Some differential equations on Riemannian manifolds

By Shûkichi TANno
(Received March 26, 1977)
(Revised Oct. 20, 1977)

§ 1. Introduction.

Let (M, g) be a Riemannian manifold of dimension $m \geqq 2$ and let ∇ denote the Riemannian connection defined by g. In this paper we study the following system of differential equations of order three:

$$
\begin{equation*}
\nabla_{h} \nabla_{j} \nabla_{i} f+k\left(2 \nabla_{h} f g_{j i}+\nabla_{j} f g_{i n}+\nabla_{i} f g_{h j}\right)=0 \tag{1.1}
\end{equation*}
$$

where k is a positive constant. Originally the differential equations (1.1) come from some study of the Laplacian on a Euclidean sphere ($S^{m} ; k$) of constant curvature k. The first eigenvalue of the Laplacian on ($S^{m} ; k$) is $m k$ and each eigenfunction h corresponding to $m k$ satisfies the following system of differential equations of order two :

$$
\begin{equation*}
\nabla_{j} \nabla_{i} h+k h g_{j i}=0 . \tag{1.2}
\end{equation*}
$$

The second eigenvalue is $2(m+1) k$ and each eigenfunction f corresponding to $2(m+1) k$ satisfies (1.1).

Assuming the existence of a non-constant function h satisfying (1.2) on a Riemannian manifold (M, g) many mathematicians studied differential geometric properties of (M, g) (cf. S. Ishihara and Y. Tashiro [11], M. Obata [14], [15], Y. Tashiro [22], etc.). In this case $\operatorname{grad} f$ is an infinitesimal conformal transformation.

Assume that there is a non-constant function f satisfying (1.1) on (M, g). Then grad f is an infinitesimal projective transformation and is a k-nullity vector field on (M, g). The converse is also true (cf. Proposition 2.1). This gives a geometric meaning of (1.1).

The system of differential equations (1.1) was first studied by M. Obata [15] and he announced the following.

Theorem A. Let (M, g) be a complete and simply connected Riemannian manifold. In order for (M, g) to admit a non-constant function f satisfying (1.1)

[^0]for some positive constant k, it is necessary and sufficient that (M, g) is isometric to a Euclidean sphere ($S^{m} ; k$).

However the outline of the proof given in [15] turned to be incomplete. The complete proof was first given by the present author [21]. Later D. Ferus [8] gave an elegant proof. Further, S. Gallot [9] announced his proof (but this proof is also incomplete, as we give a counter-example to his main lemma in §6).

The purpose of this paper is to clarify the differential geometric implications of the existence of such a function f. In particular, we are concerned with the behavior of trajectories of grad f. Proof of Theorem A is given in $\S 5$ and $\S 8$. The mathematical essence of (1.1) will be seen in the next Theorem (cf. Theorem 5.1, Theorem 5.8).

Theorem B. Let (M, g) be a Riemannian manifold admitting a non-constant function f which satisfies (1.1) for some positive constant k. If (M, g) contains a whole trajectory l of grad f with its limit points, then (M, g) is constant curvature k at each point of the trajectory l.

In $\S 7$ we define the concept of t-connectedness. k-nullity theory and t connectedness property enable us to state constancy of sectional curvature in local forms.

Kählerian analogues are also true.
Manifolds are assumed to be connected and of class C^{∞}. Functions and tensor fields are supposed to be class C^{∞} unless otherwise stated.

The author is very grateful to Professor D. Ferus and other mathematicians of the Berlin Technical University for mathematical discussions and kind hospitality.

§ 2. Fundamental properties of f.

For a function f on a Riemannian manifold (M, g), by F we denote the gradient vector field of $f: F=\operatorname{grad} f=\left(F^{i}\right)=\left(g^{i r} F_{r}\right)=\left(g^{i r} \nabla_{r} f\right)$. Here $\left(g^{i r}\right)$ is the inverse of the matrix ($g_{j i}$). By $R=\left(R_{j h l}^{i}\right)$ we denote the Riemannian curvature tensor of (M, g). A vector field X on (M, g) is called a k-nullity vector field on (M, g), if X satisfies

$$
\begin{equation*}
X_{i} R_{j h l}^{i}=k\left(X_{h} g_{j l}-X_{l} g_{j n}\right) \tag{2.1}
\end{equation*}
$$

for a constant k (for more details, see §4, and [5], [6], [7], etc.).
Proposition 2.1. Let f be a function on (M, g). f satisfies (1.1) for a constant k, if and only if
(i) F is an infinitesimal projective transformation, and
(ii) F is a k-nullity vector field on (M, g).

Proof. First we assume that f satisfies (1.1) for a constant k. By the

Ricci identity for $\nabla_{l} \nabla_{h} F_{j}-\nabla_{h} \nabla_{l} F_{j}$ and by (1.1) we get (2.1) with $X=F$. This proves (ii). Next in the classical relation (on the Lie derivative of the Christoffel's symbols) :

$$
\begin{equation*}
L_{F} \Gamma_{j h}^{i}=\nabla_{h} \nabla_{j} F^{i}-R_{j h l}^{i} F^{l}, \tag{2.2}
\end{equation*}
$$

we apply (1.1) and (2.1) with $X=F$, to get

$$
\begin{equation*}
L_{F} \Gamma_{j h}^{i}=-2 k\left(F_{h} \delta_{j}^{i}+F_{j} \delta_{h}^{i}\right) . \tag{2.3}
\end{equation*}
$$

This shows that F is an infinitesimal projective transformation on (M, g).
Conversely, let f be a function on (M, g) with properties (i) and (ii). By (i) there is a function θ on M such that

$$
\begin{equation*}
L_{F} \Gamma_{j h}^{i}=\theta_{h} \delta_{j}^{i}+\theta_{j} \delta_{h}^{i}, \tag{2.4}
\end{equation*}
$$

where $\theta_{h}=\nabla_{h} \theta$. By (2.2), (2.4) and (2.1) with $X=F$, we obtain

$$
\begin{equation*}
\nabla_{h} \nabla_{j} F^{i}=k\left(F_{j} \delta_{h}^{i}-F^{i} g_{j h}\right)+\theta_{h} \delta_{j}^{i}+\theta_{j} \delta_{h}^{i} . \tag{2.5}
\end{equation*}
$$

Lowering the index i and taking the symmetric part with respect to i and j, we obtain

$$
\begin{equation*}
2 \nabla_{h} \nabla_{j} F_{i}=2 \theta_{h} g_{i j}+\theta_{j} g_{i \hbar}+\theta_{i} g_{j h}, \tag{2.6}
\end{equation*}
$$

where we have used $\nabla_{j} F_{i}=\nabla_{i} F_{j}$. Transvecting (2.5) [the index i being lowered] and (2.6) with $g^{h j}$, we obtain $\theta_{i}=-2 k F_{i}$. Substituting this into (2.5) we get (1.1).
Q.E.D.

From now on in this section we assume that (M, g) admits a non-constant function f satisfying (1.1) for some positive constant k.

Transvecting (1.1) with $g^{i j}$, we see that there is a constant c such that

$$
\begin{equation*}
\Delta(f-c)=-2(m+1) k(f-c), \tag{2.7}
\end{equation*}
$$

where Δ denotes the Laplacian on $(M, g) ; \Delta f=\nabla_{r} \nabla^{r} f$.
Let $\{x(s)\}$ be a geodesic in (M, g) with arc-length parameter s. We put $\left(c^{i}(s)\right)=\left(d x^{i}(s) / d s\right)$. Transvecting (1.1) with $c^{i} c^{j} c^{h}$, we see that the restriction $f(s)$ of f to $\{x(s)\}$ satisfies

$$
f^{\prime \prime \prime}+4 k f^{\prime}=0
$$

where the dash means the differentiation with respect to s. Solving the last equation we obtain

$$
\begin{equation*}
f(s)=\left(f^{\prime \prime}(0) / 2 k\right) \sin ^{2} \sqrt{ } \bar{k} s+\left(f^{\prime}(0) / 2 \sqrt{k}\right) \sin ^{2} \sqrt{\bar{k}} s+f(0) . \tag{2.8}
\end{equation*}
$$

Lemma 2.2. Let x be a point of M and assume that M contains the closed $(\pi / 2 \sqrt{ } \bar{k})$-neighborhood U of x. Then there are points p and q in U where f takes its maximum value $b=f(p)$ and the minimum value $a=f(q)$.

Proof. Fixing $x=x(0)$ and changing the direction of geodesics, by (2.8) we
see that f takes its maximum value b at some point p of M within the distance $\pi / 2 \sqrt{k}$ from $x(0)$. Similarly there is a point q where f takes its minimum value a within the distance $\pi / 2 \sqrt{k}$ from $x(0)$.
Q.E.D.

Lemma 2.3. Let z be an arbitrary critical point of f. Let $\left\{x_{v}(s)=\operatorname{Exp}_{z} s v\right\}$ be a unit speed geodesic starting at z with the initial direction v. Then the restriction $f_{v}(s)$ of f to this geodesic is given by

$$
\begin{equation*}
f_{v}(s)=f(z)+(1 / 2 k) H(v, v) \sin ^{2} \sqrt{ } \bar{k} s, \tag{2.9}
\end{equation*}
$$

where H denotes the Hessian $\left(\nabla_{j} F_{i}\right)$ of f at z.
Proof. This follows from (2.8),
Q.E.D.

§ 3. The behavior of trajectories of F.

Let M^{b} be the subset of M of all critical points where f takes its maximum value b and let M^{a} be one of all critical points where f takes its minimum value a.

Lemma 3.1. Each connected component of M^{b} is a totally geodesic submanifold with respect to the induced metric from (M, g).

Proof. Let p be an arbitrary point of M^{b}. Then for a unit tangent vector v at p we have (2.9) (with $p=z$) along the geodesic $\left\{\operatorname{Exp}_{p} s v\right\}$. It is clear that the Hessian H at p is negative semi-definite. If v is not an eigenvector corresponding to the eigenvalue zero of $H, H(v, v)<0$ holds and $f_{v}(s)<f(p)$ holds for all $s ; 0<s(<\pi / 2 \sqrt{k})$. If v is an eigenvector corresponding to zero, then $f_{v}(s)$ $=f(p)$ holds for all s (for which $\operatorname{Exp}_{p} s v$ is defined). Therefore $\left\{\operatorname{Exp}_{p} s v\right\}$ is contained in M^{b}.
Q.E.D.

Remark 3.2. M^{b} and M^{a} have corresponding properties as seen by considering a function $b+a-f$. So it suffices to state propositions only on M^{b}.

For a curve $l=\{x(s)\}$ we use the following notations:

$$
\begin{aligned}
& l[r]=\{x(s) ; 0 \leqq s \leqq r\}, \\
& l[r)=\{x(s) ; 0 \leqq s<r\}, \\
& l(r)=\{x(s) ; 0<s<r\} .
\end{aligned}
$$

Lemma 3.3. Let p be a point of M^{b} and let v be a unit eigenvector corresponding to a non-zero eigenvalue ν of the Hessian H of f at p. For the geodesic $l=\left\{x(s)=\operatorname{Exp}_{p} s v\right\}$ we have
(i) if $0<r<\pi / 2 \sqrt{k}$ and $l(r) \subset M$, then $l(r)$ is a part of a trajectory of F,
(ii) if $l(\pi / 2 \sqrt{k}) \subset M$, then it is a whole trajectory of F,
(iii) if $[[\pi / 2 \sqrt{k}] \subset M$, then $x(\pi / 2 \sqrt{k})$ is a critical point of f.

Proof. In proofs of (ii) and (iii), the proof of (i) is contained. So we
assume that $l[\pi / 2 \sqrt{k}] \subset M$. If $l[\pi / 2 \sqrt{k}]$ has no conjugate point of $p=x(0)$, let s_{0} be an arbitrary real number such that $0<s_{0}<\pi / 2 \sqrt{k}$. If $l[\pi / 2 \sqrt{k})$ has conjugate points, let $x\left(s_{1}\right)$ be the first conjugate point of p and let s_{0} be an arbitrary real number such that $0<s_{0}<s_{1}<\pi / 2 \sqrt{k}$.

Let $(0 \geqq) \nu_{1} \geqq \nu_{2} \geqq \cdots \geqq \nu_{m}$ be the eigenvalues of H and assume $\nu=\nu_{i}$. Let j be any integer such that $j \neq i$ and $1 \leqq j \leqq m$. We define a curve $\left\{w_{j}(\theta) ;-\pi<\theta<\pi\right\}$ in the tangent space M_{p} at p by

$$
\begin{equation*}
w_{j}(\theta)=\cos \theta\left(s_{0} v\right)+\sin \theta\left(s_{0} v_{j}\right), \tag{3.1}
\end{equation*}
$$

where v_{j} denotes a unit eigenvector corresponding to ν_{j} so that $\left\{v_{1}, v_{2}, \cdots\right.$, $\left.v_{i}=v, \cdots, v_{m}\right\}$ is an orthonormal base of M_{p} such that $H\left(v_{r}, \cdot\right)=\nu_{r} g\left(v_{r}, \cdot\right)(r=1, \cdots$, m). Next we define a curve $\left\{z_{j}(\theta)\right\}$ in M by

$$
z_{j}(\theta)=\operatorname{Exp}_{p} w_{j}(\theta)
$$

Then $\left\{z_{j}(\theta) ;-\varepsilon<\theta<\varepsilon\right\}$ is a C^{∞}-curve passing through $x\left(s_{0}\right)$ for sufficiently small ε. Then

$$
Z_{j}=\left(d z_{j} / d \theta\right)(0)
$$

is a non-zero tangent vector at $x\left(s_{0}\right) . Z_{j}$ is orthogonal to the geodesic $\{x(s)\}$ at $x\left(s_{0}\right)$ by the well known Gauss lemma. Next we show that Z_{j} and F are orthogonal at $x\left(s_{0}\right)$. For this purpose we define $f_{j}(\theta)$ by $f_{j}(\theta)=f\left(z_{j}(\theta)\right)$. Then $g\left(Z_{j}, F\right)=0$ at $x\left(s_{0}\right)$ is equivalent to

$$
\begin{equation*}
\left(d f_{j} / d \theta\right)(0)=0 \tag{3.2}
\end{equation*}
$$

By (2.9) we obtain

$$
\begin{aligned}
f_{j}(\theta) & =b+\left(1 / 2 k s_{0}^{2}\right) H\left(w_{j}(\theta), w_{j}(\theta)\right) \sin ^{2} \sqrt{k} s_{0} \\
& =b+(1 / 2 k)\left(\nu \cos ^{2} \theta+\nu_{j} \sin ^{2} \theta\right) \sin ^{2} \sqrt{k} s_{0},
\end{aligned}
$$

from which (3.2) follows. Therefore F is orthogonal to all $Z_{j}(j \neq i)$ at $x\left(s_{0}\right)$. Since the geodesic l is also orthogonal to all $Z_{j}(j \neq i), F$ is tangent to l at $x\left(s_{0}\right)$. Thus F is tangent to l at each point $x(s)$ for $s ; 0<s<\pi / 2 \sqrt{k}$ or $0<s<s_{1}$.

In the case where $x\left(s_{1}\right)$ is the first conjugate point of p, the geodesic $l\left(s_{1}\right)$ is a part of a trajectory of F. By Proposition 2.1 the sectional curvature for each 2-plane which contains F is equal to k. Hence $x\left(s_{1}\right)$ can not be a conjugate point of p unless $s_{1} \geqq \pi / \sqrt{k}$. This contradicts $s_{1}<\pi / 2 \sqrt{k}$.

Therefore in any case, $l(\pi / 2 \sqrt{k})$ is a part of a trajectory of F. By (2.9) we see that $g(F, F)$ tends to zero both when $x(s) \rightarrow x(0)$ and $x(s) \rightarrow x(\pi / 2 \sqrt{k})$, and hence $l(\pi / 2 \sqrt{k})$ is a whole trajectory of F and $x(\pi / 2 \sqrt{k})$ is a critical point of f.
Q. E. D.

Corollary 3.4. If $p \in M^{b}$ and $q \in M^{a}$ are joined by a geodesic $\{y(s)$;
$0 \leqq s \leqq \pi / 2 \sqrt{k}\}$ in M with $p=y(0)$ and $q=y(\pi / 2 \sqrt{k})$, then $u=(d y / d s)(0)$ is an eigenvector corresponding to the minimum eigenvalue of H at p, and $\{y(s)$; $0<s<\pi / 2 \sqrt{ } \bar{k}\}$ is a whole trajectory of F.

Proof. By (2.9) $H(u, u)$ must be the minimum eigenvalue of H, and Corollary 3.4 follows from Lemma 3.3.
Q.E.D.

Corollary 3.5. Each unit eigenvector v corresponding to a non-zero eigenvalue of H at p of M^{b} belongs to the k-nullity space at p. In particular, the normal space to M^{b} in M at p is contained in the k-nullity space at p.

Proof. This follows from Lemma 3.3 (i) and Proposition 2.1. Q.E.D.
From now on in this section we assume that (M, g) contains some complete connected component ${ }^{*} M^{b}$ of M^{b} and its closed ($\pi / 2 \sqrt{k}$)-neighborhood $W\left({ }^{*} M^{b}\right)$:

$$
\begin{equation*}
W\left({ }^{*} M^{b}\right)=\left\{w \in M ; \text { distance }\left(w,{ }^{*} M^{b}\right) \leqq \pi / 2 \sqrt{k}\right\} . \tag{3.3}
\end{equation*}
$$

By $W_{0}\left({ }^{*} M^{b}\right)$ we denote the subset of $W\left({ }^{*} M^{b}\right)$ defined by the inequality in (3.3). By the boundary of $W\left({ }^{*} M^{b}\right)$ we mean $\partial W\left({ }^{*} M^{b}\right)=W\left({ }^{*} M^{b}\right)-W_{0}\left({ }^{*} M^{b}\right)$.

Lemma 3.6. There is no critical point of f in $W_{0}\left({ }^{*} M^{b}\right)-{ }^{*} M^{b}$.
Proof. Let w be an arbitrary point of $W_{0}\left({ }^{*} M^{b}\right)-{ }^{*} M^{b}$. w can be joined to ${ }^{*} M^{b}$ by a shortest geodesic. The length of this geodesic is smaller than $\pi / 2 \sqrt{k}$. Therefore the derivative of f along this geodesic cannot vanish at w by (2.9), and w can not be a critical point of f.
Q. E. D.

Lemma 3.7. For each critical point z in $W\left({ }^{*} M^{b}\right)-{ }^{*} M^{b}$ the distance between z and each point of ${ }^{*} M^{b}$ is equal to $\pi / 2 \sqrt{ }$.

Proof. z is in the boundary $\partial W\left({ }^{*} M^{b}\right)$ of $W\left({ }^{*} M^{b}\right)$ by Lemma 3.6. So there is a point p in ${ }^{*} M^{b}$ such that the distance between z and p is equal to $\pi / 2 \sqrt{k}$. Let y be a point in $* M^{b}$ near p, and join y to z by a shortest geodesic. Then, considering (2.9) along this geodesic we see that the distance between y and z is equal to $\pi / 2 \sqrt{ } \sqrt{k}$. Since ${ }^{*} M^{b}$ is connected, by continuity of the distance function from z we get Lemma 3.7,

Corollary 3.8. ${ }^{*} M^{b}$ and $W\left({ }^{*} M^{b}\right)$ are compact.
Lemma 3.9. Let w be a point in $W_{0}\left({ }^{*} M^{b}\right)$ and let $\{x(t)\}$ be a trajectory of F passing through $w=x(0)$. Then the distance function $\rho(t)$ between $x(t)$ and ${ }^{*} M^{b}$ is strongly monotone decreasing for $t \geqq 0$ and $\lim \rho(t)=0$ as $t \rightarrow \infty$.

Proof. Let $l=\left\{y(s) ; 0 \leqq s \leqq s_{0}\right\}$ be a shortest geodesic of length $s_{0}<\pi / 2 \sqrt{k}$ connecting $x(0)=w=y\left(s_{0}\right)$ and some point $y(0)$ of $* M^{b}$. Since the tangent component of F to l is not zero by (2.9), there are two real numbers $s_{1}<s_{0}$ and $\varepsilon>0$, such that for any $\delta(\varepsilon>\delta>0)$ the distance between $x(\delta)$ and $y\left(s_{1}\right)$ is smaller than $s_{0}-s_{1}$. Thus the distance between $x(\boldsymbol{\delta})$ and ${ }^{*} M^{b}$ is smaller than s_{0}. Continuing this process and applying Lemma 3.6, we have Lemma 3.9,

Lemma 3.10. If $\operatorname{dim}{ }^{*} M^{b} \geqq 1$, then $W\left({ }^{*} M^{b}\right)=M$ and ${ }^{*} M^{b}=M^{b}$.
Proof. Let p be a point in ${ }^{*} M^{b}$. Let v be a unit eigenvector corresponding
to some non-zero eigenvalue of the Hessian at p. Then $z:=\operatorname{Exp}_{p}(\pi / 2 \sqrt{k}) v$ is a critical point in $\partial W\left({ }^{*} M^{b}\right)$. Since $\operatorname{dim}^{*} M^{b} \geqq 1$, we have linearly independent two vectors e_{1} and e_{2} of length $\pi / 2 \sqrt{k}$ at z such that

$$
\operatorname{Exp}_{z} e_{1}=p, \quad \operatorname{Exp}_{z} e_{2} \in{ }^{*} M^{b} .
$$

e_{1} and e_{2} are eigenvectors of the Hessian at z corresponding to the maximum eigenvalue by (2.9), By completeness of ${ }^{*} M^{b}$ we see that $\operatorname{Exp}_{z} u \in^{*} M^{b}$ for each vector u of length $\pi / 2 \sqrt{ } \bar{k}$ in the 2 -plane determined by e_{1} and e_{2}. In particular, $\operatorname{Exp}_{z}\left(-e_{1}\right) \in{ }^{*} M^{b}$. This shows that $\left\{\operatorname{Exp}_{p} s v ; 0 \leqq s \leqq \pi / \sqrt{k}\right\}$ is contained in $W\left({ }^{*} M^{b}\right)$.

Next let $V(p)$ be the normal space at p to ${ }^{*} M^{b}$ and let ${ }^{*} S(p)$ be the hypersphere of radius π / \sqrt{k} in $V(p)$. Applying the continuity argument from $\operatorname{Exp}_{p}(\pi / \sqrt{k}) v \in{ }^{*} M^{b}$, we see that $\operatorname{Exp}_{p}(* S(p))$ is contained in ${ }^{*} M^{b}$. Thus the closed (π / \sqrt{k})-disk of $V(p)$ is mapped into $W\left({ }^{*} M^{b}\right)$ by Exp_{p}. Since p is an arbitrary point of ${ }^{*} M^{b}$, we see that $\operatorname{Exp}_{q} V(q)$ is contained in $W\left({ }^{*} M^{b}\right)$ for each q of ${ }^{*} M^{b}$.
Q.E.D.

Lemma 3.11. Assume that $\operatorname{dim}^{*} M^{b}=0$ and M^{b} is composed of one point p. If (M, g) is complete, then $W(p)=M$.

Proof. For any unit tangent vector v at p, we have $\operatorname{Exp}_{p}(\pi / \sqrt{k}) v=p$ by (2.9). Therefore $W(p)=M$.

Lemma 3.12. Assume that $\operatorname{dim}^{*} M^{b}=0$ and M^{b} has at least two points p, q with distance $\pi / \sqrt{ }$. If $W(p)$ and $W(q)$ are the closed $(\pi / 2 \sqrt{k})$-neighborhoods of p, q in M then $M=W(p) \cup W(q)$ and M^{b} is composed of only two points p, q.

Proof. Let $\left\{\operatorname{Exp}_{p} s v ; 0 \leqq s \leqq \pi / \sqrt{ } \bar{k}\right\}$ be a geodesic connecting p and $q=$ $\operatorname{Exp}_{p}(\pi / \sqrt{k}) v$. By the method similar to that in the proof of Lemma 3.10 we obtain $\operatorname{Exp}_{p}(* S(p))=q$. Conversely, $\left.\operatorname{Exp}_{q}{ }^{*} S(q)\right)=p$. Since $V(p)$ is the same as the tangent space M_{p} at p in this case, $\operatorname{Exp}_{p} V(p)=W(p) \cup W(q)=M$. Q. E. D.

By Lemmas 3.10~3.12, if (M, g) is complete then M is compact. The only case where $W\left({ }^{*} M^{b}\right)$ is different from M is possible for $M^{b}=\{p, q\}$.

Lemma 3.13. Assume that $M^{b}=\{p, q\}$ and $M=W(p) \cup W(q)$. Let ${ }^{*} T(p)$ be the hypersphere of radius $\pi / 2 \sqrt{k}$ in M_{p}. Then $\operatorname{Exp}_{p}(* T(p))=\partial W(p)$ and $\operatorname{Exp}_{p} \mid * T(p)$ is a diffeomorphism.

Proof. Let ${ }^{*} D_{0}(p)$ be the open (π / \sqrt{k})-disk of M_{p}. We show that $\operatorname{Exp}_{p} \mid * D_{0}(p)$ is a diffeomorphism of ${ }^{*} D_{0}(p)$ onto $M-q$. Suppose that there are two geodesics

$$
\left\{\operatorname{Exp}_{p} s v ; 0 \leqq s \leqq \pi / \sqrt{ } \bar{k}\right\}, \quad\left\{\operatorname{Exp}_{p} t u ; 0 \leqq t \leqq \pi / \sqrt{ } \bar{k}\right\}
$$

such that $\operatorname{Exp}_{p} s_{1} v=\operatorname{Exp}_{p} t_{1} u$ for some $s_{1}, t_{1} ; 0<s_{1}, t_{1}<\pi / \sqrt{ } \bar{k}$, where v and u are unit vectors at p. Since

$$
\operatorname{Exp}_{p}(\pi / \sqrt{\bar{k}}) v=\operatorname{Exp}_{p}(\pi / \sqrt{k}) u=q
$$

and M is compact, the distance between p and q must be smaller than $\pi / \sqrt{ } \bar{k}$.

This contradicts (2.9),

Q.E.D.

Corollary 3.14. Under the same situation as in Lemma 3.13, $W(p)$ is closed with respect to trajectories of F. Every trajectory passing through a point in $W_{0}(p)$ stays in $W_{0}(p)$, and every trajectory passing through a point of the boundary $\partial W(p)$ stays in the boundary.

Proof. Since $\partial W(p)=\operatorname{Exp}_{p}(* T(p)), F$ is tangent to $\partial W(p)$ by (2.9). Therefore every trajectory of F passing through a point of $\partial W(p)$ stays in $\partial W(p)$. Consequently every trajectory of F passing through a point in $W_{0}(p)-p$ can not touch $\partial W(p)$ and stays in $W_{0}(p)$.
Q.E.D.

Let (${ }^{*} M_{j}^{a} ; j=1, \cdots, u$) be connected components of $M^{a} \cap W\left({ }^{*} M^{b}\right)$. For each j we define $W_{0}\left({ }^{*} M_{j}^{a}\right)$ by

$$
W_{0}\left({ }^{*} M_{j}^{a}\right)=\left\{w \in W\left({ }^{*} M^{b}\right) ; \text { distance }\left(w,{ }^{*} M_{j}^{a}\right)<\pi / 2 \sqrt{k}\right\} .
$$

Corollary 3.15. Let $W\left({ }^{*} M^{b}\right)$ be one of these considered in Lemmas 3.10~ 3.12. For each $j(=1, \cdots, u)$ and for each w in $W_{0}\left({ }^{*} M_{j}^{a}\right) \cap W_{0}\left({ }^{*} M^{b}\right)$ the trajectory of F passing through w comes from some point of ${ }^{*} M_{j}^{a}$ and tends to some point of ${ }^{*} M^{b}$.

Proof. We apply Lemma 3.9 to the trajectory $\{x(t)\}(x(0)=w)$ of F for $t \geqq 0$. For $t \leqq 0$ consider $b+a-f$ with respect to ${ }^{*} M_{j}^{a}$.
Q.E.D.

The behavior of trajectories of F in $W\left({ }^{*} M^{b}\right)$ is as follows. Since $W\left({ }^{*} M^{b}\right)$ is compact and $W\left({ }^{*} M^{b}\right)$ is closed with respect to trajectories of F, every trajectory of F in $W\left({ }^{*} M^{b}\right)$ is written as

$$
\begin{equation*}
\{x(t)\}=\left\{\varphi_{t} x(0) ;-\infty<t<\infty\right\}, \tag{3.4}
\end{equation*}
$$

where $\left\{\varphi_{t}\right\}$ is a 1-parameter group of (local) transformations generated by F. Let ν_{*} and ν_{m} be the non-zero maximum eigenvalue and the minimum eigenvalue of the Hessian H at a point of ${ }^{*} M^{b} . \nu_{*}$ and ν_{m} are independent of the choice of points in ${ }^{*} M^{b}$, because H is parallel along ${ }^{*} M^{b}$ by (1.1).

For each point w in $W_{0}\left({ }^{*} M_{j}^{a}\right) \cap W_{0}\left({ }^{*} M^{b}\right)$, let (3.4) be the trajectory of F passing through $w=x(0)$. We put

$$
\begin{align*}
& x(-\infty)=\lim _{t \rightarrow-\infty} x(t), \tag{3.5}\\
& x(\infty)=\lim _{t \rightarrow \infty} x(t) . \tag{3.6}
\end{align*}
$$

Then $x(-\infty) \in{ }^{*} M_{j}^{a}$ and $x(\infty) \in{ }^{*} M^{b}$. We put

$$
\begin{equation*}
v=\lim _{t \rightarrow \infty}(F /|F|)(x(t)), \tag{3.7}
\end{equation*}
$$

where $|F|^{2}=g(F, F)$. If $\{x(t)\}$ is geodesic then v is an eigenvector corresponding to ν_{m}. If $\{x(t)\}$ is not geodesic, then v is an eigenvector corresponding to $\nu_{*} \neq \nu_{m}$.

To verify these it is convenient to study the case where the normal space V to ${ }^{*} M^{b}$ in M at p is 2 -dimensional, as a simple model. Let e_{1} and e_{2} be unit eigenvectors in V corresponding to ν_{*} and ν_{m}, respectively. Then $f\left(u_{1}, u_{2}\right)$ $=f\left(\operatorname{Exp}_{p}\left(u_{1} e_{1}+u_{2} e_{2}\right)\right)$ is given by

$$
f\left(u_{1}, u_{2}\right)=b+\left(1 / 2 k s^{2}\right)\left(\nu_{*} u_{1}^{2}+\nu_{m} u_{2}^{2}\right) \sin ^{2} \sqrt{k} s,
$$

where $s^{2}=u_{1}^{2}+u_{2}^{2}$. Thus each level curve $L(c)$ corresponding $f=c=$ constant in V or $\operatorname{Exp}_{p} V$ is given by

$$
\nu_{*} u_{1}^{2}+\nu_{m} u_{2}^{2}=(c-b) 2 k s^{2} / \sin ^{2} \sqrt{k} s .
$$

Since $\sqrt{k} s \fallingdotseq \sin \sqrt{k} s$ for $s \fallingdotseq 0$, this level curve $L(c)$ is approximately equal to an ellipse

$$
\left(-\nu_{*}\right) u_{1}^{2}+\left(-\nu_{m}\right) u_{2}^{2}=2(b-c) .
$$

Thus we have a shrinking family of homothetic ellipses parametrized by $c \rightarrow b$ in V or in $\operatorname{Exp}_{p} V$. Therefore each orthogonal trajectory to this family [which is not the u_{2}-axis curve] tends to be tangent to the u_{1}-axis curve as $s \rightarrow 0$.

§ 4. A proposition on nullity distributions.

Let T be a curvature-like tensor field on (M, g). By definition T is of type (1.3) and satisfies the same algebraic relations satisfied by the Riemannian curvature tensor and the second Bianchi identity:

$$
\begin{equation*}
\left(\nabla_{X} T\right)(W, V)+\left(\nabla_{W} T\right)(V, X)+\left(\nabla_{V} T\right)(X, W)=0, \tag{4.1}
\end{equation*}
$$

where X, V and W are vector fields on M.
The nullity space $N_{T}(p)$ with respect to T at a point p of M is defined by

$$
N_{T}(p)=\left\{X \in M_{p} ; T(X, Y)=0 \quad \text { for any } \quad Y \in M_{p}\right\}
$$

The nullity index function $\mu_{T}: p \rightarrow \mu_{T}(p)=\operatorname{dim} N_{T}(p)$ is upper semi-continuous on M. The distribution $N_{T}: p \rightarrow N_{T}(p)$ is called the nullity distribution with respect to T. If μ_{T} is constant on an open set G of M, then the distribution N_{T} is of class C^{∞} and involutive on G, and each integral submanifold of N_{T} is totally geodesic in G. We need a generalization of this fact. A vector field X on (M, g) is called a nullity vector field with respect to T, if X belongs to $N_{T}(p)$ at each point p of M.

Proposition 4.1. If X and Y are nullity vector fields with respect to a curvature-like tensor field T on (M, g), then also $\nabla_{X} Y$ and $\nabla_{Y} X$ are nullity vector fields with respect to T.

Proof. Let V, W, Z be arbitrary vector fields on M. By (4.1) and X, Y $\in N_{T}$ we obtain

$$
\begin{aligned}
0 & =g\left(Y,\left(\nabla_{X} T\right)(Z, W) V+\left(\nabla_{Z} T\right)(W, X) V+\left(\nabla_{W} T\right)(X, Z) V\right) \\
& =g\left(Y, \nabla_{X}(T(Z, W) V)+\nabla_{Z}(T(W, X) V)+\nabla_{W}(T(X, Z) V)\right) \\
& =g\left(Y, \nabla_{X}(T(Z, W) V)\right) \\
& =-g\left(\nabla_{X} Y, T(Z, W) V\right) .
\end{aligned}
$$

Therefore $\nabla_{X} Y \in N_{T}$.
Q. E. D.

Corollary 4.2. Let $X \in N_{T}$ and put $A=\left(\nabla_{j} X^{i}\right)$. Then $A X \in N_{T}, A^{2} X \in N_{T}$, etc.

Proof. This follows from $A X=\nabla_{X} X, A^{2} X=\nabla_{A X} X$, etc.
Remark 4.3. A k-nullity vector field (we are working) is a nullity vector field with respect to the following curvature-like tensor field Z_{k} :

$$
\left(Z_{k}\right)_{j h l}^{i}=R_{j h l}^{i}-k\left(\delta_{h}^{i} g_{j l}-\delta_{l}^{i} g_{j h}\right) .
$$

§ 5. (M, g) containing a whole trajectory of F.

In this section we prove the following
Theorem 5.1. Let (M, g) be a Riemannian manifold admitting a nonconstant function f satisfying (1.1) for some positive constant k. If (M, g) contains a whole trajectory l of F with its limit points in some critical submanifolds of f, then (M, g) is of constant curvature k at each point of l.

Let $\left\{\varphi_{t}\right\}$ be a (local) 1-parameter group of (local) transformations generated by F. We put $l=\{x(t) ;-\infty<t<\infty\}$, where $x(t)=\varphi_{t} x(0)$ for an arbitrary point $x(0)$ of l. We define $x(-\infty)$ and $x(\infty)$ by (3.5) and (3.6). We define a (1,1)-tensor field A by ∇F. Then by (1.1) we obtain

$$
\begin{equation*}
L_{F} A_{j}^{i}=-2 k\left((F f) \delta_{j}^{i}+F^{i} F_{j}\right), \tag{5.1}
\end{equation*}
$$

where L_{F} denotes the Lie derivation with respect to F.
There is an integer r such that

$$
F, A F, \cdots, A^{r-1} F
$$

are linearly independent at $x(0)$, and $F, A F, \cdots, A^{r} F$ are not linearly independent at $x(0)$.

Lemma 5.2. There are C^{∞}-vector fields $\left\{e_{\alpha} ; \alpha=1, \cdots, r\right\}$ along l such that
(i) each e_{α} is invariant by φ_{t},
(ii) each e_{α} is a linear combination of $F, A F, \cdots, A^{\alpha-1} F$ with functions along l as coefficients (the coefficient of $A^{\alpha-1} F$ being 1).

Proof. Since $L_{F} F=[F, F]=0$, we can put $e_{1}=F$ along l. By (5.1) and $L_{F} F=0$, we get

$$
L_{F}(A F+4 k f F)=0,
$$

because $L_{F} f=F f=g(F, F)$. Therefore $e_{2}=A F+4 k f F$ is invariant by φ_{t}.
Assuming that there are $e_{1}, e_{2}, \cdots, e_{n}$ with properties (i) and (ii), we construct e_{n+1}. By (5.1) and $L_{F} e_{n}=0$ we get

$$
L_{F}\left(A e_{n}\right)=-2 k(F f) e_{n}-2 k g\left(F, e_{n}\right) F .
$$

We define a function $h=h(t)$ on l by

$$
h(t)=\int_{0}^{t} 2 k g\left(F, e_{n}\right)(x(t)) d t .
$$

Then e_{n+1} defined by

$$
e_{n+1}=A e_{n}+2 k f e_{n}+h F
$$

is what we wanted. Therefore we obtain $\left\{e_{\alpha} ; \alpha=1, \cdots, r\right\}$ along l with properties (i) and (ii).
Q.E.D.

Remark 5.3. The construction of $\left\{e_{\alpha}\right\}$ in Lemma 5.2 shows that the integer r is independent of the choice of point $x(0)$. In particular, $A^{r} F$ is expressed as a linear combination of $F, A F, \cdots A^{r-1} F$ at each point of l.

Remark 5.4. $\left\{e_{\alpha}\right\}$ defines an r-dimensional distribution D along l such that D is invariant by φ_{t} and A. By Corollary 4.2 and Proposition 2.1, D is contained in the k-nullity space at each point of l.

Lemma 5.5. The distribution D^{\perp} along l orthocomplementary to D is also invariant by φ_{t} and A.

Proof. Since $A=\left(\nabla_{j} \nabla^{i} f\right)$ is symmetric with respect to g, D^{\perp} is also invariant by A. To show that D^{\perp} is invariant by φ_{t}, first we show $L_{F} Y \in D^{\perp}$ for each $Y \in D^{\perp}$. Operating L_{F} to $g\left(e_{\alpha}, Y\right)$ and noticing that $L_{F} g=\left(2 \nabla_{j} F_{i}\right)$, we get

$$
2 g\left(A e_{\alpha}, Y\right)+g\left(e_{\alpha}, L_{F} Y\right)=0 .
$$

Since $A e_{\alpha} \in D$, we get $L_{F} Y \in D^{\perp}$. Next, let $Z_{x(0)}$ be an arbitrary tangent vector which belongs to $D_{x}^{1}(0)$. Define a vector field Z along l by $Z_{x(t)}=\varphi_{t} Z_{x(0)}$, where φ_{t} also denotes its differential. Let

$$
Z=Z_{1}+Z_{2} \in D+D^{\perp}
$$

be the decomposition of Z. Since $L_{F} Z=0$, we get

$$
L_{F} Z_{1}+L_{F} Z_{2}=0 .
$$

Since $L_{F} Z_{1} \in D$ and $L_{F} Z_{2} \in D^{\perp}$, we get $L_{F} Z_{1}=0$. Since Z_{1} vanishes at $x(0), Z_{1}=0$ along l. Thus $Z=Z_{2} \in D^{\perp}$, and D^{\perp} is invariant by φ_{t}. Q.E.D.

Lemma 5.6. There is a field of orthogonal basis $\left\{e_{u} ; u=r+1, \cdots, m\right\}$ of D^{\perp} such that
(i) each e_{u} is invariant by φ_{t},
(ii) for each e_{u} there is a constant c_{u} satisfying

$$
\begin{equation*}
A e_{u}=-2 k\left(c_{u}+f\right) e_{u}, \tag{5.2}
\end{equation*}
$$

(iii) $\left\{e_{u}\right\}$ is orthonormal at $x(0)$.

Proof. Let $C_{u}(u=r+1, \cdots, m)$ be eigenvalues of A restricted to D^{\perp} at $x(0)$ and let $\left\{\left(e_{u}\right)_{x(0)}\right\}$ be an orthonormal base of D^{\perp} at $x(0)$ such that

$$
A\left(e_{u}\right)_{x(0)}=C_{u}\left(e_{u}\right)_{x(0)} .
$$

For each u we define a constant c_{u} by $C_{u}=-2 k\left(c_{u}+f(x(0))\right.$), and e_{u} by $\left(e_{u}\right)_{x(t)}$ $=\varphi_{t}\left(e_{u}\right)_{x(0)}$. By (5.1) we get

$$
L_{F}\left(A e_{u}+2 k\left(c_{u}+f\right) e_{u}\right)=0,
$$

because $g\left(F, e_{u}\right)=0$. Therefore $A e_{u}+2 k\left(c_{u}+f\right) e_{u}$ is invariant by φ_{t}. Since it vanishes at $x(0)$, it vanishes at each point of l. Thus we get (ii). Finally we show that $\left\{e_{u}\right\}$ is orthogonal. We operate L_{F} to $g\left(e_{u}, e_{v}\right)$, where $u \neq v$ and $r+1$ $\leqq u, v \leqq m$. Then

$$
\begin{aligned}
L_{F}\left(g\left(e_{u}, e_{v}\right)\right) & =2 g\left(A e_{u}, e_{v}\right) \\
& =-4 k\left(c_{u}+f\right) g\left(e_{u}, e_{v}\right) .
\end{aligned}
$$

This is an ordinary differential equation with respect to $g\left(e_{u}, e_{v}\right)$. Since $g\left(e_{u}, e_{v}\right)$ vanishes at $x(0)$, the uniqueness of the solution implies that $g\left(e_{u}, e_{v}\right)=0$ along l.
Q.E.D.

Now we have obtained a field of φ_{t}-invariant frames along l;

$$
\left\{e_{i}\right\}=\left\{e_{\alpha}, e_{u} ; 1 \leqq \alpha \leqq r, r+1 \leqq u \leqq m\right\} .
$$

Let $\left\{w^{i}\right\}$ be the field of dual frames of $\left\{e_{i}\right\}$ along l;

$$
w^{i}\left(e_{j}\right)=\delta_{j}^{i} .
$$

By operating L_{F} to the both sides of the last equation, we see that each 1 -form w^{i} along l is also invariant by φ_{t}.

Let P be the Weyl projective curvature tensor of (M, g). By ($P_{j h l}^{i}$) we denote the components of P with respect to $\left\{e_{i}\right\}$ along l;

$$
P_{j h l}^{i}=w^{i}\left(P\left(e_{j}, e_{h}, e_{l}\right)\right) .
$$

Since φ_{t} is projective (cf. Proposition 2.1), P is invariant by φ_{t}. Since e_{i} and w^{i} are also invariant by $\varphi_{t}, P_{j h l}^{i}$'s are constant along l.

Lemma 5.7. $P_{v w_{2}}^{u}=0$ for $r+1 \leqq u, v, w, z \leqq m$.
Proof. We define E_{u} and $W^{u}, u=r+1, \cdots, m$, by

$$
\begin{aligned}
& E_{u}=e_{u} /\left|e_{u}\right| \\
& W^{u}=\left|e_{u}\right| w^{u}
\end{aligned}
$$

Then $\left\{E_{u}\right\}$ is field of orthonormal basis of D^{\perp} along l, and $\left\{W^{u}\right\}$ is its dual. We assume that there are u, v, w, z such that $P_{v w_{2}}^{u} \neq 0$ and we consider

$$
\begin{equation*}
W^{u}\left(P\left(E_{v}, E_{w}, E_{z}\right)\right)=\frac{\left|e_{u}\right|}{\left|e_{v}\right|\left|e_{w}\right|\left|e_{z}\right|} P_{v w z}^{u} \tag{5.3}
\end{equation*}
$$

to induce a contradiction. First we claim that the left hand side of (5.3) is bounded on l. By $|P|^{2}$ we denote the square of the norm of P. Then $|P|^{2}$ $=\Sigma\left(P_{j h l}^{i}\right)^{2}$ for the components of P with respect to an arbitrary orthonormal frame at a point where we consider $|P|^{2}$. Since P is a tensor field on (M, g) and $x(-\infty) \cup l \cup x(\infty)$ is compact, $|P|^{2}$ is bounded on l. Since

$$
\left(W^{u}\left(P\left(E_{v}, E_{w}, E_{z}\right)\right)\right)^{2} \leqq|P|^{2},
$$

the left hand side of (5.3) is bounded on l.
Therefore if we show that

$$
\begin{equation*}
\lim Q(t)=\infty \quad(\text { as } t \rightarrow \infty \text { or } t \rightarrow-\infty) \tag{5.4}
\end{equation*}
$$

for $Q=\left|e_{u}\right|^{2}\left|e_{v}\right|^{-2}\left|e_{w}\right|^{-2}\left|e_{z}\right|^{-2}$, then (5.3) gives a contradiction. Since

$$
\begin{aligned}
L_{F}\left|e_{u}\right|^{2} & =2 g\left(A e_{u}, e_{u}\right) \\
& =-4 k\left(c_{u}+f\right)\left|e_{u}\right|^{2},
\end{aligned}
$$

etc., we obtain

$$
\begin{equation*}
L_{F} Q=d Q / d t=4 k\left(2 f-c_{u}+c_{v}+c_{w}+c_{z}\right) Q . \tag{5.5}
\end{equation*}
$$

By b_{0} and a_{0} we denote the critical value of $f ; f(x(\infty))=b_{0}$ and $f(x(-\infty))=a_{0}$. As the first case we assume

$$
4\left(2 b_{0}-c_{u}+c_{v}+c_{w}+c_{z}\right)>0 .
$$

Then we have some positive numbers ε and t_{1} such that

$$
4 k\left(2 f-c_{u}+c_{v}+c_{w}+c_{z}\right)>\varepsilon
$$

holds for all $t>t_{1}$, since $f(t)$ is increasing and $f(t) \rightarrow b_{0}$ as $t \rightarrow \infty$. Therefore

$$
\left(L_{F} Q\right) / Q>\varepsilon
$$

holds for all $t>t_{1}$, and

$$
Q(t)>(\text { non-zero constant }) e^{\varepsilon t} .
$$

This means that $Q(t) \rightarrow \infty$ as $t \rightarrow \infty$.
Finally we assume

$$
4\left(2 b_{0}-c_{u}+c_{v}+c_{w}+c_{z}\right) \leqq 0
$$

Then

$$
-4\left(2 a_{0}-c_{u}+c_{v}+c_{w}+c_{z}\right) \geqq 8\left(b_{0}-a_{0}\right) .
$$

In this case we change the parameter $t \rightarrow{ }^{\prime} t=-t$. Then in (5.5) only ($d t \rightarrow d^{\prime} t$) changes sign and hence

$$
d Q\left(^{\prime} t\right) / d^{\prime} t=-4 k\left(2 f\left({ }^{\prime} t\right)-c_{u}+c_{v}+c_{w}+c_{z}\right) Q\left(^{\prime} t\right) .
$$

As ${ }^{\prime} t \rightarrow \infty, f\left(^{\prime} t\right)$ is decreasing and $f\left({ }^{\prime} t\right) \rightarrow a_{0}$. Therefore we have some positive numbers $\varepsilon\left(<8\left(b_{0}-a_{0}\right)\right)$ and t_{2} such that

$$
\begin{aligned}
-4\left(2 f\left(^{\prime} t\right)-c_{u}+c_{v}+c_{w}+c_{z}\right) & >-4\left(2 a_{0}-c_{u}+c_{v}+c_{w}+c_{z}\right)-\varepsilon \\
& \geqq 8\left(b_{0}-a_{0}\right)-\varepsilon
\end{aligned}
$$

holds for all ' $t>t_{2}$. Therefore $Q\left(^{\prime} t\right) \rightarrow \infty$ as ' $t \rightarrow \infty$ or $t \rightarrow-\infty$. Thus we obtain (5.4), and this completes the proof.

Proof of Theorem 5.1. Let $R_{j h l}^{i}$ be the components of the Riemannian curvanture tensor R with respect to $\left\{e_{i}\right\}=\left\{e_{\alpha}, e_{u}\right\}$ along l. Since each e_{α} belongs to the k-nullity distribution of (M, g) along l (cf. Remark 5.4), if at least one index (for example $h=\alpha$) of i, j, h, l is smaller than $r+1$, then

$$
\begin{equation*}
R_{j \alpha l}^{i}=k\left(\delta_{\alpha}^{i} g_{j l}-\delta_{l}^{i} g_{j \alpha}\right) \tag{5.6}
\end{equation*}
$$

In particular we obtain

$$
\begin{equation*}
\sum_{\alpha=1}^{r} R_{v \alpha_{2}}^{\alpha}=r k g_{v z} \tag{5.7}
\end{equation*}
$$

where $r+1 \leqq v, z \leqq m$. On the other hand, $P_{v w z}^{u}=0$ implies

$$
\begin{equation*}
R_{v w z}^{u}=(1 /(m-1))\left(\delta_{w}^{u} R_{v z}-\delta_{z}^{u} R_{v w}\right) . \tag{5.8}
\end{equation*}
$$

where ($R_{j l}$) denotes the Ricci tensor. Therefore

$$
\begin{equation*}
\sum_{u=r+1}^{m} R_{v u z}^{u}=(1 /(m-1))(m-r-1) R_{v z} . \tag{5.9}
\end{equation*}
$$

Adding (5.7) and (5.9) we obtain

$$
R_{v z}=(1 /(m-1))(m-r-1) R_{v z}+r k g_{v z},
$$

from which we obtain

$$
\begin{equation*}
R_{v z}=(m-1) k g_{v z} . \tag{5.10}
\end{equation*}
$$

By (5.6), (5.8) and (5.10), we see that (M, g) is of constant curvature k at each point $x(t)$ of l.

Theorem 5.8. In Theorem 5.1, let $x(\infty)$ and $x(-\infty)$ be limit points of l. If f takes its maximum value at $x(\infty)$ and its minimum value at $x(-\infty)$, then (M, g) contains an open set W containing l so that (W, g) is of constant curvature k.

Proof. Let w_{1} be a point of l near $x(\infty)$. Then there is an open neighborhood U_{1} of w_{1} such that $\left\{\varphi_{t} U_{t} ; 0<t<\infty\right\}$ is contained in M (cf. $\S 3$). Similarly for a point w_{2} of l near $x(-\infty)$, we have an open neighborhood U_{2} of w_{2} such that $\left\{\varphi_{t} U_{2} ;-\infty<t<0\right\}$ is contained in M. The existence of such U_{1} and U_{2} shows that a trajectory of F passing through a point z near l lies near l and comes from some point of M^{a} near $x(-\infty)$ and tends to some point of M^{b} near $x(\infty)$. Therefore there is an open set W containing l so that (W, g) is of con-
stant curvature k, by Theorem 5.1.
Proof of Theorem A. If (M, g) is complete, by the behavior of trajectories of F studied in $\S 3$ and by Theorem 5.1, Theorem A is verified.

§ 6. Examples.

Let $(B, * g)$ be an $(m-1)$-dimensional Riemannian manifold and let $I=(-\pi / 2$, $\pi / 2)$ be an open interval of the real line. On $I \times B$ we define a warped product metric g by

$$
\begin{equation*}
d s^{2}=d t^{2}+\cos ^{2} t d^{*} s^{2} . \tag{6.1}
\end{equation*}
$$

Then the function h on $I \times B$ defined by

$$
\begin{equation*}
h(t, x)=h(t)=\sin t \tag{6.2}
\end{equation*}
$$

is a special concircular field on $(I \times B, g)$, that is, it satisfies

$$
\begin{equation*}
\nabla_{j} \nabla_{i} h=-h g_{j i} \tag{6.3}
\end{equation*}
$$

(cf. for example, Y. Tashiro [22], p. 254). If we put $f=h^{2}$, then f satisfies (1.1) with $k=1$.
(i) Let $\left(S^{m-1}, *_{g}\right)$ be a totally geodesic sphere of a Euclidean sphere $\left(S^{m}, g_{0}\right)$ of constant curvature 1. Denoting by N_{0} and S_{0} the north and south poles of S^{m}, we obtain

$$
S^{m}-N_{0}-S_{0}=I \times S^{m-1} .
$$

Notice that the metric g_{0} on $S^{m}-N_{0}-S_{0}$ is the same as $d s_{0}^{2}$ defined by the right hand side of (6.1). Define a function h on S^{m} by $h=\sin t$ on $I \times S^{m-1}$ and $h\left(N_{0}\right)$ $=1, h\left(S_{0}\right)=-1 . \quad h$ is of class C^{∞} and satisfies (6.3) on $\left(S^{m}, g_{0}\right)$.

Let U be a sufficiently small simple open set in S^{m-1}, and let α be a nonconstant positive function on S^{m-1} such that α takes value 1 outside U. By $C l U$ we denote the closure of U.

Removing $[-\pi / 3,-\pi / 6] \times C l U$ and $[\pi / 6, \pi / 3] \times C l U$ from S^{m} and replacing the metric $d s_{0}^{2}$ on $\left((-\pi / 6, \pi / 6) \times U, d s_{0}^{2}\right)$ by $d t^{2}+\left(\cos ^{2} t\right) \alpha d^{*} s^{2}$, we get a Riemannian manifold (M, g) of dimension m. By the same letter h we denote the restriction of h on S^{m} to M. Then h satisfies (6.3) also on (M, g). Summarizing the properties of (M, g) we get
(i-1) (M, g) admits a non-constant function $f=h^{2}$ satisfying (1.1) with $k=1$,
(i-2) there is a point z in S^{m-1} such that (M, g) contains the closed ($\pi / 2$)neighborhood of z in M,
(i-3) (M, g) is not of constant curvature k (in $(-\pi / 6, \pi / 6) \times U)$.
Remark 6.1. Example (i) is a counter-example to the lemma of a paper [9] by S. Gallot.
(ii) In example (i), consider an open submanifold

$$
\left(S^{m}-[-\pi / 3, \pi / 3] \times C l U, g_{0}=g\right)
$$

of (M, g). Then each trajectory of grad f in this manifold has N_{0} or S_{0} as its limit point. This property is generalized to the concept of t-connectedness.

§ 7. t-connectedness.

Definition 7.1. Let X be a vector field on a manifold $M . M$ is called to be t-connected (i. e., trajectory-connected) with respect to X, if for any two different points x and y of M, there is a piecewise C^{∞}-curve $l(x, y)$ joining x and y such that
(i) except a finite number of points $\left(p_{1}, \cdots, p_{j}\right)$ of $l(x, y), l(x, y)$ is composed of trajectories of X,
(ii) p_{1}, \cdots, p_{j} are singular points (i. e., vanishing points) of X, and hence they are limit points of the trajectories of X in $l(x, y)$.

Remark 7.2. Let f be a function on a Riemannian manifold (M, g) and let q be an isolated singular point of grad f. If f takes a local maximum (or local minimum) at q, then some neighborhood of q in M is t-connected with respect to $\operatorname{grad} f$.

Definition 7.3. Let X_{1}, \cdots, X_{a} be vector fields on $M . M$ is called t-connected with respect to $\left(X_{1}, \cdots, X_{a}\right)$, if for any two different points x and y of M, there is a piecewise C^{∞}-curve $l(x, y)$ joining x and y such that
(i) except a finite number of points $\left(p_{1}, \cdots, p_{j}, q_{1}, \cdots, q_{n}\right)$ of $l(x, y), l(x, y)$ is composed of some trajectories of X_{1}, \cdots, X_{a},
(ii) each of p_{1}, \cdots, p_{j} is a singular point of some of X_{1}, \cdots, X_{a},
(iii) each of q_{1}, \cdots, q_{n} is the intersection of some two trajectories of X_{1}, \cdots, X_{a}.

We prepare about nullity theory for the proof of the main Theorem in this section Theorem 7.5). Let N_{T} be the nullity distribution with respect to a curvature-like tensor field T on (M, g) (cf. §4) and let μ_{T} be the index function of nullity of T. The minimum value μ_{T}^{0} of μ_{T} on (M, g) is called the index of nullity of T on (M, g). The subset M^{0} of M composed of all points where $\mu_{T}=\mu_{T}^{0}$ holds is called the nullity set of T. Since μ_{T} is upper semi-continuous, M^{0} is open in M. Each leaf (maximal integral submanifold) of N_{T} is totally geodesic in M^{0}.

The completeness theorem of nullity foliations by N_{T} is stated as follows: If (M, g) is complete, then each leaf of N_{T} on M^{0} is also complete (cf. K. Abe [1], Y.H. Clifton and R. Maltz [5], D. Ferus [7], etc.).

What is proved in this completeness theorem is the following.
Theorem 7.4 (Local form of completeness theorem). Let $\{x(s) ; c \leqq s \leqq b\}$ be a geodesic in (M, g) with arc-length parameter s, such that $\{x(s) ; c \leqq s<b\}$ is
contained in a leaf L of N_{T} on M^{0}. Then $x(b) \in L$, too.
We apply this to the following.
Theorem 7.5. Let X be a nullity vector field of a curvature-like tensor field T on (M, g). If some open set U in M is t-connected with respect to $X, T=0$ holds on U.

In particular, if $T=Z_{k},(U, g)$ is of constant curvature k.
Proof. Let μ^{0} be the index of nullity of T on U and let U^{0} be the nullity set of T in (U, g). Since U is t-connected with respect to X and since U^{0} is open, we get $\mu^{0} \geqq 1$. Let x be an arbitrary point of U^{0} such that X does not vanish at x, and let L be the leaf of the nullity distribution N_{T} passing through x. We claim that $L=U^{0}=U$.

Let y be an arbitrary point of U. By t-connectedness of U, we have a piecewise C^{∞}-curve $l(x, y)$ joining x and y in U, which is composed of trajectories of X except a finite number of points p_{1}, \cdots, p_{j}. We show that $l(x, y)$ is contained in L. By our choice of x, we get $x \neq p_{1}$. We denote the portion of $l(x, y)$ from x to p_{1} by $\left[x p_{1}\right]$. By $\left[x p_{1}\right)$ we mean $\left[x p_{1}\right]-p_{1} . \quad\left[x p_{1}\right)$ is a part of a trajectory of X. Since $X \in N_{T}$, the connected component $[x z)$ of $\left[x p_{1}\right) \cap U^{0}$ containing x is contained in L. We prove $z \in L$.
(1) If $\left[x p_{1}\right.$) is geodesic, $z \in L$ follows from Theorem 7.4.
(2) If $\left[x z\right.$) is not geodesic, then $\mu^{0} \geqq 2$. Let $B_{\varepsilon}(z)$ be an ε-ball neighborhood of z in M, where ε is sufficiently small so that $B_{\varepsilon}(z)$ is convex. Each geodesic in $L \cap B_{\varepsilon}(z)$ can be prolonged to a geodesic in $B_{\varepsilon}(z)$, which has the limit points in the boundary of $B_{\varepsilon}(z)$. By Theorem 7.4 again, this prolonged geodesic is contained in L. This means that L has no boundary points in $B_{\varepsilon}(z)$. In particular $z \in L$.

Consequently, we obtain $z=p_{1}$ and $p_{1} \in L$. Since U^{0} is open in M some neighborhood of p_{1} is contained in U^{0} and hence some part of ($p_{1} p_{2}$) is contained in L. Continuing the above argument we see that $\left[p_{1} p_{2}\right.$] is contained in L. And finally we see that $l(x, y)$ is contained in L. Thus, $U=L$ and $T=0$ holds on U.

Theorem 7.6. Let X_{1}, \cdots, X_{a} be nullity vector fields of a curvature-like tensor field T on (M, g). If some open set U in M is t-connected with respect to X_{1}, \cdots, X_{a}, then $T=0$ holds on U.

Proof is given by a slight modification of that of Theorem 7.5.

§ 8. Local theorems on (1.1).

By Theorem 7.5 we obtain
Corollary 8.1. Let (M, g) be a Riemannian manifold admitting a function f satisfying (1.1) for some positive constant k. If M (or an open subset U of $M)$ is t-connected with respect to $\operatorname{grad} f$, then (M, g) (or (U, g), resp.) is of
constant curvature k.
Second proof of Theorem A. Assume that a complete Riemannian manifold (M, g) admits a non-constant function f satisfying (1.1) for some positive constant k. Then M is compact as was shown in $\S 3$ and M is expressed as $M=W\left({ }^{*} M^{b}\right)$ or $M=W(p) \cup W(q)$ under the notations in $\S 3$. Since the limit points of each trajectory of $F=\operatorname{grad} f$ are critical points of f, it is easy to see that M is t-connected with respect to F. This gives the second proof of Theorem A.

Theorem 8.3. Let (M, g) be a Riemannian manifold admitting a non-constant function f satisfying (1.1) for some positive constant k. Assume that there is a point of M where f takes its maximum value b. Let M^{b} be the subset of M of all critical points of f where $f=b$ holds and let ${ }^{*} M^{b}$ be a connected component of M^{b}. If $\operatorname{dim}{ }^{*} M^{b} \leqq 1$ then there is an open set U containing ${ }^{*} M^{b}$ such that (U, g) is of constant curvature k.

Proof. Since the set of all critical points of f is of measure zero and $F=$ $\operatorname{grad} f$ is a k-nullity vector field on (M, g), the index of k-nullity of (M, g) is greater than or equal to one.

Let y be an arbitrary point of ${ }^{*} M^{b}$. Since the normal space to ${ }^{*} M^{b}$ at y is contained in the k-nullity space (cf. Corollary 3.5), the index of k-nullity at y is equal to $m-\operatorname{dim}^{*} M^{b} \geqq m-1$. This means that the index of k-nullity at each point of ${ }^{*} M^{b}$ is equal to m. Since there is no critical points near ${ }^{*} M^{b}$ (except points of ${ }^{*} M^{b}$), there is an open set U in M containing ${ }^{*} M^{b}$ such that for each point z in U the trajectory of F passing through z tends to some point of ${ }^{*} M^{b}$. Let w be an arbitrary point which belongs to the k-nullity set U^{0} of (U, g), and let L be the leaf of the k-nullity distribution on U^{0} passing through. w. Then we can show that L meets ${ }^{*} M^{b}$ just by the same way as in the proof of Theorem 7.5, Therefore (U, g) is of constant curvature k.

§ 9. Applications.

(i) From Theorem A we obtain

Theorem 9.1 (T. Nagano [13]). Let (M, g) be a complete Einstein space of positive constant scalar curvature S. If (M, g) admits an infinitesimal non-affine projective transformation, then (M, g) is of constant curvature $k=S / m(m-1)$.

Or more generally,
Theorem 9.2. Let (M, g) be a complete Riemannian manifold with positive constant scalar curvature $S=m(m-1) k$. If (M, g) admits an infinitesimal nonaffine projective transformation which leaves the gravitational tensor field $G=$ ($R_{j l}-(S / m) g_{j l}$) invariant, then (M, g) is of constant curvature k.

This follows from the following.
Proposition 9.3. Assume that (M, g) has positive constant scalar curvature
$S=m(m-1) k$. Then the existence of a non-constant function f satisfying (1.1) on M is equivalent to the existence of an infinitesimal non-affine projective transformation X on (M, g) which leaves the gravitational tensor field G invariant.

Proof is standard (S. Tanno [21]) and we omit it here. We only give the relation between f and $X ; f \rightarrow X=\operatorname{grad} f$ and $X \rightarrow f=-\nabla_{r} X^{r} / 2(m+1)$ (cf. also, K. Yano [23], p. 271).
(ii) A Killing vector field ξ of unit length on a Riemannian manifold (M, g) is called a Sasakian structure if it is a 1-nullity vector field on (M, g). (M, g) admitting a Sasakian structure is called a Sasakian manifolds.

Theorem 9.4 (S. Tachibana and W. N. Yu [17]). If a complete Riemannian manifold (M, g) admits two Sasakian structure ξ and η such that $f=g(\xi, \eta)$ is not constant, then f satisfies (1.1) with $k=1$ and (M, g) is of constant curvature 1 .

This theorem is useful in the study of isometry groups of Sasakian manifolds, etc. (cf. S. Tanno [18], [19]).

§ 10. The case of Kählerian manifolds.

Let (M, J, g) be a Kählerian manifold of dimension $m=2 n \geqq 4$. The structure tensors J (almost complex structure tensor) and g (Kählerian metric tensor) satisfy the following.

$$
\begin{aligned}
& J^{2} X=-X, \quad \nabla J=0, \\
& g(J X, J Y)=g(X, Y)
\end{aligned}
$$

for all vector fields X and Y on M.
A Kählerian manifold (M, J, g) is of constant holomorphic sectional curvature β at x, if and only if

$$
\begin{equation*}
R_{j h l}^{i}-(\beta / 4)\left(\partial_{h}^{i} g_{j l}-\delta_{l}^{i} g_{j h}-J_{h}^{i} J_{l j}+J_{l}^{i} J_{h j}+2 J_{n l} J_{j}^{i}\right)=0 \tag{10.1}
\end{equation*}
$$

holds at x, where $J_{h j}=g_{h r} J_{j}^{r}$.
For a positive constant β we define a tensor field E of type $(1,3)$ by

$$
E=\left(E_{j h l}^{i}\right)=(\text { the left hand side of (10.1)). }
$$

Then E is a curvature-like tensor field on (M, J, g), and it satisfies

$$
\begin{equation*}
E_{j i l}^{i} J_{r}^{h} J_{s}^{l}=E_{j r s}^{i}, \tag{10.2}
\end{equation*}
$$

etc. The holomorphic β-nullity space $H N_{x}$ at x, the holomorphic β-nullity distribution $H N$, etc. are naturally defined. By (10.2) $N H_{x}$ is invariant by J. The holonorphic sectional curvature with respect to a non-zero $X \in H N_{x}$ is equal to β.

Let $\left(C P^{n}, J, g_{0} ; \beta\right)$ be a complex n-dimensional projective space with the Fubini-Study metric of constant holomorphic sectional curvature β. Then the first eigenvalue of the Laplacian on ($C P^{n}, J, g_{0} ; \beta$) is ($n+1$) β and each eigen-
function f corresponding to $(n+1) \beta$ satisfies

$$
\begin{align*}
\nabla_{h} \nabla_{j} \nabla_{i} f+(\beta / 4) & \left(2 \nabla_{h} f g_{j i}+\nabla_{j} f g_{i h}+\nabla_{i} f g_{j h}\right. \tag{10.3}\\
& \left.+\left(J_{j}^{s} J_{i}^{r}+J_{i}^{s} J_{j}^{r}\right) \nabla_{r} f g_{h s}\right)=0 .
\end{align*}
$$

The following theorem was announced by M. Obata [15].
Theorem 10.1. Let (M, J, g) be a complete Kählerian manifold. In order for (M, J, g) to admit a non-constant function f satisfying (10.3) for some positive constant β, it is necessary and sufficient that (M, J, g) is holomorphically isometric to a ($C P^{n}, J, g_{0} ; \beta$).

Remark 10.2. Restricting (10.3) to a geodesic $\{x(s)\}$ we get the differential equation

$$
f^{\prime \prime \prime}+\beta f^{\prime}=0
$$

The case $\beta=4$ corresponds to $k=1$ in the Riemannian case, and so the local behavior of trajectories of $F=\operatorname{grad} f$ is quite the same as in the Riemannian case ($\S 2, \S 3$).

A vector field X on (M, J, g) is called holomorphically projective, if

$$
\begin{gather*}
L_{X} J_{j}^{i}=-\nabla_{r} X^{i} J_{j}^{r}+\nabla_{j} X^{r} J_{r}^{i}=0, \tag{10.4}\\
L_{X} \Gamma_{j h}^{i}=\rho_{j} \delta_{h}^{i}+\rho_{h} \delta_{j}^{i}-J_{h}^{i} J_{j}^{r} \rho_{r}-J_{h}^{r} J_{j}^{i} \rho_{r} \tag{10.5}
\end{gather*}
$$

for some function ρ, where $\rho_{j}=\nabla_{j} \rho$.
Proposition 10.3. Let f be a function on a Kählerian manifold (M, J, g). f satisfies (10.3) for a non-zero constant β, if and only if
(i) $F=\operatorname{grad} f$ is holomorphically projective,
(ii) F is a holomorphic β-nullity vector field on (M, J, g).

Proof. First we assume that non-constant function f satisfies (10.3) for a constant $\beta \neq 0$. By the Ricci identity for $\nabla_{l} \nabla_{h} F_{j}-\nabla_{h} \nabla_{l} F_{j}$, we get

$$
F_{i} E_{j h l}^{i}=0 .
$$

This proves (ii). Applying this to (2.2) we obtain

$$
\begin{equation*}
L_{F} \Gamma_{j h}^{i}=-(\beta / 2)\left(F_{j} \delta_{h}^{i}+F_{h} \delta_{j}^{i}-J_{h}^{i} J_{j}^{r} F_{r}-J_{h}^{r} J_{j}^{i} F_{r}\right) . \tag{10.6}
\end{equation*}
$$

This proves (10.5) with $\rho=-(\beta / 2) f$. By (10.3) we can verify

$$
J_{j}^{r} \nabla_{h} \nabla_{r} F_{i}+J_{i}^{r} \nabla_{h} \nabla_{r} F_{j}=0 .
$$

This means that $J_{j}^{r} \nabla_{r} F_{i}+J_{i}^{r} \nabla_{r} F_{j}$ is a parallel symmetric (0,2)-tensor field. The existence of a non-trivial β-nullity vector field F implies that (M, g) is irreducible. So $J_{j}^{r} \nabla_{r} F_{i}+J_{i}^{r} \nabla_{r} F_{j}$ is proportional to $g_{j i}$. Transvecting this (0,2)-tensor field by $g^{i j}$, we see that $J_{j}^{r} \nabla_{r} F_{i}+J_{i}^{r} \nabla_{r} F_{j}=0$. So we obtain (10.4) with $X=F$ and hence (i).

The converse is proved by the method similar to the proof in Proposition

Remark 10.4. If (M, J, g) is complete and admits a non-constant function f satisfying (10.3) for some positive constant β, we see that M is t-connected with respect to $F=\operatorname{grad} f$ by Remark 10.2. Therefore, (M, J, g) is of constant holomorphic sectional curvature by Theorem 7.5 and Proposition 10.3. Since a complete (M, J, g) of positive constant holomorphic sectional curvature is simply connected, (M, J, g) is holomorphically isometric to a ($C P^{n}, J, g_{0} ; \beta$).

This proves Theorem 10.1.
Theorem 10.5. Let (M, J, g) be a Kählerian manifold admitting a nonconstant function f satisfying (10.3) for some positive constant β. If (M, J, g) contains a whole trajectory l of $F=\operatorname{grad} f$ with its limit points, then (M, J, g) is of constant holomorphic sectional curvature β at each point of l.

The analogy of Theorem 5.8 is also true.
Proof is quite similar to that of Theorem 5.1, and so we give only an outline of the proof. We write $l=\left\{x(t)=\varphi_{t} x(0),-\infty<t<\infty\right\}$ as in the proof of Theorem 5.1. We define A by ∇F. Then $A J=J A$ holds by (10.4). Assume that

$$
F, J F, A F, J A F, \cdots, A^{r-1} F, J A^{r-1} F
$$

are linearly independent at $x(0)$ and $F, J F, \cdots, A^{r-1} F, J A^{r-1} F, A^{r} F$ are linearly dependent at $x(0)$. By (10.3) we obtain

$$
\begin{equation*}
L_{F} A_{j}^{i}=-(\beta / 2)\left((F f) \delta_{j}^{i}+F^{i} F_{j}+(J F)^{i}(J F)_{j}\right) . \tag{10.7}
\end{equation*}
$$

By (10.7) we can construct φ_{t}-invariant vector fields

$$
e_{1}=F, J e_{1}, e_{2}, J e_{2}, \cdots, e_{r}, J e_{r}
$$

along l. So we have a ($2 r$)-dimensional distribution D along l, which is invariant by φ_{t}, A, and J. By Corollary 4.2 and (10.2), we see that D is contained in the holomorphic β-nullity distribution $H N$ at each point of l.

By D^{\perp} we denote the distribution along l orthocomplementary to $D . D^{\perp}$ is also invariant by φ_{t}, A, and J.

Since φ_{t} is holomorphically projective, it leaves the holomorphically projective curvature tensor $Q=\left(Q_{j h l}^{i}\right)$ invariant (cf. for example, K. Yano [24], Chapter 7);

$$
\begin{align*}
Q_{j h l}^{i}= & R_{j h l}^{i}-(1 / 2(n+1))\left(\delta_{h}^{i} R_{j l}-\delta_{l}^{i} R_{j h}\right. \tag{10.8}\\
& \left.-J_{h}^{i} J_{j}^{s} R_{l s}+J_{l}^{i} J_{j}^{s} R_{h s}+J_{l}^{s} J_{j}^{i} R_{h s}-J_{h}^{s} J_{j}^{i} R_{l s}\right) .
\end{align*}
$$

$Q=0$ at x is equivalent to $E=0$ at x. The rest of the proof is given by the natural modification of the proof of Theorem 5.1.

Corollary 10.6. Let (M, J, g) be a complete Kähler-Einstein space with positive constant scalar curvature $S=n(n+1) \beta$. In order for (M, J, g) to admit a non-affine holomorphically projective vector field X, it is necessary and sufficient
that (M, J, g) is holomorphically isometric to $a\left(C P^{n}, J, g_{0} ; \beta\right)$.
Proof. In fact, for a holomorphically projective vector field X on a KählerEinstein space, $\delta X=\left(-\nabla_{r} X^{r}\right)$ satisfies (10.3) (cf. S. Tachibana [16], p. 50). So Corollary 10.6 follows from Theorem 10.1.

References

[1] K. Abe, A characterization of totally geodesic submanifolds in S^{n} and $C P^{n}$ by an inequality, Tôhoku Math. J., 23 (1971), 139-244.
[2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag.
[3] D.E. Blair, On the characterization of complex projective space by differential equations, J. Math. Soc. Japan, 27 (1975), 9-19.
[4] S.S. Chern and N.H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math., 56 (1952), 422-430.
[5] Y.H. Clifton and R. Maltz, The k-nullity space of curvature operator, Michigan Math. J., 17 (1970), 85-89.
[6] D. Ferus, Totally geodesic foliations, Math. Ann., 188 (1970), 313-316.
[7] D. Ferus, On the completeness of nullity foliations, Michigan Math. J., 18 (1971), 61-64.
[8] D. Ferus, A characterization of Riemannian symmetric spaces of rank one, (preprint).
[9] S. Gallot, Variétés dont le spectre ressemble à celui de la sphère, Compt. Rend. Acad. Paris, 283 (1976), 647-650.
[10] A. Gray, Spaces of constancy of curvature operators, Proc. Amer. Math. Soc., 17 (1966), 897-902.
[11] S. Ishihara and Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ., 9 (1959), 19-47.
[12] R. Maltz, The nullity spaces of curvature operator, Cahiers de Topologie et Géom. Diff., 8 (1966), 1-20.
[13] T. Nagano, The projective transformation on a space with parallel Ricci tensor, Kōdai Math. Sem. Rep., 11 (1959), 131-138.
[14] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
[15] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.Japan Sem. in Differential Geom., Kyoto, Japan, 1965, 101-114,
[16] S. Tachibana, On infinitesimal holomorphically projective transformations in certain almost Hermitian spaces, Nat. Sci. Rep. Ochanomizu Univ., 10 (1959), 45-51.
[17] S. Tachibana and W.N. Yu, On a Riemannian space admitting more than one Sasakian structure, Tôhoku Math. J., 22 (1970), 536-540.
[18] S. Tanno, On the isometry groups of Sasakian manifolds, J. Math. Soc. Japan, 22 (1970), 579-590.
[19] S. Tanno, Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations, Tôhoku Math. J., 23 (1971), 313-333.
[20] S. Tanno, Some system of differential equations on Riemannian manifolds and its applications to contact structures, Tôhoku Math. J., 29 (1977), 125-136.
[21] S. Tanno, Differential equations of order 3 on Riemannian manifolds, (technical
report).
[22] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117 (1965), 251-275.
[23] K. Yano, The theory of Lie derivatives and its applications, Amsterdam, 1957.
[24] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.

Shûkichi TANNo
Mathematical Institute
Tôhoku University
Sendai, Jafan

[^0]: Most parts of this work were done while the author stayed at the Berlin Technical University by DAAD-JSPS exchange program 1976.

