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1. Introduction.

A module $D$ of analytic vector fields on $R^{n}$ defines at each $y\in R^{n}$ a subspace
$D(y)=\{X(y):X\in D\}$ of the tangent space to $R^{n}$ at $y$ . A real-analytic submani-
fold $M$ of $R^{n}$ is an integral manifold of $D$ if

$T_{y}M=D(y)$ for all $y\in M$ , (1.1)

where $T_{y}M$ is the tangent space to $M$ at $y$ . In [6] Nagano proved that if $D$

is closed under the Lie bracket then through each point there passes a unique
integral manifold of $D$ . This result extends the classical Frobenius theorem,
which assumes in addition that $D(y)$ has constant dimension. In dropping this
hypothesis, Nagano relies on the analyticity. The classical theorem also holds
in the $C^{\infty}$ category and in [6] Nagano gives a simple $C^{\infty}$ counterexample to
his result.

This paper contains 1) a new proof of Nagano’s theorem in a formulation
which describes the integral manifold directly in terms of $D,$ $2$) a sharpened
form of the theorem giving necessary and sufficient conditions at $P$ for the
existence of an integral manifold through $p$, and 3) some applications of these
results to the local geometry of real-analytic submanifolds of a complex manifold.
In particular, it is shown that a point $p$ on a real-analytic $CR$ submanifold
$M$ is not of finite weight [1] if and only if there is a complex submanifold of
$M$ of maximum dimension through $p$ .

The proofs given here are almost entirely algebraic and make no use of
differential equations. They appear to be new even in the classical case where
$D(y)$ has constant dimension. Besides a simple and standard majorization argu-
ment and advanced calculus, one needs only the standard Weierstrass division
theorem [3, Satz 1, p. 23]. All definitions are within the real-analytic category,
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and unless otherwise stated are to be interpreted as germs at a Pxed point $P$

of $R^{n}$ (recall that there is a standard interpretation of (1.1) for germs). The ring
of (germs at $P$ of) real-analytic functions is denoted $C^{\omega}$ and the $C^{\omega}$-module of
real-analytic vector fields is denoted $TR^{n}$ .

2. Integration Theorems.

A submanifold $M$ defines the ideal $I_{M}$ of all functions in $C^{\omega}$ which vanish
on $M$, and $M\supset N$ if and only if $I_{M}\subset I_{N}$ . If $I$ is an ideal in $C^{\omega}$ then the variety
$V(I)$ is the set of points where all functions in $I$ vanish. The ideal generated
by functions $f_{l+1},$ $\cdots$ , $f_{n}$ is denoted $(f_{l+1}, \cdots , f_{n})$ . If these functions are inde-
pendent at $P$ then $M=V(f_{l+1}, \cdots , f_{n})$ if and only if

$I_{M}=(f_{l+1}, f_{n})$ . (2.1)

Of course, in this case $M$ has dimension $l$ . A vector field $X\in TR^{n}$ is tangent
to $M$ if $X(y)\in T_{y}M$ for all $y\in M$. It is elementary that this is equivalent to
$Xf_{j}\in I_{M}$ for $j=l+1,$ $\cdots$ , $n$ . In view of (2.1) and the Leibniz rule $X(fg)$

$=fXg+gXf$,

$X$ is tangent to $M$ if and only if $I_{M}$ is closed under $X$ (2.2)

(which, of course, means that $Xf\in I_{M}$ for every $f\in I_{M}$). Since $C^{\omega}$ is Noetherian
$D$ is finitely generated. Choose now a set $X_{1},$ $\cdots$ , $X_{k}$ of generators for $D$, and
for each k-index $\alpha=(\alpha_{1}, \cdots , \alpha_{k})$ of nonnegative integers let $X^{\alpha}=X_{1}^{a_{1}}$ $X_{k}^{a_{k}}$ . In
$X^{\alpha}$ the $X_{j}’ s$ always occur in serial order, and as usual $X^{0}$ is defined by $X^{0}f=f$.

If $M$ is an integral manifold of $D,$ $(1.1)$ and (2.2) show that $I_{M}$ is invariant
under $D$ . Therefore, $I_{M}$ is contained in

$I_{D}=$ { $g\in C^{\omega}$ ; $X^{\alpha}g(O)=0$ for all $\alpha$ }. (2.3)

It follows from the Leibniz rule that $I_{D}$ is an ideal in $C^{\omega}$ . If $D$ is bracket-
closed, the Leibniz rule and Lemma 2.3 below show that $I_{D}$ is independent of
a choice of generators for $D$ . This ideal provides an invariant means for
utilizing the basic principle that an analytic function is determined by its deriva-
tives at a fixed point. The following is equivalent to Nagano’s theorem 1 in [6].

THEOREM 2.1. If $D$ is a bracket-closed submodule of $TR^{n}$ then $V(I_{D})$ is the
unique integral manifold of $D$ through $p$ .

PROOF. In order that $V(I_{D})$ is a manifold, there must exist independent
functions $f_{l+1},$ $\cdots$ , $f_{n}$ such that

$I_{D}=(f_{l+1}, f_{n})$ , (2.4)

and if $V(I_{D})$ is an integral manifold then $l=\dim D(p)$ must hold. It will be
shown first that there exist such functions, and later that $V(I_{D})$ is indeed an
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integral manifold.
It may be assumed that $p=0$ . In terms of analytic coordinates $x=(x_{1}, \cdots , x_{n})$

each $X_{i}=\sum_{j=1}^{n}a_{ij}\partial/\partial x_{j}$, where the matrix $(a_{ij})$ has rank $l=\dim D(O)$ at $0$ . By a
reindexing, it may be assumed that $(a_{ij})_{i,j=1}^{l}$ is non-singular at $0$ . Since elemen-
tary row operations over $C^{\omega}$ can be achieved by linear combination of the $X_{i}$,
it may be assumed that the generators $X_{i}$ of $D$ have the form

$X_{i}=\partial/\partial x_{i}+\sum_{j=l+1}^{n}a_{ij}\partial/\partial x_{j}$ , $i=1,$ $\cdots$ $l$, and

(2.5)

$X_{i}=\sum_{j=l+1}^{n}a_{ij}\partial/\partial x_{j}$ , $i=l+1,$ $\cdots$ $k$ ,

and $a_{ij}(0)=0,$ $i,$ $j>l$ . This has the usual geometric interpretation that an integral
manifold is spread over the $x_{1},$

$\cdots$ , $x_{l}$ coordinate space. Since it must be the
graph of a function of these variables it is natural to seek defining functions
of the form

$f_{i}=x_{i}-g_{i}(x_{1}, x_{l})$ , $i=l+1,$ $\cdots$ $n$ , (2.6)

where each $g_{i}$ is analytic.
An analytic function depending only on $x_{1},$

$\cdots$
$x_{l}$ will be written $g=\sum_{a}^{\prime}a_{\alpha}x^{\alpha}$,

where the prime means that summation extends only over those $\alpha$ such that
$\alpha_{l+1}=$ $=\alpha_{n}=0$ . By (2.5) such a function satisfies $X_{i}g=\partial g/\partial x_{i},$ $i\leqq l$, so that

$ X^{\alpha}g(0)=\partial^{|a|}g/\partial x^{\alpha}(0)=a_{\alpha}\alpha$ ! (2.7)

if $\alpha_{l+1}=$ $=\alpha_{n}=0$ .
Therefore, in order that (2.6) defines functions in $I_{D}$ it is necessary that

$g_{i}=\Sigma^{\prime}(\alpha!)^{-1}X^{a}(x_{i})(0)x^{\alpha}$ . (2.8)

LEMMA 2.2. The series (2.8) converges.
This will be proved later.
In the classical Frobenius theorem $D(y)$ has constant dimension, which is

equivalent to $k=l$ . In this case membership of $f_{i}$ in $I_{D}$ is immediate from (2.6),
(2.7), and (2.8). When $k>l$ this fact also depends on the property that

for any $f,$ $X_{i}f(0)=0$ if $i>l$ , (2.9)

and on Lemma 2.3 below. A polynomial is any linear combination over $C^{\omega}$ of
operators of the form $X^{\alpha}$ as defined above. If $\alpha$ and $\beta$ are multiindices then
$\alpha+\beta$ is their usual vector sum and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ . For $1\leqq j\leqq l,$ $e^{j}=(0,$ $\cdots$ ,
$0,1,0,$ $\cdots$ $0$) (the 1 in the j-th place), and $\alpha\pm e^{j}$ is written $\alpha\pm j$ .

LEMMA 2.3. If $D$ is bracket closed then for any $\alpha,$
$\beta X^{\alpha}X^{\beta}-X^{\alpha+\beta}$ is a

p0lyn0mial of degree less than $|\alpha+\beta|$ .
This is also proved later. It is now used to show by induction on $|\gamma|$ that
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$X^{\gamma}f_{j}(0)=0$ , $j=l+1,$ $\cdots$ $n$ . (2.10)

Relations (2.7) and (2.9) imply the case $|\gamma|=1$ . Now assume $m>1$ and (2.10)

holds for all $|\gamma|<m$, and suppose $|\gamma|=m$ . If $\gamma_{\iota+1}=$ $=\gamma_{n}=0$ then (2.10) holds
as shown above. Otherwise $\gamma=\beta+i$ for some $i>l$ and Lemma 2.3 with $\alpha=e^{i}$

shows that $X^{\gamma}=X_{i}X^{\beta}+$ (polynomial of degree $<m$). Thus (2.10) follows for $\gamma$

by the induction hypothesis and (2.9). This proves that each $f_{i}\in I_{D}$ and hence

$(f_{l+1}, f_{n})\subset I_{D}$ . (2.11)

To show (2.4), suppose that $f$ is any function in $C^{\omega}$ . By the Weierstrass
Division Theorem [3] $f=a_{l+1}f_{l+1}+r_{l+1}$ where $r_{l+1}$ is a polynomial in $x_{l+1}$ of
degree less than the order of the zero $x_{l+1}\rightarrow f_{l+1}(0, \cdots 0, x_{l+1},0, 0)=x_{l+1}$

has at $0$ . In other words, $r_{l+1}$ is independent of $x_{l+1}$ . So is $fi+2$ ’ and hence
$r_{l+1}$ may be divided by $f_{l+2}$ in the subring of functions independent of $x_{l+1}$ to
obtain $f=a_{l+1}f_{l+1}+a_{l+2}f_{l+2}+r_{l+2}$ , where $r_{l+2}$ is independent of $x_{l+1}$ and $\chi_{l+2}$ .
Continuing in this way will achieve

$f=a_{l+1}f_{l+1}+\cdots+a_{n}f_{n}+r_{n}$ (2.12)

where $r_{n}$ depends only on $x_{1},$
$\cdots$

$X_{l}$ . If also $f\in I_{D}$, then so does $r_{n}$ by (2.11).

By (2.7), $r_{n}=0$ . This proves (2.4), and hence $M=V(I_{D})=V(f_{l+1}, f_{n})$ is a
manifold.

Next, it is claimed that

$I_{D}$ is closed under D. (2.13)

This is proved by an easy induction on Lemma 2.3, this time with $|\beta|=1$ . It
follows that $M$ is an integral manifold, for (2.2) and (2.13) imply that each
vector field in $D$ is tangent to $M$. Hence $D(y)\subset T_{y}M$ for all $y$ on $M$ near $0$ .
This implies (1.1) since dim $D(y)\geqq\dim D(O)=l=\dim T_{y}M$ for all $y$ near $0$ .

It remains to prove the uniqueness. If $N$ is any integral manifold through
$0,$ $(1.1)$ implies that $D\subset TN$, the module of vector fields tangent to $N$. There-
fore $I_{M}=I_{D}\supset I_{TN}\supset I_{N}$ , in which the containments are obvious from the definition
of $I_{TN}$ as in (2.3) (with $TN$ replacing $D$ and any choice of generators for $TN$ ).

It follows that $M\subset N$, and since both manifolds have dimension 1 they are
equal. This completes the proof of Theorem 2.1.

PROOF OF LEMMA 2.2. This simple majorization argument is given in detail
(and greater generality) in [4], so it is only sketched here. There exist $\rho>0$

and $M>0$ such that the geometric series $G(t)=M(1-(t/\rho))^{-1}$ majorizes $f$ and all
$a_{ij}$ at $0$, and such that $X_{j}(x_{i})$ is majorized by $\Delta G$ at $0$, where $\Delta$ is the operator
$\Delta=G(t)d/dt$. It follows inductively that each $X^{\alpha}(x_{i})$ is majorized by $\Delta^{|\alpha|}G=$

$M^{|\alpha|+1}\rho^{-|\alpha|}(1\cdot 3\cdot 5\cdots(2|\alpha|-1))(1-(t/\rho))^{2|\alpha|+1}$ . Therefore $|(X^{\alpha}(x_{i}))(0)|\leqq M^{|\alpha|+1}\rho^{-|\alpha|}$

$(1\cdot 3\cdot 5\cdots(2|\alpha|-1))$, and the ratio test now gives convergence of (2.8).
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PROOF OF LEMMA 2.3. If $|\alpha+\beta|=2$ the lemma is either trivial ($\alpha=0$ or
$\beta=0)$, or is just a restatement of the bracket closure hypothesis, which is
equivalent to

$X_{i}X_{j}-X_{j}X_{i}=\sum_{q=1}^{k}a_{ij}^{q}X_{q}$ . (2.14)

Assume $m\geqq 2$ and the lemma holds for all $\alpha,$ $\beta$ with $|\alpha+\beta|\leqq m$ . It follows
that if $|\alpha|+q\leqq m$ and $P$ is a polynomial of degree $\leqq q$ then $X^{\alpha}P$ and $PX^{a}$ are
polynomials of degree $\leqq|\alpha|+q$ . This is obvious for $PX^{\alpha}$, and for $X^{\alpha}P$ a
simple induction on the Leibniz rule will account for the differentiations of the
coefficients of $P$ by $X^{a}$ .

Now suppose that $|\alpha+\beta|=m+1$ . It may be assumed that $\beta\neq 0$ .
The case $|\beta|=1$ : Then $\beta=e^{j}$ . Let $i$ be the largest integer $r$ such that

$\alpha_{r}\neq 0$ . If $i\leqq j$ then $X^{\alpha}X^{\beta}=X^{a}X_{j}=X^{a+j}=X^{\alpha+\beta}$. Otherwise, by (2.14), $X^{ce}X^{j}=$

$X^{a-i}X_{i}X_{j}=X^{\alpha-i}X_{j}X_{i}+X^{\alpha-i}P$ where $P$ is a polynomial of degree 1. Since
$|\alpha-i|=m-1$ the inductive hypothesis yields $X^{a-i}X_{j}=X^{a-i+j}+Q$ , where $Q$ is a
polynomial of degree at most $m-1$ . Thus $X^{\alpha}X_{j}=X^{\alpha-i+j}X_{i}+QX_{i}+X^{a-i}P=X^{a+j}$

$+$(polynomial of degree $\leqq m$) because $i>j$ and the inductive assumption applies
to $QX_{i}+X^{\alpha-i}P$. This establishes the case $|\beta|=1$ .

The general case $|\beta|\geqq 1$ : Then $\beta=\gamma+e^{j}$, where $j$ is the largest integer $r$

such that $\beta_{r}\neq 0$, and $|\alpha+\gamma|=m$. Hence $X^{\alpha}X^{\beta}=X^{\alpha}X^{\gamma}X_{j}=X^{a+\gamma}X_{j}+PX_{j}$, where
$P$ is a polynomial of degree at most $m-1$ . By Case 1 applied to $X^{a+r}X_{j}$ and
the inductive assumption applied to $PX_{j},$ $X^{\alpha}X^{\beta}=X^{a+\gamma+j}+Q=X^{\alpha+\beta}+Q$ , where $Q$

is a polynomial of degree at most $m$ . This proves Lemma 2.3.
The conditioI] (1.1) can be replaced by

$TM=D+O(M)$ (2.15)

where $O(\Lambda f)$ denotes all vector fields vanishing on $M$ and $TM$ is the module
of vector fields tangent to $M$. Condition (2.15) appears stronger than (1.1) (after
all $sp_{R}\{x(d/dx)\}=sp_{R}\{x^{2}d/dx\}$ for each $x$ in $R$ but $xd/dx$ is not in the $C^{\omega}$-module
spanned by $x^{2}(d/dx))$, but in fact it is equivalent. For certainly (2.15) implies
(1.1) and if (1.1) holds then clearly $D\subset TM$. If $X\in TM$ there exist by (2.5)

functions $c_{1},$
$\cdots$ , $c_{l}$ in $C^{\omega}$ such that $Y=X-\sum_{i=1}^{l}c_{i}X_{i}$ is free from terms involving

$\partial/\partial x_{1},$ $\cdots$ , $\partial/\partial x_{l}$ . Since $Y$ is also tangent to $M$, it is easy to see that $Y\in O(M)$,
and (2.15) is proved.

If $P$ is fixed in Theorem 2.1, the bracket-closure is not necessary. For
example, let $X=\partial/\partial x$ and $Y=\partial/\partial y+xz\partial/\partial z$ in $R^{3}$ with coordinates $(x, y, z)$ .
Then $V(z)$ is an integral manifold through $O$ of $D=sp\{X, Y\}$ , but $[X, Y]=$
$z\partial/\partial z\not\in D$. Let $\tilde{D}$ denote the smallest bracket-closed submodule containing a
given submodule $D$ .

COROLLARY 2.4. There exists an integral manifold of $D$ through $p$ if and
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only if
$\tilde{D}(p)=D(p)$ , (2.16)

and an integral manifold through $p$ is unique.
PROOF. If $M$ is any manifold the module $TM$ is bracket-closed. Thus if

$M$ is an integral manifold then $D\subset TM$ implies

$D\subset\tilde{D}\subset TM=D+O(M)$ (2.17)

which in turn implies (2.16). It also shows that $M$ is an integral manifold of
$\tilde{D}$, which implies its uniqueness by that part of Theorem 2.1.

For the converse, apply Theorem 2.1 to $\tilde{D}$ and note that its integral manifold
$M$ through $p$ satisfies $T_{y}M=\tilde{D}(y)\supset D(y)$ for all $y$ on $M$ near $p$ . Because of
(2.16) $T_{p}M=D(p)$ . Hence for $y$ on $M$ near $p$ , dim $D(y)\geqq\dim T_{y}M$, and conse-
quently $T_{y}M=D(y)$ . This proves the Corollary.

In the example above [X, [X, $Y]$] $=0=[Y, [X, Y]]$ so $\tilde{D}=sp\{X, Y, [X, Y]\}$

and $\tilde{D}(0)=sp_{R}\{\partial/\partial x, \partial/\partial y\}=D(0)$ .

3. Existence of complex submanifolds of a real-analytic submanifold.

Let $C_{C}^{\omega}=C^{\omega}+iC^{\omega}$ be the (Noetherian) ring of complex-valued real-analytic
functions and $CTR^{n}=TR^{n}+iTR^{n}$ the complexified space of vector fields. If $M$

is a real analytic submanifold then $I_{M}$ now denotes the ideal of all functions in
$C_{C}^{\omega}$ vanishing on $M$, and $CTM=TM+iTM$ the complexified space of vector fields
tangent to $M$ It is clear that CTM is a bracket-closed module over $C_{c}^{\omega}$ and
that it is dePned by (2.2).

There is a natural conjugation $Z=X+iY\rightarrow\overline{Z}=X-iY$ on $C^{\prime}fR^{n}$ , where $X$

and $Y$ are in $TR^{n}$, and a submodule $D$ of $CTR^{n}$ is real if $D=\overline{D}$. Defining
Re D$=D\cap TR^{n}$ it is easy to see that $D$ is real if and only if $D={\rm Re} D+i{\rm Re} D$,
and that a real $D$ is bracket closed if and only if ${\rm Re} D$ is bracket closed. Let
$\tilde{D}$ be the bracket closure of $D$ in $CTR^{n}$, and $R{\rm Re} D\sim$ the bracket closure of Re D

in $TR^{n}$ (as in Section 2). If $D$ is real then it is easily seen that $\tilde{D}={\rm Re} D+i{\rm Re} D\sim\sim$,

so that $\tilde{D}$ is also real and Re D $={\rm Re} D\sim$ .
A submanifold $M$ is an integml manifold of $D$ if

$CTM=D+O(M)$ , (3.1)

where $O(M)$ is the $C_{c}^{\omega}$ module of vector fields vanishing on $M$. Since CTM and
$O(M)$ are real, so is $D$ if (3.1) holds. It is easy to see that (3.1) holds if and
only if $TM={\rm Re} D+{\rm Re} O(M)$, so that $M$ is an integral manifold of $D$ if and only

if it is for ${\rm Re} D$.
Therefore the extension of Theorem 2.1 to submodules of $CTR^{n}$ is the

following.
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THEOREM 3.1. If a real submodule $D$ of $CTR^{n}$ is bracket closed then it has
a unique integral manifold through $p$ .

Moreover, by the above remarks, Corollary 2.4 is true verbatim for real
submodules of $CTR^{n}$, where $\tilde{D}$ is interpreted as above.

If $R^{2n}$ is the real space underlying $C^{n}$, one writes $CTC^{n}$ for $CTR^{2n}$ . As
usual, it carries another complex structure induced from $C^{n}$, whose action is
denoted by $J$. The module of complex tangent vector fields to a submanifold
$M$ is $H=CTM\cap JCTM$, the largest J-invariant submodule of $CTM$. The
submanifold $M$ is complex if and only if $H=CTM;i$ . $e$ . CTM is J-invariant.
Since $O(Jf)$ is J-invariant, it follows from (3.1) that

an integral manifold of $D$ is complex if $D$ is J-invariant. (3.2)

It is shown in [2] that if $M$ is any submanifold then $N_{2}=\{X\in H:[X, H]\subset H\}$

is real, J-invariant, and bracket closed ( $N_{2}$ can often be viewed as the null-
space of the E. E. Levi form of $M$ ). It is also shown in [2] that there exists

a chain (which in general is strictly decreasing) $N_{2}\supset N_{3}\supset\cdots\supset S_{0}=\bigcap_{j=2}^{\infty}N_{j}$ of real,

J-invariant, bracket closed submodules. The following is thus a consequence of
Theorem 3.1.

THEOREM 3.2. A real analytic submanifold $M$ has a chain of successively

finer partitions by the comPlex integral manifolds of the submodules $N_{j}$ .
It is possible for $M$ to have a complex submanifold larger than the integral

manifold of $N_{2}$ . In [7], Sommer showed that $M=\{|z_{1}|^{2}+|z_{2}|^{2}-|z_{3}|^{2}-1=0\}$

has l-dimensional complex submanifolds but $N_{2}=0$ . It is therefore of interest
to seek an integral manifold of $H$ through a fixed point $P$ on $M$. In case $M$

is $CR$ , this would be the largest complex submanifold of $M$ through $p$ . The
answer is immediate from Corollary 2.4 and (3.2).

THEOREM 3.3. There exists a (unique) integral manifold of $H$ through $p\in M$

if and only if $H(p)=\tilde{H}(p)$ . This integral manifold is a comPlex submanifold of $M$.
All statements of Theorem 3.3 but the last are proved above. If $S$ is an

integral manifold of $H$ through $P$ then $H\subset CTM$ implies $I_{S}=I_{H}\supset I_{CTM}=I_{M}$, so
that $S\subset M$. It is easy to see that $\tilde{H}$ is the module spanned over $C_{c}^{\omega}$ by the set
$H^{\prime}$ of all repeated commutators of elements of $H$. Therefore $\tilde{H}(p)=H(p)$ if and
only if $H^{\prime}(p)=H(p)$ . This is a kind of infinitely high-order flatness condition
at $p$ . It means that $p$ is not a point of finite type in the sense of Bloom and
Graham [1] or Kohn [5], and it causes behavior in contrast with the case of
finite type. Thus if $M$ is a real analytic hypersurface satisfying Theorem 3.3
there exists a neighborhood $U$ of $p$ such that the integral manifold of $H$ through
$z$ is the zero set of a holomorphic function $f$. Then $1/f$ is a holomorphic func-
tion on $U-M$ which cannot be continued across $p$ . The local Levi problem
[5, p. 528] is thus solvable near $P$ in this case. However, such a point is clearly
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never $\cdot$ a local peak point [5, p. 540].
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