Integration of analytic differential systems with singularities and some applications to real submanifolds of \boldsymbol{C}^{n} *

By Michael Freeman

(Received May 4, 1977)

1. Introduction.

A module D of analytic vector fields on \boldsymbol{R}^{n} defines at each $y \in \boldsymbol{R}^{n}$ a subspace $D(y)=\{X(y): X \in D\}$ of the tangent space to \boldsymbol{R}^{n} at y. A real-analytic submanifold M of \boldsymbol{R}^{n} is an integral manifold of D if

$$
\begin{equation*}
T_{y} M=D(y) \quad \text { for all } \quad y \in M, \tag{1.1}
\end{equation*}
$$

where $T_{y} M$ is the tangent space to M at y. In [6] Nagano proved that if D is closed under the Lie bracket then through each point there passes a unique integral manifold of D. This result extends the classical Frobenius theorem, which assumes in addition that $D(y)$ has constant dimension. In dropping this hypothesis, Nagano relies on the analyticity. The classical theorem also holds in the C^{∞} category and in [6] Nagano gives a simple C^{∞} counterexample to his result.

This paper contains 1) a new proof of Nagano's theorem in a formulation which describes the integral manifold directly in terms of $D, 2$) a sharpened form of the theorem giving necessary and sufficient conditions at p for the existence of an integral manifold through p, and 3) some applications of these results to the local geometry of real-analytic submanifolds of a complex manifold. In particular, it is shown that a point p on a real-analytic $C R$ submanifold M is not of finite weight [1] if and only if there is a complex submanifold of M of maximum dimension through p.

The proofs given here are almost entirely algebraic and make no use of differential equations. They appear to be new even in the classical case where $D(y)$ has constant dimension. Besides a simple and standard majorization argument and advanced calculus, one needs only the standard Weierstrass division theorem [3, Satz 1, p. 23]. All definitions are within the real-analytic category,

[^0]and unless otherwise stated are to be interpreted as germs at a fixed point p of \boldsymbol{R}^{n} (recall that there is a standard interpretation of (1.1) for germs). The ring of (germs at p of) real-analytic functions is denoted \mathcal{C}^{ω} and the \mathcal{C}^{ω}-module of real-analytic vector fields is denoted $T \boldsymbol{R}^{n}$.

2. Integration Theorems.

A submanifold M defines the ideal I_{M} of all functions in \mathcal{C}^{ω} which vanish on M, and $M \supset N$ if and only if $\boldsymbol{I}_{M} \subset \boldsymbol{I}_{N}$. If \boldsymbol{I} is an ideal in \mathcal{C}^{ω} then the variety $V(\boldsymbol{I})$ is the set of points where all functions in \boldsymbol{I} vanish. The ideal generated by functions f_{l+1}, \cdots, f_{n} is denoted $\left(f_{l+1}, \cdots, f_{n}\right)$. If these functions are independent at p then $M=V\left(f_{l+1}, \cdots, f_{n}\right)$ if and only if

$$
\begin{equation*}
\boldsymbol{I}_{M}=\left(f_{l+1}, \cdots, f_{n}\right) \tag{2.1}
\end{equation*}
$$

Of course, in this case M has dimension l. A vector field $X \in T \boldsymbol{R}^{n}$ is tangent to M if $X(y) \in T_{y} M$ for all $y \in M$. It is elementary that this is equivalent to $X f_{j} \in \boldsymbol{I}_{M}$ for $j=l+1, \cdots, n$. In view of (2.1) and the Leibniz rule $X(f g)$ $=f X g+g X f$,

$$
\begin{equation*}
X \text { is tangent to } M \text { if and only if } \boldsymbol{I}_{\boldsymbol{M}} \text { is closed under } X \tag{2.2}
\end{equation*}
$$

(which, of course, means that $X f \in \boldsymbol{I}_{M}$ for every $f \in \boldsymbol{I}_{M}$). Since \mathcal{C}^{ω} is Noetherian D is finitely generated. Choose now a set X_{1}, \cdots, X_{k} of generators for D, and for each k-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ of nonnegative integers let $X^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{k}^{\alpha_{k}}$. In X^{α} the X_{j} 's always occur in serial order, and as usual X^{0} is defined by $X^{0} f=f$.

If M is an integral manifold of D, (1.1) and (2.2) show that \boldsymbol{I}_{M} is invariant under D. Therefore, \boldsymbol{I}_{M} is contained in

$$
\begin{equation*}
\boldsymbol{I}_{D}=\left\{g \in \mathcal{C}^{\omega}: X^{\alpha} g(0)=0 \quad \text { for all } \alpha\right\} . \tag{2.3}
\end{equation*}
$$

It follows from the Leibniz rule that \boldsymbol{I}_{D} is an ideal in \mathcal{C}^{ω}. If D is bracketclosed, the Leibniz rule and Lemma 2.3 below show that \boldsymbol{I}_{D} is independent of a choice of generators for D. This ideal provides an invariant means for utilizing the basic principle that an analytic function is determined by its derivatives at a fixed point. The following is equivalent to Nagano's theorem 1 in [6].

Theorem 2.1. If D is a bracket-closed submodule of $T \boldsymbol{R}^{n}$ then $V\left(\boldsymbol{I}_{D}\right)$ is the unique integral manifold of D through p.

Proof. In order that $V\left(\boldsymbol{I}_{D}\right)$ is a manifold, there must exist independent functions f_{l+1}, \cdots, f_{n} such that

$$
\begin{equation*}
\boldsymbol{I}_{D}=\left(f_{l+1}, \cdots, f_{n}\right), \tag{2.4}
\end{equation*}
$$

and if $V\left(\boldsymbol{I}_{D}\right)$ is an integral manifold then $l=\operatorname{dim} D(p)$ must hold. It will be shown first that there exist such functions, and later that $V\left(\boldsymbol{I}_{D}\right)$ is indeed an
integral manifold.
It may be assumed that $p=0$. In terms of analytic coordinates $x=\left(x_{1}, \cdots, x_{n}\right)$ each $X_{i}=\sum_{j=1}^{n} a_{i j} \partial / \partial x_{j}$, where the matrix $\left(a_{i j}\right)$ has rank $l=\operatorname{dim} D(0)$ at 0 . By a reindexing, it may be assumed that $\left(a_{i j}\right)_{i, j=1}^{L}$ is non-singular at 0 . Since elementary row operations over \mathcal{C}^{ω} can be achieved by linear combination of the X_{i}, it may be assumed that the generators X_{i} of D have the form

$$
\begin{array}{ll}
X_{i}=\partial / \partial x_{i}+\sum_{j=l+1}^{n} a_{i j} \partial / \partial x_{j}, & i=1, \cdots, l, \text { and } \tag{2.5}\\
X_{i}=\sum_{j=l+1}^{n} a_{i j} \partial / \partial x_{j}, & i=l+1, \cdots, k,
\end{array}
$$

and $a_{i j}(0)=0, i, j>l$. This has the usual geometric interpretation that an integral manifold is spread over the x_{1}, \cdots, x_{l} coordinate space. Since it must be the graph of a function of these variables it is natural to seek defining functions of the form

$$
\begin{equation*}
f_{i}=x_{i}-g_{i}\left(x_{1}, \cdots, x_{l}\right), \quad i=l+1, \cdots, n, \tag{2.6}
\end{equation*}
$$

where each g_{i} is analytic.
An analytic function depending only on x_{1}, \cdots, x_{l} will be written $g=\Sigma_{\alpha}^{\prime} a_{\alpha} x^{\alpha}$, where the prime means that summation extends only over those α such that $\alpha_{l+1}=\cdots=\alpha_{n}=0$. By (2.5) such a function satisfies $X_{i} g=\partial g / \partial x_{i}, i \leqq l$, so that

$$
\begin{equation*}
X^{\alpha} g(0)=\partial^{|\alpha|} g / \partial x^{\alpha}(0)=a_{\alpha} \alpha! \tag{2.7}
\end{equation*}
$$

if $\alpha_{l+1}=\cdots=\alpha_{n}=0$.
Therefore, in order that (2.6) defines functions in \boldsymbol{I}_{D} it is necessary that

$$
\begin{equation*}
g_{i}=\Sigma^{\prime}(\alpha!)^{-1} X^{\alpha}\left(x_{i}\right)(0) x^{\alpha} . \tag{2.8}
\end{equation*}
$$

Lemma 2.2. The series (2.8) converges.
This will be proved later.
In the classical Frobenius theorem $D(y)$ has constant dimension, which is equivalent to $k=l$. In this case membership of f_{i} in $\boldsymbol{I}_{\boldsymbol{D}}$ is immediate from (2.6), (2.7), and (2.8). When $k>l$ this fact also depends on the property that

$$
\begin{equation*}
\text { for any } f, X_{i} f(0)=0 \text { if } i>l \text {, } \tag{2.9}
\end{equation*}
$$

and on Lemma 2.3 below. A polynomial is any linear combination over \mathcal{C}^{ω} of operators of the form X^{α} as defined above. If α and β are multiindices then $\alpha+\beta$ is their usual vector sum and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. For $1 \leqq j \leqq l, e^{j}=(0, \cdots$, $0,1,0, \cdots, 0$) (the 1 in the j-th place), and $\alpha \pm e^{j}$ is written $\alpha \pm j$.

Lemma 2.3. If D is bracket closed then for any $\alpha, \beta X^{\alpha} X^{\beta}-X^{\alpha+\beta}$ is a polynomial of degree less than $|\alpha+\beta|$.

This is also proved later. It is now used to show by induction on $|\gamma|$ that

$$
\begin{equation*}
X^{\gamma} f_{j}(0)=0, \quad j=l+1, \cdots, n . \tag{2.10}
\end{equation*}
$$

Relations (2.7) and (2.9) imply the case $|\gamma|=1$. Now assume $m>1$ and (2.10) holds for all $|\gamma|<m$, and suppose $|\gamma|=m$. If $\gamma_{l+1}=\cdots=\gamma_{n}=0$ then (2.10) holds as shown above. Otherwise $\gamma=\beta+i$ for some $i>l$ and Lemma 2.3 with $\alpha=e^{i}$ shows that $X^{\gamma}=X_{i} X^{\beta}+$ (polynomial of degree $<m$). Thus (2.10) follows for γ by the induction hypothesis and (2.9). This proves that each $f_{i} \in \boldsymbol{I}_{D}$ and hence

$$
\begin{equation*}
\left(f_{l+1}, \cdots, f_{n}\right) \subset \boldsymbol{I}_{D} . \tag{2.11}
\end{equation*}
$$

To show (2.4), suppose that f is any function in \mathcal{C}^{ω}. By the Weierstrass Division Theorem [3] $f=a_{l+1} f_{l+1}+r_{l+1}$ where r_{l+1} is a polynomial in x_{l+1} of degree less than the order of the zero $x_{l+1} \rightarrow f_{l+1}\left(0, \cdots, 0, x_{l+1}, 0, \cdots, 0\right)=x_{l+1}$ has at 0 . In other words, r_{l+1} is independent of x_{l+1}. So is f_{l+2}, and hence r_{l+1} may be divided by f_{l+2} in the subring of functions independent of x_{l+1} to obtain $f=a_{l+1} f_{l+1}+a_{l+2} f_{l+2}+r_{l+2}$, where r_{l+2} is independent of x_{l+1} and x_{l+2}. Continuing in this way will achieve

$$
\begin{equation*}
f=a_{l+1} f_{l+1}+\cdots+a_{n} f_{n}+r_{n} \tag{2.12}
\end{equation*}
$$

where r_{n} depends only on x_{1}, \cdots, x_{l}. If also $f \in \boldsymbol{I}_{D}$, then so does r_{n} by (2.11), By (2.7), $r_{n}=0$. This proves (2.4), and hence $M=V\left(\boldsymbol{I}_{D}\right)=V\left(f_{l+1}, \cdots, f_{n}\right)$ is a manifold.

Next, it is claimed that

$$
\begin{equation*}
\boldsymbol{I}_{D} \text { is closed under } D . \tag{2.13}
\end{equation*}
$$

This is proved by an easy induction on Lemma 2.3, this time with $|\beta|=1$. It follows that M is an integral manifold, for (2.2) and (2.13) imply that each vector field in D is tangent to M. Hence $D(y) \subset T_{y} M$ for all y on M near 0 . This implies (1.1) since $\operatorname{dim} D(y) \geqq \operatorname{dim} D(0)=l=\operatorname{dim} T_{y} M$ for all y near 0 .

It remains to prove the uniqueness. If N is any integral manifold through 0 , (1.1) implies that $D \subset T N$, the module of vector fields tangent to N. Therefore $\boldsymbol{I}_{M}=\boldsymbol{I}_{D} \supset \boldsymbol{I}_{T_{N}} \supset \boldsymbol{I}_{N}$, in which the containments are obvious from the definition of $\boldsymbol{I}_{T_{N}}$ as in (2.3) (with $T N$ replacing D and any choice of generators for $T N$). It follows that $M \subset N$, and since both manifolds have dimension l they are equal. This completes the proof of Theorem 2.1.

Proof of Lemma 2.2. This simple majorization argument is given in detail (and greater generality) in [4], so it is only sketched here. There exist $\rho>0$ and $M>0$ such that the geometric series $G(t)=M(1-(t / \rho))^{-1}$ majorizes f and all $a_{i j}$ at 0 , and such that $X_{j}\left(x_{i}\right)$ is majorized by ΔG at 0 , where Δ is the operator $\Delta=G(t) d / d t$. It follows inductively that each $X^{\alpha}\left(x_{i}\right)$ is majorized by $\Delta^{|\alpha|} G=$ $M^{|\alpha|+1} \rho^{-|\alpha|}(1 \cdot 3 \cdot 5 \cdots(2|\alpha|-1))(1-(t / \rho))^{2|\alpha|+1}$. Therefore $\left|\left(X^{\alpha}\left(x_{i}\right)\right)(0)\right| \leqq M^{|\alpha|+1} \rho^{-|\alpha|}$ $(1 \cdot 3 \cdot 5 \cdots(2|\alpha|-1))$, and the ratio test now gives convergence of (2.8),

Proof of Lemma 2.3. If $|\alpha+\beta|=2$ the lemma is either trivial ($\alpha=0$ or $\beta=0$), or is just a restatement of the bracket closure hypothesis, which is equivalent to

$$
\begin{equation*}
X_{i} X_{j}-X_{j} X_{i}=\sum_{q=1}^{k} a_{i j}^{q} X_{q} . \tag{2.14}
\end{equation*}
$$

Assume $m \geqq 2$ and the lemma holds for all α, β with $|\alpha+\beta| \leqq m$. It follows that if $|\alpha|+q \leqq m$ and P is a polynomial of degree $\leqq q$ then $X^{\alpha} P$ and $P X^{\alpha}$ are polynomials of degree $\leqq|\alpha|+q$. This is obvious for $P X^{\alpha}$, and for $X^{\alpha} P$ a simple induction on the Leibniz rule will account for the differentiations of the coefficients of P by X^{a}.

Now suppose that $|\alpha+\beta|=m+1$. It may be assumed that $\beta \neq 0$.
The case $|\beta|=1$: Then $\beta=e^{j}$. Let i be the largest integer r such that $\alpha_{r} \neq 0$. If $i \leqq j$ then $X^{\alpha} X^{\beta}=X^{\alpha} X_{j}=X^{\alpha+j}=X^{\alpha+\beta}$. Otherwise, by (2.14), $X^{\alpha} X^{j}=$ $X^{\alpha-i} X_{i} X_{j}=X^{\alpha-i} X_{j} X_{i}+X^{\alpha-i} P$ where P is a polynomial of degree 1. Since $|\alpha-i|=m-1$ the inductive hypothesis yields $X^{\alpha-i} X_{j}=X^{\alpha-i+j}+Q$, where Q is a polynomial of degree at most $m-1$. Thus $X^{\alpha} X_{j}=X^{\alpha-i+j} X_{i}+Q X_{i}+X^{\alpha-i} P=X^{\alpha+j}$ + (polynomial of degree $\leqq m$) because $i>j$ and the inductive assumption applies to $Q X_{i}+X^{\alpha-i} P$. This establishes the case $|\beta|=1$.

The general case $|\beta| \geqq 1$: Then $\beta=\gamma+e^{j}$, where j is the largest integer r such that $\beta_{r} \neq 0$, and $|\alpha+\gamma|=m$. Hence $X^{\alpha} X^{\beta}=X^{\alpha} X^{\gamma} X_{j}=X^{\alpha+\gamma} X_{j}+P X_{j}$, where P is a polynomial of degree at most $m-1$. By Case 1 applied to $X^{\alpha+\gamma} X_{j}$ and the inductive assumption applied to $P X_{j}, X^{\alpha} X^{\beta}=X^{\alpha+\gamma+j}+Q=X^{\alpha+\beta}+Q$, where Q is a polynomial of degree at most m. This proves Lemma 2.3.

The condition (1.1) can be replaced by

$$
\begin{equation*}
T M=D+O(M) \tag{2.15}
\end{equation*}
$$

where $O(M)$ denotes all vector fields vanishing on M and $T M$ is the module of vector fields tangent to M. Condition (2.15) appears stronger than (1.1) (after all $\operatorname{sp}_{R}\{x(d / d x)\}=\operatorname{sp}_{R}\left\{x^{2} d / d x\right\}$ for each x in \boldsymbol{R} but $x d / d x$ is not in the \mathcal{C}^{ω}-module spanned by $x^{2}(d / d x)$), but in fact it is equivalent. For certainly (2.15) implies (1.1) and if (1.1) holds then clearly $D \subset T M$. If $X \in T M$ there exist by (2.5) functions c_{1}, \cdots, c_{l} in \mathcal{C}^{ω} such that $Y=X-\sum_{i=1}^{i} c_{i} X_{i}$ is free from terms involving $\partial / \partial x_{1}, \cdots, \partial / \partial x_{l}$. Since Y is also tangent to M, it is easy to see that $Y \in O(M)$, and (2.15) is proved.

If p is fixed in Theorem 2.1, the bracket-closure is not necessary. For example, let $X=\partial / \partial x$ and $Y=\partial / \partial y+x z \partial / \partial z$ in R^{3} with coordinates (x, y, z). Then $V(z)$ is an integral manifold through O of $D=\operatorname{sp}\{X, Y\}$, but $[X, Y]=$ $z \partial / \partial z \notin D$. Let \tilde{D} denote the smallest bracket-closed submodule containing a given submodule D.

Corollary 2.4. There exists an integral manifold of D through p if and
only if

$$
\begin{equation*}
\tilde{D}(p)=D(p) \tag{2.16}
\end{equation*}
$$

and an integral manifold through p is unique.
Proof. If M is any manifold the module $T M$ is bracket-closed. Thus if M is an integral manifold then $D \subset T M$ implies

$$
\begin{equation*}
D \subset \tilde{D} \subset T M=D+O(M) \tag{2.17}
\end{equation*}
$$

which in turn implies (2.16), It also shows that M is an integral manifold of \tilde{D}, which implies its uniqueness by that part of Theorem 2.1.

For the converse, apply Theorem 2.1 to \tilde{D} and note that its integral manifold M through p satisfies $T_{y} M=\widetilde{D}(y) \supset D(y)$ for all y on M near p. Because of (2.16) $T_{p} M=D(p)$. Hence for y on M near $p, \operatorname{dim} D(y) \geqq \operatorname{dim} T_{y} M$, and consequently $T_{y} M=D(y)$. This proves the Corollary.

In the example above $[X,[X, Y]]=0=[Y,[X, Y]]$ so $\tilde{D}=\operatorname{sp}\{X, Y,[X, Y]\}$ and $\tilde{D}(0)=\operatorname{sp}_{R}\{\partial / \partial x, \partial / \partial y\}=D(0)$.

3. Existence of complex submanifolds of a real-analytic submanifold.

Let $\mathcal{C}_{c}^{\omega}=\mathcal{C}^{\omega}+i \mathcal{C}^{\omega}$ be the (Noetherian) ring of complex-valued real-analytic functions and $\boldsymbol{C T} \boldsymbol{R}^{n}=\boldsymbol{T} \boldsymbol{R}^{n}+i \boldsymbol{T} \boldsymbol{R}^{n}$ the complexified space of vector fields. If M is a real analytic submanifold then I_{M} now denotes the ideal of all functions in \mathcal{C}_{C}^{ω} vanishing on M, and $C T M=T M+i T M$ the complexified space of vector fields tangent to M. It is clear that $C T M$ is a bracket-closed module over $\mathcal{C}_{\mathscr{C}}^{\mathscr{E}}$ and that it is defined by (2.2).

There is a natural conjugation $Z=X+i Y \rightarrow \bar{Z}=X-i Y$ on $\boldsymbol{C} \boldsymbol{T} \boldsymbol{R}^{n}$, where X and Y are in $T \boldsymbol{R}^{n}$, and a submodule D of $\boldsymbol{C} \boldsymbol{T} \boldsymbol{R}^{n}$ is real if $D=\bar{D}$. Defining $\operatorname{Re} D=D \cap T \boldsymbol{R}^{n}$ it is easy to see that D is real if and only if $D=\operatorname{Re} D+i \operatorname{Re} D$, and that a real D is bracket closed if and only if $\operatorname{Re} D$ is bracket closed. Let \tilde{D} be the bracket closure of D in $\boldsymbol{C} T \boldsymbol{R}^{n}$, and $\widetilde{\operatorname{Re} D}$ the bracket closure of $\operatorname{Re} D$ in $T \boldsymbol{R}^{n}$ (as in Section 2). If D is real then it is easily seen that $\tilde{D}=\widetilde{\operatorname{Re} D}+i \widetilde{\operatorname{Re} D}$, so that \tilde{D} is also real and $\operatorname{Re} \tilde{D}=\widetilde{\operatorname{Re} D}$.

A submanifold M is an integral manifold of D if

$$
\begin{equation*}
\boldsymbol{C T M}=D+O(M) \tag{3.1}
\end{equation*}
$$

where $O(M)$ is the \mathcal{C}_{c}^{ω} module of vector fields vanishing on M. Since $C T M$ and $O(M)$ are real, so is D if (3.1) holds. It is easy to see that (3.1) holds if and only if $T M=\operatorname{Re} D+\operatorname{Re} O(M)$, so that M is an integral manifold of D if and only if it is for $\operatorname{Re} D$.

Therefore the extension of Theorem 2.1 to submodules of $\boldsymbol{C T} \boldsymbol{R}^{\boldsymbol{n}}$ is the following.

THEOREM 3.1. If a real submodule D of $\boldsymbol{C T}^{\boldsymbol{T}} \boldsymbol{R}^{n}$ is bracket closed then it has a unique integral manifold through p.

Moreover, by the above remarks, Corollary 2.4 is true verbatim for real submodules of $\boldsymbol{C T} \boldsymbol{R}^{n}$, where \tilde{D} is interpreted as above.

If $\boldsymbol{R}^{2 n}$ is the real space underlying \boldsymbol{C}^{n}, one writes $\boldsymbol{C T} \boldsymbol{C}^{n}$ for $\boldsymbol{C T} \boldsymbol{R}^{2 n}$. As usual, it carries another complex structure induced from C^{n}, whose action is denoted by J. The module of complex tangent vector fields to a submanifold M is $H=\boldsymbol{C T M} \cap J C T M$, the largest J-invariant submodule of CTM. The submanifold M is complex if and only if $H=\boldsymbol{C T M}$; i. e. CTM is J-invariant. Since $O(M)$ is J-invariant, it follows from (3.1) that

$$
\begin{equation*}
\text { an integral manifold of } D \text { is complex if } D \text { is J-invariant. } \tag{3.2}
\end{equation*}
$$

It is shown in [2] that if M is any submanifold then $N_{2}=\{X \in H:[X, H] \subset H\}$ is real, J-invariant, and bracket closed $\left(N_{2}\right.$ can often be viewed as the nullspace of the E.E. Levi form of M). It is also shown in [2] that there exists a chain (which in general is strictly decreasing) $N_{2} \supset N_{3} \supset \cdots \supset S_{0}=\bigcap_{j=2}^{\infty} N_{j}$ of real, J-invariant, bracket closed submodules. The following is thus a consequence of Theorem 3.1.

THEOREM 3.2. A real analytic submanifold M has a chain of successively finer partitions by the complex integral manifolds of the submodules N_{j}.

It is possible for M to have a complex submanifold larger than the integral manifold of N_{2}. In [7], Sommer showed that $M=\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-1=0\right\}$ has 1 -dimensional complex submanifolds but $N_{2}=0$. It is therefore of interest to seek an integral manifold of H through a fixed point p on M. In case M is $C R$, this would be the largest complex submanifold of M through p. The answer is immediate from Corollary 2.4 and (3.2).

Theorem 3.3. There exists a (unique) integral manifold of H through $p \in M$ if and only if $H(p)=\tilde{H}(p)$. This integral manifold is a complex submanifold of M.

All statements of Theorem 3.3 but the last are proved above. If S is an integral manifold of H through p then $H \subset C T M$ implies $\boldsymbol{I}_{S}=\boldsymbol{I}_{H} \supset \boldsymbol{I}_{\boldsymbol{C T} \boldsymbol{M}}=\boldsymbol{I}_{M}$, so that $S \subset M$. It is easy to see that \tilde{H} is the module spanned over \mathcal{C}_{c}^{ω} by the set H^{\prime} of all repeated commutators of elements of H. Therefore $\tilde{H}(p)=H(p)$ if and only if $H^{\prime}(p)=H(p)$. This is a kind of infinitely high-order flatness condition at p. It means that p is not a point of finite type in the sense of Bloom and Graham [1] or Kohn [5], and it causes behavior in contrast with the case of finite type. Thus if M is a real analytic hypersurface satisfying Theorem 3.3 there exists a neighborhood U of p such that the integral manifold of H through z is the zero set of a holomorphic function f. Then $1 / f$ is a holomorphic function on $U-M$ which cannot be continued across p. The local Levi problem [$5, \mathrm{p} .528$] is thus solvable near p in this case. However, such a point is clearly
never a local peak point [5, p. 540].

References

[1] T. Bloom and I. Graham, On "type" conditions for generic real submanifolds of \boldsymbol{C}^{n}, Invent. Math., 40 (1977), 217-243.
[2] M. Freeman, Local biholomorphic straightening of real submanifolds, Ann. of Math., 106 (1977), 319-352.
[3] H. Grauert and R. Remmert, Analytische Stellenalgebren, Springer-Verlag, Berlin, 1971.
[4] W. Gröbner and H. Knapp, Contributions to the method of Lie Series, Bibliographisches Institut, Mannheim, 1967.
[5] J. J. Kohn, Boundary behavior of $\bar{\partial}$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry, 6 (1972), 523-542.
[6] T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, 18 (1966), 398-404.
[7] F. Sommer, Komplex-analytische Blätterung reeller Hyperflächen im \boldsymbol{C}^{n}, Math. Ann., 137 (1959), 392-411.

Michael Freeman
Department of Mathematics
University of Kentucky
Lexington, Kentucky 40506
U. S. A.

[^0]: * Research supported by the National Science Foundation under grant MCS 76-06969 at the University of Kentucky.

