\psi(\cdot)=\phi|_{M_{e}}$

$(h\cdot)$ , then $\phi|_{M_{e}}(\cdot)=\psi(h^{-1}\cdot)$ and $h$ is affiliated with $(M_{e})^{\Sigma^{\psi}}$ . It follows from [7]

Theorem 3.6 and $s(\omega_{i})\in(m_{\psi})_{+}$ that

$(e-e(\frac{1}{n}))s(\omega_{i})(e-e(\frac{1}{n}))\in(m_{\phi})_{+}$ where $h=\int_{0}^{\infty}\lambda de(\lambda)$ .

Since $\omega_{i}$ is $\Sigma$ -invariant, $s(\omega_{i})$ is a projection of $M^{\Sigma}$, and then

$(e-e(\frac{1}{n}))s(\omega_{i})(e-e(\frac{1}{n}))$ is in $(M^{\Sigma})_{e}$ .

By the definition of $e_{\phi}$, we get;

$(e-e(\frac{1}{n}))s(\omega_{i})(e-e(\frac{1}{n}))\leqq e_{\phi}$ for all $n\in N$ .

Since $h$ is non-singular, $e_{\phi}\geqq w-\lim_{n\rightarrow\infty}(e-e(\frac{1}{n}))s(\omega_{i})(e-e(\frac{1}{n}))=es(\omega_{i})e$ then

$e\leqq e_{\phi}$ because $\sum_{i\in I}s(\omega_{i})=e$ .
Therefore $e_{\phi}$ is the greatest projection.

In the following Corollary the equivalence of condition (i), (iv) and (v)

was proved by Combes [2] 3.4 Th\’eor\‘eme.
COROLLARY 6. Let $\phi$ be a faithful normal semi-finite weight on $M_{+}$ . The
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following statements are equivalent;
(i) $\phi$ is strictly semi-finite.

(ii) $M_{\phi}=M^{\Sigma}$ .
(iii) $e_{\phi}=1$ .
(iv) $M$ is $\Sigma_{-}finite$ .
(v) There exists a $\sigma$-weakly continuous conditional expectati0n $T$ from $M$

onto $M^{\Sigma}$ such that $\phi(x)=\phi\circ T(x)$ for all $x\in M_{+}$ . Moreover $T$ in (v) is $T_{\phi}$ .
PROOF. $(i)\leftrightarrow(ii)\leftrightarrow(iii)\leftrightarrow(iv)\rightarrow(v)$ follow from Corollary 3 and Theorem 5.
$(v)\rightarrow(iii)$ . For $x\in(m_{\phi})_{+}$ , we see that $T(x)\in(m_{\phi}|_{M^{\Sigma}})_{+}$ .

In the proof of Corollary 3 we have already shown $m_{\phi}|_{(\Sigma)}M+\subset M_{\phi}$, which
implies, $T((m_{\phi})_{+})\subset M_{\phi}$ .
Since $T$ is o-weakly continuous and $m_{\phi}$ is o-weakly dense in $M,$

$M^{\Sigma}=T(\overline{m_{\phi}})\subset\sigma-W$

$\overline{T(m_{\phi})}\subset M_{\phi}\sigma-W$ Since $M^{\Sigma}\supset M_{\phi}$, we get $M_{\phi}=M^{\Sigma}$ .
The last statement $T=T_{\phi}$ follows the uniqueness of $T_{\phi}$ .
THEOREM 7. Let $M$ (resp. $N$) be a von Neumann algebra, $\phi$ (resp. $\psi$ ) $a$

faithful normal semi-finite weight on $M$ (resp. $N$).

Then $e_{\phi}\otimes e_{\psi}=e_{\phi\otimes\psi}$ .

PROOF. Let $\Sigma=\{\sigma_{t}\}$ (resp. $\Sigma^{\psi}=\{\rho_{t}\}$ ) be the modular automorphism group
associated with $\phi$ (resp. $\psi$ ), $M^{\Sigma}$ (resp. $M^{\Sigma\psi}$ ) the subalgebra of fixed points of
$M$ (resp. $N$) for $\Sigma$ (resp. $\Sigma^{\psi}$ ).

We shall prove that $e_{\phi}\otimes e_{\psi}\geqq e_{\phi\otimes\psi}$ .
Since $(M\otimes N)_{e_{\phi\otimes\psi}}$ is $\Sigma\otimes\Sigma^{\psi_{-}}finite$ by Theorem 5, there exists a family of
$\Sigma\otimes\Sigma^{\psi}$-invariant positive linear functional $\{\omega_{i}\}_{i\in I}$ on $M\otimes N$ such that $\sum_{l\in I}s(\omega_{i})=$

$e_{\phi\otimes\psi}$ .
Put $\tilde{\omega}_{i}(x)=\omega_{i}(x\otimes 1)$ for all $x\in M_{+}$ .
Then we get $s(\omega_{i})\leqq s(\tilde{\omega}_{i})\otimes 1$ .

On the other hand, since $\tilde{\omega}_{i}$ is $\Sigma$ -invariant normal positive linear functional
on $M$, we get $s(\tilde{\omega}_{i})\leqq e_{\phi}$ by Theorem 5, which implies $s(\omega_{i})\leqq s(\tilde{\omega}_{i})\otimes 1\leqq e_{\phi}\otimes 1$ .

Similarly we get; $s(\omega_{i})\leqq 1\otimes e_{\psi}$ so that $s(\omega_{i})\leqq e_{\phi}\otimes e_{\psi}$ for all $i\in I$, therefore
$e_{\phi\otimes\psi}=\sum_{i\in I}s(\omega_{i})\leqq e_{\phi}\otimes e_{\psi}$ .

By the definitions of $e_{\phi},$ $e_{\psi},$ $e_{\phi\otimes\psi}$ and of tensor product of weights [See 3 or
4], we get;

$ m_{\phi}|_{M\Sigma}\copyright m_{\phi}|_{M^{\Sigma}}\psi\subset m_{\phi\otimes\psi}|_{(M\otimes N)^{\Sigma\otimes\Sigma}}\psi$

and hence $e_{\phi}\otimes e_{\psi}\leqq e_{\phi\otimes\psi}$ .

Then we finally get $e_{\phi}\otimes e_{\psi}=e_{\phi\otimes\psi}$ .
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PROPOSITION 8. Let $\phi$ (resp. $\psi$ ) be a faithful normal semi-finite weight on
$M_{+}$ (resp. $N_{+}$ ).

$\phi$ and $\psi$ are strictly semi-Pnite if and only if $\phi\otimes\psi$ is strictly semi-finite.
PROOF. It follows from Theorem 7 and Corollary 6.
REMARK 9. The result in Proposition 8 has already mentioned without

its proof in [4].
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