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§1. Introduction.

The purpose of this paper is to prove the following result.
THEOREM 1.1. Let X be a based finite Zs-complex in the sense of [5]. Then
there exists a natural split epimorphism

At {X, CP} 7, —> Kr(X).

As corollaries of this theorem we deduce the results of G. Segal and
J. C. Becker [4].

First we fix our notation.

Let X be a compact based Z,-space and let

Ke(X)=Kr(X, %)

be the reduced KR-group of Atiyah [2]. If X and Y are based Z,-spaces, then
[X, Y]z, denotes the set of Z,-homotopy classes of based Z,-maps from X to
Y. Let R?? be the representation of Z; on R?*? given by

g(xly Tty xp+q):(_xl; tty T Xpy Xptis xp+q): gGZZ:

and let Y7 9=(R?9° be the one-point compactification of R?% Then we define
the stable Z,-homotopy group {X, Y}z, to be im[2™"AX, 3™"AY],,. Let

n
CP™ be the complex projective space with the involution ¢ given by

0'[20; ) Zn]:l:EO; ) En] .

The construction of A4 is given as follows.

Let BR denote a classifying space for stable Real vector bundles so that
RuX)=[X, BR]z,. (We shall give a specific model for BR in §3.) For a Z,-
space X,

* This author was partially supported by Grant-in-Aid for Scientific Research (No.
474017), Ministry of Education.
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Qz,(X)=lim F(I™", I"AX)
n
denotes the equivariant infinite loop space, where F(,) denotes the based func-
tion space with the natural Z,-action. Then by use of the Bott periodicity of
KR-groups [2], we can define an infinite loop space structure

§: Qz,(BR)—> BR
similarly as for BU.
Note that the canonical line bundle over CP" is a Real line bundle in the

canonical way. Let
j: CP*>— BR

be a Z,-map which classifies the stable class of the canonical Real line bundle.
Then put
A=£2Qz,(j) 1 Qz,(CP*) —> BR.

Then using the natural isomorphism

{X, CP*} 2,=[X, Qz,(CP*)]1z,,
we obtain a natural homomorphism

A {X, CP=} 7, —> Ki(X).

By forgetting Z,-action in the above argument we obtain a natural homo-
morphism
i {X, CP®) —> K(X).
Then we have
COROLLARY 1.2 (Segal [12]). Let X be a finite complex. Then 2% is a split
epimorphism.
PrOOF. We have a commutative diagram

2 N
(XX S*/4 %S, CP*} 5, —> Ra(XxS°/% SY)

¢ | X

I4

(X, CP*} ——— R(X)

where S° is the zero-sphere with free involution and ¢’, ¢ are the restriction
maps on the subspace X=Xx {0} C XxS° which are known to be natural
isomorphisms.

Next consider the case that X is a trivial Z,-space. Then clearly Kn(X)=
]?é(X). The following proposition will be proved in §4.

PROPOSITION 1.3. Let X be a finite complex with trivial Zs,-action. Then
there exists a natural isomovphism
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{X, CP~}z,={X, BOQ2)}D{X, BOQ)}.
Movreover, we have via this isomorphism ‘
2= pas®pin s (X, CP¥) 7, —> Ro(X)=KO(X),

where py,: QBO@2)—BO and p,: QBO(1)—BO are the extensions of the standard
inclusions BO2)—BO and BO(1)—BO respectively.

COROLLARY 14 (Becker [4]). Let X be a finite ' complex. Then pox:
(X, BOQ}—KO(X) is a split epimorphism.

§2. The equivariant transfer homomorphism.

In this section we recall the definition of the transfer homomorphism in
equivariant cohomology theories [8].

Let G be a finite group and I' a compact Lie group. Let a: G—Autl be
a homomorphism and let I'X,G be the semi-direct product. In we have
defined the fotion of a principal (I, @, G)-bundle p : E—B, namely, E is a I'x ,G-
space such that free as a I-space, B is a G-space and B=F /I" via the projection
p. Let F be a compact smooth I'X ,G-manifold and suppose that B is compact.
Then we obtain a (I, @, G)-bundle

? ~ b
F— E=EXrF—B.

Choose a I'X ,G-embedding FCW into a Euclidean I'X ,G-space W. Then
since B is compact, there exists a G-vector bundle » over B and a G-vector
space V such that

(ExrW)Dn=BxV.

Now if E, and E, are fibre bundles over B, then E;XgE, denotes the fibre
product. Note that X—(EXX)Xgy is a functor on I'X,G-spaces. Let v(F)
be the normal bundle of F in W. Then we have I'X,G-maps

W < y(F) —> y(FYDBe(F)= FX W

where j(v)=(v, 0). Then applying the above functor we obtain G-maps
Z‘/ e

~ ~ J ~
(EXrW)Xpn <— (EXry(F)Xpn —> (EXp(FXW)Xpy.

By definition, (EX W)Xpp=(EX W)®yp=BxV, and by [8, Lemma 22],
(EXr(FXW)Xxpgp=EXV. We remark that if p is a differentiable (I a, G)-
bundle then the G-embedding

E=Ex F—> (Ex W)xzp=BxV
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is G-homotopic to the projection p: E—B and the normal bundle »(E, BXV) is
just (EX ry(F))X g7

Now clearly i’ (E~>< rv(F)Xgp—BXV is an embedding onto an open set
and j': (EX rv(F)Xgp—EXYV is a proper map. Hence by taking the one-point
compactification we obtain a G-map B.AV*—E, AV, where 4+ means a disjoint
base point. By taking the limit over V we obtain a stable G-map

t:t(p) . B+ —— E+

which is independent of choices of the embedding FCW and 7 (8], and is
called a trace of the bundle p=(F—E—B).

Now let M be a closed G-manifold. Then the unique map p: M—x is a
({e}, G)-bundle, and we obtain a trace ¢: S°—M,. We define the equivariant
Euler characteristic Zg(M) by =mete{S° S°% = A(G), where n: M,—S° is the
projection and A(G) is the Burnside ring of G (see [11]). Let H be a subgroup
of G and let ¢y : A(G)—Z be the ring homomorphism given by ¢x(S)=#{S¥}
for a finite G-set S.

LEMMA 2.1. Let M be a closed G-manifold and let H be a subgroup of G.
Then we have ¢u(Xe(M)=X(MH), where M¥={xeM; h(x)=x for any h<H}.

PROOF. Let ¢y: {S° S°%s—Z be the ring homomorphism given by ¢x({f})
=deg (f¥) for a G-map f: V°—V° By the result of [11], we can replace A(G)
and ¢y with {S° S°%s and ¢y. Now Xs(M) is represented by a G-map

t T
Ve —> M AV — V°
and by the definition”of the trace we see easily that
tH: (VEY — MEIAVH)E

is a trace of the manifold M#. This shows the lemma.

Let now F be a closed I'X ,G-manifold and F’ a I'X,G-submanifold. Let
N be a closed I'X,G-invariant tubular neighborhood of F” in F. We assume
that there exists a non-singular I'X ,G-invariant vector field 4 on F—N whose
restriction to dN lies in the tangent space of ON. Let p: E—B be a principal
(I a, G)-bundle. Let §=(F—E—B) and §’=(F'—E’— B) be the associated bundles
with fibre F and F’, respectively. Let 7: E’—FE be the natural inclusion. Then
we obtain

PROPOSITION 2.2. With the above assumptions the following diagram is G-
homotopy commutative



Segal-Becker theorem 19

(3]
B.: / Tz’
o
E’.

PrOOF. Let X and Y be locally compact G-spaces. We define a locally
proper G-map from X to Y to be a proper G-map f:U—Y for some open sub-
set U of X. Let f, and f; be locally proper G-maps from X to Y. A G-homo-
topy H of f, and f, is a locally proper G-map H from XxXI to Y whose restric-
tion to XX {7} is f;, i=0, 1. It is clear that a locally proper G-map defines a
G-map f: X°—=Y° and similarly for homotopy.

Now we choose a I'X,G-embedding FCW into a Euclidean I'X ,G-space.
Then F’ (CF)CW. Then we obtain locally proper I'X ,G-maps

E.

k
WOu(F) — v(F)Pr(F)=FXW

WDOu(F") — u(FPr(F)=F' XW.

We first show that the locally proper I'X.G-maps k and (jXid)-k’ are
homotopic, where j: F’—F is the inclusion.

We may assume the following conditions :

(i) By the collaring theorem, we can identify

N=N'U@NXI), oN'=dNx{0}, 0F—N)=0oNx {1}
and F=N'\UONxXIH\JF—N.

Let 7:v(F)—F, z’: N-»F' and n”:0NXI—I be the projections.
(i) v(F)={xeW; |z(x)x)|<1} and N'={zeF; |n'(z)z]| <1}, where | | is

the I'<X,G-invariant norm in W.
(iii) The non-singular I'X,G-invariant vector field 4 is extended on

(ONxI)UF—N so that 4 is tangent to ONX {s} for any sel.

(iv) 4(x)|=1 in W for any x<(@NxI)JF—N.

Note that we can identify v(F)|y.-sx with the tubular neighborhood of F’
in W. We deform a normal vector in y(F)|y:_sx: to a vector normal to F’ in
a canonical way, and deform % :v(F)|p-n.—FXW to the trivial map 0—FXW.

Recall that E(x)=(z(x), z(x)x) for x€u(F) and that (jxid)ek’(x)=(x'n(x),
' n(x)x) for xv(F)|yi-an:-

We define a locally proper I'X ,G-map H from v(F)XI to FXW by

H<x) t)z(Hl(xy t)’ H2(x; t))EFXW’
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where H,(x, t) is the canonical path connecting z(x) and n’z(x) in N’ if z(x)e
N'—0ON’, equal to n(x) if m(x)eF—N, and can be canonically extended on all
v(F) to be a continuous /"X ,G-map, and

2()x+tra()r()  if x(x)e N'—oN’
20 x+td(z(x))  if z(x)eF—N
2(x0) 2+t {1—2s+2s] 7' z(x) ()] 7'z ()7 (%)
if 7(x)€dNXI, s=x"z(x) and 0=<s=1/2
7(x) 2-HK@s— 1|7 2 (@) 7 7 ()7 (), Az (x)

if 7(x)edNXI, s=n"n(x) and 1/2<s<1,

Hz(x: t>:

where K(s; v, w)=|1—sw+sw| {1—s)v+sw} which is well-defined when v
and w are linearly independent. The domain of H is the open set

{(x, DE(F)XI; |1 Hy(x, O <1}.

H, is well-defined because ﬂ'n(x)n(;) and 4(zx(x)) are linearly independent and
14(z(x))|=1 for any m(x)€dNxI. If n(x)e F—N and t=1, then the domain is
empty because |4]|=1 and 4 is normal to m If 7(x)edNxI and t=1, then
the domain is empty because l[}cﬁ;;r(})?(—x))llgl, |K||=1 and m is normal to
both z’z(x)z(x) and K.
Thus H is the required locally proper I'x<,G-homotopy of £ and (jXid)-k’.
Now to define the homotopy between the traces of & and &/, consider the

functor (E'x r()Xgn. Then clearly we obtain a homotopy between the locally
proper G-maps

(EX rW)X gD E X pu(F)) X g —> (EX p(FXW))X 57
and

(EX W)X 57 D(E X rv(F) X 57

—> (EX p(F'XW) X gy —> (EX p(FXW) X 5.

This completes the proof.

Let h¥ be a generalized G-cohomology theory in the sense of [7] For a
(I; @, G)-bundle é=(F—E—B) where F is a closed smooth manifold and B is
compact, we define the transfer homomorphism

pr: hE(E) —> hE(B)

by pi=(6")"t(&)*e", where 1(€): BiAV‘—E,. AV is a trace of & and ¢": A%(X)
—h%V(XAV®) is the suspension isomorphism. It is known that h%(X) is a
7g(pt.)=1{S’ S% s-module and p, is a zj(pt.)-module homomorphism. Let we
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z3(pt.) and let M be a n@(pt.)-module. We denote by M[w™] the localization
of M with respect to the multiplicative set {®w"},-1,2,.. Now we need the fol-
lowing generalization of [8, Theorem 4.7].

p
PROPOSITION 2.3*. Let E=(F — E —> B) be a (I, a, G)-bundle, where F is
a closed smooth manifold. Suppose that B is a finite G-complex in the sense of
[5]. Then the composition of w§(pt.)[Xe(F) *1-module homomorphisms

pip*: hEB)A(F)™'] — hE(B)Xe(F) ]
is an isomorphism.
ProoOF. Let B be the O-skeleton of B. Then B® is a union of G-orbits

G/H. Let E —p—>B be the principal (I, a, G)-bundle associated with &. Let
G/HCB®. The principal bundle §(G/H)—G/H is clearly identified with the
canonical projection

I'x ,G/{e} x . H—> G/H.

Then the associated bundle with fibre F over G/H is easily seen to be the
product bundle
G/HXF— G/H.

Now let w(é)=p,p*(1)ené(B), where lexg(B) is the unit. Let z: B—pt. be the
unique G-map. Then by the naturality (8, Proposition 4.47]) of the transfer we
have
(@) —a*Ae(F))=0,

where 7: B‘®—B is the inclusion. Then the proposition follows from the similar
argument of [8, Theorem 4.7].

Now let K% (x€RO(Z,)) be the Real K-theory of Atiyah [2] K3} is a
generalized Z,-cohomology theory, and K 2(X) is the Grothendieck group Kgx(X)

of Real vector bundles over X. A (I, a, Z,)-bundle F—»E—LB is called a finite

Z,-covering if F is a finite set. In this case, just alike for the usual K-group

(Atiyah [1]), we can define the geometric transfer homomorphism (“direct im-

age”)

: 7! Kp(E) —> Kgp(B).

PROPOSITION 2.4.
t=p,: K}E) —> Ki(B).

PROOF. As F is of zero-dimensional, the normal bundle v(F) in the con-
struction of the trace is isomorphic to F'XW, and the trace
1(p): BiANVC—> E.NV®
is by definition the one-point compactification of the inclusion

*) Added in proof: The proof of works only in the case G=Z,, I'=
U®), a; Z,—Aut U(n) is the conjugation. This was pointed out to us by K. Iriye.
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~ Lo
BXV=(EXW)Xpn O (EXru(F)Xgp=EXV .

We regard the real Z,-module V as a complex vector space with the usual
Z,-action given by the conjugation of complex numbers. Then the suspension
isomorphism ¢¥ in the K¥-theory is defined by the composition

®4 =
Kr(X) —> Kp(XXV) <—J—(— Ke(X+AVE)

where A is the Thom element and f is the canonical isomorphism (see [107]).
We shall use the following lemma.
LEMMA 2.5. Let i: XY be the inclusion of an open subset. Assume that Y
is locally compact and that every Real vector bundle over Y has an inverse bundle.
Let

0
§=[§ —> &1 ]E Kp(X)
and

4

{=[lo —> {11 KR(Y)

be complexes of Real vector bundles over X and Y respectively. Namely 0 is a
bundle homomorphism which is isomorphic outside a compact subset supp (§) of X,
stmilarly for 0’.
Assume that
supp (O)CX and C|x=¢

as an element of Kp(X). Then
E=fe@) e f71E),

where (19)*: kR(XC)—”XR<YC) is induced by the onme-point compactification of i.
Proor. This follows easily from the excision property of Kz-groups (see

[10].
We return to the proof of [Proposition 2.4
Take a Real vector bundle @ over E. We have to show that

(@)@ A=f=(* f(a®4)

in Kg(BXYV), where

@©*=t(p)*: Kp(E+ AV —> Kn(B.AVE).
Here
1dRoF

a@QA=[a@2, a@4 1€ Kg(EXYV)

and
1dR0o*
()R A=[r(a)R

(@4 Ke(BXV),



Segal-Becker theorem 23

where 4, and A, are trivial bundles and supp (aQA4)=E x {0}, supp (t(a)RA)=
Bx {0}.
Let {U,} be a Z.-invariant finite open covering of B such that each ply .
is trivial, say
B
p‘l(U#)zj];[lW;,.
Then by definition of the geometric transfer,

r(a)lvﬂ=£91alw;,-
We define a complex vector bundle homomorphism
Pu(s): alwi @b —> alwi®@h  (s€D)
over Wi, xV=U,XV by
PL(S) 2, (Y QW)=Y R0F- sz 01z, 03 (W)

for xeWi, yea,, v, weV, s€l, where n: BXV—V is the projection.

Then é¢£ defines a bundle homomorphism
=
d,: (E?O‘IW{;,@ZO)X[ —> (Gjaafwi(@ll)XI

over U,XVxI. Since = and 7 are Z,-maps, 4, is a Real vector bundle homo-
morphism.

Now {4,} defines a bundle homomorphism
4 (t(@)@2) X I —> (z(a)RA) X I

because 7-i(x, 0)&V does not depend on the choice of p with xeW/,CE. It is
clear that 4|z.y«0n=1d®0? and supp (4| zxrxu)=«EX {0})CBXV. Thus if we
define

A I BxVxi{1}
B=[r(a)@1,
we have B=t(a)Q4 in Kz(BXV).

If Blecy=a®4 in Kx(EXV), then applies, and the proposition
follows.

Consider the canonical injection

(@)@4]E Kr(BX V),

a s p*r(a)

of bundles over E. This injection splits:

pre(@)=a®y,  where 7lyi=Dalyi.
B “
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We apply this splitting to
A [ ExVx{1}
Blexr=Lp*c(@)Q4 prr(a)®4] .
The restriction to a@®4, of 4 is equal to ;dQc*a®, where ¢ denotes the inclu-
sion of an open neighborhood of zero, which is identified with V, because if we
restrict 4 to a®zolwi <y, then

A(x,u)(y®w):¢’i(1)(x, ni(z,v))(y®w)
:y®a§i(z,v)—zi(x, o(w) .

On the other hand, the restriction to 74, of 4 is an isomorphism, because
the restriction to r®20]W;1 <7 18 kE]jgb’;,(l), the domain of which is out of supp (0%).
J
Now clearly
1dQe*oF 1dRoF
aQ2:1=La®2, a@;]

=aQRQAs Kg(EXYV)

La® 4o

by Thus
Bl ey =a@ABrR2 —> QA ]=a@ 1

in Kg(ExXV). This completes the proof.
REMARK 2.6. The same proof applies to the K¥-theory for a finite group

G, and
t=p: K&(E) —> K§(B).

§3. Some homogeneous spaces.

Let U(n) be the unitary group with the involutive automorphism a: Z,—
Aut U(n) given by a(g)(A)=A, where A is the conjugate of AcU(n). If H is
a closed Z,-subgroup of U(n), then the homogeneous space U(n)/H is a Z,-
manifold.

Let T™ be the maximal torus of U(n) and let N(T™) be the normalizer of
T™. Then we have a Z,-manifold U(n)/N(T"). In order to determine the Z,-
Euler characteristic of U(n)/N(T™), we consider the fixed point submanifold
(U(n)/N(T™))?=.

Given a matrix AeU(n), [A] denotes the class in U(n)/N(T"). If [A]le
(U(n)/N(T™)?2, then A=A-S-P for some S€,CU(n) and PET". Since A=A,
we see easily that S?=], S-P=P-S, and that the conjugacy class of S in 2, is
independent of the choice of A in the class [A]. Then clearly (U(n)/N(T™))%2

[n/2]
is the disjoint union ’;[_I Cr, where the open set C, consists of [A] whose S is
=0

conjugate to
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in X,.

By the multiplication from the left, we consider (U(n)/N(T™))?z as an O(n)-
space.

LEMMA 3.1. C, is the homogeneous space O(n)/N(T#*x Z72%),

PrRoOF. Let @ be the (2x2)-matrix of the form

- )

and let

Q
0 k
Q
1
0 n—2k
1

Clearly [Q, +:]1€C;. Let [A]eC, be given, and let A=A-S-P, where S,
and P=T”., We can now assume that

Qn,k:

S:Sn,k.
Note that
= —il 0
Qni=Qus-s:(Ty )
Then put
X=A-S:-P"-Q's,

where P’eT™ satisfies P- (Z(l) ?

and hence the action of O(n) on C, is transitive.

Let H be the isotropy subgroup of [Q, .]. Then H>X if and only if
XQn1=Qn 'SP for some S, and P=T" Since X=0Q, »*S-P-Qn':
satisfies X=X, a direct calculation shows that

>:P’2. Then one can easily check that Xe O(n),

S-S, :=S,:S and S, ;-P=P-S, ;.
This means that

SE(ZkSZZ)XZn_“

and
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P=diag (A, A1, ***, A&, As, £1, =+, 1),
namely,

X=S8Qn 1 P-Q:'+=N(SOQR)* X Z}%*).

This completes the proof.
LEmMMA 3.2

Xz,(Un)/N(T™)=1e A(Z,).
ProoF. By Lemma 2.]| it is sufficient to show that 2(U(n)/N(T™)=1 and
X((U(n)/N(T™)%2)=1. The first equality is well known (6], p. 27). Now
X(U(n)/ N(T™)?2)= Zk)x(ck) .
We have a fibre bundle
O@R)/Nowe(T*) —> O(n)/Now(T* X Z37**)
—> O(n)/OQREYX Non-215(Z37%%).

It is also known that X(O@kE)/N(T*)=1. If k=[n/2], then the base space
is either one point or RP*'=0(n)/O(n—1)X Z,. Hence the Euler characteristic
is 1. Now if k<[n/2], then X(O(n)/0(2k))=0 and Nocn-21(Z7%2*) is finite.
Hence X(O(n)/OQ2E)X Nocn-21(Z372%))=0. This completes the proof.

Now let F,=U@n)/N(T?*"*). Then F, is a U@2n)X  Z,space. Let U(2n)C
U2n)xU@R)cU(@2n-+2) be the standard inclusion and we regard F,.; as a
U2n) X «Z,-space via the standard inclusion. We define a U(2n) X ,Z,-embedding

].ZFn_"*FnH

by jCAD=[ABQ] for [A1€U(@2n)/N(T*"), where Q is the (2X2)-matrix defined
in Lemma 3.1 Let

S'=S0@)={e} xSOQ)CU2n)xUR2)CU(2n+2).

Then S* is a subgroup of U(2n-+2) with the trivial Z,-action. Therefore F, 4,
is a (UQ@2n) X Z,)x S*-manifold.
LEMMA 3.3. Fp=(Fnp.)5.

PROOF. Remark that [Q]eF?%2 lies in C,=C,(F,) in and Cy(F))
=x, Hence [X:-Q1=[Q] for any Xe0(2). Let [A]JeF, and let XS’ Then

X-TAGQI=[ADX-Q]=[ADQIE Fp1:,
hence F,C(F,:)%. Next let [B]&(Fa+)%. Then
B-1.SY. BCN(T*"*)CU(2n+2).

This implies that [B] is of the form [A@Y] for some Y U(2), and since
Y-1.SV.YCN(T?, we see that Y[ Q] and [B]=[APQ]. This completes the
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proof.
Now we define Z,-equivariant homogeneous spaces of U(4n):

B,=U(4n)/U@2n)x U(2n)
E.=U@n)/Nyeny(T?™)x U@2n)
E.=U@n)/T*X Nyn-n(T** yx U2n)
P,=U@4n)/T*xU@dn—1).
There are canonical projections :

pa: En—> By

wn: En —> E,

gn: En—> Pa,

among which p, is a (U@2n), a, Z,)-bundle with fibre F,=U@2n)/N(T?*") asso-

ciated with the principal (U(@2n), a, Z,)-bundle U(4n)/U@2n)—U@dn)/U(2n)xXU(2n),

and 7w, is a (X,,, trivial, Z,)-bundle with fibre [2n]=25,,/2:.-1 associated with

the principal (X, trivial, Z,)-bundle U(dn)/T?"xUQR@n)—U@4n)/N(T*)xXU(2n).
Let C*"—C*"*** be the inclusion given by

(Zh Tty 24n)*_—‘"><21; *ty Zany 0; 0) Zon+1y **° s Z4ns 0’ 0)'
Then associated with this inclusion, we can define an inclusion
@B: Udn)XUR)xU@2) — Uldn-4).

Let I€U(2) be the unit matrix and QeU(2) as before. Then we define Z,-
embeddings
B, —> Bnx; and P, —> Py

by [A1-[APIPI] for [AleB, or P,, and
E,— E,.; and E_n —> En+1

by [A]J—[ADQAPI] for [A]€E, or E,, respectively. Note that Q*< N(T?) and
the latter ones are Z,-embeddings.
We define B=BR=lim B,, P=lim P,, E=lim E, and E=lim E,. Itis clear

that P is the complex projective space C P~ with the canonical involution given
in §1. Note that B, is the Grassmann manifold with the involution given by
the conjugation. Then it is easy to see the following
LEMMA 34. Let X be a based compact Z,-space. Then there is a natural
isomorphism
[X, BR]z,=Ka(X).
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§4. Proof of the theorem.

Consider the commutative diagram

]' .
E, C— *E.u s Eni1

pnl l | lpm

Bn Bn L_z_> Bn+1

where {*E,,; is the bundle induced from pn4i: Eqiy—Bne. Then i*E,.; is a
(U@n), a, Z;s)-bundle with fibre F,., associated with the principal (U(2n), a, Z,)-
bundle U(4n)/U(2n)—B,. The inclusion j: E,C>i*E,,; in the above diagram is
the map induced from the U(2n)X .Z,-embedding

Foe s Fpy.

By Foiiis a (UQ2n)XoZ,)x S-manifold and F, is the submanifold
of S'-fixed points. Then the S'-flow determines a non-singular U(2n)X oZ,-
invariant vector field 4 outside F, satisfying the condition of Proposition 2.2.
Therefore by Proposition 2.2 and by the naturality of the trace [8, Proposition
447, we see that the diagram of stable Z,-maps

(B (Bnss)s
tpa) | 1 t(pnen

(Ba)+ —— (Ba+1)+
is Z,-homotopy commutative. Therefore we can define a stable Z,-map
t: B, —E,.
Let pzli_n;l pn: E—B and let

Qz,(p+)

¥ &
b QZZ(E+) Qz,(By) —> Qz,(B) —> B=BR

be the extension of p, where » is the projection.
LEMMA 4.1. p.: {X, E+}Zz->K'R(X) is a split epimorphism.
PrOOF. Let

Par: WEZ(En) — 75;2<Bn)
be the transfer homomorphism of the (U(2n), «, Z,)-bundle
Dn

Fn"—>En—>BTL,
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where z%,() is the stable Z,-cohomotopy theory (see [8]). Then by

2.3 and the composition
Pn!°1ﬁ1 77:;2(-811) > n§2(8n>
is an isomorphism. Therefore the limit of this composition

t¥op*: 1% ,(B) —> n%,(B)

is an isomorphism, and hence by the equivariant S-duality theorem ([13]) the

composition of stable Z,-maps

p+°t: B+ — E+ —_—> B+

is a Z,-homotopy equivalence.

Let
7 {X, B+}z2 — {X, E+}22

be the homomorphism induced by the stable map t: Bi,—FE..

position
pser: {X, Bilz, —> {X, By},

is an isomorphism, and hence
px: (X, Ei}z, —> {X, Bi}g,
is a split epimorphism.
On the other hand
(Eor)x: {X, By} gz, —> Kr(X)

is a split epimorphism because the composition

Then the com-

i k r 3
Eorokoi: B—> Qz,(B) —> Qz,(By) —> Qz,(B) —> B

is Z,-homotopic to the identity, where 7 is the canonical inclusion and % is the

right adjoint of the projection 7.
This completes the proof.
Next consider the 2n-fold Z,-covering

Tnt En —>E,.

The following diagram is commutative :

T et n
E, <2 _§ —™ o p
Tn+1 = qn+1

Enyi =—— Eppn ———> Puy
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Let the stable map #(zn): (En)+—(E,). be the trace of z,. Then we have the
following
LEMMA 4.2. The diagram of stable maps

(En)s Hzn) (Ea)s L P,
J/ Has1 = n+1° \l
(En+1)+ (o) > (EansD+ g il > P

is Zy-homotopy commutative.

PROOF. An easy calculation shows that z;1.(E.)—E, is a disjoint union of
two copies of E,, which is mapped by ¢+, to a free Z,-orbit (=two points) in
Pn+1-

Since P,., is arcwise connected, any stable Z,-map

(Z3)+ —> Py

is Z,-homotopic to the trivial map, and the lemma follows.
By we obtain a stable Z,-map

p:E+'—">P.

Now follows immediately from and the following
LEMMA 4.3. The diagram

p* {X) P} Zgy
(X, B}z, A
Px Re(X)

1S commutative.

PRrROOF. [Proposition 2.4] gives the geometric description of the trace of x,,
and the lemma is proved similarly to the proof of (4.4) of [4].

Finally we prove Proposition 1.3, By the result of [9], we have a homotopy
equivalence

Qz,(CPY? 2= QUCP? )X QUEZ,X 7,CP>),).
Now clearly (CP=)?»=B0(1) and EZ,X ;,CP*=BO0(2). Hence
{X, CP=}z,={X, BO}D{X, BOQ2)}

for a CW-complex X with trivial Z,-action.
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Let CZxX; B) be the set of isomorphism classes of pairs (x, f), where
7: X—X is an n-fold Z,-covering and f: X—Bis a Z,-map. In it is shown
that the functor CZ2(X; B) is classified by the Z,-space (E;,2,XB™)/2Y, where
Ez,2, is the universal X ,-free Z,-contractible X, X Z,-space, and that there is
the equivariant Barratt-Quillen map

On: (EzyZnX B")/ 5, —> Qz,(B.) .

Now let B=P=CP>. The map which gives the above homotopy equivalence
is given as follows.

Let
%L, pe
2
X
be in C,(X: P%?); then we take
~ iof
X—P
2
X

in CZx(X; P), where 7: P?2C, P is the inclusion and X is considered as a trivial
Z,-space. Thus the map

QUP)?2) —> QZZ(P+)
is the one induced by the canonical inclusion and we see that

Ax | (X, BO— M1k «
On the other hand let

- f
X —> EZ,X,,P

3

X

be in C,(X; EZ,X4,P); then we take

~

X 1> EZ,xP~P
7))
X

in C%2(X; P), where f*(g): XX is the 2-fold covering induced from the canonical
covering
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q: EZ,XP—> EZ;X4,P.
Let £&—P be the canonical line bundle. Then
N=EZ;X 2,6 —> EZ,X z,P=BO(2)

coincides with the canonical RZ2-bundle.

In order to show that A«|ix,mocn=psx We have only to show that the
canonical line bundle EZ,X§& over EZ,X PP is transferred by the covering ¢
to the complexification 7&C over EZ,X z,P=BO(2).

Let

¢ EZyX 7,P —> (E2,2,XP?/2,

be the map which classifies the 2-fold Z,-covering
qECEAEZ, X 7,P; P).

Then a direct calculation shows that ((Ez,3,X P*?)/Y;)?2 is a disjoint union of
((Ez,22)%2x (P%%)?)/3, and EXy,P, where

E={ecE;,2,; te=eg, {t>=1Z, {gr=2)}.

Since ¢ is the canonical free Z,-covering, we can show that ¢y maps EZ,Xz,P
onto EXy,PC((Ez,Y,X P?)/Y;)%, and that ¢(e, x)=(e, x, ¥). Therefore

P*(Ez,2:%X8%/2)=EZ: X 7,(6D8),

which is easily seen to be p&XC. This completes the proof.
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