
J. Math. Soc. Japan
Vol. 31, No. 4, 1979

On characteristic classes of conformal
and projective foliations

Dedicated to Professor A. Komatu on his 70th birthday

By Shigeyuki MORITA(1)

(Received Feb. 15, 1978)
(Revised Nov. 4, 1978)

0. Introduction.

In this paper, we define characteristic classes for conformal and projective
foliations and investigate the relationship of them with those for smooth
foliations defined by Bott and Haefliger [4] and those for Riemannian foliations
due to Lazarov and Pasternack [16] and Kamber and Tondeur [12] (see also
[18]). For a construction of the characteristic classes of smooth foliations
[2], Bott’s vanishing theorem [1] concerning the Pontrjagin classes of the
normal bundles played an important role. Also Pasternack’s vanishing theorem
for the Riemannian foliations [25] was the starting point of Lazarov-Paster-
nack theory. Similarly our motivation for the present work was the strong
vanishing theorem of Nishikawa and Sato [22], which states that the ring
generated by the Pontrjagin classes of the normal bundle of a conformal or
projective foliation is trivial for cohomology degree $>codimension$ . However
we do not use this theorem in our construction. Instead, we follow the
Bott-Haefliger approach [4] to the characteristic classes of smooth foliations
(namely, \‘a la Gelfand-Fuks theory–see [3]), and also the method of Kamber
and Tondeur used in their theory of characteristic classes for foliated bundles
[12] [13]. Thus just as the cohomology of some truncated Weil algebra of
$\mathfrak{g}\mathfrak{l}(n;R)$ or $\mathfrak{s}\mathfrak{o}(n)$ played the role of characteristic classes for smooth or
Riemannian foliations, our characteristic classes also take the form of the
cohomology of certain truncated Weil algebra of $\mathfrak{s}o(n+1,1)$ for the conformal
case and of $e\wedge\downarrow(n+1;R)$ for the projective case, where $\mathfrak{g}\mathfrak{l}(n;R),$ $\mathfrak{s}o(n),$ @o(n+l, 1)
and $e\wedge\downarrow(n+1;R)$ are the Lie algebras of $GL(n;R),$ $SO(n),$ $SO(n+1,1)$ and
$PGL(njR)$ respectively. The main point of our construction is the use of
Cartan connection, by which we have also shown that there are other charac-
teristic classes for Riemannian foliations which are not covered by Lazarov-
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Pasternack’s nor Kamber-Tondeur’s definitions (see [18]).

The present paper is organized as follows. In \S 1 we define foliations
associated with second order G-structures, in particular conformal and projec-
tive structures and in \S 2 we recall the theory of Cartan connection and by
using it, we construct a system of differential forms on the normal bundles
of conformal or projective foliations. In \S 3 we describe the main construction
of the characteristic classes and in \S 4, we determine the cohomology of some
truncated Weil algebras. \S 5 is devoted to the study of typical examples and
in \S \S 6 and 7, we compare our theory with smooth and Riemannian cases. In
particular, we prove that the rigid classes for smooth foliations are all zero
for conformal and projective foliations. Finally in \S 8, we investigate the
behaviour of our characteristic classes under deformations of foliations.

The author would like to express his hearty thanks to Prof. Hajime Sato,
S. Nishikawa and K. Yamato for encouraging and helpful discussions. Most
results in this paper have been announced in [19].

1. Conformal and projective structures and foliations.

In this section we define conformal and projective foliations following
Nishikawa and Sato [22] (see also Kobayashi [14] for a detailed description
of the materials of this section).

Let $M$ be a smooth manifold of dimension $n$ and let $J_{k}(M)$ be the k-jet
bundle of $M$. Thus as a set $J_{k}(M)$ consists of all the k-jets at $0$ of all
diffeomorphisms from open sets of $0\in R^{n}$ to open sets of $M$. The natural
projection $\pi$ : $J_{k}(M)\rightarrow M$ has a structure of principal bundle with structure
group $G_{k}(n)$ : the group of k-jets at $0$ of all local diffeomorphisms of $R^{n}$

fixing the origin $0$ . In this Paper, we are only interested in the 2-jet bundle
$J_{2}(M)$ . On $J_{2}(M)$ , there is defined a l-form $\theta$, called the canonical form, with
values in $\mathfrak{a}(n;R)$ , the Lie algebra of the group of all affine transformations
of $R^{n}$ . In terms of the natural basis of $\mathfrak{a}(n;R)=R^{n}+\mathfrak{g}I(n;R),$ $\theta$ is represented
by real valued l-forms $\theta^{i},$ $i=1,$ $\cdots$ , $n$ and $\theta_{j}^{i},$ $i,$ $j=1,$ $\cdots$ , $n$ . We know the
following equation,

(1.1) $d\theta^{i}=-\sum_{j}\theta_{j}^{i}$ A $\theta^{j}$ .

Now let $G\subset G_{2}(n)$ be a Lie subgroup. Then a G-principal subbundle $P$ of
$J_{2}(M)$ is called a G-structure of second order. A diffeomorphism $f:M\rightarrow N$

between two smooth manifolds $M$ and $N$ with given second order G-structures
are said to be a G-diffeomorphism if $J_{2}(f)$ , the 2-jet extension of $f$, sends the
subbundle of $J_{2}(M)$ defining the structure to that of $J_{2}(N)$ . Let us recall
classical examples of second order G-structures, namely conformal and pro-
jective structures.
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EXAMPLE 1.1. Let $S^{n}$ be the M\"obius space, $i$ . $e$ . it is the quadric in the
real projective space $P^{n+1}$ defined by

$S^{n}=\{[x]\in P^{n+1} ; x={}^{t}(x_{0}, \cdots x_{n+1}), txSx=0\}$

where $S$ is the matrix given by

$S=\left(\begin{array}{lll}0 & 0 & -1\\0 & I_{n} & 0\\-1 & 0 & 0\end{array}\right)$ .

Then with respect to a natural metric on $P^{n+1},$ $S^{n}$ is isometric to a Euclidean
sphere in $R^{n+1}$ . Let $L=O(n+1,1)=\{X\in GL(n+2;R);{}^{t}XSX=0\}$ acting on $S^{n}$

as conformal transformations. This action is transitive and let $L_{0}$ be the
isotropy subgroup at the origin $0={}^{t}[0, \cdots 0,1]$ . Thus

$L_{0}=\{\left(\begin{array}{llll}a & -1 & 0 & 0\\v & & A & 0\\b & & \xi & a\end{array}\right)\in O(n+1,1)$ ; $A\in O(n)$ , $a\in R^{*}$ , $\xi\in R^{n}\}$

and $L/L_{0}=S^{n}$ . Consider a linear subspace

$V=\{\left(\begin{array}{lll}0 & {}^{t}v & 0\\0 & 0 & v\\0 & 0 & 0\end{array}\right)\in I\}$

of I, where $v$ is a column n-vector and $\iota=\mathfrak{s}o(n+1,1)=\{X\in \mathfrak{g}I(n+2; R)$ ;
${}^{t}XS+SX=0\}$ is the Lie algebra of $L$ . Then the mapping

$R^{n}=V\rightarrow^{\exp}L\rightarrow L/L_{0}=S^{n}$

is a diffeomorphism from a neighborhood of $0$ to a neighborhood of the origin
$0$ so that it defines a coordinate system around $0$ . Now we can consider
each element $g$ of $L_{0}$ as a transformation of $L/L_{0}$ fixing the origin. More-
over it can be seen that the 2-jet at the origin of $g$ completely determines
this element. Therefore by using the coordinate system described above, we
can think that $L_{0}$ is a subgroup of $G_{2}(n)$ . With these understood, an $L_{0^{-}}$

structure on a smooth manifold is called a conformal structure and an $L_{0^{-}}$

diffeomorphism is called a conformal diffeomorphism.
EXAMPLE 1.2. Let $L=PGL(n;R)=GL(n+1;R)/center$ acting transitively

on the real projective space $P^{n}$ and let $L_{0}$ be the isotropy subgroup at the
origin $0={}^{t}[0, \cdots , 0,1]$ . Thus $L/L_{0}=P^{n}$ and
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$L_{0}=\{\left(\begin{array}{ll}A & 0\\\xi & a\end{array}\right)\in GL(n+1;R)\}/center,$ $(A\in GL(njR))$ .

Consider a linear subspace

$V=\{\left(\begin{array}{ll}0 & v\\0 & 0\end{array}\right)\in I\}$

of $\downarrow=\mathfrak{s}I(n+1;R)$ , where $v$ is a column n-vector. Then the mapping

$R^{n}=V\rightarrow^{\exp}L\rightarrow L/L_{0}=P^{n}$

defines a coordinate system around the origin $0$ and just the same as in
Example 1.1, $L_{0}$ can be considered as a subgroup of $G_{2}(n)$ . With these under-
stood, an $L_{0}$-structure on a smooth manifold is called a projective structure
and an $L_{0}$-diffeomorphism is called a projective diffeomorphism.

Now let $L/L_{0}$ be as in Example 1.1 or Example 1.2. Then the orthogonal
group $O(n)$ is naturally contained in $L_{0}$ as a subgroup. Let $M$ be a Riemannian
manifold. Then there is dePned an $O(n)$-principal subbundle $O(M)$ of $J_{2}(M)$,

where $O(n)$ is now considered as a subgroup of $G_{2}(n)$ . Hence by enlarging
the structure group to $L_{0}$, we obtain an $L_{0}$-principal subbundle $P$ of $J_{2}(M)$ .
The conformal or projective structure thus defined will be called the under-
lying conformal or projective structure of the Riemannian manifold $M$.

Now we define conformal and projective foliations.
DEFINITION 1.3. Let $M$ be a smooth manifold. A codimension $n$ con-

formal (resp. projective) foliation $F$ on $M$ is a maximal family of submersions
$f_{\alpha}$ : $U_{\alpha}\rightarrow R_{\alpha}^{n}$

from open sets $U_{\alpha}$ in $M$ to the Euclidean n-space $R_{\alpha}^{n}$ with a fixed conformal
(resp. projective) structure $\alpha$ such that for each $x\in U_{\alpha}\cap U_{\beta}$, there is a local
conformal (resp. projective) diffeomorphism $\gamma_{\beta\alpha}$ : neighborhood of $f_{\alpha}(x)\rightarrow neigh-$

borhood of $f_{\beta}(x)$ with $f_{\beta}=\gamma_{\beta\alpha}\circ f_{\alpha}$ on a neighborhood of $x$ .
A Riemannian foliation $F$ on $M$ is defined similarly (it is enough to change

conformal structure and conformal diffeomorphism in the above definition for
Riemannian structure and isometry). By considering the underlying conformal
or projective structure of a Riemannian structure, a Riemannian foliation has
the underlying structure of conformal and projective foliations. Definition
1.3 can also be generalized to foliations associated with any second order
G-structure.

Now let $F$ be a conformal (or projective) foliation on a smooth manifold
$M$ and let $J_{2}(F)$ be the 2-jet bundle of $F;J_{2}(F)|U_{\alpha}=]_{\alpha}^{*}(J_{2}(R_{\alpha}^{\eta}))$ . Since the
diffeomorphism $\gamma_{\beta a}$ sends the $L_{0}$-principal subbundle of $J_{2}(R_{\alpha}^{\eta})$ defining the
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structure $\alpha$ to that of $J_{2}(R_{\beta}^{n})$ , there is defined a principal $L_{0}$ subbundle $P(F)$

of $J_{2}(F)$ . Henceforth we refer to $P(F)$ as the conformal (resp. projective)
normal bundle of $F$. If there is given a cross section $s:M\rightarrow P(F)$ , then we
say that the conformal (or projective) normal bundle of $F$ is trivialized.

Generalizing Definition 1.3, we can speak of conformal (or projective)
Haefliger structures and by a general theory of Haefliger [8], there are
classifying spaces $BC\Gamma_{n},$ $BC\overline{\Gamma}_{n},$ $BP\Gamma_{n},$ $BPF_{n}$ etc., where $BS\Gamma_{n}(BSF_{n})$ is the
classifying space for codimension $n$ conformal (resp. projective) Haefliger
structures (with trivial normal bundles) according as $S=C$ (resp. $P$ ). Since
$L_{0}$ is homotopy equivalent to $GL(n;R)$ , we have the following fibration

$BS\overline{\Gamma}_{n}\rightarrow BS\Gamma_{n}\rightarrow BGL(n;R)$ $(S=C, P)$ .
The main purpose of this paper is to define certain elements in the real
cohomology ring of these spaces.

2. Cartan connections.

In this section we recall a few facts from the theory of Cartan connec-
tions, in particular conformal and projective connections, which will be needed
later. For a detailed description of the theory, we refer to Kobayashi [14]

and Kobayashi and Nagano [15]. By using these facts we construct a system
of differential forms on the conformal (or projective) normal bundle of con-
formal (or projective) foliations.

Let $M$ be a smooth manifold of dimension $n,$ $L$ a Lie group, $L_{0}$ a closed
subgroup of $L$ with dim $L/L_{0}=n$ and let $P$ be a principal bundle over $M$

with structure group $L_{0}$ . An important example is the $L_{0}$-principal subbundle
$P$ of $J_{2}(M)$ where $M$ is a smooth manifold with a conformal (or projective)
structure and $L/L_{0}$ is as in Example 1.1 (or 1.2). Let $I_{0}$ be the Lie algebra of
$L_{0}$ . For each element $A\in I_{0}$ , let us denote $A^{*}$ for the fundamental vector
field corresponding to $A$ and also let us write $R_{a}$ for the right action defined
by an element $a\in L_{0}$ .

DEFINITION 2.1. A Cartan connection in the bundle $P$ is an I ( $=the$ Lie
algebra of $L$)-valued l-form $\theta$ on $P$ satisfying the following conditions:

(i) $\theta(A^{*})=A$ for every $A\in I_{0}$ ,
(ii) $(R_{a})^{*}\theta=ad(a^{-1})\theta$ for every $a\in L_{0}$ ,
(iii) $\theta(X)\neq 0$ for every nonzero vector $X$ of $P$ .
The curvature form $\Theta$ of the Cartan connection $\theta$ is dePned by the structure

equation:

$ d\theta=-\frac{1}{2}[\theta, \theta]+\Theta$ .
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Henceforth we specialize our consideration to the case when $L/L_{0}$ is as
in Example 1.1 or 1.2. In these cases, the Lie algebra I of $L$ has a structure
of graded Lie algebra $I=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ with $[\mathfrak{g}_{i}, \mathfrak{g}_{j}]\subset \mathfrak{g}_{i+j}$ and $1_{0}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ described
as follows. Conformal case: $I=@o(n+1,1)$ ,

$\mathfrak{g}_{0}=\{$$\mathfrak{g}_{-1}=\{\left(\begin{array}{lll}0 & \iota_{v} & 0\\0 & 0 & v\\0 & 0 & 0\end{array}\right)\}$ , $(-a00$

$\mathfrak{g}_{1}=\{\left(\begin{array}{lll}0 & 0 & 0\\{}^{t}\xi & 0 & 0\\0 & \xi & 0\end{array}\right)\}$ ,

$A00$ $a00)$ ; $A\in \mathfrak{s}o(n)$ , $a\in R\}$ ,

where $v$ is a column n-vector, $\xi 1S$ a row n-vector. Let $V$ be the n-dimensional
vector space of column n-vectors, $V^{*}$ its dual and let $\mathfrak{c}o(n)$ be the Lie algebra
of $CO(n)=$ {$A\in GL(n;R);{}^{t}AA=cI_{n}$ for some $c>0$}. Then under the identi-
fications

$\mathfrak{g}_{-1}\ni\left(\begin{array}{lll}0 & \iota_{v} & 0\\0 & 0 & v\\0 & 0 & 0\end{array}\right)\rightarrow v\in V$ , $\mathfrak{g}_{1}\ni\left(\begin{array}{lll}0 & 0 & 0\\{}^{t}\xi & 0 & 0\\0 & \xi & 0\end{array}\right)\rightarrow\xi\in V^{*}$ ,

$\mathfrak{g}_{0}\ni\left(\begin{array}{lll}-a & 0 & 0\\0 & A & 0\\0 & 0 & a\end{array}\right)\rightarrow A-aI_{n}\in \mathfrak{c}c(n)$ ,

we can write $\downarrow=V+\mathfrak{c}o(n)+V^{*}$ .
Projective case: $\iota=\mathfrak{s}\{(n+1;R)$ ,

$\mathfrak{g}_{0}=\{$$\mathfrak{g}_{-1}=\{\left(\begin{array}{ll}0 & v\\0 & 0\end{array}\right)\}$ , $\mathfrak{g}_{1}=\{$$\left(\begin{array}{ll}A & 0\\0 & a\end{array}\right)$ ; Trace $A+a=0\}$ , $\left(\begin{array}{ll}0 & 0\\\xi & 0\end{array}\right)\}$ ,

where $v$ and $\xi$ are as in the conformal case. Under the identifications

$\mathfrak{g}_{-1}\ni\left(\begin{array}{ll}0 & v\\0 & 0\end{array}\right)\rightarrow v\in V$ , $\mathfrak{g}_{1}\ni\left(\begin{array}{ll}0 & 0\\\xi & 0\end{array}\right)\rightarrow\xi\in V^{*}$ ,

$\mathfrak{g}_{0}\ni\left(\begin{array}{ll}A & 0\\0 & a\end{array}\right)\rightarrow A-aI_{n}\in \mathfrak{g}I(n ; R)$ ,

we can write $I=V+\mathfrak{g}I(n;R)+V^{*}$ .
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Hereafter we fix the natural bases $e_{1},$
$\cdots$ , $e_{n}$ of $V,$ $e^{1},$ $\cdots$ $e^{n}$ of $V^{*}$ and

$e_{j}^{i}$ of $\mathfrak{g}I(n;R)$ . Let $M$ be an n-dimensional smooth manifold and let $P\subset J_{2}(M)$

be a conformal or projective structure on $M$. We denote $(\theta^{i} ; \theta_{j}^{i})$ for the
restriction to $P$ of the canonical form of $J_{2}(M)$ (see \S 1). It is a $\mathfrak{g}_{-1}+\mathfrak{g}_{0}$

valued l-form on $P$ . Now we can state a well-known theorem on normal
conformal and projective connections which is very important to our con-
struction.

THEOREM 2.2. Let $L/L_{0}$ be as in Example 1.1 or 1.2 and let $P\subset J_{2}(M)$ be a
conformal or pr0jective structure on a smooth manifold $M$ of dimension $n(\geqq 3$

for Example 1.1 and $\geqq 2$ for Example 1.2). Then there is a unique Cartan
connection $\theta=\theta_{-1}+\theta_{0}+\theta_{1}=(\theta^{i} ; \theta_{j}^{i} ; \theta_{j})$ such that

$(i\backslash )$ $(\theta^{i} ; \theta_{j}^{i})$ is the canonical form,
(ii) The curvature $\Theta=(0;\Theta_{j}^{i} ; \Theta_{j})$ satisfies the following conditions:

$\sum K_{jil}^{i}=0$ , where $\Theta_{j}^{i}=\frac{1}{2}\Sigma K_{jkl}^{i}\theta^{k}\wedge\theta^{l}$ ,

in particular $\Sigma\Theta_{i}^{i}=0$ .
This unique connection is called the normal conformal or projective con-

nection in $P$ according as $L/L_{0}$ is as in Example 1.1 or 1.2.
We have also
THEOREM 2.3. Let $P$ be as in Theorem 2.2. Then

(I) $d\theta^{i}=-\sum\theta_{k}^{l}\wedge\theta^{k}$ ,

(II) $d\theta_{j}^{i}=-\sum\theta_{k}^{i}\wedge\theta_{j}^{k}-\theta^{i}\wedge\theta_{j}-\theta_{i}\wedge\theta^{j}+\delta_{j}^{i}\sum\theta_{k}\wedge\theta^{k}+\Theta_{j}^{i}$ ,

(II) $d\theta_{j}^{i}=-\sum\theta_{k}^{r}\wedge\theta_{j}^{k}-\theta^{i}\wedge\theta_{j}+\delta_{j}^{i}\sum\theta_{k}\wedge\theta^{k}+\Theta_{j}^{i}$ ,

(III) $d\theta_{j}=-\sum\theta_{k}\wedge\theta_{j}^{k}+\Theta_{j}$ ,

(IV) $\Sigma\Theta_{j}^{i}\wedge\theta^{j}=0$ ,

(V) $\sum\theta^{i}\wedge\Theta_{i}=0$, where $\Theta_{j}=\frac{1}{2}\sum K_{jkl}\theta^{k}\wedge\theta^{l}$

Here $c$ (resp. $p$ ) denotes conformal (resp. projective) case and of course
$(I)-(III)$ are the structure equations of the Cartan connection and (IV), (V)
are the Bianchi identities.

Let $f:M\rightarrow N$ be a conformal or projective diffeomorphism and let $J_{2}(f)$ :
$P(M)\rightarrow P(N)$ be the induced diffeomorphism. Then from the uniqueness of
the Cartan connection, we conclude that $J_{2}(f)$ sends the normal Cartan con-
nection form of $N$ to that of $M$. Now let $F$ be a codimension $n$ conformal
(resp. projective) foliation on a smooth manifold $M$ defined by submersions
$f_{\alpha}$ : $U_{a}\rightarrow R_{\alpha}^{n}$ , and let $P(F)$ be the conformal (resp. projective) normal bundle
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of $F$ (see \S 1). Then by the above remark, there are defined an I-valued
l-form $\theta=(\theta^{i} ; \theta_{j}^{i} ; \theta_{j})$ and an I-valued 2-form $\Theta=(0;\Theta_{j}^{i} ; \Theta_{j})$ on $P(F)$ such that
$\theta$ (resp. $\Theta$ ) restricted to $U_{\alpha}$ is the pull back under $f_{\alpha}^{*}$ of the normal Cartan
connection form on $P(R_{\alpha}^{n})$ (resp. the curvature form of the normal Cartan
connection in $P(R_{\alpha}^{n}))$ . It is clear that these forms $\theta,$ $\Theta$ also satisfy the equations
in Theorems 2.2 and 2.3.

3. Construction of the characteristic classes.

Let $F$ be a codimension $n$ conformal (resp. projective) foliation on a smooth
manifold $M$ and let $P(F)$ be the conformal (resp. projective) normal bundle
of $F$. In \S 2 we have constructed l-valued l-form $\theta=(\theta^{i} ; \theta_{j}^{i} ; \theta_{j})$ and 2-form
$\Theta=(0;\Theta_{j}^{i} ; \Theta_{j})$ on $P(F)$ using the normal Cartan connection forms, where
$I=@o(n+1,1)$ (resp. @I(n+l; $R)$). Let $W(\mathfrak{l})$ be the Weil algebra of $I_{f}$ namely
the tensor product of the exterior algebra $\Lambda I^{*}$ with the symmetric algebra
$SI^{*}$ (cf. [5]). Then $\theta$ and $\Theta$ define a $d$ . $g$ . $a$ . map

$\phi:W(I)\rightarrow\Omega^{*}(P(F))$

where $\Omega^{*}(P(F))$ is the de Rham complex of $P(F)$ . Let $\omega^{i},$
$\omega_{j}^{r},$

$\omega_{j},$
$\Omega^{i},$ $\Omega_{j}^{i},$ $\Omega_{j}$

$\in W(I)$ be the universal connection and curvature forms (namely generators
of $\Lambda^{1}I^{*}$ and $S^{1}I^{*}$) expressed with respect to the natural basis of I (see \S 2).
Then $\phi$ is defined by $\phi(\omega^{i})=\theta^{i},$ $\phi(\omega_{j}^{i})=\theta_{j}^{i},$ $\phi(\omega_{j})=\theta_{j},$ $\phi(\Omega^{i})=0,$ $\phi(\Omega_{j}^{i})=\Theta_{j}^{i},$ $\phi(\Omega_{j})=\Theta_{j}$ .
In view of the equations in Theorems 2.2 and 2.3, which the forms $\theta,$ $\Theta$ satisfy,
we define an ideal $I$ of $W(I)$ as the one generated by the following elements:

(i) $\Omega^{i}$ ,

(ii) elements whose “length” $l$ is greater than $n$ , where $l$ is defined by
$l(\omega^{i})=1,$ $l(\Omega_{j}^{t})=l(\Omega_{j})=2,$ $l(\omega_{j}^{f})=l(\omega_{j})=l(\Omega^{i})=0$ ,

(3.1)
(iii) $\sum\Omega_{j}^{i}\wedge\omega^{j}$ ,

(iv) $\sum\Omega_{i}\wedge\omega^{i}$ ,

(v) $\sum\Omega_{i}^{i}$ .
Then we have $\phi(I)=0$ and it can be checked that $I$ is a subcomplex of $W(I)$ .
Therefore, writing $\pi(\mathfrak{l})=W(I)/I$, we obtain a $d$ . $g$ . $a$ . map

$\phi:\tilde{W}(\mathfrak{l})\rightarrow\Omega^{*}(P(F))$ .

If the normal bundle $P(F)$ of $F$ is trivialized by a crcss section $s:M\rightarrow P(F)$ ,

then we have
$s^{*}$

$H^{*}(\tilde{W}(\mathfrak{l}))\rightarrow H_{DR}^{*}(P(F))\rightarrow H_{DR}^{*}(M)$ .
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Since this construction is functorial, we finally obtain

$\Phi$ : $H^{*}(\tilde{W}(I))-\rightarrow H^{*}(BSF_{n} ; R)$

where $S=C$ or $P$ according as the foliation $F$ is conformal or projective. In
the general case, we have

$H^{*}(\tilde{W}(I)_{0(n)})-\rightarrow H^{*}(BS\Gamma_{n} ; R)$

$H^{*}(\tilde{W}(I)_{S0(n)})-\rightarrow H^{*}(BS\Gamma_{n}^{+} ; R)$ ,

where $\tilde{W}(I)_{G}$ ($G=O(n)$ or $SO(n)$) is the subcomplex of $\tilde{W}(I)$ consisting of $G$

basic elements and $+$ denotes the oriented category.
This is our construction of the characteristic classes for conformal and

projective foliations.

4. Cohomology of $\tilde{W}(\mathfrak{l})$ .

In this section we compute the cohomology of the truncated Weil algebra
$\tilde{W}(\mathfrak{l})$ defined in the previous section. First we begin with the conformal case.
Conformal case: We define a decreasing filtration $F^{p}$ on $\pi(\mathfrak{s}\mathfrak{o}(n+1,1))$ by

$F^{p}=\{x\in ffi_{(@0}(n+1,1)); \overline{l}(x)\geqq p\}$

where $\overline{l}$ is the function on $W(\mathfrak{s}o(n+1,1))$ defined by $\overline{l}(\omega_{j}^{f})=0,\overline{l}(\omega^{i})=\overline{l}(\omega_{j})=1$ and
$\overline{l}(\Omega_{j}^{t})=\overline{l}(\Omega_{j})=2$ (note that $\overline{l}$ is different from the length function 1 since $\overline{l}(\omega_{j})$

$=1\neq l(\omega_{j})=0)$ . Let $\{E_{r}^{pq},d_{r}\}$ be the spectral sequence associated with this
filtration. Now define $M_{p}$ to be the linear subspace of $ffl(\mathfrak{s}o(n+1,1))$ spanned
by the elements $x\in W(\mathfrak{s}\mathfrak{o}(n+1,1))$ with, $i(X)x=0$ for all $X\in \mathfrak{c}o(n)\subset@\mathfrak{o}(n+l, 1)$

and $\overline{l}(x)=degreex=p$ , where $i(X)$ is the inner product with respect to $X$.
$co(n)$ acts on $M_{p}$ by the Lie derivation and thus $M_{p}$ is a $co(n)$-module. If we
denote $C^{q}(C0(n);M_{p})$ for the set of q-cochains on $\mathfrak{c}o(n)$ with coefficient in $M_{p}$ ,

then it is easy to see that
$E_{0}^{pq}\cong C^{q}(\mathfrak{c}o(n);M_{p})$ .

Moreover, from the forms of the differentials of $\omega^{i},$
$\omega_{j}^{\tau},$

$\omega_{j},$
$\Omega_{j}^{i},$ $\Omega_{j}$, (cf. Theorem

2.3 and $d\Omega_{j}^{i}=\Omega_{k}^{i}\wedge\omega_{j}^{k}-\omega_{k}^{\prime}\wedge\Omega_{j}^{k}-\omega^{i}\wedge\Omega_{j}+\Omega_{\iota\Lambda\omega^{f}},$ $d\Omega_{j}=\Omega_{k}\wedge\omega_{j}^{k}-\omega_{k}\wedge\Omega_{j}^{k}$) and the
action of $\mathfrak{c}o(n)$ on $M_{p}$ , it can be shown that the following diagram is com-
mutative up to sign:

$E_{0}^{pq}$ $\cong C^{q}(\mathfrak{c}\mathfrak{o}(n);M_{p})$

$ d_{0}\downarrow$ $\downarrow d$

$E_{0}^{p,q+1}\cong C^{q+1}(\mathfrak{c}\mathfrak{o}(n);M_{p})$

where $d$ is the differential of the complex $C^{*}(C0(n);M_{p})$ . Therefore we obtain
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(4.1) $E_{1}^{p,q}\cong H^{q}(\mathfrak{c}\mathfrak{o}(n);M_{p})$ .

Now $\mathfrak{c}\mathfrak{o}(n)=\mathfrak{s}o(n)+R$ and let $I\in co(n)$ be the identity matrix and $L(I)$ : the Lie
derivative with respect to $I$ . Then it is easy to see that $M_{p}$ splits as a
direct sum of eigenspaces $V_{\lambda}$ for $I$ with $L(I)|V_{\lambda}=multiplication$ by $\lambda\in R$.
Therefore by an argument in [20] (Corollary IV.2.2., also cf. [10]), we have

(4.2) $H^{q}(\mathfrak{c}o(n);M_{p})\cong H^{q}(\mathfrak{c}o(n))\otimes M_{p}^{co(n)}$ .
Next we determine $M_{p}^{co(n)}$ . For this let us define elements $d_{1},$ $d_{2},$ $d_{4},$ $\cdots$ of
$\tilde{W}(\mathfrak{s}o(n+1,1))$ and if $n$ is even $(n=2m),$ $\chi_{s\cdot 0}(s=0, \cdots , m),$ $\chi_{s\cdot 1}(s=1, \cdots , m-1)$

$\in\tilde{W}(\mathfrak{s}o(n+1_{f}1))$ by

$d_{1}=\sum_{k}\omega_{k}$ A $\omega^{k}$ ,

$d_{2}=Trace((\Omega_{j}^{i})^{2})$ ,

(4.3) $d_{4}=Trace((\Omega_{j}^{i})^{4}),$ $\cdots\cdots$ ,

$\chi_{s}t=\sum_{\sigma}$ sgn $(\sigma)\omega^{\sigma(1)}\wedge\cdots\Lambda\omega^{\sigma(s+t)}$ A $\omega_{\sigma(s+t+1)}\Lambda\ldots$ A $\omega_{\sigma(2s+t)}$

A $\Omega_{\sigma(2s+t+1)}\wedge\cdots$ A $\Omega_{\sigma(2s+2i)}$ A $\Omega_{\sigma(2s}^{\sigma(2s}\ddagger_{2t}^{2t}\ddagger_{2)}^{1)}\wedge\cdots$ A $\Omega_{\sigma(n)}^{\sigma(n-1)}$ .
Note that $x_{s\cdot t}=0$ for $t\geqq 2$ . ,We also set

$x=\sum_{\sigma}$ sgn $(\sigma)(-\omega^{\sigma(1)}\wedge\omega_{\sigma(2)}-\omega_{\sigma(1)}\wedge\omega^{\sigma(2)}+\Omega_{\sigma(2)}^{\sigma(1)})\cdots$

(4.4) ( $-\omega^{\sigma(n-1)}$ A $\omega_{\sigma(n)}-\omega_{\sigma(n-1)}$ A $\omega^{\sigma(n)}+\Omega_{\sigma(n)}^{\sigma(n-1)}$ )

$=x_{0,0}-2mx_{1,0}+4\left(\begin{array}{l}m\\2\end{array}\right)\chi_{2,0}-8\left(\begin{array}{l}m\\3\end{array}\right)\chi_{3,0}+$ $+(-1)^{m}2^{m}\chi_{m,0}$ .

The degrees of these elements are given by degree $(d_{i})=2i$, degree $(\chi_{s0}))=n$ ,
degree $(\chi_{s,1})=n+1$ and the lengths are $l(d_{1})=1,$ $l(d_{2i})=4i$ (thus $d_{2i}=0$ if $4i>n$),
$l(\chi_{s,0})=n-s,$ $l(\chi_{S,1})=n-s+1$ . The differentials are given by

$dd_{1}=dd_{2i}=0$ $(i=1_{f}2,$ $\cdots$ , $[\frac{n}{4}])_{f}$

(4.5) $dx_{s,0}=-sx_{s- 1,1}-2(m-s)\chi_{s,1}$ ,

$dx_{s,1}=0$ .
In particular $\chi_{s,1}$ $(s=1, \cdots , m-1)$ is the d-image of a linear combination of
$\chi_{s,0}$ ( $s=0,$ $\cdots$ , m) and $\chi_{0,0},$

$\chi$ are the only d-closed elements among linear
combinations of $\chi_{s,0}$ . Now by applying Weyl’s theorem on the $SO(n)$-invariants
[27] (see also [20] \S 19) and by studying the action of $L(I)$ , we conclude that
the algebra $\bigoplus_{p}M_{p}^{co(n)}$ is multiplicatively generated by $d_{1},$ $d_{2},$

$\cdots d_{2[}n_{4}$ ], $\chi_{s,0}(s=$

$0,$ $\cdots$ $m$) and $\chi_{s,1}(s=1, \cdots , m-1)$ . Among these generators, there are the
following relations.
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(i) $x_{0,0}^{2}$
$=(-1)^{2}\underline{m(}m\underline{-1)}2^{n}m!d_{1}^{n}$ ,

(4.6)
(ii) $d_{1}x_{s,t}=0$ for all $s,$

$t$ .

(i) is easy to check. We prove (ii). Since $d_{1}$ is closed and $\chi_{s,1}$ is the d-image
of a linear combination of $\chi_{s,0}$ , it is enough to prove $d_{1}\chi_{s,0}=0$ for $s=0,$ $\cdots$ , $m$ .
If $s=m$ , then clearly $d_{1}\chi_{m,0}=0$ . So we assume that $s\neq m$ . For each $l=1,$ $\cdots$ $n$ , let

$K^{l}=\sum_{i,j}$ sgn $(i, j, k)\omega^{t(1)}$ $\omega^{i(s)}\omega_{j(1)}$ $\omega_{j(s+1)}\Omega_{k(2}^{k(1}$ } $\cdots\Omega_{k(2t)}^{k(2t-1)}$ ,

where $i=(i(1), \cdots i(s)),$ $j=(j(1), \cdots j(s+1)),$ $k=(k(1), \cdots k(2t))$ and the sum
ranges over all $(i, j, k)$ such that $\{i(1), \cdots , i(s), j(1), \cdots j(s+1), k(1), \cdots , k(2t)\}$

$=\{1, \cdots l-1, l+1, \cdots , n\}$ and $i(1)<\ldots<i(s),$ $j(1)<\cdots<j(s+1),$ $k(1)<k(3)<\cdots<$

$k(2t-1),$ $k(2p-1)<k(2p)(p=1, \cdots , t=m-s-1)$ . sgn $(i, j, k)=sign$ of the per-

mutation $\left(\begin{array}{lllll}1 & \cdots & l-1l+1 & \cdots & n\\i(1)\cdot & & i(s)j(1)\cdot & .\cdot & k(2t)\end{array}\right)$ . Here in the description of $K^{l}$ and

also in the following calculation, we omit the symbol $\wedge for$ simplicity. Now
for each $m(\neq l),$ $K^{l}$ can be expressed as

(4.7) $K^{l}=\omega_{m}L_{m}^{l}+\omega^{m}M_{m}^{l}+\sum_{k\neq l,m}N_{mk}^{\iota}\Omega_{k}^{m}$

for some $L_{m}^{l},$ $M_{m}^{l}$ , $N_{mk}^{l}$ . Then calculation shows

(4.8) $d_{1}x_{s,0}=2^{m-s}(m-s)$ ! $(s!)^{2}\sum_{l=1}^{n}(-1)^{l+1}(\sum_{m\neq l}\omega_{m}L_{m}^{l}\Omega_{m}^{l}\omega^{m})$ .

Now the expression

(4.9) $P_{lm}=\sum_{p}(\sum_{k\neq f,m}(-1)^{l+1}N_{mk}^{l}\Omega_{k}^{p}\Omega_{m}^{l}\omega^{p})$

is contained in the ideal $I$ (see (3.1) (iii)) and hence is $0$ in $\tilde{W}(\mathfrak{s}o(n+1,1))$ .
We have

$P_{lm}=\sum_{k\neq l.m}(-)^{l+1}N_{mk}^{l}\Omega_{k}^{m}\Omega_{m}^{l}\omega^{m}+\sum_{p\neq m}(\sum_{k\neq l.m}(-1)^{l+1}N_{mk}^{\iota}\Omega_{l}^{m}\Omega_{p}^{k}\omega^{p})$

(4.10)
$=\sum_{k\neq l.m}(-1)^{l+1}N_{mk}^{l}\Omega_{k}^{m}\Omega_{m}^{l}\omega^{m}+p\neq m\sum_{k\pm zl,m}(-1)^{k}N_{ml}^{k}\Omega_{l}^{m}\Omega_{p}^{k}\omega^{p}$

,

here we have used the relation $N_{mk}^{l}=(-1)^{l-k+1}N_{ml}^{k}$ . Combining (4.8) and (4.10),
we obtain

$d_{1}x_{s,0}=d_{1}\chi_{s,0}+\sum_{l.m}P_{lm}$

(4.11) $=2^{m-S}(m-s)$ ! $(s!)^{2}\sum_{l\approx 1}^{n}[\sum_{m\neq l}\{(-1)^{l+1}\omega_{m}L_{m}^{l}$

$+(-1)^{l+1}\sum_{k\neq l.m}N_{mk}^{l}\Omega_{k}^{m}+\sum_{q\neq lp\neq l.m}(-1)^{l}N_{pq}^{l}\Omega_{q}^{p}\}\Omega_{m}^{l}\omega^{m}]$
.



704 S. MORITA

$Since,\sum_{pq\neq l}(-1)^{l}N_{pq}^{l}\Omega_{q}^{p}$ is independent of $m$ , we have

$d_{1}x_{s,0}=2^{m-s}(m-s)$ ! $(s!)^{2}\sum_{l=1}^{n}\{\sum_{m\neq l}(-1)^{l+1}\omega_{m}L_{n}^{l}$

(4.12)

$+2(-1)^{l+1}\sum_{k\neq l.m}N_{mk}^{l}\Omega_{k}^{m}\}\Omega_{m}^{l}\omega^{m}$

From this we conclude

$2d_{1}\chi_{s,0}=2^{m-s}(m-s)$ ! $(s!)^{2}\sum_{l=1}^{n}\sum_{m\neq l}2K^{l}\Omega_{m}^{l}\omega^{m}$

$=0$ .
This proves (ii). Now it is not difficult to see that (4.6) is the only relation
among the generators other than the truncation by the length. (We omit the
proof because it consists of tedious calculations). Thus we have determined
the algebra $\oplus M_{p}^{co(n)}$ . This algebra has a differential $d:M_{v^{o(n)}}^{c}\rightarrow M_{p+1}^{co(n)}$ which
is the restriction of that of $\tilde{W}(\mathfrak{s}\mathfrak{o}(n+1,1))$ and the following diagram is
commutative.

$E_{1}^{p,q}$ $\cong H^{q}(\mathfrak{c}o(n))\otimes M_{p}^{co(n)}$

$\downarrow d_{1}$ $\downarrow(-1)^{q}1\otimes d$

$\sim E_{1}^{p+1,q}\cong H^{q}(\mathfrak{c}o(n))\otimes M_{p+1}^{co(n)}$ .

Now we define elements $k_{1},$ $k_{2},$ $k_{4},$ $\cdots$ and if $n$ is even $k_{\chi}\in\tilde{W}(\mathfrak{s}\mathfrak{o}(n+1,1))$ as
follows. $k_{1}$ is defined to be $1/n\sum_{i}\omega_{i}^{i}$ so that $dk_{1}=d_{1}$ . Let $\pi$ : $W(\mathfrak{s}\mathfrak{o}(n+1,1))$

$\rightarrow\pi(\S o(n+1,1))$ be the projection and let $f_{i}$ be the invariant polynomial of
$SO(n+1,1)$ defined by $f_{i}(X)=Trace(X^{i})$ for X\in \S o(n+l, 1). If we consider
that $f_{i}$ is an element of $W(\mathfrak{s}o(n+1,1))$ , then it can be seen that $\pi(f_{2\iota})=d_{2i}$ .
(Recall that we have killed Trace $(\Omega_{j}^{i})$ , see (3.1) $(v)$). Now let $Tf_{i}\in W(\mathfrak{s}\mathfrak{o}(n+1,1))$

be the Chern-Simons’ transgression form of $f_{i}$ (cf. [6]). We set

(4.13) $k_{2i}=\pi(Tf_{2i})$ .
Then clearly $dk_{2i}=d_{2i}$ . Next we define $k_{\chi}$ for even $n$ . Let $W(\mathfrak{s}o(n))$ be the
Weil algebra of $\mathfrak{s}o(n)$ . We define a map $g:W(@\mathfrak{o}(n))\rightarrow W(\mathfrak{s}o(n+1,1))$ by $g(\overline{\omega}_{j}^{i})=\omega_{j}^{i}$

and $g(\overline{\Omega}_{j}^{l})=-\omega^{i}\wedge\omega_{f}-\omega_{i}\wedge\omega^{j}+\Omega_{j}^{i}$ , where $\overline{\omega}_{j}^{i},\overline{\Omega}_{j}^{t}$ are the universal connection
and curvature forms of @o(n) expressed in terms of the natural basis of $\mathfrak{s}o(n)$ .
Then it can be checked that $g$ is actually a $d$ . $g$ . $a$ . map. Let $\overline{x}\in W(\mathfrak{s}\mathfrak{o}(n))$ be
the Euler class and let $T\overline{\chi}\in W(\wedge e\mathfrak{o}(n))$ be the transgression form of X. By

definition of $\chi$, we have $ g(\overline{\chi})=c\chi$ ( $c=\frac{(-1)^{m}}{2^{nm}m!}$, see (4.4)). Now we define

$k_{\chi}=\pi(g(\frac{1}{c}T7))$ . Then clearly we have $ dk_{\chi}=\chi$ .
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With the above preparation, we define a $d$ . $g$ . $a$ . $CW_{n}$ as to be the sub-
algebra of $\tilde{W}(\wedge eo(n+1,1))$ generated by the elements $k_{i},$ $k_{\chi},$ $d_{i}$ and $\chi_{s,t}$ . Thus
we can express $CW_{n}$ as follows.

$CW_{n}=E(k_{1}, k_{2}, k_{4}, \cdots , k_{n-1})\otimes\hat{R}[d_{1},$ $d_{2},$ $d_{4},$ $\cdots$
$d_{2[\frac{n}{4}]]}$ $n$ odd ,

(4.14) $=E(k_{1}, k_{2}, k_{4}, \cdots k_{n-2}, k_{\chi})\otimes\hat{R}[d_{1},$ $d_{2},$ $d_{4},$ $\cdots$
$d_{2[\frac{n}{4}]},$ $\chi_{0,0}$ ,

$\ldots$ $\chi_{m,0},$ $\chi_{1,1},$ $\chi_{m-1,1}$] $n$ even,

where $E$ denotes the exterior algebra. $R[$ $]$ is the polynomial algebra and
$\hat{R}[$

$]$ denotes the quotient algebra of $R[$ $]$ modulo an ideal $J$ described as
follows. $J$ for odd $n$ is the ideal generated by (i) elements whose length $>n$

and $J$ for even $n$ is the one generated by (i) and (ii) $x_{0,0}^{2}-(-1)^{\frac{m(m-1)}{2}}2^{n}m!d_{i}^{n}$

(iii) $d_{1}\chi_{s,0}(s=0, \cdots m)$ and $d_{1}\chi_{s,1}(s=1, \cdots , m-1)$ , (see (4.6)). Then by a
spectral sequence argument using the above results, we obtain

THEOREM 4.1. $H^{*}(\tilde{W}(\mathfrak{s}o(n+1,1)))\cong H^{*}(CW_{n})$ .
The $d$ . $g$ . $a$ . $CW_{n}$ plays a similar role as the complex $W_{n}$ (cf. [4]) does for

the characteristic classes of smooth foliations. For even $n,$ $CW_{n}$ is rather
complicated. However we note that it has a simple subcomplex $CW_{n}^{\prime}=E(k_{1r}$

$k_{2},$ $k_{4},$ $\cdots$ $k_{n-2},$ $k_{\chi}$) $\otimes\hat{R}[d_{1}, d_{2}, d_{4}, \cdots d_{2[\frac{n}{4}]}, \chi]$ .
The above calculation can also be done for the general case ($when_{5}^{-}$ the

normal bundle is not trivial) and the projective case. Since this calculation
is similar to and even simpler than the conformal case with trivial normal
bundles, we only state the results. We define various $d$ . $g$ . $a$ . $sCWO_{n},$ $CWSO_{n}$ ,
$PW_{n},$ $PWO_{n}$ and $PWSO_{n}$ as follows.

$CWO_{n}=E(k_{1})\otimes\hat{R}[d_{1},$ $d_{2},$ $d_{4},$ $\cdots$
$d_{2[\frac{n}{4}]]}$ ,

$CWSO_{n}=CWO_{n}$ $n$ odd,

$=E(k_{1})\otimes\hat{R}[d_{1},$ $d_{2},$ $d_{4},$ $\cdots$ , $d_{2[\frac{n}{4}]},$ $\chi_{0,0},$ $\chi_{m,0}$ ,

$\chi_{1,1}$ $\chi_{m- 1,1}$] $n$ even,

(4.15) $PW_{n}=E(k_{1}, k_{2}, \cdots k_{n})\otimes\hat{R}[d_{1},$ $d_{2},$
$d_{[\frac{n}{2}]]}$ ,

$PWO_{n}=E(k_{1}, k_{3}, \cdots k_{2t+1})\otimes\hat{R}[d_{1},$ $d_{2},$ $\cdots$
$d_{[\frac{n}{2}]]}$ ,

$PWSO_{n}=PWO_{n}$ $n$ odd,

$=PWO_{n}(\chi)/(\chi^{2}-d_{1}^{n})$ $n$ even,

where $CWO_{n}$ , CWS $O_{n}$ are considered to be subcomplexes of $CW_{n}$ and $k_{i},$ $d_{i}$ for
the projective case are dePned similarly as in the conformal case; $d_{1}=\sum\omega_{k}\wedge\omega^{k}$ ,
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$d_{i}=Trace((\Omega_{j}^{i})^{i})(i=2,3, \cdots, n),$ $k_{1}=\frac{1}{n+1}\sum\omega_{i}^{i}$ so that $dk_{1}=d_{1},$ $k_{i}=\pi(Tf_{i})(i=2$ ,

3, $\cdots$ $n$ ), where $\pi$ : $W(@\mathfrak{l}(n+l;R))\rightarrow ffl(\mathfrak{s}I(n+1;R))$ is the projection and
$f_{i}\in W(e\downarrow(n+1;R))$ is the invariant polynomial of $SL(n+1;R)$ defined by
$f_{i}(X)=Trace(X^{i})$ for X\in \S l(n+l; $R$). Thus $dk_{i}=d_{i}$ for $i=2,$ $\cdots$ $n$ . $\hat{R}[$

$]$ in
PW’s denotes truncation by the ideal generated by elements whose length $>n$

and $2t+1$ in $PWO_{n}$ is the greatest odd $integer\leqq n$ . With these understood
we have

THEOREM 4.2. $H^{*}(\tilde{W}(\wedge ao(n+1,1)))_{G(n)})\cong H^{*}(CWG_{n})$ ,

$H^{*}(\tilde{W}(\wedge a\mathfrak{l} (n+1 ; R)))\cong H^{*}(PW_{n})$ ,

$H^{*}(\hat{W}(\mathfrak{s}\downarrow(n+1;R))_{G(n)})\cong H^{*}(PWG_{n})$ ,
were $G=O$ or SO.

Combining the results in \S 3 and Theorems 4.1, 4.2, we have constructed
characteristic classes

$H^{*}(SW_{n})$ $\rightarrow H^{*}(BSF_{n} ; R)$ ,

$\Phi$ : $H^{*}(SWO_{n})\rightarrow H^{*}(BS\Gamma_{n} ; R)$ ,

$H^{*}(SWSO_{n})\rightarrow H^{*}(BS\Gamma_{n}^{+} ; R)$ ,

where $S=C$ or $P$ .
By using the analysis of Vey (see [9]), we can determine generators of

the cohomology of each $d$ . $g$ . $a$ . dePned above as follows. Let $I=(i(1), \cdots i(s))$

and $J=(j(1), --, j(t))$ be s-and t-tuples of positive integers with $i(1)<\ldots<i(s)$

and $j(1)\leqq\ldots\leqq j(t)$ . We denote $k_{I}d_{J}$ for $k_{i(1)}$ $k_{i(s)}d_{J^{(1)}}\cdots d_{J^{(t)}}$ and $l(i, J)$

for $l(d_{i}d_{J})$ (we understand that $ l(d_{i}d_{J})=\infty$ if $d_{i}d_{J^{--0)}}$ . Then we have
PROPOSITION 4.3. (I) A basis for $H^{*}(CW_{n})$ ( $n$ : odd) is given by the classes

of $k_{I}d_{J}\in CW_{n}$ which satisfy $l(i(1), J)>n$ and $ i(1)\leqq j(1)ifJ\neq\emptyset$ .
(I) $H^{*}(CW_{n}^{\prime})(n=2m)$ is generated (as an R-vector sPace) by the following

elements.
(i) the classes of $k_{I}d_{J}\in CW_{n}^{\prime}$ which satisfy $1(i(1), J)>n$ and $i(1)\leqq j(1)$ if

$ J\neq\emptyset$ .
(ii) the classes of $(rk_{1}d’-1-k_{\chi}\chi)k_{I}d_{J}\in CW_{n}^{\prime}$ which satisfy $1\not\in J,$ $i(1)\leqq j(1)$

if $ J\neq\emptyset$ and $l(i(1)_{f}J)>m$ . (Here $r=(-1)2^{n}m\underline{m(m}_{2}\underline{-1)}$ ! so that $x^{2}=rd_{1}^{n}$ ).
(iii) the classes of $k_{I}d_{J}\chi\in CW_{n}^{\prime}$ which satisfy $1\not\in J,$ $i(1)\leqq j(1)$ if $ J\neq\emptyset$ , and

$d(k_{I}d_{J}\chi)=0$ .
(iv) the classes of $k_{I}k_{\chi}d_{J}\in CW_{n}^{\prime}$ which satisfy $i(1)\leqq j(1)$ and $d(k_{I}k_{\chi}d_{J})=0$ .
(II) A basis for $H^{*}(CWO_{n})$ is given by the following elements.
(i) the classes of $k_{I}d_{J}\in CWO_{n}$ with $l(1, J)>n$ .
(ii) the classes of $d_{J}\in CWO_{n}$ with $1\not\in J$.
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(III) A basis for $H^{*}(CWSO_{n}^{\prime})(n=2m)$ is given by the following elements.
($CWSO_{n}^{\prime}$ is defined to be $CW_{n}^{\prime}\cap CWSO_{n}$ ).

(i) the classes of $k_{1}d_{J}\in CWSO_{n}^{\prime}$ with $1(1, J)>n$ .
(ii) the classes of $k_{1}d_{J}\chi\in CWSO_{n}^{\prime}$ with $ J=\emptyset$ or $1\not\in J$ and $1(1, J)>m$ .
(iii) the classes of $d_{J}$ and $d_{J}\chi\in CWSO_{n}^{\prime}$ with $1\not\in J$.
REMARK 4.4. The classes in (I) are not linearly independent due to the

relations $d_{1}\chi=0$ and $x^{2}=rd_{1}^{n}$ . For example the class of $k_{1}k_{i(2)}$ $k_{i(s)}d_{1}^{n}$ is
zero if $2i(2)>m$ .

PROPOSITION 4.5. Bases for $H^{*}(PW_{n}),$ $H^{*}(PWO_{n})$ and $H^{*}(PWSO_{n})$ are
given as follows.

(I) $H^{*}(PW_{n})$ ; the classes of $k_{I}d_{J}\in PW_{n}$ which satisfy $1(i(1), J)>n$ and
$i(1)\leqq j(1)$ if $ J\neq\emptyset$ .

(II) $H^{*}(PWO_{n});(i)$ the classes of $k_{I}d_{J}\in PWO_{n}$ which satisfy $1(i(1), J)>n$

and $i(1)\leqq j(l)$ ( $j(l)$ is the smallest odd integer in $J$).
(ii) the classes of $d_{J}\in PWO_{n}$ such that $j(1)$ , –, $j(t)$ are all even.
(III) $H^{*}(PWSO_{n})(n=2m);(i)$ the classes in (II).
(ii) the classes of $k_{I}d_{J}\chi\in PWSO_{n}$ which satisfy $l(i(1), J)>n$ and $i(1)\leqq j(l)$ .
(iii) the classes of $d_{J}$ and $d_{J}\chi\in PWSO_{n}$ such that $j(1),$ $\cdots$ $j(t)$ are all even.

5. Examples.

In this section, we study some examples of conformal and projective
foliations and determine our characteristic classes of them. These examples
have been investigated by several authors (cf. [11] [13] [28] [29]).

EXAMPLE 5.1. Let $L/L_{0}$ be as in Example 1.1. Then the projection
$\pi$ : $L\rightarrow L/L_{0}=S^{n}$ defines a codimension $n$ conformal foliation $F$ on $L$, namely
$F$ is the pull back under the maP $\pi$ of the natural conformal structure on
$S^{n}$ . The conformal normal bundle of $F$ is just $\pi^{*}(L)=\{(x, y)\in L\times L;\pi(x)=\pi(y)\}$

and we have a commutative diagram

$\pi^{*}(L)\underline{p_{2}}L$

$|p_{1}$
$|\pi$

$\pi$

$L$– $S^{n}$ ,

where $p_{i}(i=1,2)$ is induced from the i-th projection $L\times L\rightarrow L$ . Let $s:L\rightarrow\pi^{*}(L)$

be a cross section defined by $s(x)=(x, x)(x\in L)$ , then clearly $p_{2}\circ s=id$ . Now
the foliation $F$ is invariant under the left action of $L$ . Therefore if $\Gamma\subset L$ is
a torsionfree discrete subgroup with compact quotient, then $F$ induces a
codimension $n$ conformal foliation on the compact manifold $\Gamma\backslash L$ . The con-
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formal normal bundle of this foliation is also trivial since $s$ is L-equivariant.
Thus we have the characteristic classes $\Phi$ : $H^{*}(CW_{n})\rightarrow H_{DR}^{*}(M)$ . We will
determine this $\Phi$ . Let $\Omega^{*}(I)$ be the Chevalley-Eilenberg complex of the Lie
algebra I. Then it can be identified with the differential complex $\Omega f_{nv}(L)$

of left invariant differential forms on $L$ . We have an inclusion $\xi:\Omega^{*}(I)$

$=\Omega_{Inv}^{*}(L)\rightarrow\Omega^{*}(M)$ . The induced homomorphism $\xi_{*}:$ $H^{*}(I)\rightarrow H_{DR}^{*}(M)$ is injective.
Now let $\eta$ : $CW_{n}\rightarrow\Omega^{*}(I)$ be the $d$ . $g$ . $a$ . map defined to be the composition

$j$
$\pi$

$CW_{n}\rightarrow\hat{W}(I)\rightarrow\Omega^{*}(I)$ , where $i$ is the inclusion and $\pi$ is the projection. Then
we have $\Phi=(\xi 0\eta)_{*}$ and since $\xi_{*}$ is injective, we will determine $\eta_{*}:$ $H^{*}(CW_{n})$

$\rightarrow H^{*}(I)$ . By the definitions of $k_{i},$ $k_{\chi}$ and $d_{1}$ , we have the following.
(i) If $n$ is odd, then the forms $\eta(k_{2}),$ $\eta(k_{4}),$ $\cdots$ $\eta(k_{n-1}),$ $\eta(k_{1}\text{{\it \’{a}}}_{1}^{n})$ are all

closed and the product of all of these elements is the volume form
of $L$ .

(51) (ii) If $n$ is even, then the forms $\eta(k_{2}),$ $\eta(k_{4}),$ $\cdots$ $\eta(k_{n-2}),$ $\eta(k_{1}\chi)$ and
$\eta(rk_{1}d_{1}^{n-1}-k_{\chi}\chi)$ are all closed and the product of all of these elements
is the volume form of $L$ .

Now clearly (5.1) together with Proposition 4.3 determines $\eta*\cdot$

EXAMPLE 5.2. In the above example, let $K(=SO(n))\subset L_{0}$ be a maximal
compact subgroup of $L_{0}$ and let $\pi$ : $L^{\prime}/K\rightarrow L/L_{0}=S^{n}$ be the projection ( $L^{\prime}$ is
the identity component of $L$ ). Then $\pi$ induces an oriented codimension $n$

conformal foliation on a compact manifold $N=\Gamma\backslash L^{\prime}/K$ (we may think that
$N$ is the unit tangent sphere bundle of a compact $(n+1)$-dimensional manifold
with negative constant curvature). We determine the characteristic classes
$\Phi$ : $H^{*}(CWSO_{n})\rightarrow H_{DR}^{*}(N)$ . Let $f$ be the Lie algebra of $K$ and let $\Omega^{*}(I, f)$ be
the Chevalley-Eilenberg complex of I relative to the subalgebra $f$ . Then as
before, we have an inclusion $\xi^{\prime}$ : $\Omega^{*}(\mathfrak{l}, f)=\Omega_{Inv}^{*}(L^{\prime}/K)\rightarrow\Omega^{*}(N)$ . The induced
homomorphism $\xi_{*}^{\prime}:$ $H^{*}(\mathfrak{l}, f)\cong H^{*}(T_{1}(S^{n+1});R)\rightarrow H_{DR}^{*}(N)$ is injective, where $T_{1}(S^{n+1})$

is the unit tangent sphere bundle of $S^{n+1}$ . Let $\eta^{\prime}$ : $CWS0_{n}\rightarrow\Omega^{*}(I, f)$ be the $d$ . $g$ . $a$ .
map induced from the projection $\tilde{W}(I)_{K}\rightarrow\Omega^{*}(I, f)$ . Then we have $\Phi=(\xi^{\prime}\circ\eta^{\prime})_{*}$

and in view of Proposition 4.3, $\eta_{*}^{\prime}:$ $H^{*}(CWSO_{n})\rightarrow H^{*}(I, f)$ is determined by
the following.

(i) If $n$ is odd, then the class of $\eta^{\prime}(k_{1}d_{1}^{n})$ is the generator of $H^{2n+1}(I, f)$ .
(52) (ii) If $n$ is even, then the classes of $\eta^{\prime}(\chi),$ $\eta^{\prime}(k_{1}\chi)$ and $\eta^{\prime}(k_{1}d_{1}^{n})$ are the

generators of $H^{n}(\mathfrak{l}, f),$ $H^{n+1}(\mathfrak{l}, f)$ and $H^{2n+1}(\mathfrak{l}, f)$ respectively.
Next we consider projective foliations.
EXAMPLE 5.3. Let $L/L_{0}$ be as in Example 1.2. Then just the same as in

Example 5.1, the projection $\pi$ : $L\rightarrow L/L_{0}=P^{n}$ defines a codimension $n$ projective
foliation on a compact manifold $M=\Gamma\backslash L$ with trivial normal bundle, where
$\Gamma\subset L$ is a torsionfree discrete subgroup of $L$ with compact quotient. We
determine the characteristic classes $\Phi$ : $H^{*}(PW_{n})\rightarrow H_{DR}^{*}(M)$ . Let $\xi:\Omega^{*}(I)$
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$=\Omega f_{nv}(L)\rightarrow\Omega^{*}(M)$ be the inclusion and let $\eta$ : $PW_{n}\rightarrow\Omega^{*}(I)$ be the $d$ . $g$ . $a$ . map
induced from the projection $\tilde{W}(I)\rightarrow\Omega^{*}(I)$ . Then we have $\Phi=(\xi\circ\eta)_{*},$ $\xi_{*}$ is
injective in this case also and $\eta*is$ determined by the following.

(5.3) The forms $\eta(k_{2}),$ $\cdots$ , $\eta(k_{n}),$ $\eta(k_{1}d_{1}^{n})$ are all closed and the product of all
of these elements is the volume form of $L$ .

This follows from the definition of $k_{i}$ and $d_{1}$ .
EXAMPLE 5.4. In the above Example, let $K(=SO(n))\subset L_{0}$ be a maximal

compact subgroup of $L_{0}$ and let $\pi$ : $L/K\rightarrow L/L_{0}=P^{n}$ be the projection. Then
$\pi$ induces an oriented codimension $n$ projective foliation on a compact
manifold $N=\Gamma\backslash L/K$. We determine the characteristic classes $\Phi$ : $H^{*}(PWSO_{n})$

$\rightarrow H_{DR}^{*}(N)$ of this foliation. Let $\xi^{\prime}$ : $\Omega^{*}(I, f)\rightarrow\Omega^{*}(N)$ be the inclusion and let
$\eta^{\prime}$ : $PWSO_{n}\rightarrow\Omega^{*}(I, f)$ be the $d$ . $g$ . $a$ . map induced from the projection $\tilde{W}(I)_{K}$

$\rightarrow\Omega^{*}(I, f)$ . Then $\Phi=(\xi^{\prime}\circ\eta^{\prime})_{*}$ and $\xi_{*}^{\prime}$ is injective. We have
(i) If $n$ is odd, then the forms $\eta^{\prime}(k_{3}),$ $\eta^{\prime}(k_{5}),$ $\cdots$ $\eta^{\prime}(k_{n}),$ $\eta^{\prime}(k_{1}d_{1}^{n})$ are all

closed and the product of all of these elements is the volume form
of $L/K$.

(54) (ii) If $n$ is even, then the forms $\eta^{\prime}(k_{3}),$ $\eta^{\prime}(k_{5})$ , –, $\eta^{\prime}(k_{n-1}),$ $\eta^{\prime}(\chi),$ $\eta^{\prime}(k_{1}d_{1}^{n})$

are all closed and the product of all of these elements is the
volume form of $L/K$.

This determines $\eta^{\prime}*\cdot$

6. Relation with Riemannian case.

Let $F$ be a codimension $n$ Riemannian foliation on a smooth manifold $M$

and let $O(F)$ be the orthonormal frame bundle of $F$. It is a subbundle of
$J_{2}(F)$ . If we restrict the $\mathfrak{g}I(n;R)$-component of the canonical form on $J_{2}(F)$

to $0(F)$ , then we obtain an $\mathfrak{s}o(n)$-valued l-form $\theta_{j}^{i}$ on $O(F)$ . This defines a
$d$ . $g$ . $a$ . map

$\phi:W(\mathfrak{s}o(n))\rightarrow\Omega^{*}(O(F))$ .

Now recall that we denote $\overline{\omega}_{j}^{i},\overline{\Omega}_{j}^{i}$ for the universal connection and curvature
forms of $\mathfrak{s}\mathfrak{o}(n)$ . Then $\phi$ has a kernel $I$ : the ideal of $W(\mathfrak{s}o(n))$ generated by

the elements $\Omega_{J^{(1)}}^{i(1)}\cdots\Omega_{j(l)}^{i(l)}$ with $l>\frac{n}{2}$ . Thus we have a map $\phi$ : $\tilde{W}(\mathfrak{s}o(n))\rightarrow\Omega^{*}(O(F))$,

where $\pi(\mathfrak{s}\mathfrak{o}(n))=W(\mathfrak{s}o(n))/I$ . Now if there is given a cross section $s:M\rightarrow O(F)$,
$s^{*}$

then we have $H^{*}(\pi(\mathfrak{s}\mathfrak{o}(n))\rightarrow H_{DR}^{*}(O(F))\rightarrow H_{DR}^{*}(M)$ . Since this construction
is functorial, we obtain a homomorphism:

$\Phi$ : $H^{*}(\pi(\mathfrak{s}0(n)))\rightarrow H^{*}(BRF_{n} : R)$

where $BR\overline{\Gamma}_{n}$ is the classifying space for codimension $n$ Riemannian Haefliger

structures with trivial normal bundles. This is the definition of characteristic
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classes of Riemannian foliation due to Kamber and Tondeur (see [12], $\tilde{W}(@o(n))$

$=W(8o(n))_{n}$ in their terminology). It is also equivalent to the definition given
by Lazarov and Pasternack in [16]: Let $\overline{f}_{2k}\in I(SO(n))$ be defined by $\overline{f}_{2k}(X)$

$=Trace(X^{2k})$ for X\in @o(n) and let $T\overline{f}_{2k}\in W(\mathfrak{s}\mathfrak{o}(n))$ be the transgression form
of $\overline{f}_{2k}$ . We also consider $\overline{f}_{2k}$ to be an element of $W(\underline{e}o(n))$ . Let $c_{2k}=\pi(\overline{f}_{2k})$ ,
$h_{2k}=\pi(T\overline{f}_{2k})$ and let $h_{\overline{\chi}}=\pi(T\overline{\chi})$ , where $\overline{\chi}$ is the Euler form and $\pi$ : W(@o(n))
$\rightarrow\tilde{W}(\mathfrak{s}o(n))$ is the projection. Let $RW_{n}$ be the subcomplex of $\tilde{W}(@o(n))$ generated
by $h_{2k},$ $C_{2k}$ and if $n$ is even, also by $h_{\overline{\chi}},\overline{\chi}$ . We may write

$RW_{n}=E(h_{2}, h_{4}, \cdots h_{n-1})\otimes\hat{R}[c_{2}, c_{4}, \cdots c_{n-1}]$ , $n$ odd,

$=E(h_{2}, h_{4}, \cdots h_{n-2}, h_{\overline{\chi}})\otimes\hat{R}[c_{2}, c_{4}, \cdots c_{n-2},\overline{x_{\vee}}]$ , $n$ even,

thus $RW_{n}$ is essentially the differential complex defined by Lazarov and
Pasternack (here we are using the trace classes). The inclusion $RW_{n}\rightarrow W(\mathfrak{s}o(n))$

induces an isomorphism on cohomology and we have
PROPOSITION 6.1 (see Proposition 4.1 in [16]). $H^{*}(RW_{n})$ is generated (as an

R-vector space) by the classes of

(I) $h{}_{I}C_{J}$ with $2(i(1)+|J|)>n$ and $i(1)\leqq j(1)$ , for $n$ odd,

(II) (i) $h{}_{I}C_{J},$ $h_{\overline{\chi}}h{}_{I}C_{J}$ with $2(i(1)+|J|)>n$ and $i(1)\leqq j(1)$ ,

(ii) $h_{I}\overline{\chi}_{f}h_{\overline{\chi}}h_{I}\overline{\chi}$ for $n$ even.

Here we are using a similar notation as before and $|J|=\sum j(l)$ .
Now let $\iota=\mathfrak{s}o(n+1,1)$ or @I(n+l; $R$) and let $i$ :@0(n)\rightarrow I be the natural

inclusion. It induces a $d$ . $g$ . $a$ . map $i^{*}:$ $W(I)\rightarrow W(5o(n))$ and it is easy to see
that $i^{*}$ sends the truncation ideal of $W(I)$ to that of W(\S o(n)). Hence we
have a map $i^{*}:$ $7\sim W(I)\rightarrow\pi(\mathfrak{s}o(n))$ . Then the following diagram is commutative:

$H^{*}(\tilde{W}(\mathfrak{l}))$

$\rightarrow^{\Phi}H^{*}(BS\overline{\Gamma}_{n^{j}}R)$

(6.1)
$\{$

$i^{*}$

$\Phi$

$|_{-}$

$H^{*}(\tilde{W}(\mathfrak{s}o(n)))\rightarrow H^{*}(BR\Gamma_{n} ; R)$

where $S=C$ or $P$ according as $\downarrow=\mathfrak{s}\mathfrak{o}(n+1,1)$ or $gI(n+1;R)$ respectively and
the vertical arrow on the right hand side is the natural homomorphism
induced from the forgetful map $BRF_{n}\rightarrow BS\overline{\Gamma}_{n}$ . The commutativity of (6.1)

follows from the definitions of $\Phi$ . Here we only remark the following. Let
$M$ be a Riemannian manifold and let $P(M)\subset J_{2}(M)$ be the $L_{0}$ principal sub-
bundle of $J_{2}(M)$ corresponding to the underlying conformal or projective
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structure of $M$. Then the Riemannian connection form in the orthonormal
frame bundle $O(M)$ of $M$ defines a Cartan connection in $P(M)$ (by enlarging
the structure group). In general, this Cartan connection is not normal. How-
ever it has the property that Trace $(\Theta_{j}^{\tau})$ restricted to $0(M)$ is zero ( $\Theta_{j}^{i}$ is the
$\mathfrak{g}_{0}$-component of the curvature of this Cartan connection) and any connection
on the line segment (in the space of connections) joining this connection and
the unique normal Cartan connection has this property. This is enough to
prove the commutativity of (6.1).

Now we have the following.
THEOREM 6.2. (i) The homomorphism $i^{*}:$ $H^{*}(\tilde{W}(@o(n+1,1)))\rightarrow H^{*}(\tilde{W}(\mathfrak{s}o(n)))$

is ePimorphic, $i$ . $e$ . the characteristic classes of Riemann\’ian foliations defined
by Kamber-Tondeur [12] and Lazarov-Pasternack [16] can be defined already
in the conformal context.

(ii) The homomorphism $i^{*}:$ $H^{*}(\pi(\mathfrak{s}\downarrow(n+1;R)))\rightarrow H^{*}(\pi(@o(n)))$ is ePimorphic
modulo those classes which contain $X$ or $ h\tau$ .

PROOF. (i) We check that each class in Proposition 6.1 is in the image
of $i^{*}$ . If $h_{I}c_{J}$ is as in Proposition 6.1, then $k_{I}d_{J}$ is closed and $i^{*}(k_{I}d_{J})=h_{J}c_{J}$ .
Next we assume that $n$ is even. For the classes of $h_{\overline{\chi}}h{}_{I}C_{J},$ $h_{I}\overline{\chi}h_{\overline{\chi}}h_{I}\overline{\chi}$ we
consider the forms $k_{\chi}k_{I}d_{J},$ $k_{I}\chi_{0,0},$ $k_{\chi}k_{I}\chi_{0,0}$ (see (4.3) for the definition of $\chi_{0,0}$).

Clearly $k_{I}\chi_{0,0}$ and $k_{\chi}k_{I}\chi_{0,0}$ are closed and $ i^{*}(k_{1}\chi_{0,0})=ch_{I}\overline{\chi}i^{*}(k_{\chi}k_{I}\chi_{0,0})=c^{2}h_{\chi}h_{I}\chi$ .
(Note that $ k_{I}\chi$ is not necessarily closed. This is the reason why we use $\chi_{0,0}.$)

Now we consider the class of $h_{\overline{\chi}}h_{I}c_{J}$ . Since $h_{\overline{\chi}}c_{J}$ is cohomologous to $0$ or
$h_{I}\overline{\chi}$ in the expression $h_{\overline{\chi}}h_{I}c_{J}$ , we may assume that $ I\neq\emptyset$ . Then the conditions

$i(1)\leqq j(1)$ and $2(i(1)+|J|)>n$ imply $2|J|>\frac{n}{2}$ and this in turn implies that

$d(k_{\chi}k_{I}d_{J})=0$ . Since $i^{*}(k_{x}k_{I}d_{J})=ch_{\overline{\chi}}h{}_{I}C_{J}$ , we are done.
(ii) By the same argument as in (i), the classes of $h{}_{I}C_{J}$ is in the image

of $i^{*}$ . In view of Proposition 6.1, this proves (ii). $q$ . $e$ . $d$ .
REMARK 6.3. In [18], we showed that there are other characteristic

classes of Riemannian foliations which are not covered by Kamber-Tondeur-
Lazarov-Pasternack definition. These classes can not be defined in the con-
formal nor projective context.

7. Relation with smooth case.

First we recall the construction of characteristic classes of smooth foliations
briefly (cf. [2] [3] [4] [11]). Let $F$ be a smooth foliation on a smooth mani-
fold $M$ and let $J_{2}(F)$ be the 2-jet bundle of $F$. On $J_{2}(F)$ , we have the canonical
form $(\theta^{i}, \Theta_{j}^{i})$ and there is defined a $d$ . $g$ . $a$ . map $\phi:W(\mathfrak{g}I(n;R))\rightarrow\Omega^{*}(J_{2}(F))$ such
that $\phi(\overline{\omega}_{j}^{i})=\Psi_{j}$ and $\phi(\overline{\Omega}_{j}^{i})=d\theta_{j}^{i}+\sum\theta_{k}^{i}\wedge\theta_{j}^{k}$ , where $\overline{\omega}_{j}^{i},\overline{\Omega}_{j}^{i}$ are the universal con-
nection and curvature forms of $\mathfrak{g}\mathfrak{l}(n;R)$ in terms of the natural basis. Now
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$\phi$ has a kernel $I$ : the ideal generated by monomials on $\Omega_{j}^{i}$ with degree $>2n$ .
Set $\tilde{W}(\mathfrak{g}I(n;R))=W(\mathfrak{g}\mathfrak{l}(n;R))/I$ and assume that there is given a cross section
$s:M\rightarrow J_{2}(F)$ . Then we havea homomorphism $\Phi$ : $H^{*}(\tilde{W}(gI(n;R)))\rightarrow H_{DR}^{*}(J_{2}(F))$

$\rightarrow^{s^{*}}H_{DR}^{*}(M)$ . Since this construction is functorial, we obtain

(7.1) $\Phi$ : $H^{*}(\tilde{W}(\mathfrak{g}I(n ; R)))\rightarrow H^{*}(B\overline{\Gamma}_{n} ; R)$ .

In the general case when the normal bundle is not necessarily trivial, we have

$\Phi$ : $H^{*}(\tilde{W}(\mathfrak{g}I(n ; R))_{0(n)})\rightarrow H^{*}(B\Gamma_{n} ; R)$ ,
(7.2)

$\Phi$ : $H^{*}(\tilde{W}(\mathfrak{g}I(n;R))_{S0(n)})\rightarrow H^{*}(B\Gamma_{n}^{+} ; R)$ .

These are the characteristic classes of smooth foliations. In view of the
constructions above and in \S 3, we define a $d$ . $g$ . $a$ . map $f_{s}$ : $W(\mathfrak{g}I(n;R))\rightarrow W(\mathfrak{l})$

as follows, where $s=c$ or $P$ according as $\mathfrak{l}=\mathfrak{s}i$)$(n+1,1)$ or $\mathfrak{s}\downarrow(n+1;R)$ respectively.

$f_{s}(\overline{\omega}_{j}^{i})=\omega_{j}^{i}$ ( $s=c$ or $p$),

(7.3) $f_{c}(\overline{\Omega}_{j}^{i})=-\omega^{i}\wedge\omega_{j}-\omega_{i}\wedge d+\delta_{j}^{i}\sum\omega_{k}\wedge\omega^{k}+\Omega_{j}^{i}$ ,

$f_{p}(\overline{\Omega}_{j}^{i})=-\omega^{i}\wedge\omega_{j}+\delta_{j}^{i}\sum\omega_{k}\wedge\omega^{k}+\Omega_{j}^{i}$ .

Then it can be checked that $f_{s}$ commutes with the differentials and it sends
the truncation ideal of $W(\mathfrak{g}I(n;R))$ to that of $W(I)$ . Therefore $f_{s}$ induces a
$d$ . $g$ . $a$ . map $\tilde{f}_{s}$ : $ffl(\mathfrak{g}I(n;R))\rightarrow\pi(\mathfrak{l})$ and the following diagram is commutative.

$H^{*}(\tilde{W}(\mathfrak{g}I(n;R)))\rightarrow H^{*}(BF_{n} ; R)$

(7.4) $\downarrow(\tilde{f}_{s})_{*}$ $\downarrow$

$H^{*}(\tilde{W}(I))$ $\rightarrow H^{*}(BS\overline{\Gamma}_{n} ; R)$ ,

where $S=C$ or $P$ and the vertical arrow on the right hand side is induced
from the forgetful map $BSF_{n}\rightarrow BF_{n}$ . The map $\tilde{f}_{s}$ commutes also with the
$0(n)-$ or $SO(n)$-action. Therefore we have a $d$ . $g$ . $a$ . map $\tilde{f}_{s}$ : $\pi(\mathfrak{g}\mathfrak{l}(n;R))_{G(n)}$

$\rightarrow\pi(\downarrow)_{G(n)}$ ($G=O$ or SO) and commutative diagrams.
$H^{*}(\tilde{W}(\mathfrak{g}I(n;R))_{0(n)})\rightarrow H^{*}(B\Gamma_{n} ; R)$

$\downarrow(\tilde{f}_{s})_{*}$ $|$

$H^{*}(\tilde{W}(\mathfrak{l})_{0(n)})$ $\rightarrow H^{*}(BS\Gamma_{n} ; R)$ ,
(7.5)

$H^{*}(\tilde{W}(\mathfrak{g}I(n;R))_{S0(n)})\rightarrow H^{*}(B\Gamma_{\eta}^{+} ; R)$

$H^{*}(\tilde{W}(\mathfrak{l})_{S0(n},)\rightarrow H^{*}(BS\Gamma_{n}^{+} ;\downarrow(\tilde{f}_{s})_{*}\downarrow R)$

.
In the sequel, we determine the homomorphisms $(\tilde{f}_{s})_{*}$ .
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Let $s_{l}\in I(GL(n;R))$ be given by $s_{i}(X)=Trace(X^{i})$ for $X\in \mathfrak{g}I(n;R)$ and
let $u_{l}=Ts_{i}$ : the transgression form of $s_{i}$ . Then $u_{i}$ and $s_{i}$ can be considered
as elements of $W(\mathfrak{g}I(n;R))$ and we use the same letteres for their images in
$\tilde{W}(\mathfrak{g}I(n;R))$ . Let $W_{n}$ be the subalgebra of $\tilde{W}(\mathfrak{g}I(n;R))$ generated by $u_{i}$ and
$s_{i^{*}}.(i=1, \cdots n)$ . Then we can denote

$W_{n}=E(u_{1}, \cdots u_{n})\otimes R[s_{1}, \cdots s_{n}]$

and the inclusion $W_{n}\subset ffl(gI(n;R))$ induces an isomorphism on cohomology.
We also have similar differential complexes $WO_{n}$ and $WSO_{n}$ for $0(n)-$ and
$SO(n)$-basic elements. (For details, see [4]). Now first of all, we determine
$f_{s}(s_{i})$ . Recall that $f_{i}\in I(L)$ was defined as $f_{i}(X)=Trace(X^{i})$ for $X\in I$ . Let $I^{\prime}$

be the ideal of $W(I)$ generated by the elements (3.1), (i) and $(iii)-(v)$ . Then we
have

LEMMA 7.1. (i) $f_{c}(s_{i})\equiv(n+2-2^{i})d_{1}^{i}+\left(\begin{array}{l}i\\2\end{array}\right)d_{1}^{i-2}f_{2}+\cdots+\left(\begin{array}{l}i\\i-1\end{array}\right)d_{1}f_{i-1}+f_{i}(modI^{\prime})$ ,

(ii) $f_{p}(s_{i})\equiv(n+1)d_{1}^{i}+\left(\begin{array}{l}i\\2\end{array}\right)d_{1}^{i-2}f_{2}+\cdots+\left(\begin{array}{l}i\\j-1\end{array}\right)d_{1}f_{i-1}+f_{i}(mod I^{\prime})$ .
PROOF. First we note that if $X\in C0(n)\subset \mathfrak{s}o(n+1,1)$ , then

$f_{k}(X)=Trace$ { $(X-\frac{1}{n}$ Trace $(X)I_{n})^{k}$ } $+2(\frac{1}{n}$ Trace $(X))^{k}$ , for $k$ even,

$=0$, for $k$ odd.

Therefore we obtain

(7.6) $f_{k}\equiv Trace\{(\Omega_{j}^{i})^{k}\}$ $(mod I^{\prime})$ .

Now if we set $R_{j}^{i}=-\omega^{i}\wedge\omega_{j}-\omega_{i}\wedge d+\delta_{j}^{i}d_{1}$ (thus $f_{c}(\overline{\Omega}_{j}^{i})=R_{j}^{i}+\Omega_{j}^{i}$) and also $R=(R_{i}^{\prime})$

and $\Omega=(\Omega_{j}^{i})$ , then it is easy to show the following by induction on $k$ .

(7.7) $(R^{k})_{j}^{i}=\delta_{f}^{i}d_{1}^{k}+d_{1}^{k-1}(-\omega^{i}\Lambda\omega_{j}-(2^{k}-1)\omega_{i}\wedge co^{j})$ .

Hence we have

(7.8) Trace $(R^{k})=(n+2-2^{k})d_{1}^{k}$ .

If we set $A=(A_{j}^{i})$ with $A_{j}^{i}=\omega_{i}\wedge d$ , then

$\Omega R\equiv-\Omega A+d_{1}\Omega(mod I^{\prime})$ and $A\Omega\equiv 0(mod I^{\prime})$ .
Therefore we obtain

(7.9) Trace $(R^{l}\Omega^{k})\equiv d_{1}^{l}$ Trace $(\Omega^{k})(mod I^{\prime})$ .
Since $f_{c}(s_{i})=Trace\{(R+\Omega)^{i}\},$ $(7.8)$ and (7.9) prove (i). The projective case (ii)

can be proved similarly and we omit it. $q$ . $e$ . $d$ .



714 S. MORITA

In view of Lemma 7.1, we dePne $d$ . $g$ . $a$ . maps $g_{c}$ : $W_{n}\rightarrow CW_{n}$ and $g_{p}$ :
$W_{n}\rightarrow PW_{n}$ by

$g_{c}(s_{i})=(n+2-2^{i})d_{1}^{i}+\left(\begin{array}{l}i\\2\end{array}\right)d_{1}^{i-2}d_{2}+\cdots+\left(\begin{array}{l}i\\i-1\end{array}\right)d_{1}d_{i-1}+d_{i}$ ,

$g_{c}(u_{i})=(n+2-2^{t})k_{1}d_{1}^{i-1}+\left(\begin{array}{l}i\\2\end{array}\right)k_{1}d_{1}^{i-3}d_{2}+$ $+\left(\begin{array}{l}i\\i-1\end{array}\right)k_{1}d_{i-1}+k_{i}$ ,
(7.10)

$g_{p}(s_{i})=(n+1)d_{1}^{i}+\left(\begin{array}{l}i\\2\end{array}\right)d_{1}^{i-2}d_{2}+\cdots+\left(\begin{array}{l}i\\i-1\end{array}\right)d_{1}d_{i-1}+d_{i}$ ,

$g_{p}(u_{i})=(n+1)k_{1}d_{1}^{i-1}+\left(\begin{array}{l}i\\2\end{array}\right)k_{1}d_{1}^{i-3}d_{2}+\cdots+\left(\begin{array}{l}i\\i-1\end{array}\right)k_{1}d_{i- 1}+k_{i}$ .

Then we have
PROPOSITION 7.2. The following diagram is commutative:

$H^{*}(W_{n})\cong H^{*}(\tilde{W}(\mathfrak{g}I(n;R)))$

$\downarrow(g_{s})_{*}$ $|(f_{s})_{*}$

$H^{*}(SW_{n})$ $\cong$ $H^{*}(\pi(I))$ ,

where $S=C$ or $P$ ( $resP\cdot s=c$ or $p$ $and\downarrow=\mathfrak{s}\mathfrak{o}(n+1,1)$ or $5\mathfrak{l}(n+1;R)$).

PROOF. In general, $g_{s}$ does not coincide with $\tilde{f}_{s}$ . However using the
fact $\tilde{H}^{*}(W(I)/I^{\prime})=0$ (which can be proved similarly as Theorem 4.1), it is easy
to see that $g_{s}(u_{i})-\tilde{f}_{s}(u_{i})=dv_{i}$ for some $v_{i}\in\tilde{W}(I)$ . Now by Vey (see [9]), we
know that the classes of $u_{I}s_{J}=u_{i(1)}$ $u_{i(s)}s_{J^{(1)}}\ldots s_{j(t)}$ with $i(1)<\ldots<i(s)$ ,
$j(1)\leqq\cdots\leqq j(t),$ $i(1)\leqq j(1)$ and $i(1)+|J|=i(1)+\sum j(l)>n$ form a basis for $H^{*}(W_{n})$ .
Then the assertion is proved by checking that $g_{s}(u_{I}s_{J})-\tilde{f}_{s}(u_{I}s_{J})=dv_{I,J}$ for
some $v_{I,J}$ . $q.e$ . $d$ .

The Vey basis $\{[u_{I}s_{J}]\}$ ( $[u_{I}s_{J}]$ is the class of $u_{I}s_{J}$ ) is divided into two
classes, namely (i) $[u_{I}s_{J}]$ with $i(1)+|J|=n+1$ and (ii) $[u_{I}s_{J}]$ with $i(1)+|J|$

$>n+1$ . The classes in (ii) are called rigid classes and they are invariants
of a connected component of the space of foliations (see [9]).

Now using the Vey basis, we can state
THEOREM 7.3. The homomorPhism $(\tilde{f}_{s})_{*}:$ $H^{*}(\pi(\mathfrak{g}I(n;R)))\rightarrow H^{*}(\tilde{W}(I))$ is given

as follows.
(I) Conformal case: (i) If $i(1)+|J|=n+1$ , then

$(f_{c})_{*}([u_{I}s_{J}])=0$, if at least one of $u_{i(2)},$ $\cdots$
$u_{t(s)}$ is odd,

$=c(I, ])[k_{1}k_{t(2)}\cdots k_{i(s)}d_{1}^{n}]$ , otherwise,

where $c(I, J)=(n+2-2^{i(1)})\Pi(n+2-2^{j(l)})$ . Moreover $[k_{1}k_{i(2)}\ldots k_{t(s)}d_{1}^{n}]$

$=0$ if $n$ is even and $i(2)>n/4$ .

(ii) If $i(1)+|J|>n+1$ , then $(f_{c})_{*}([u_{I}s_{J}])=0$ .
(II) Projective case: (i) If $i(1)+|J|=n+1$ , then
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$(\tilde{f}_{p})_{*}([u_{I}s_{J}])=(n+1)^{t+1}[k_{1}k_{i(2)} k_{i(s)}d_{1}^{n}]$ .

(ii) If $i(1)+|J|>n+1$ , then $(f_{p})_{*}([u_{I}s_{J}])=0$ .

PROOF. (I) By Proposition 7.2, we have

$(\tilde{f}_{c})_{*}([u_{I}s_{J}])=(g_{c})_{*}([u_{I}s_{J}])$

$=[(g_{c})_{*}(u_{I})\Pi\{(n+2-2^{j(l)})d_{1}^{j(l)}+\left(\begin{array}{l}j(l)\\2\end{array}\right)d_{1}^{j(l)-2}d_{2}+\cdots+d_{j(t)}\}]$

$=\Pi(n+2-2^{j(l)})[(g_{c})_{*}(u_{I})d_{1}^{|J|}]+Q$ ,

where $Q$ is the class of a linear combination of terms like

$Q_{k,J^{\prime}}=(g_{c})_{*}(u_{I})d_{1}^{|J|-k}d_{J^{\prime}}$ , with $|J^{\prime}|=k$ .

Now if $k=|J|$ , then $Q_{k,J^{l}}=0$ since $k>n/2$ and $l(d_{J^{\prime}})=2k$ . If $k<|J|$ , then
$Q_{k,J^{J}}=(1/n)d\{(g_{c})_{*}(u_{1}u_{I})d_{1}^{|J|-k-1}d_{J^{\prime}}\}$ , hence $Q=0$ and

$(f_{c})_{*}([u_{I}s_{J}])=\Pi(n+2-2^{j(l)})[(g_{c})_{*}(u_{I})d_{1}^{|J|}]$ .
On the other hand, considering the length we have

$(g_{c})_{*}(u_{I})d_{1}^{|J|}=\Pi\{(n+2-2^{i(l)})k_{1}d_{1}^{t(l)-1}+ +k_{t(l)}\}d_{1}^{|J|}$

$=(n+2-2^{i(1)})k_{1}k_{i(2)}\cdots k_{i(s)}d_{1}^{i(1)+|J|-1}+k_{i(1)}\cdots k_{i(S)}d_{1}^{|J|}$

$=(n+2-2^{i(1)})k_{1}k_{i(2)}\cdots k_{i(s)}d_{1}^{i(1)+|J|-1}+d(k_{1}k_{i(1)}\cdots k_{i(s)}d_{1}^{|J1-1})$ .
This proves (I). (II) can be proved similarly. $q$ . $e$ . $d$ .

The map $\tilde{f}_{s}$ : $\tilde{W}(\mathfrak{g}I(n;R))\rightarrow\tilde{W}(\mathfrak{l})$ commutes with the actions of $0(n)$ and
$SO(n)$ . Therefore it induces $\tilde{f}_{s}$ : $\tilde{W}(\mathfrak{g}\mathfrak{l}(n;R))_{G(n)}\rightarrow\tilde{W}(\mathfrak{l})_{G(n)}$ , where $G=Oor$ SO.
By a similar argument as above, we obtain the following. Let $\{[u_{I}s_{J}], [s_{J}]\}$

be the Vey basis for $H^{*}(WO_{n})\cong H^{*}(\tilde{W}(\mathfrak{g}I(n;R))_{o(n)})$ (see [9]).

THEOREM 7.4. The homomorphism $(\tilde{f}_{s})_{*}:$ $H^{*}(\tilde{W}(\mathfrak{g}I(n;R))_{o(n)})\rightarrow H^{*}(\tilde{W}(I)_{o(n)})$

is given as follows.
(I) Conformal case: (i) If $i(1)+|J|=n+1$ , then

$(f_{c})_{*}([u_{I}s_{J}])=0$, for $s>2$ ,

$=c(I, J)[k_{1}d_{1}^{n}]$ , for $s=1$ .
(ii) If $i(1)+|J|>n+1$ , then $(f_{c})_{*}([u_{I}s_{J}])=0$ .
(iii) $(f_{c})_{*}([s_{J}])=0$, for $|$ ] $|>n/2$ ,

$=[d_{J}]$ , for $|J|\leqq n/2$ .
(II) Projective case: (i) If $i(1)+|J|=n+1$ , then
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$(f_{p})_{*}([u_{I}s_{J}])=(n+1)^{t+1}[k_{I^{\prime}}d_{1}^{n}]$ , where $I^{\prime}=I-\{i(1)\}$ .

(ii), (iii) The same formulas as in the conformal case.
We omit the oriented case since the formulas for that case are now

almost clear. As for the rigid classes of smooth foliations, it follows from
Theorems 7.3 and 7.4 that

COROLLARY 7.5. The rigid classes of smooth foliations are all zero on
conformal or projective foliations.

REMARK 7.6. (i) The statement (iii) in Theorem 7.4 is nothing but the
strong vanishing theorem of Nishikawa and Sato [22] mentioned in the
Introduction.

(ii) Combining the results in \S 5 and Theorems 7.3 and 7.4, we can read
off the characteristic classes (of smooth foliations) of Examples 5.1-5.4. They
have been systematically calculated first by Kamber and Tondeur [11] [13]
(see also [28] [29]).

(iii) Yamato [29] has proved Corollary 7.5 under conditions ”local homo-
geneity” and the normal bundle is trivial.

(iv) Recently, Fuchs [7] has announced that the characteristic classes
defined by Bott-Haefliger and Bernstein-Rosenfeld are all non-trivial. In
particular, the rigid classes are non-zero. Corollary 7.5 shows that they are
obstructions for a smooth foliation to be conformal or projective.

(v) In principle, the construction and computation in \S \S 3-7 could be
done also for foliations associated with those second order G-structures
classified by Kobayashi and Nagano [15], provided the existence and uniqueness
of the normal Cartan connection are established (cf. [24]). In fact, recently
Takeuchi [26] has developed a detailed study of such foliations and in particular
he has proved Corollary 7.5 for a wide class of them. We also mention that
Nishikawa and Takeuchi [23] have proved the strong vanishing theorem for
them.

8. Continuous variation.

In this section we study how our characteristic classes behave under
deformations of conformal or projective foliations. Let us call an element
$x\in H^{*}(\tilde{W}(I))$ ”rigid” if for any differentiable one-parameter family $F_{t}$ of
conformal or projective foliations with trivial normal bundles on a smooth
manifold $M,$ $\Phi(x)(F_{0})=\Phi(x)(F_{1})$ holds. For elements of $H^{*}(\tilde{W}(\mathfrak{l})_{S0(n)})$ , we dePne
similarly. Now by the same method as in Heitsch [9] (see also [6]), we have

THEOREM 8.1. Let $k_{I}d_{J}\in ffl(I)$ or $ffl(I)_{S0(n)}$ be a cocycle as in Proposition
4.3 or $4^{\backslash }5$ and assume that $1\not\in I,$ $1\not\in J$ and $2(i(1)+|J|)>n+2$ . Then the class
$[k_{I}d_{J}]$ is rigid.
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If $I$ contains 1, then $[k_{I}d_{J}]$ may be non-rigid. For example the class
$[k_{1}d_{1}^{\eta}]$ , which is the Godbillon-Vey invariant, may vary continuously under
deformations of conformal or projective foliations (except the case when the
foliation is conformal of even codimension with trivial normal bundle, in
which case we know that the Godbillon-Vey invariant is zero). Thurston
has proved that it can vary under deformations of smooth foliations (un-
published). However his construction does not seem to yield examples in
conformal nor projective context.

In [17], Lazarov and Pasternack have shown that any non zero class in
$H^{4m-1}(RW_{4m-2})$ which does not contain $h_{\chi}$ vary continuously, by using a residue
formula for isolated zero points of Killing vector fields. As a corollary they
obtained a surjective homomorphism

(8.1) $\pi_{4m-1}(BRF_{n})\rightarrow R^{d(m)}\rightarrow 0$ ,

where $d(m)=\dim H^{4m}(BO(4m-2))$ . Since these characteristic classes can be
defined already in the conformal or projective context (Theorem 6.2), (8.1)

holds for $R$ replaced by $C$ or $P$ .
REMARK 8.2. Recently, Nishikawa [21] has obtained a residue formula

for projective vector fields and shown that some of the classes in $H^{2m-1}(PWO_{2m-1})$

vary continuously.
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