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0. Introduction.

In a study of a given Riemannian manifold M, it is important and also
interesting by itself to know a precise value of the injectivity radius of M.
Here the injectivity radius i(M) of M is, by definition, the supremum of a num-
ber ¢t such that every geodesic in M with length<¢ is the shortest connection
between its end points. And in general i(M) can be estimated from below by
using a number which relates to half of the infimum of length of all closed
geodesics in M and hence it is needed to know the infimum of length of all
closed geodesics in M for the estimate of i(M). As a remarkable result in this
field, J. Cheeger in gave a lower bound of length of all closed geodesics in
M depending on the volume, the sectional curvature and the diameter of M.

Now if we consider a closed geodesic in M as a 1-dimensional compact totally
geodesic submanifold of M, then the problem to estimate length of closed geo-
desics in M can be generalized as follows. “Is it possible to estimate the volume
of compact totally geodesic submanifolds of M by using the geometrical terms
of M ?”. Then from this point of view, a result obtained by N. Grossman in
[5], which gives an estimate of the volume of totally geodesic hypersurface in
a certain pinched manifold, may be regard as a partial answer to this problem.
And with respect to the Grossman’s result, we can give a slight generalization,
see In Section 3, we will give an answer to the problem men-
sioned above in a more generalized form. Namely the volume of a compact
submanifold M of M is estimated from below by using the principal curvatures
of the second fundamental forms on M. Furthermore when the codimension of M
is 1, a lower bound for the volume of M is given in a further generalized form in
the sense that the mean curvature, the mean value of the principal curvatures,
is used instead of the principal curvatures. This is shown in Section 2. We
will give an upper bound for the volume of M with codimension one or two in
Sections 2 and 4.
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1. Totally geodesic submanifolds.

All Riemannian manifolds considered in this paper are connected, complete
and without boundary.

Let M be an m-dimensional Riemannian manifold immersed isometrically and
totally geodesically in an 7i-dimensional Riemannian manifold M. Let i, be the
injectivity radius of M i.e. iy :=inf {d(q, C(q)); g=M} where C(q) is the cut
locus of ¢ in M and d is the distance function of M. And iz is defined simi-
larly. Then we have the following

LEMMA 1. iy=1z.

PROOF. Since the immersion x: M — M is totally geodesic, for any geodesic
yCM, xor is also a geodesic in M. From this fact, the result can easily be
obtained. g.e.d.

For a point p€M and a number >0, set B(r, p): ={g=M ; d(p, ¢)<r}. And
for a real number %, B(r; k) denotes an open metric ball with radius » in the
m-dimensional simply connected space form with constant sectional curvature k.

Now furthermore, we assume that Kz=<b? where Kz denotes the sectional
curvature of M and b is a nonnegative real number or pure imaginary. d(M)
denotes the diameter of M. Then, from and from the comparison
theorem for volume by R.L. Bishop [1; Theorem 15, p. 253], for any point
pEM,

Volume (M)=Volume B(iy, p)=Volume B(iz, p)=Volume B(iz ; b?).

So we have the following

THEOREM A. Let M be an m-dimensional Riemannian manifold immersed
isometrically and totally geodesically in a Riemannian manifold M. If either

(i) M is simply connected and b*/4<Kz=b? b>0 on M
or

(i) M is orientable, even-dimensional and 0<Kz=<b* on M then

Volume (M)=w,,/b™,

where w,, is the volume of the standard unit m-sphere.
ProoOF. In either case, from W. Klingenberg’s theorem, we have i1z=x/b.
g.e.d.
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2. Volume estimates of hypersurfaces.

Let M be an m-dimensional Riemannian manifold with Riemannian metric g
immersed isometrically in a Riemannian manifold M. & (or {,>) and ||-| denote
the Riemannian metric of M and its associated norm respectively. V denotes
the Riemannian connection on A with respect to 3. Let TM, TM be the tan-
gent bundle of M, M respectively, NM the normal bundle of M and = the natural
projection. For a point peM, T,M is the tangent space of M “at p and N,M
the normal space of M at p. Let exp: TM — M be the exponential mapping of
M and exp*: NM — M be the normal exponential mapping given by the restric-
tion exp|NM. N,M:={veNM; |vl|=1} be the unit normal bundle of M. For
a unit veN,M, we have the second fundamental form s,:7T,M — T,M with
respect to v defined by

(X)) : =(TxD)", for XeT,M

where T': TpA7f—>TpM is the orthogonal projection and ¥ is a normal vector field
on M such that #(p)=v. The norm {s,| of s, is, by definition,

m

[soll?: = 2 <syley), e;0?
1,j=1

where e, -+, ¢, is an orthonormal basis of T,M. M is called a minimal sub-

manifold of M when for all point pM and for an orthonormal basis vy, -+, v,
of N,M

trace Sv“: %1 <Sva(ei)’ e>=0, a=1, -, q.

A vector veNM is called a focal point of M if the differential of exp'=:expsi:
TNM — TM is singular at v, where TNM is the tangent bundle of NM. And
exp (v) is called a focal point of M along the geodesic 7(¢) : =exp tv/||v|| perpen-
dicular to M. For a positive number t>0, set U(}):={veNM; |v|<t}. Then
we can easily see that the number ¢, : =sup{t; exp*|U(¥) is injective} is positive
when M is compact.

Now, we assume that M is compact and dimension M=m-+1. Let U be a
coordinate neighborhood of M with coordinate functions {u,, ---, u,} and v a
unit normal vector field on U. Let ¢ : UX(—oo, o) — M be the map defined by

olg, O :=exp*tv(q)  for (g, HEUX(—00, o).

Let dvw, dvy and dr be the canonical volume elements of M, M and (—co, o)
=FE! respectively. We define a function j: UX(—o0, c0) — [0, co) as follows :
Let {v;, -+, Umss} De local coordinates of M defined on VC M such that for
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a point (p, HEUX(—o0, ), o(p, VeV. Then dvg=+/det Zxdv, - dv,,, and
dvy=+/det g;; du, - du,, where we put Z,,=2(0/0v,, 8/0v,) and g;,=g(0/0u;, 0/0u;),
1=k, ISm+1, 1=<i, j<m. Let j: (Ux(—o0, 00))Np (V)—(—0o0, c0) be a func-
tion given by

o*(Vdet gy dvi A -+ Advps)=]v/det gi; dus A -+ ANdunNdr.

And define j:=|j| on (UX(—o0, co))Ne X(V).
LEMMA 2. Under the above assumption, we have
(1) if a®<Ricciz and |trace sycp| =2 for some 1=0, then

7(p, nV=exp.((—ma®/2)r*+Ar)

as long as there exist no focal point of M on exp tv(p)|[0, »], where Ricciz
is the Ricci curvature of M,
(2) if @=ZKu=0b® and |syp)| =22 for some 2=0, then

i(p, r)zexp.{—meS:G(s, bz)‘Z{SZF(t, aydr+ibds),

¢ (1/b)-arccot A/b, b*>0

as long as r<t,: =13 1/4, b2=0
(1/]b])-arccoth 2/|b|, b2<0

cos at+(2/a) sin at, a*>0

where F(t, a®):={ At+1, a*=0

cosh |alt+(2/|al)sinh |alt, a%<0

¢ cos bi—(A/b) sin bt, b*>0
and G, b¥) =7 —At+1, b:=0

cosh |b|t—(4/b) sinh |b|t, b* <0,

ProOOF. (1) Let 7:[0, o0)—M be the geodesic such that y(f)=exp tv(p) and
ei, =+, em, 7(r) an orthonormal basis of T;,,M. Then from Gauss Lemma and the
fact that y(r) is not a focal point of M, there exists a basis vy, -+, v,€T,M
such that ¢4(v;X0,)=e;, 1=1, -+, m where 0,=T,E" is the zero vector. Let Z,
be the Jacobi field along 7 satisfying

Z{0)=v; and Z,N=e;, i=1, -, m.
Then, by definition, it is easily seen that

3, O=1ZON -+ AZuOI/ i - Avall for 0=t=r,
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and j(p, 0)=1. And also it can be checked that

7B, DI, D= B AZON =+ AZUDON = AZn(?)y ZiPIA -+ AZun(D)

1=1

=3 2, Zi»

where Z; denotes the covariant differentiation of Z; along 7. Let E;, 1=<i<m
be the parallel vector field along 7 such that E(r)=e;. Since there exist no
focal point of M on 7|[0, 7], from [9; Corollary 4.3, p. 343], we have

0= 1B~ 2 I~ Kt o rpn | B ZI} dt
+ sty (Ei—Z)0), (E;—Z)0)>
:“S:K(f(t),Ei(t))dt+<Zi; Zos—2{Ey ZD1§
+ <5t Ei0), Ef0)>4<{si0Z:0), Z:(0))—2{stE;(0), Z;(0)>
=:(*.
Here K, ., denotes the sectional curvature of the plane spanned by the vectors
v and w, and we have used the facts that Z; is a Jacobi field and {s;«E;(0),

Z0)>={s70yZ:0), E;(0)>. Noticing the fact that s;(,Z;(0)=2Z0), because M is a
hypersurface, we have

(== Kitwo,picondt—CZir), ZiOD+<s0 Bi0), EO)> -
Hence
2 <2, Zir)y=—m{ Ricci (®)dt+ 3 <0 B0, EO)
= —ma*r-+trace siq
<—ma*r+21.
Here Ricci (#(¥)) is the Ricci curvature in the direction 7(¢). So

7, N/i(p, NE—ma*r+2.
Thus we get
7(p, N=exp.{(—ma®/2)r*+2r} .

(2). Since Z; is a Jacobi field,

2 2, 2= 3 | 12001 —Kao. 20| 201t
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+ 3<2:0), Zi0p

z—p 3 [ 1zord-2 8 120"

We now want to estimate the norm of Z,(#). In order to estimate it below
(above), we set up an m-dimensional hypersurface in the (m-1)-dimensional
space form of constant sectional curvature b%a?), all of whose eigenvalues of
the second fundamental form with respect to a unit normal are equal to —A(A).
And apply Warner’s comparison theorem [9; Theorem 4.4, p. 352] to Z,(t): =
Z: 0/ Z:0)], to obtain

G(t, W=IZ(N|<F(t a®  for t<t,.
(Hereafter, we will call this theorem Warner’s comparison theorem). Thus

Gr, ¥)YZ1/1 ZOI =1 Z ()| <F(r, a?).

Hence
F(r, a1 Z, O =G, 6571, =1, -, m.
So
1ZOI=F(, a®- | ZO)| =F(t, a®G(r, b»)7*
and
1Z:.O=G(t, b®)- 1 Z,0)|=G(t, b>F(r, a®)™*.
Hence
i, D15, = B2, ZUr)>
z—p* 3 ("1zrar-2 3 1201
> _mb*Glr, bz)"Z{S:F(t, az)zdt+2}.
Thus we get

i, T):zexp.{—meSTG(s, b2)~2{§: F(t, a®pdt+2}ds}

0

q.e.d.
From this we have

THEOREM B. Let M be an (m-+1)-dimensional compact Riemannian manifold

and M an m-dimensional compact Riemannian manifold immersed isometrically in
M.

(1) If a®*<Ricciz and |trace s,| <A for all veN.M, then
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(M
0

Volume (M)=Volume (M){ZS ) exp. {—(ma®/2)r*+ Ar} dr}__l

(2) If a®=Ku=b® and |s,| =2 for all ve N\M and M is an imbedded sub-
manifold of M, then

Volume (M)<Volume (M)-

{ZS:bexp. {—mbzsz G(s, b“')“z{SZF(t, az)za't+2}ds}dr} ’

where t): =min{t,, t,}, t,: =sup{t; exp*|U(t) is injective} and G, F are the func-

tions defined in Lemma 2. .
REMARK. In (1), if we assume a’<Ky, then we can use the number

min {d(M), t,} instead of d(A) where
(1/a) arccot (—1/a), a*>0
L=y —1/4, a*=0
(1/)a}) arccoth (—2/|al), a*<0.

PROOF. (1) Since McCexp*(U(d(M))), if a*<Ricciz,
Volume (M)=Volume (exp*(U(d(M%éZEMS:(M)exp. {(—ma?/2)r*+ A} dvydr

(M
0

=Volume (M) -ZS )exp. {(—ma?/2)r*+2r} dr .

When a?<Kj, all focal points of M are in U(t;) by Warner’s comparison theo-

rem and hence exp*(T(t,)DM.
(2) By we have

— o ¢
Volume (M)=Volume (expl(U(to)))ZZSMSOOj dvydr

> Volume (M)-ZS:éexp. {—mp{ G0, [ Fe, prde+ a}ashar.

g.e.d.
Now, in the following we will calculate the number £, stated in B

for a certain pair M and M.
LEMMA 3. Let M be an (m~+1)-dimensional Riemannian manifold with Kz<
b%, b>0 and Riccizg>0 and M a compact minimally imbedded hypersurface of M.

Let 2=0 be a number satisfying |s,| <A for all ve N\M. Then
t, i =sup{t; exp*|U(?) is injective} =(1/b)-arccot (1/b).
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PrOOF. Suppose t,<(1/b)-arccot (4/b). Then by Warner’s comparison theo-
rem, there exist no focal point of M in U(f,+¢) for some >0, i.e. exp*| U(t,+¢)
is a local diffeomorphism. Then from the definition of #, and compactness of
M, we see that exp*|U(t,) is not injective. Thus there exist two disjoint geo-
desics ¢, ¢,: [0, t,] — M such that ¢,(0), ¢,(0)=N,M and c¢,(t)=cy(t,). And suf-
ficiently small neighborhoods of #,¢,(0) and #,,(0) in the closed hypersurface
oU(t,)CNM are mapped by exp* into sets V and W which are hypersurfaces
in M intersecting at c,(t,) and orthogonal to ¢, and ¢, respectively, because of
Gauss Lemma. If <(¢.(%,), ¢:(t,)), the angle between ¢,(¢,) and ¢é,(¢,), ==, V and
W meet transversally at c,(t,) and we can find v, we U(t,), v¥w such that exp‘v
=exp*w. This contradicts the definition of ¢,. Hence <(¢.(ty), é(t))=m. So
ci(te+t)=cu(t,—1) for t=[0, £,]. Let ey, -+, e, be an orthonormal basis of T M
and E,, ---, E,, the vector fields along the extension ¢, : [0, 2¢,] — M, obtained by
the parallel translation of ey, -+, e,. Then E,(2f,), --, En(2t,) is an orthonormal
basis of T M, because M is a hypersurface. For each E;, we consider a
variation V,: [0, 2t,1X(—p, p) — M, p>0, of ¢, such that V,({0} X(—p, p)\J {2t}
X(—p, p))TM and a(V (¢, 5))/0s|s=e=E(t), i=1, ---, m, see [3; Generalized Hada-
mard p. 69]. Let L(V,,) denote the length of the curve V,,(f):=
V.t s). Then from the second variational formula,

dZ

o LV aono= 550 Ei0), B0 (st E21o), Eo21)>

2ty
—So Ko, g0ndt .
Since M is minimal
?‘:1 ey E40), Ey(0))= 1; <52:1(2L0)E1'(2t0); E(2t)>=0.

So wé have

m d? 2tp e

B L(Vide= —S m-Ricei (6,())dt<0.

i=1 ds 0
Hence there exists some number i such that

d2
WL(Vi,s>|s=0<0-
Then we can derive a contradiction by the same argument used in [6; Theorem
2, p. 3307. g.e.d.
Thus from [emma 2, 3, in a special case, B can be restated as
follows ;
THEOREM C. Let M be a compact (m-+1)-dimensional Riemannian manifold.
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(1) If M is a compact m-dimensional Riemannian manifold immersed mini-
mally in M and a®*<Ricciz, then
— d() -1
Volume (M)= Volume (M){ZSO exp.((—ma*/2)r* dr}
(2) Let M be an m-dimensional compact Riemannian manifold imbedded mini-

mally in M. Let 0<a*<Ku=<b® and A=0 be a number satisfying |s,||<2 for all
veN,M. Then, putting t;: =(1/b)-arccot (1/b),

Volume (M)= Volume (M)

-{25? exp. {—meS:G(r, o[ £, arart 2}astar}

3. Submanifolds with codimension =>1.

In this section, we will give an estimate of volume of a submanifold with
codimension =1.

Let M be an m-dimensional compact Riemannian manifold with the Rieman-
nian metric g, immersed isometrically in an (m¢)-dimensional Riemannian mani-
fold M, ¢=1, with the Riemannian metric . On the normal bundle NM of M,
we introduce a Riemannian metric § as follows; for any X, YeTNM,

X, Y):=g@sX, 7YV )+ZEN(X), K¥Y)).

Here = : NM—M 1is the natural projection and K% : TNM—NM is the connection
map defined by, using the connection map K : TTM—TM,

K¥(X): =orthogonal projection of K(X) to NM.

For the definition of K, see [4; 24, p. 43]. It is checked that § is a Rieman-
nian metric on NM. Let dvyy and dvi be the volume elements of NM and M
induced from the Riemannian metrics & and g respectively. Let j: NM — [0, o)
be the function defined as follows; Fix a point v&e NM. Let {v;, -, v, be a
local coordinate system of NM defined on WCNM such that veW. Let
{uy, ==+, Um+gt be a local coordinate system defined on UCM such that exp*(v)
eU. Put g,:=2(0/0u,, 0/0us;) and &,;: =g0/0v., d/0v;) for 1=7, sSm-+gq. Then

dvg=~/det s du; -+ dumsq and dvyy=+/det g,s dv, - dvp,,.
Then on Wn(exp*) "} (U), we have

(expt)x+/det Z,, dus A -+ At =iV det Zs dvs A -+ AdVp.q
for a function j:WnN(expt) ' (U)— (—oo, ). And define j:=]j| on
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Wn(exp*)"(U). And in the following, we will estimate this function j.

Fix a point p,M and let V(p,) be a normal neighborhood of p, in M and
pi: V(py) — R, i=1, ---, m the coordinate functions. Let n,, -+, n, be an ortho-
normal vector fields on V(p,) normal to M given by the parallel translation
(with respect to the connection of NM) of an orthonormal basis 7,(p,), -+, 74(}o)
of N, M along each geodesic in M starting from p,. Using these n,, we intro-
duce local coordinate ¢ : NM|V(p,) — R™*? as

NMIV(p)25= 2 yana®) —> (bsy -+ bulb); v+ ¥ -

By the canonical isomorphism, we can use the notation 9/0p;=TTM. Then it
can be checked that

wx(0/0p)=0/0pi,  7wx(0/0yx)=0,
K¥0/0p)= 3 yal'ting and K*@/yd=na, for i=l, -, m

and a=1, -+, q. Here I'é; :zg(\?a,apina, ng) and élis the connection on NM. Then
it follows

8152 =&0/0ps, a/apj)Zgifra%‘,ryany wl'd,

Gia: =8(0/0pi, 0/0ya)= 52 vel'%:,

and
Zap: =5(0/0Ya, 0/0y5)=0as  for 1=1, j=m, 1=a, B, 7=¢q.

And from the choice of 74,
I'i(p)=0, 1=i=m, 1=a, f=q.
So from these facts, we have
* det g5 | Ny ,M=det g;(po) i.e., dvyy|NpM=dvy-dy,

1=r, sS<m+q, where dy is the canonical volume element on the g¢-dimensional
Euclidean space E<%

Now, fix ¥&N,,M, ¥+0 such that t%, 0<{<1, is not a focal point of M. We
will estimate j(%). For this purpose, we may suppose that n,(p,)=2Xx/|%|. Let
ey, -+, e, be an orthonormal basis of T, M. Let Z;, i=1, ---, m and W, a=lI,
.-, ¢g—1, be the Jacobi fields along the geodesic 7(f) : =exp tn,(p,), satisfying the
following boundary conditions,

Z0)=e;, Zé(O):an(po)(Qi) ’ =1, =, m
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and
Wa(o):O: W;(O):na: C(:]., ) C]—‘l-

Then from the above consideration, we can verify the following ;

JRO=NZAEDN -+ AZZAZDAWAZDA - AW (IZID1/ 1247

LEMMA 5. Let a*< Kz, where a=0 or a pure imaginary and 2=0 be a num-
ber satisfying |s,l|=2 for all veN.M. If all M-Jacobi fields along v split in the
sense of F. Warner, then

JE=J (@ 4, 11, m, @)
where J(a? 2, 7, m, q)
(sin ar/ar)?*(cos ar+(2/a) sin ar)™, a*>0
=1 (Ar+D)™, a*=0
(sinh |a|r/la]|r)? *(cosh |a|r+(4/|a]) sinh |a|r)™, a%<0

as long as there exist no focal point of M on 7|[0, |X|].
PROOF.

JEO=NZAXDN - AZ(IZDAWLEIDA == AW oo (IZIDI/ 1R
=1ZAEDE = - UZnCEDI-TWLAZIDN- - - I AEDI/1E]272

We only prove the case a?*>0. The other cases are proved similarly. For
a=1, -+, ¢g—1, by Rauch’s comparison theorem

[WDI= WD
as long as there exist no conjugate point of p, on 7|[0, ], where W is the
Jacobi field along a geodesic ¢ in S™*%(1/a) satisfying W | ¢, W(0)=0 and | W’(0)]
=||W40)[|=1, where S™*%(1/a) is the (m-q)-dimensional standard sphere with
radius 1/a. Let U be the parallel field along ¢ such that J(0)=W’(0). Then
W(®)=(1/a) sin atU(t). So

IWZDI=IWAZDI=1/a) sinalXl, 1=a=q—1.

For Z,, i=1, -+, m, since Z, is a strong M-Jacobi field (see [9]), from Warner’s
comparison theorem, we have

1ZOI= 1z
as long as there exist no focal point of M on 7|[0, £], where Z is a Jacobi field
along a geodesic ¢ in S™"4(1/a) satisfying Z ¢, [Z(0)]|=|Z0)||=1 and Z’(0)
=21Z(0). Let V be a parallel field along ¢ such that V(0)=Z(0). Then Z(})
=(cos at+(4/a) sin at)V(¢t). Hence, for i=1, ---, m
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1Z:(IZIDI= N ZAIXD | =cos al|Z]|+(2/a) sin a| %] .
g.e.d.

From this we have

THEOREM D. Let M be an (m-+q)-dimensional compact Riemannian manifold
with the sectional curvature satisfying a*< Kz, where a=0 or a pure imaginary.
and M an m-dimensional compact Riemannian manifold immersed isometrically in
M. Let 2=0 be a number satisfying |s,|S2 for all veN.M. If all M-Jacobi
equation split, then

Volume (M)=Volume (M)-{wq_lsz](az, A, v, m, q)r’q“ldr}-l
where
(1/a) arccot (—4A/a), a*>0
[:=min {dM), t.}, t,:={ —(1/2), a*=0

(1/|a]) arccoth (—4/]al), a*<0

and J the function given in Lemma 5 (we consider w,=2).

Proor. From (*), we can choose for any ¢>0 and a point p,=M a small
normal neighborhood V(p,) of p, in M used in the above argument such that
on the set U()|V(p)={FENM|V(po); IFII<l} 27

**) Vdet g;(x(3))-(1—e)= Vdet Z,(5)= v/ det g;,(z(5))-(1+¢) .

This is possible, because of continuity of the function det g,; and compactness
of the set UD)[V(p,). Then putting U(l): ={veU(); tv, 0<i<1 is not a focal
point of M}, we have

]'\/det grs dpl cee dpmdyl vee dyq

~ jvaM:SN
gU(l)lV(po) TIVpg)

J~/det gi; (1+e)dpy -+ dpmdyy -+ dyq

ég
UHivipo

Dy:={y<EL; yi<l}

=(1-+¢)- Volume (V(ps)- | Jdy.
Then, by using compactness of M, we can choose points p;M and normal
neighborhood V(p;), i=1, -+, & such that V(p,) are mutually disjoint and
koo
.=U1 V(p:;)=M and moreover the property (**) is satisfied on each V(p,), i=1, -+, k.

From these properties of V(p,), it follows that
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S~ jAvyu=(1+¢)- Volume (M)-S Jdy.
Ud) Dy
Since £>0 is arbitrary, letting ¢—0, we get

Volume (M)ggm 7 dvwn= Volume (M)-SDL Tdy.

Here we have used the fact that all focal points of M are in U(t;) by Warner’s
comparison theorem. g.e.d.
This D may be regarded as a sort of generalization of a theorem
obtained by J. Cheeger in [2; Theorem 5.8, p. 961, which is
THEOREM (J. CHEEGER). Let M be an m-dimensional compact Riemannian
manifold satisfying
the sectional curvature of M=H

the diameter of M <d
and the volume of M =V>0

for some constants H, d and V, then there exists a constant c,,(H, d, V)>0 depend-
ing on m, H, d and V such that for any closed geodesic 7 in M,

the length of 1=cn(H, d, V).

Since any closed geodesic in A is a 1-dimensional compact totally geodesic
submanifold of M, from D and [9], we have
COROLLARY OF THEOREM D. Let M be a manifold stated in Cheeger's theo-

rem. If d= 235 when ¢: =max Kz>0, then there exists a constant cn,(H, d, V')

>0 depending on m, H, d and V such that for any closed geodesic 7 in M
the length of y=cn(H, d, V).
cn(H, d, V) is given by
v -1
c(H,d, V): :V{wm_ZSOJ(H, 0,71, m—l)rm“zdr} ,

where I’ : =min{d, t,}.

REMARK. It is not obvious which one of the constants will give a better
lower bound for the length of any closed geodesics in M. But it seems that
calculation of ¢,(H, d, V) is considerably easier than Cheeger’s one, see [7].

4. Submanifolds with codimension 2.

In this section, we will give an estimate of volume of a submanifold with
codimension 2 from above.
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Let M be a compact m-dimensional Riemannian manifold imbedded isometric-
ally in a compact (m-+2)-dimensional Riemannian manifold M. By putting ¢=2,
we use the same notation used in Section 3. Let p,eM, V(p,), and n,, n, be
those defined in Section 3. Let ¥f&N, M, ¥+0 be a vector such that #%, 0<¢=1
is not a focal point of M. And also set n,(p,)=2Xx/||X|| for the calculation of j(%).
Let 7 be the geodesic normal to M given by 7(f):=exp in,(p,). Let vy, -+, vp
be the basis of T, M such that (exp*o¢p™")*(v;X0,)=:e; i=1, ---, m are ortho-
normal, where 0, is the zero vector of T,E? (X)=(p:(po), -+ PulDe), %), xE E?,
and ¢ : NM|V(P,) — R™* is a coordinate function defined in Section 3. This
is possible, because X is not a focal point of M. Note that because of Gauss
Lemma, e;, i=1, ---, m are orthogonal to 7(|%||). Let Z;, i=1, ---, m and W the
Jacobi fields along 7 satisfying the following boundary conditions :

Z0)=v,, Z1xl)=e;, =1, -, m
and

W(0)=0, W (0)=n.(po) .

Then from the choice of n,, it is obvious that Zi(0)=s,,,,,Z:(0). And it can be
checked that

JE=IZAZEDA - AZRIZIDAWAZDI/AZA VN === Avwl)
ZlleA - ANen AWAEDI/AZN - lvsll+ == - llvml)

Put ||%|=:7 for convenience. And now assume the sectional curvature of M
satisfies a’=<Kzx=b% a=0, b=0 or pure imaginaries, and ||X|=r<f, where the
number i, is the one defined in by replacing 2 with —A. Then in the
proof of (i), it has been proved that

lvd =1Z:0)| =G, b5,  i=1,-,m.
Thus

JE?=G(r, b7 les A -+ Nen A(W()/1)II?
=G, 5 ™KW 1, W ry— B W@ r e
Since the term {W(r)/r, W(r)/r) is estimable from Rauch’s comparison theorem,
it remains the estimate of §<W(r)/r, e;»:. We fix any Z; and write it as Z

for simplicity of our argument. From the proof of and Rauch’s com-
parison theorem, we have

G(t, b)F(r, a®) ' S| ZWO| = F(1, a*)G(r, b))
and

Ht, DS\ W< H(t,a®)  for (=r,
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where
(1/k)-sin kt, k>0
H(t k®) =1 t, k2=0
(1/|k])-sinh |E|t, k2<0.

Let E be the parallel field along 7 such that E(0)=Z(0)/{Z(0)|. And con-
sider the function f(f): =<{Z(), E(t)y. Then f(0)=|Z(0)|| and

FO=Z', EXO=XZ', E>|i+<Z/(0), EO)
= <R@.P)t. B>dt+<Z0), BO).
From a property of curvature tensor, we have
CREZ,P)t, EXO=CRE, P, 2O Z1- IRE, DI

And |R(E,)7II(H) does not exceed the maximum absolute eigenvalue of curvature
transformation R( - , 7())f(D) : Tt M—TioM, where Tio,M : = {v& Ty, M ; <F(1), v
=0}, because |E||=1. Thus

—R(Z, 1), EX)=—Z)|- |R(E, D) () = —F(2, a®)G(r, b*)* max{|a®|, | b?|}.
Put A(t) : =—F(t, a®)G(r, b*) * max{|a?|, |b?|}. For {Z'(0), E(0)), since
<Z'(0), E(0)>=<Z"(0), Z(0)>/ | Z(0)] = <530 Z(0), Z(0)> /| Z(O)]]

we have
<Z'(0), EQ)>=—2Z(0)| = —AG(r, b»)™*.
So
f/(t)ggf) Au) du—2G(r, b1 .
Thus
9=\, rdt+70)
gg(s Alw) du=2G(r, b)) it-+F(r, @)

So

70="{(* A du—i60, vy }di+ P a7

Hence putting

() - =max{~1, SO{V A du—2G(r, 5™} dt+Fr, a1},
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we have

1 L(Z(r), E(r))<arccos [(N=rx,

because f(r)=<Z(r), E(r)y=cos (Z(r), E(r)). Note that arccos [,(r) =0 as »— 0.
Now, let E be the parallel vector field along 7 such that E(0)=W'(0)=n,.
And put g(s): =<{W(s), E(s)>. Then g(0)=0 and

g/ )=LW, EX(S)={W", E>[3+<W', EX0)
=—{"Raw, 1, Brar+1,

where we have used the fact that W is a Jacobi field. Then from the same
reason for the estimate of f/(f), we have

g'(s>g§: B() di+1

where B(t): =—H(t,a®) max{|a?|, |b?|}. Thus

g0={ g ds+g(0>zS:S: B() dids+r.
So putting L) : :max{——l, (S:g:B(t) dz‘ds+r)/H(7', a2)}, we have
LIN= g/ | W(Dl|=cos L(W), Er), e,
) LW, Er)<arccos [(N<x.
And it is easily verified that [,(r) =1 as »r— 0. From (1) and (2), we have
LW ), Z0)= L (ED, E@)— (W), Er)—X(Z(), EX)

=r/2—arccos [,(r)—arccos [,(r),
and

LW, Z)S LED, E)+L(Wn), Ee)+L(Z0), EX)
<nr/2+arccos [,(r)+arccos ,(r),
as long as arccos [,(r)+arccos L,(r)<x/2. Thus
—sin (arccos [;(r)+arccos [,()=cos (W), Z(r))
<sin (arccos [,(v)-+arccos [,(r)),

and hence cos?’{W(r), Z(r))<=sin*(arccos [,(r)-+arccos [,(r)) as long as arccos /,(7)
+arccos L(N=n/2. Put
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I(r) : =sin (arccos [,(r)+arccos L(r)=1L") V1=, + 1) V1—=1(r)?.
Then from the remarks stated above, I[(*)—0 as r—0. So we have
KW/r, W/r>—;<W/ r, e =Wl 2(I—Zi) cos*(W(r), Z,(r)/r?)

2(H(r, b*)* /v (A —ml¥(r)
and [(r)—0 as r—O0.
Summarizing the above, we have
LEMMA 6.
FE =G &, b7 CH(IZIl, 62/ I1Z1)*A—m(|Z]D) .

Let 7,<t, be the smallest number such that 1—ml*(r;)=0. If such r», does
not exist, we consider 7,—=oco. Let r;:=min{r>0; arccos [,(r)+arccos l,(r)=r/2}
and ¢, : =min{r,, 7, t,} where #,:=sup{t; exp*|U(t) is injective}. As in the proof
of [Theoreml C, we have

THEOREM E. Let M be an (m-+2)-dimensional Riemannian manifold with the
sectional curvature a*=Ku=<0b? where a, b=0 or pure imaginaries, and M a com-
pact m-dimensional Riemannian manifold imbedded isometrically in M. Let 2=0
be a number satisfying ||s,| =24 for all ve N\M. Then

-1

Volume (M)Z Volume (]\7[){27rS:3G(r, b2 ™(H(r, b»)/r) v/ 1—mi*(r) dr} ,

where the function G, H,l and number t; are those given above.

Corresponding to we will show that there exists a pair of mani-
folds M and M for which the number f, can be estimated.

LEMMA 7, Let M be a Kéhler manifold with complex dimension m-+1 and
with the sectional curvature 0<Kz=0b? b>0 and M a compact Kahler submanifold
(imbedded) of M with complex dimension m. Let =0 be a number satisfying
syl 2 for all v&eN.M. Then

t,: =sup{t; exp*|U(t) is injective} =(1/b) arccot (1/b).

PRrROOF. Suppose f,<(1/b)arccot (1/b). Then by the same reason in
there exists a geodesic o : [0, 2¢,] — M such that 6(0) 1 Tsc,M and 6(2¢,) L TocaeyyM.
Since M is a complex submanifold of M, we can choose an orthonormal basis
ey, s em Jeu, -, Jem of TysM where J is the complex structure of M. And
let E.(1),---,En(t) be the parallel vector fields along ¢ such that E,(0)=e,, -,
E.(0)=e,. Since J is parallel so JE; and J¢ are parallel, we see that E,(2¢), ---,
E,(2t,), JE\(2ty), --- , JEn(2t,) is an orthonormal basis of T,,M. Again, since J
is parallel and s;q is symmetric, we have {s;qJe;, Je.)=—<{s;wei, e;y for i=1,

-« ,m. So trace s;= X {{S;m€:, ey +<sswmJe:, Je:} =0. And by the same reason,
t=1
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we have
trace S';(m):i% {<Sa‘<2to)Ei(2to), E.(2t,)> ‘|‘<Sa'<2to> ,Ei(2t0>,]Ei(2to)>} =0.
Thus

8 [ UEi— R, 0, ED)dt+Csienred

=1

.

- <5.1'<250>Ei(2 to), E:(2t)>

+ " BN —RUE, 96, TES} dt+Csio Jes ooy
— (i JEA2H), JE210) |
== 3 [ KRB, 010, E-+RUE, 016, JED) dt<0.
And hence there exists a vector field X along ¢ normal to ¢ such that

[ xp—cROX, 96, X0} dt+Csi XO), XO)
—<{ S5 X(2t,), X(2£,)><0.

Then by the same reason stated in we can derive a contradiction.
g.e.d.
Thus from we have
THEOREM F. Let M be a Kdihler manifold with complex dimension m+1 and
with the sectional curvature 0<Kzu=0b% b>0 and M a compact Kdhler submanifold
of M with complex dimension m. Let A be a number satisfying [|s,|=A for all
veN,M. Then

Volume (M)= Volume (M){ZTIS?G(?’, b¥)~*™(sin br/br) V(l—Zle(r))dr}_l

where (r) and t, are those used in Theovem E by putting a®=0 and t,:=(1/b)-
arccot (1/b) respectively.
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