A generalization of Roberts-Tannaka duality theorem

By Kiyoshi IKESHOJI

(Received May 13, 1980)

1. Introduction.

Let $\{\mathfrak{M}, G, \gamma\}$ be a covariant system, that is, G is a locally compact group and $\gamma: G \to \operatorname{Aut}(\mathfrak{M})$ is a homomorphism of G into the group of *-automorphisms of a von Neumann algebra \mathfrak{M} with the following continuity: $G \ni t \to \gamma_t x \in \mathfrak{M}$ is continuous for each $x \in \mathfrak{M}$ with respect to the σ -weak topology on \mathfrak{M} . By definition in [4], a *Hilbert space in* \mathfrak{M} is a closed subspace \Re of \mathfrak{M} such that

- (i) y*x is a scalar multiple of the identity for every $x, y \in \Re$ and
- (ii) for every non-zero $a \in \mathfrak{M}$, there exists an $x \in \mathbb{R}$ with $ax \neq 0$.

The inner product (x | y) in \Re is given by y*x. If a *Hilbert space* \Re in \Re is globally invariant under γ , $\gamma_t(\Re) \subseteq \Re$ for all $t \in G$, we have

$$(\gamma_t x | \gamma_t y) = \gamma_t (y^* x) = y^* x = (x | y)$$
 for every $x, y \in \mathbb{R}, t \in G$.

Hence the restriction of γ to \Re is a unitary representation of G. We denote it by π_{\Re} . Let $\mathcal{H}_r(\mathfrak{M})$ be the collection of all *Hilbert spaces in* \mathfrak{M} globally invariant under γ . Let \mathfrak{M}^r denote the fixed point algebra $\{x \in \mathfrak{M} : \gamma_t(x) = x \text{ for all } t \in G\}$ of \mathfrak{M} under γ and $\operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^r) = \{\rho \in \operatorname{Aut}(\mathfrak{M}) : \rho(x) = x \text{ for all } x \in \mathfrak{M}^r\}$.

Under the above situation the following Roberts-Tannaka duality theorem was obtained and was used as a basic tool in [1].

Theorem 1. Assume that \mathfrak{M}^{γ} is properly infinite and G is compact. If each irreducible subrepresentation of $\{\gamma, \mathfrak{M}\}$ is unitarily equivalent to some $\pi_{\mathfrak{K}}$, $\mathfrak{K} \in \mathcal{H}_{\gamma}(\mathfrak{M})$, then every $\sigma \in \operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^{\gamma})$ leaving every member $\mathfrak{K} \in \mathcal{H}_{\gamma}(\mathfrak{M})$ globally invariant must be of the form γ_s for some $s \in G$.

In this short note we generalize the above theorem to the case of arbitrary locally compact groups. This problem is suggested in [3].

The author would like to thank Dr. Nakagami for his encouragement.

2. A duality theorem.

Before stating the theorem, we show the following lemma.

LEMMA. If $\sigma \in \operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^r)$ and $\Re \in \mathcal{H}_{\gamma}(\mathfrak{M})$ which is globally invariant under σ , each globally γ -invariant closed subspace \Re' of \Re is also globally invariant

56 K. Ikeshoji

under σ .

PROOF. Let $\{e_i\}_{i\in I'}$ be an orthonormal basis of \Re' which is extended to those $\{e_i\}_{i\in I}$ $(I'\subseteq I)$, of \Re , i. e., $e_i^*e_j=\delta_{ij}\cdot 1$ and $\sum_{i\in I}e_ie_i^*=1$. Put $p=\sum_{i\in I'}e_ie_i^*$.

Since \Re' is globally γ -invariant, we have

$$\gamma_t(p)\pi_{\Re}(t)a = \gamma_t(pa)$$

$$= \pi_{\Re}(t)(pa)$$

$$= p\pi_{\Re}(t)a \quad \text{for every} \quad a \in \Re, \ t \in G.$$

This implies that $\gamma_t(p)=p$ for every $t\in G$, i.e., $p\in\mathfrak{M}^{\gamma}$. Hence we have

$$\sigma(\Re') = \sigma(p\Re) = p\sigma(\Re) \subseteq p\Re = \Re'.$$
 Q. E. D.

THEOREM 2. Let $\{\mathfrak{M}, G, \gamma\}$ be a covariant system such that \mathfrak{M}^{γ} is properly infinite. If there exists \Re_0 in $\mathcal{H}_{\gamma}(\mathfrak{M})$ such that π_{\Re_0} is unitarily equivalent to the left regular representation λ of G, every $\sigma \in \operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^{\gamma})$ leaving \Re_0 globally invariant must be of the form γ_s for some $s \in G$.

PROOF. For each $a, b \in \Re$, $\Re \in \mathcal{H}_r(\mathfrak{M})$, let $f_{a,b}$ be the function on G given by

(1)
$$f_{a,b}(t) = (a \mid \pi_{\mathfrak{L}}(t)b) = \gamma_t(b^*)a \quad \text{for every } t \in G.$$

Since π_{\Re_0} is unitarily equivalent to λ , the set $\{f_{a,b}; a, b \in \Re_0\}$ is nothing but the Fourier algebra A(G) of G. [2]. Since \mathfrak{M}^{r} is properly infinite, there exist isometries w_1 , w_2 in \mathfrak{M}^{r} with $w_1w_1^*+w_2w_2^*=1$. Let a, b, c, $d \in \Re_0$, $\alpha \in C$. By direct computation we have the followings;

$$(2)$$
 $w_1 \Re_0 + w_2 \Re_0$, $\Re_0 \cdot \Re_0 \in \mathcal{H}_r(\mathfrak{M})$,

(3)
$$f_{a,b}(t)+f_{c,d}(t)=f_{w_1a+w_2c,w_1b+w_2d}(t)$$

$$f_{a,b}(t) \cdot f_{c,d}(t) = f_{ac,bd}(t) \quad \text{and} \quad$$

(5)
$$\alpha f_{a,b}(t) = f_{\alpha a,b}(t)$$
 for every $t \in G$.

Hence the sets $\{f_{x,y}; x, y \in w_1\Re_0 + w_2\Re_0\}$ and $\{f_{x,y}; x, y \in \Re_0 \cdot \Re_0\}$ are both subsets of A(G).

Let $\sigma \in \operatorname{Aut}(\mathfrak{M} \mid \mathfrak{M}^{\gamma})$ leaving \Re_0 globally invariant, then it is easily seen that σ leaves also $w_1\Re_0 + w_2\Re_0$ and $\Re_0 \cdot \Re_0$ globally invariant.

Let $\Re_i \in \mathcal{H}_{7}(\mathfrak{M})$ such that $\sigma(\Re_i) \subseteq \Re_i$ (i=1, 2) and $a, b \in \Re_1$, $c, d \in \Re_2$. If $f_{a,b}(t) = f_{c,d}(t)$ for all $t \in G$, then

$$\begin{split} &(\gamma_{t^{-1}}(w_1 a - w_2 c) \mid w_1 b + w_2 d) \\ = & f_{w_1 a - w_2 c, w_1 b + w_2 d}(t) \\ = & f_{a, b}(t) - f_{c, d}(t) = 0 \quad \text{for all} \quad t \in G. \end{split}$$

Put $\Re' = [\{\gamma_t(w_1a - w_2c); t \in G\}]$, then \Re' is a globally γ -invariant closed subspace of $w_1\Re_1 + w_2\Re_2$. Since $w_1\Re_1 + w_2\Re_2$ is an element of $\mathcal{H}_r(\mathfrak{M})$ which is globally invariant under σ , it follows from Lemma that $\sigma(\Re') \subseteq \Re'$, especially $\sigma(w_1a - w_2c) \in \Re'$. Hence we have

$$b*\sigma(a)-d*\sigma(c)=(w_1b+w_2d)*\sigma(w_1a-w_2c)$$

$$=(\sigma(w_1a-w_2c)|w_1b+w_2d)$$

$$=0.$$

If $f \in A(G)$ is of the form $f_{a,b}$ for some $a, b \in \Re$, $\Re \in \mathcal{H}_{r}(\mathfrak{M})$ with $\sigma(\Re) \subseteq \Re$, by the above argument we can define a functional $\widehat{\sigma}$ on A(G) as follows;

(6)
$$\hat{\sigma}(f) = \hat{\sigma}(f_{a,b}) = b^* \sigma(a).$$

Since \Re_0 is globally invariant under σ , the domain of $\hat{\sigma}$ is the whole space A(G). Let $a, b, c, d \in \Re_0$, $\alpha \in C$. By $(1) \sim (6)$ we have the followings;

$$\hat{\sigma}(f_{a,b}+f_{c,d}) = \hat{\sigma}(f_{w_1a+w_2c, w_1b+w_2d})
= (w_1b+w_2d)^*(w_1\sigma(a)+w_2\sigma(c))
= b^*\sigma(a)+d^*\sigma(c)
= \hat{\sigma}(f_{a,b})+\hat{\sigma}(f_{c,d}),
\hat{\sigma}(\alpha f_{a,b}) = \hat{\sigma}(f_{\alpha a,b})
= b^*\sigma(\alpha a)
= \alpha \hat{\sigma}(f_{a,b}) \text{ and}
\hat{\sigma}(f_{a,b}\cdot f_{c,d}) = \hat{\sigma}(f_{ac,bd})
= (bd)^*\sigma(ac)
= \hat{\sigma}(f_{a,b})\cdot\hat{\sigma}(f_{c,d}).$$

Therefore $\hat{\sigma}$ is a non-zero continuous character of A(G). From Eymard duality theorem [2] it follows that there exists uniquely $s \in G$ such that

$$\hat{\sigma}(f_{a,b})=f_{a,b}(s^{-1})$$
 for every $a,b\in\Re_0$.

Since it holds that

$$(\sigma(a)|b) = (\gamma_s a|b)$$
 for every $a, b \in \Re_0$,

we have

(7)
$$\sigma = \gamma_s \quad \text{on } \Re_0$$
.

58 K. Ikeshoji

Finally we shall show that \mathfrak{M}^{r} and \mathfrak{K}_{0} generate \mathfrak{M} . For each $k \in K(G)$, $x \in \mathfrak{M}$ put

(8)
$$\gamma_k(x) = \int_G k(t) \gamma_t(x) dt ,$$

where K(G) denotes the set of all continuous functions on G with compact support and dt denotes a left invariant Haar measure on G. Let $\{V_i\}_i$ be a fundamental system of neighbourhoods of the unit of G and $\{k_i\}_i$ a family of functions such that

- a) $k_i \in A(G) \cap K(G)_+$, where $K(G)_+ = \{k \in K(G); k(t) \ge 0 \text{ for all } t \in G\}$,
- b) $supp(k_i) \subseteq V_i$ and
- c) $\int_{\mathcal{G}} k_i(t)dt = 1$, for all *i*.

Then for every σ -weakly continuous linear functional ϕ of $\mathfrak M$ it holds that

(9)
$$|\phi(x-\gamma_{k_i}(x))| \leq \int_G |\phi(x-\gamma_t(x))| k_i(t) dt \quad \text{for each } x \in \mathfrak{M}.$$

Since each k_i belongs to A(G), there exist a_i , $b_i \in \Re_0$ such that

$$k_i(t) = f_{a_i, b_i}(t)$$
 for all $t \in G$.

Then we have

(10)
$$\gamma_{k_{i}}(x) = \gamma_{f_{a_{i},b_{i}}}(x) = \int_{G} f_{a_{i},b_{i}}(t) \gamma_{i}(x) dt$$

$$= \int_{G} \gamma_{i}(xb_{i}^{*}) dt \cdot a_{i} \in \mathfrak{M}^{\gamma} \cdot \mathfrak{R}_{0} .$$

Hence it follows from (9) that each $x \in \mathfrak{M}$ is approximated σ -weakly by the elements of $\mathfrak{M}^{\gamma} \cdot \mathfrak{R}_0$ and consequently \mathfrak{M}^{γ} and \mathfrak{R}_0 generate \mathfrak{M} .

Since σ coincides with γ_s on \mathfrak{M}^{γ} and \mathfrak{R}_0 by (7), we conclude that $\sigma = \gamma_s$ on \mathfrak{M} . Q. E. D.

REMARK. It should be noticed that if the action γ is faithful, Theorem 1 is reduced to the compact case of Theorem 2.

References

- [1] H. Araki, R. Haag, D. Kastler and M. Takesaki, Extension of KMS states and chemical potential, Comm. Math. Phys., 53 (1977), 97-134.
- [2] P. Eymard, L'algebre de Fourier d'un group localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
- [3] Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras, Lecture Notes in Math., 731, Springer, Berlin, 1979.

[4] J.E. Roberts, Cross product of von Neumann algebras by group duals, Symposia Math., 20 (1976), 335-363.

Kiyoshi IKESHOJI Department of Mathematics Kyushu University Fukuoka 812 Japan