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Introduction.

The present paper is devoted to the study of a free boundary problem for
a nonlinear parabolic equation in one-space dimension. Free boundary problems
arise naturally in a number of physical phenomena with change of state (such

as melting of ice and recrystallization of metals) and have been studied by
many authors ( $e$ . $g.,$ $[1,2,4-10,14-19]$ and their references).

In this paper we are concerned with the following one phase Stefan prob-
lem: For a number $l_{0}\geqq 0$ , functions $u_{0}$ on $[0, l_{0}],$ $f$ on $[0, T]\times[0, \infty$ ) and $g$

on $[0, T]$ we find a boundary curve $x=l(t)$ ( $\geqq 0$ on $[0,$ $T]$ ) and a function $u=$

$u(t, x)$ on $[0, T]\times[0, \infty$ ) satisfying

(E) $u_{t}-(|\beta(u)_{x}|^{p- 2}\beta(u)_{x})_{x}=f$ for $l(t)>0,0<x<l(t)$

subject to

(C1) $l(O)=l_{0}$ and if $l_{0}>0$ , then $u(O, x)=u_{0}(x)$ for $0<x<l_{0}$ ,

(C2) $\left\{\begin{array}{ll}|\beta(u)_{x}(t, 0+)|^{p- 2}\beta(u)_{x}(t, 0+)=g(t) & for 0<t<T ,\\\beta(u)(t, l(t))=0 for 0<t<T & \end{array}\right.$

and

(C3) $\frac{dl(t)}{dt}=-|\beta(u)_{x}(t, l(t)-)|^{p- 2}\beta(u)_{x}(t, l(t)-)$ for $0<t<T$ ,

where $2\leqq P<\infty\beta:R\rightarrow R$ is a given function and $\beta(u)_{x}(t, x+)$ (resp. $\beta(u)_{x}(t, x-)\rangle$

stands for the right (resp. left) hand partial derivative of $\beta(u)(t, x)$ at $x$ with
respect to $x$ .

This kind of problems for a certain class of nonlinear parabolic equations
was treated earlier by Douglas [6] and Kyner [16] in which they showed the
existence and uniqueness of solution by using a strong maximum principle for
parabolic equations with variable coefficients, but their method is not applicable
to our case. Our approach to problem $\{(E), (C1)-(C3)\}$ , which is different from
that of Douglas and Kyner in some points of view, is based upon recent results
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on the existence, uniqueness and stability of solutions to nonlinear evolution
equations involving subdifferential operators of time-dependent convex functions
on Hilbert spaces (cf. [12]).

Notations. For a (real) Banach space $V$ we denote by . $|_{V}$ the norm in $V$ ,
by $V^{*}$ its dual and by $(\cdot, )_{V}$ the duality pairing between $V^{*}$ and $V$ ; especially,
if $V$ is a Hilbert space and is identified with its dual space, then we mean by
$(\cdot, )_{V}$ the inner product in $V$ .

By an operator $A$ from a Banach space $V$ into another Banach space $W$ we
mean that to each $v$ in $V,$ $A$ assigns a subset $Av$ of $W$, namely $A$ is a multi-
valued mapping from $V$ into $W$ ; in particular, if $Av$ consists of at most one
element of $W$ for every $v$ in $V$ , then $A$ is called singlevalued. For an operator
$A:V\rightarrow W$ the set $D(A)=\{v\in V;Av\neq\emptyset\}$ is called the domain.

Let $\phi$ be a lower semi-continuous convex function on a Hilbert space $H$ with
values in $(-\infty, \infty$] such that $\phi\not\equiv\infty$ on $H$. Then the set $D(\phi)=\{z\in H;\phi(z)<\infty\}$

is called the effective domain and the subdifferential $\partial\phi$ is an operator from $H$

into itself defined as follows: $z^{*}\in\partial\phi(z)$ if and only if $z\in D(\phi),$ $z^{*}\in H$ and

$(z^{*}, z^{\prime}-z)_{H}\leqq\phi(z^{\prime})-\phi(z)$ , $\forall z^{\prime}\in H$ .
For fundamental properties of $\partial\phi$ we refer for example to a book of Br\’ezis [3].

1. Formulation as a quasi-variational problem.

Let $ 2\leqq p<\infty$ and $ 0<T\ll\infty$ be numbers which are fixed, and set for sim-
plicity

$H=L^{2}(0, \infty)$ , $X=W^{1.p}(0, \infty)$ .
Let $\beta:R\rightarrow R$ be a function with $\beta(0)=0$ and assume that $\beta$ is strictly increas-
ing bi-Lipschitz continuous on $R,$ $i$ . $e.$ ,

$c_{\beta}|r-r_{1}|^{2}\leqq(\beta(r)-\beta(r_{1}))(r-r_{1})\leqq|r-r_{1}|^{2}/c_{\beta}$

for any $r,$ $r_{1}$ in $R$ with a positive constant $c_{\beta}$ .
Given a non-negative continuous function $l:[0, T]\rightarrow R$ and a continuous

function $g:[0, T]\rightarrow R$ , we define for each $t$ in $[0, T]$

$K_{l}(t)=\{z\in X;z(x)=0, \forall x\geqq l(t)\}$

and

(1.1) $\phi_{l,g}^{t}(z)=\left\{\begin{array}{ll}\frac{1}{p}\int_{0}^{\infty}|z_{x}|^{p}dx+g(t)z(0) & if z\in K_{l}(t),\\\infty otherwise. & \end{array}\right.$

Clearly $\phi_{l}^{t}g$ is a lower semi-continuous convex function on $H$ with $D(\phi_{l,g}^{t})=$
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$K_{l}(t)$ . We now consider the nonlinear evolution equation

(1.2) $u^{\prime}(t)+\partial\phi_{l.g}^{t}(Bu(t))\ni f(t)$ for $0<t<T$ ,

where the unknown $u$ is an H-valued function on $[0, T],$ $u^{\prime}(t)=(d/dt)u(t)$ and
$B$ is the singlevalued operator from $H=D(B)$ into itself defined by

$[Bz](x)=\beta(z(x))$ for $z\in H$ and $ x\in[0, \infty$).

DEFINITION 1.1. Let 1, $g$ be as above, $u_{0}$ be in $H$ and $f$ in $L^{2}(0, T;H)$ .
Then we mean by $VP(l, g, u_{0}, f)$ the Cauchy problem for (1.2) to find a func-
tion $u$ in $C([0, T];H)$ such that

(A1) $u\in W^{1.2}(0, T;H)$ and $u(O)=u_{0}$ ;
(A2) the function $t\rightarrow\phi_{l.g}^{t}(Bu(t))$ is bounded on $[0, T]$ ;
(A3) $u^{\prime}(t)+\partial\phi_{l,g}^{t}(Bu(t))\ni f(t)$ for $a.e$ . $t$ in $[0, T]$ .

Such a function $u$ is called a (strong) solution to $VP(l, g, u_{0}, f)$ .
REMARK 1.1. A solution $u$ to $VP(l, g, u_{0}, f)$ is able to be characterized by

the following system:

(1.3) $\left\{\begin{array}{l}u\in W^{1,2}(0, T;H) with u(O)=u_{o},\\\beta(u)\in L^{\infty}(0, T;X),\\\beta(u)(t, )\in K_{l}(t) (hence \beta(u)(t, l(t))=0) for all t\in[0, T],\end{array}\right.$

(1.4) $u_{t}(t, )-(|\beta(u)_{x}(t, )|^{p-2}\beta(u)_{x}(t, ))_{x}=f(t, )$

in the distributional sense on $(0, l(t))$ for $a$ . $e$ . $t\in I_{0}$ ,

(1.5) $|\beta(u)_{x}(t, 0+)|^{p-2}\beta(u)_{x}(t, 0+)=g(t)$ for $a$ . $e$ . $t\in I_{0}$ ,

where $I_{0}=\{t\in[0, T];l(t)>0\}$ . In fact, suppose that $u$ is a solution to
$VP(l, g, u_{0}, f)$ . Then (1.3) follows immediately from (A1) and (A2). As is
easily seen, (A3) can be written in the following equivalent form:

(1.7) $\left\{\begin{array}{ll}(u^{\prime}(t)-f(f), z) & +\int_{0}^{\infty}|\beta(u)_{x}(t, x)|^{p- 2}\beta(u)_{x}(t, x)z_{x}(x)dx+g(t)z(0)=0,\\\forall z\in K_{l}(t) , & for a. e. t\in[0, T].\end{array}\right.$

We see from (1.7) that (1.4) holds and hence $(|\beta(u)_{x}(t, )|^{p- 2}\beta(u)_{x}(i, ))_{x}=$

$u_{t}(t, )-f(t, )\in L^{2}(0, l(t))$ for $a$ . $e$ . $t\in I_{0}$ . This implies that $|\beta(u)_{x}(t, x)|^{p- 2}\beta(u)_{x}(t, x)$

is an absolutely continuous function of $x$ on $(0, l(t))$ and $\beta(u)_{x}(t, 0+)$ exists for
$a.e$ . $t\in I_{0}$ as well as $\beta(u)_{x}(t, l(t)-)$ , so that by integration by parts we obtain
(1.5) from (1.7). Similarly we can show the converse.

Now we are going to give a quasi-variational formulation associated with
our free boundary problem $\{(E), (C1)-(C3)\}$ .

DEFINITION 1.2. Let $l_{0}\geqq 0$ be a number, $u_{0}$ be in $H,$ $g$ in $C([0, T])$ and $f$
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in $L^{2}(0, T;H)$ . Then we mean by $QVP(l_{0}, g, u_{0}, f)$ to find a couple $\{l, u\}$

such that

(B1) $l\in W^{1,2}(0, T)$ and $1\geqq 0$ on $[0, T]$ ;
(B2) $u$ is a solution to $VP(l, g, u_{0}, f)$ ;

(B3) $l(t)=l_{0}-\int_{0}^{l}g(r)dr+\int_{0}^{\iota_{0}}u_{0}(x)d_{X}+\int_{0}^{t}\int_{0}^{l(\gamma)}f(r, x)dxdr-\int_{0}^{\infty}u(t, x)dx$

for all $t$ in $[0, T]$ .
Our results on $QVP(l_{0}, g, u_{0}, f)$ are stated as follows:
THEOREM 1.1. Let $l_{0}\geqq 0,$ $u_{0}\in H$ be non-negative, $g\in C([0, T])$ be non-positive

and $f\in L^{2}(0, T;H)$ be non-negative. Then we have:
(a) If $\{1, u\}$ is a solution to $QVP(l_{0}, g, u_{0}, f)$ , then $u$ is non-negative and $l$

is non-decreasing in $t$ .
(b) Further supp0se that $u_{0}\in X,$ $u_{0}(x)=0$ for all $x\geqq l_{0}$ and $g\in W^{1,2}(0, T)$ .

Then $QVP(l_{0}, g, u_{0}, f)$ has at least one solution.
REMARK 1.2. Let $l_{0},$ $g,$ $u_{0}$ and $f$ be as in Definition 1.2 and let $\{l, u\}$ be a

solution to $QVP(l_{0}, g, u_{0}, f)$ . Then, as was seen in Remark 1.1, $l$ and $u$ satisfy
(1.3), (1.4) and (1.5). Moreover, the following (1.5) and (1.6) hold:

(1.5) $|\beta(u)_{x}(t, 0+)|^{p- 2}\beta(u)_{x}(t, 0+)=g(t)$ for $a.e$ . $t\in[0, T]$ ,

(1.6) $\frac{dl(t)}{dt}=-|\beta(u)_{x}(t, l(t)-)|^{p- 2}\beta(u)_{x}(t, l(t)-)$ for $a$ . $e$ . $t\in[0, T]$ .

Indeed, from (B3) with (1.5) we derive that for $a$ . $e$ . $t\in I_{0}(=\{t\in[0, T];l(t)>0\})$

$\frac{dl(t)}{dt}=-g(t)+\int_{0}^{l(t)}f(t, x)dx-\int_{0}^{\infty}u_{l}(t, x)dx$

$=-g(t)-\int_{0}^{l(t)}(|\beta(u)_{x}(t, x)|^{p- 2}\beta(u)_{x}(t, x))_{x}dx$

$=-|\beta(u)_{x}(t, l(t)-)|^{p-2}\beta(u)_{x}(t, l(t)-)$ .
Also, if $t\in(O, T$] $-I_{0}$ , then $u(t, x)=0$ for all $x\geqq 0$ and (B3) implies $g(t)=0$ .
Therefore

$|\beta(u)_{x}(t, 0+)|^{p- 2}\beta(u)_{x}(t, O+)=0=g(t)$ for all $t\in(O, T$] $-I_{0}$

and

$\frac{dl(t)}{dt}=0=-|\beta(u)_{x}(t, l(t)-)|^{p-2}\beta(u)_{x}(t, l(t)-)$ for $a$ . $e$ . $t\in[0, T]-I_{0}$ .

Thus (1.5) and (1.6) are shown, and we see that $QVP(l_{0}, g, u_{0}, f)$ is a quasi-
variational problem associated with $\{(E), (C1)-(C3)\}$ .

In order to demonstrate the above existence theorem we introduce a map-
ping $P$ from a certain compact convex subset $S$ of $C([0, T])$ into itself defined
as follows:
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(1.8) $[Pl](t)=l_{0}-\int_{0}^{t}g(r)dr+\int_{0}^{\iota_{0}}u_{0}(x)d_{X}+\int_{0}^{l}\int_{0}^{\iota(r)}f(r, x)dxdr$

$-\int_{0}^{\infty}u^{l}(t, x)dx$ for each $l\in S$ and $t\in[0, T]$ ,

where $u^{l}$ is a solution to $VP(l, g, u_{0}, f)$ . We shall show that there is an ele-
ment $l$ of $S$ satisfying $Pl=l$ ( $i$ . $e.$ , a fixed point $l$ of $P$ in $S$ ) and that the couple
$\{l, u^{l}\}$ is a solution to $QVP(l_{0}, g, u_{0}, f)$ .

The problem of uniqueness for a solution to $QVP(l_{0}, g, u_{0}, f)$ remains open,
but in the special case that $p=2$ and $f\equiv 0$ we shall show

THEOREM 1.2. If $p=2$ , then $QVP(l_{0}, g, u_{0}, f)$ has at most one solution for
$l_{0}\geqq 0,$ $g\in C([0, T])$ non-positive, $u_{0}\in X$ non-negative with $u_{0}=0$ on $[l_{0}, \infty$ ) and
$f\equiv 0$ .

2. Problem $VP(l,g,u_{0},f)$ .
We begin with the following comparison theorem.
THEOREM 2.1. Let $l$ be a non-negative function in $C([0, T]),$ $g,\overline{g}$ be in

$C([0, T])$ with $g\leqq\overline{g}$ on $[0, T],$ $u_{0},\overline{u}_{0}$ in $H$ and $f,\overline{f}$ in $L^{2}(0, T;H)$ . Let $u$ and
$\overline{u}$ be solutions to $VP(l, g, u_{0}, f)$ and $VP(l,\overline{g},\overline{u}_{0},\overline{f})$ , respectjvely. Then we have:

$|(\overline{u}(t)-u(t))^{+}|_{L^{1}(0,L)}\leqq|(\overline{u}(s)-u(s))^{+}|_{L^{1}(0,L)}+\int_{s}^{t}|(\overline{f}(r)-f(r))^{+}|_{L1(0,L)}dr$

for any $0\leqq s\leqq t\leqq T$ and any positive number $L\geqq|l|_{C([0,T])}$ , where $(\cdot)^{+}$ stands for
the positive part of $(\cdot)$ .

We omit the proof of this theorem, since it can be proved by a way similar
to that of B\’enilan [1] and Damlamian [5]. We obtain the following corollaries
immediately from Theorem 2.1.

COROLLARY 1. Let $l,$ $g,$ $u_{0}$ and $f$ be as in Theorem 2.1. Then $VP(l, g, u_{0}, f)$

has at most one solution.
COROLLARY 2. Let 1, $g,$ $u_{0}$ and $f$ be as in Theorem 2.1 and further supp0se

that $g$ is non-positive and $u_{0},$ $f$ are non-negative. Then a solution to $VP(l, g, u_{0}, f)$

is non-negative.
As to the family $\{\phi_{l,g}^{t} ; 0\leqq t\leqq T\}$ of convex functions given by (1.1) we see

the following lemma:
LEMMA 2.1. Let $l\in C([0, T])$ be non-negative and non-decreasing in $t$ and let

$g\in C([0, T])$ . Then there is a positive constant $C_{l,g}$ such that

(2.1) $\phi_{l.g}^{t}(z)-\phi_{l.g}^{s}(z)\leqq C_{l.g}|g(t)-g(s)|(|\phi_{l,g}^{s}(z)|+1)$

for any $0\leqq s\leqq t\leqq T$ and $z\in K_{l}(s)$ ;

in fact we can take
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(2.2) $C_{l,g}=(|g|_{C([0,T])}+1)^{p^{r}}l(T)+1$ , $p^{\prime}=\frac{p}{p-1}$ .
PROOF. First we have for any $z\in K_{l}(s)$ and any $\delta>0$

$|z(0)|\leqq\int_{0}^{l(s)}|z_{x}|dx\leqq\int_{0}^{l(s)}\{\frac{\delta|z_{x}|^{p}}{p}+\frac{\delta^{1- p^{i}}}{p^{\prime}}\}dx$

$\leqq\delta\phi_{l,g}^{s}(z)-\delta g(s)z(0)+\frac{\delta^{1-p^{\prime}}l(s)}{p^{\prime}}$ ,

so

$(1-\delta|g(s)|)|$ 2(0) $|\leqq\delta\phi_{l.g}^{s}(z)+\frac{\delta^{1- p^{\prime}}l(T)}{p’}$ .

Since $\phi_{l.g}^{t}(z)-\phi_{l,g}^{s}(z)=(g(t)-g(s))z(O)$ for $i\geqq s$ , we obtain (2.1) with (2.2) by tak-
ing $\delta=(|g|_{C([0,T])}+1)^{-1}$ . Q. E. D.

This lemma allows us to apply a result of Kenmochi [12; Theorem 1.1] to
$VP(l, g, u_{0}, f)$ and we get the following existence theorem.

THEOREM 2.2. Let $l$ be as in Lemma 2.1, $g$ be in $W^{1,2}(0, T),$ $u_{0}$ in $K_{l}(0)$

and $f$ in $L^{2}(0, T;H)$ . Then $VP(l, g, u_{0}, f)$ has at least one solution.
Now, given numbers $l_{0}$ and $L$ such that $0\leqq l_{0}<L$ , we consider a family

(2.3) $\mathcal{L}=\left\{\begin{array}{llllll} & & l(0)=l_{0}, & l(T)\leqq L & and & \\l\in C([0, & T]).\cdot & lis & non- decreasingin & & t\end{array}\right\}$ .

The following stability result for solutions to $VP(l, g, u_{0}, f)$ with $l\in \mathcal{L}$ plays
an important role in solving $QVP(l_{0}, g, u_{0}, f)$ .

THEOREM 2.3. Let $l_{0}\geqq 0,$ $g\in W^{1,2}(0, T),$ $u_{0}\in X$ with $u_{0}=0$ on $[l_{0}, \infty$ ) and
$f\in L^{2}(0, T;H)$ . Then there exists a constant $K>0$ such that

$|u^{l}(t)|_{H}\leqq K$ , $\forall t\in[0, T]$ ,

$|\phi_{l,g}^{t}(Bu^{l}(t))|\leqq K$ , $\forall t\in[0, T]$ ,

$|\frac{du^{l}}{dt}|_{L^{2}(0,T;H)}\leqq K$

for every $l\in X$ , where $u^{l}$ is a unique solution to $VP(l, g, u_{0}, f)$ .
This stability theorem is a direct consequence of a priori estimates for

approximate solutions to $VP(l, g, u_{0}, f)$ given in Kenmochi [12; section 2].

3. Operator $P$ and proof of Theorem 1.1.

Throughout this section, assume that $l_{0}\geqq 0,$ $u_{0}\in X$ is non-negative with $u_{0}$

$=0$ on $[l_{0}, \infty$), $g\in W^{1,2}(0, T)$ is non-positive and $f\in L^{2}(0, T;H)$ is non-negative
and let $\mathcal{L}$ be the family as given by (2.3) with $L$ satisfying
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(3.1) $L>l_{0}+\int_{0}^{\iota_{0}}u_{0}(x)dx-\int_{0}^{T}g(r)dr+\sqrt{LT}|f|_{L2(0.T;H)}$ .

We now consider the operator $P$ on $\mathcal{L}$ which is defined by (1.8). Concerning
this operator $P$ we have

LEMMA 3.1. $P(\mathcal{L})\subset \mathcal{L}\cap W^{1.2}(0, T)$ .
PROOF. Let $l\in \mathcal{L}$ . Then $Pl\in W^{1.2}(0, T)$ , since a unique solution $u^{l}$ to

$VP(l, g, u_{0}, f)$ belongs to $W^{1,2}(0, T;H)$ . By noting the facts in Remark 1.1,
we have

$\frac{d}{dt}[Pl](t)=-g(t)+\int_{0}^{l(t)}f(t, x)dx-\int_{0}^{l(t)}u_{t}^{l}(t, x)dx$

$=-g(t)-\int_{0}^{l(t)}(|\beta(u^{l})_{x}(t, x)|^{p- 2}\beta(u^{l})_{x}(t, x))_{x}dx$

$=-|\beta(u^{l})_{x}(t, l(t)-)|^{p-2}\beta(u^{l})_{x}(t, l(t)-)$

for $a.e$ . $t\in I_{0}(=\{t\in[0, T];l(t)>0\})$ . Also $u^{l}$ is non-negative by Corollary 2 to
Theorem 2.1 as well as $\beta(u^{l})$ . Hence

$\beta(u^{l})_{x}(t, l(t)-)\leqq 0$ for $a.e$ . $t\in I_{0}$ ,

from which it follows that $(d/dt)[Pl](t)\geqq 0$ for $a$ . $e$ . $t\in I_{0}$ . For $a$ . $e$ . $t\in[0, T]-I_{0}$

we have

$\frac{d}{dt}[Pl](t)=-g(t)\geqq 0$ ,

because $u^{\iota}(t, x)=0$ for all $x\geqq 0$ if $t\in[0, T]-I_{0}$ . Therefore $Pl$ is non-decreasing.
Besides $[Pl](T)\leqq L$ by (3.1). Thus $Pl\in \mathcal{L}$ . Q. E. D.

LEMMA 3.2. $P$ is continuous on $\mathcal{L}$ with respect to the toPology of $C([0, T])$ .
PROOF. Suppose that $l_{n}\in \mathcal{L}$ and $l_{n}\rightarrow l$ in $C([0, T])$ , and denote by $u_{n}$ and

$u$ the solutions to $VP(l_{n}, g, u_{0}, f)$ and $VP(l, g, u_{0}, f)$ , respectively. Then, on
account of Theorem 2.3, there is a constant $K$ such that

(3.2) $\left\{\begin{array}{ll}|u_{n}(t)|_{H}\leqq K, & \forall n, \forall t\in[0, T] ,\\|\phi_{l_{n},g}^{t}(Bu_{n}(t))|\leqq & K, \forall n , \forall t\in[0, T],\\|u_{n}^{\prime}|_{L2(0,T;H)}\leqq K & , \forall n.\end{array}\right.$

We note here that for each $n$ the following holds:

(3.3)
$\int_{0}^{T}(u_{n}^{\prime}(t)-f(t), Bu_{n}(t)-w(t))_{H}dt\leqq\Phi(w)-\Phi(Bu_{n})$ ,

$\forall w\in L^{p}(0, T;X)$ with $w(t)\in K_{\iota_{n}}(t)$ for $a.e$ . $t\in[0, T]$ ,
where
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$\Phi(w)=\frac{1}{p}\int_{0}^{T}\int_{0}^{\infty}|w_{x}(t, x)|^{p}dxdt+\int_{0}^{T}g(t)w(t, O)dt$ .
By (3.2), $\{u_{n}\}$ is relatively compact in $C([0, T];H)$ . We want to show that
$u_{n}\rightarrow u$ in $C([0, T];H)$ . For this purpose, let $\{u_{n_{k}}\}$ be any subsequence $\cdot$ of $\{u_{n}\}$

such that $u_{n_{k}}\rightarrow\overline{u}$ (hence $Bu_{n_{k}}\rightarrow B\overline{u}$ ) in $C([0, T];H)$ . Then we have

$Bu_{n_{k}}(t)\rightarrow B\overline{u}(t)$ weakly in $X$ for each $t\in[0, T]$ ,

$Bu_{n_{k}}\rightarrow B\overline{u}$ weakly in $L^{2}(0, T;X)$ ,

$u_{n_{k}}^{\prime}\rightarrow\overline{u}^{\prime}$ weakly in $L^{2}(0, T;H)$

and by the way
$\phi_{l,g}^{l}(B\overline{u}(t))\leqq K$ , $\forall t\in[0, T]$ ,

$\overline{u}\in W^{1.2}(0, T ; H)$ , $\overline{u}(0)=u_{0}$ ,

(3.4) $\lim_{k\rightarrow}\inf_{\infty}\Phi(Bu_{n_{k}})\geqq\Phi(B\overline{u})$ .

Now denote by $Z$ the set

{ $v\in L^{p}(0,$ $T;X);v(t)\in K_{l}(t)$ for $a$ . $e$ . $t\in[0,$ $T]$ }.

Let $v$ be any function in $Z$ and $\epsilon$ be any positive number. Putting $v_{\epsilon}(t, x)=$

$v(t, x+\epsilon)$ , we see that $v_{\text{\’{e}}}(t)\in K_{l_{n}}(t)$ for $a$ . $e$ . $t$ in $[0, T]$ and for all $n$ sufficiently
large. Hence, taking $n=n_{k}$ with $w=v_{\epsilon}$ and letting $ k\rightarrow\infty$ in (3.3), we obtain by
(3.4)

$\int_{0}^{T}(\overline{u}^{\prime}(t)-f(t), B\overline{u}(t)-v_{\epsilon}(t))_{H}dt\leqq\Phi(v_{\epsilon})-\Phi(B\overline{u})$ .

Furthermore, since $v_{\epsilon}\rightarrow v$ in $L^{p}(0, T;X)$ and $\Phi(v_{\epsilon})\rightarrow\Phi(v)$ as $\epsilon\downarrow 0$ ,

$\int_{0}^{T}(\overline{u}^{\prime}(t)-f(t), B\overline{u}(t)-v(t))_{H}dt\leqq\Phi(v)-\Phi(B\overline{u})$ .

This inequality holds for every $v$ in $Z$ , which is equivalent to

$f(t)-\overline{u}^{\prime}(t)\in\partial\phi_{l,g}^{t}(B\overline{u}(t))$ for $a$ . $e$ . $t\in[0, T]$

(cf. Kenmochi [11; Proposition 1.1]). Thus $\overline{u}$ is a solution to $VP(l, g, u_{0}, f)$ .
By the uniqueness of solution we have $\overline{u}=u$ . Therefore it must be true that
$u_{n}\rightarrow u$ in $C([0, T];H)$ , so that

$Pl_{n}\rightarrow Pl$ in $C([0, T])$ . Q. E. D.

PROOF OF THEOREM 1.1. The assertion (a) follows easily from (1.6) of
Remark 1.2 and Corollary 2 to Theorem 2.1. To show (b), consider the follow-
ing subset $S$ of $\mathcal{L}$ ;
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$S=\left\{\begin{array}{lll} & & |l(t)-l(s)|\leqq|t-s||g|_{C([0,T])}\\l\in \mathcal{L} & . & +\sqrt{|t-s|L}|f|_{L2(0T.H)}+\sqrt{|t-s}|Kforalls,t\in[0,T]\end{array}\right\}$ ,

where $K$ is the same constant as in Theorem 2.3. Obviously $S$ is a convex
compact subset of $\mathcal{L}$ in $C([0, T])$ and $P(\mathcal{L})\subset S$ . Taking Lemmas 3.1 and 3.2
into account, we see that $P$ is continuous on $S$ with respect to the topology of
$C([0, T])$ and $P(S)\subset S$ . Hence, by a well-known fixed point theorem there is
$l\in S$ such that $Pl=l$ and it is easy to see that the couple $\{1, u^{l}\},$ $u^{l}$ being a
unique solution to $VP(l, g, u_{0}, f)$ , is a solution to $QVP(l_{0}, g, u_{0}, f)$ . Q. E. D.

4. A uniqueness theorem in a special case.

Throughout this section we assume that $p=2,$ $l_{0}\geqq 0,$ $g\in C([0, T])$ is non-
positive and $u_{0}\in X(=W^{1,2}(0, \infty))$ is non-negative with $u_{0}=0$ on $[l_{0}, \infty$).

Let $\{l, u\}$ be an arbitrary solution to $QVP(l_{0}, g, u_{0},0)$ . Then we know the
following facts (cf. Remark 1.2 and Theorem 1.1):

(1) $l$ is non-decreasing with $l(O)=l_{0}$ and $u$ is non-negative;
(2) $u_{t}(t, )-\beta(u)_{xx}(t, )=0a$ . $e$ . on $[0, l(t)]$ for $a.e$ . $t\in[0, T]$ ;

(3) $u(O, x)=u_{0}(x)$ for $0\leqq x\leqq l_{0},$ $u(t, x)=0$ for $x\geqq l(t)$

and $\beta(u)_{x}(t, 0+)=g(t)$ for $a$ . $e$ . $t\in[0, T]$ ;

(4) $\frac{dl(t)}{dt}=-\beta(u)_{x}(t, l(t)-)$ for $a.e$ . $t\in[0, T]$ .

We define

$v(t, x)=\int_{0}^{t}\beta(u)(r, x)dr$ for $x\geqq 0,0\leqq t\leqq T$

and note that

$v_{l}(t, x)=\beta(u)(t, x)\geqq 0$ , $v_{x}(t, x)=\int_{0}^{l}\beta(u)_{x}(r, x)dr$ .

Now, let $\eta$ be any function in $X$. Then we have by (1) $-(4)$

$\int_{0}^{\infty}v_{x}(t, )\eta_{x}dx$

$=\int_{0}^{t}\int_{0}^{l(r)}\beta(u)_{x}(r, )\eta_{x}dxdr$

$=\int_{0}^{t}[-\int_{0}^{l(r)}\beta(u)_{xx}(r, )\eta d_{X}-\beta(u)_{x}(r, 0+)\eta(0)+\beta(u)_{x}(r, l(r)-)\eta(l(r))]dr$
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$=-\int_{0}^{t}\int_{0}^{l(\tau)}u_{t}(r, )\eta r-d)\eta(0)-\int_{0}^{l}\frac{dl(r)}{dr}\eta(l(r))dr$

$=-\int_{0}^{\infty}u(t, )\eta dx+\int_{0}^{\infty}x-$ ,

from which we get the following lemma.
LEMMA 4.1. Let $\{l, u\}$ be a solution to $QVP(l_{0}, g, u_{0},0)$ and $v$ be as above.

Also let $\rho$ be the inverse of $\beta$ . Then

$I(t;v, \eta)\equiv\int_{0}^{\infty}\rho(v_{t})(t, x)(v_{t}(t, x)-\eta(x))dx+\int_{0}^{\infty}v_{x}(t, x)(v_{xt}(t, x)-\eta_{x}(x))dx$

$-\int_{0}^{\infty}u_{0}(x)(v_{l}(t, x)-\eta(x))dx+(\int_{0}^{t}g(r)dr)(v_{t}(t, 0)-\eta(0))$

$+\int_{l_{0}}^{\infty}(v_{l}(t, x)-\eta(x))dx\leqq 0$

for all $t\in[0, T]$ and all $\eta\in Y=\{\eta\in X;\eta$ is non-negative and $\eta(x)=0$ for all
sufficiently large $x$ }.

PROOF. We set for simplicity

$J(t;\eta)=\int_{0}^{\infty}\rho(v_{l})(t, )\eta dx+\int_{0}^{\infty}v_{x}(t, )\eta_{x}dx-\int_{0}^{\infty}u_{0}\eta dx$

$+(\int_{0}^{t}gdr)\eta(0)+\int_{\iota_{0}}^{\infty}\eta dx$ for $\eta\in Y$ .

As was seen above, $J(t;\eta)\geqq 0$ for all $\eta\in Y$ and $J(t;v_{t}(t, ))=0$ . Therefore
$I(t;v, \eta)=J(t;v_{t}(i, ))-J(t;\eta)\leqq 0$ . Q. E. D.

PROOF OF THEOREM 1.2. Let $\{l, u\}$ and $\{t,\overline{u}\}$ be two solutions to
$QVP(l_{0}, g, u_{0},0)$ . Then from Lemma 4.1 with the same notation as above it
follows that

$0\geqq I(t;v, 0_{t}(t, ))+I(t;fiv_{t}(t, ))$

$=\int_{0}^{\infty}\{\rho(v_{t})(t, x)-\rho(\overline{v}_{t})(t, x)\}(v_{l}(t, x)-\overline{v}_{t}(t, x))dx$

$+\int_{0}^{\infty}(v_{x}(t, x)-\overline{v}_{x}(t, x))(v_{xt}(t, x)-\overline{v}_{xt}(t, x))dx$

$\geqq\frac{1}{2}\frac{d}{dt}|v_{x}(t, )-\overline{v}_{x}(t, )|_{H}^{2}$

for $a.e$ . $t\in[0, T]$ . This gives

$|v_{x}(t, )-\overline{v}_{x}(t, )|_{H}\leqq|v_{x}(0, )-\overline{v}_{x}(0, )|_{H}=0$
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for all $t\in[0, T]$ , so $v_{t}=\overline{v}_{\iota},$
$i$ . $e.,$ $u=\overline{u}$ as well as $l=\overline{l}$. Q. E. D.

REMARK 4.1. The technic adopted above is found in Duvaut [7].

5. Some remarks.

A. Let $l_{0}>0,$ $u_{0},$ $g$ and $f$ be as in (b) of Theorem 1.1 and $\{l, u\}$ be a
solution to $QVP(l_{0}, g, u_{0}, f)$ . Then, by definition, $l$ belongs to $W^{1.2}(0, T)$ and $u$

is a unique solution to $VP(l, g, u_{0}, f)$ . It is not difficult to verify that the family
$\{\phi_{l,g}^{t} ; 0\leqq t\leqq T\}$ satisfies the following:

$|$

$|z_{1}-z|\leqq C\{|g(t)-g(s)|+|l(t)-l(s)|\}(|\phi_{l.g}^{s}(z)|^{1/2}+1)$

for
$eachs_{H}t\in[0,T]andz\in K_{l}(s)thereisz_{1}\in K_{l}(t)such$

that

$(*)$

$\downarrow whereCisapositiveconstantindependentofs,tandz|\phi_{l,g}^{t}(z_{1})-\phi_{l,g}^{s}(z)|\leqq C\{|g(t)-g(s)|+|l(t)-l(s)|\}(|\phi_{l,g}^{s}(z)|.+1)$

,

In fact, if we take for $z$ given in $K_{l}(s)$

$z_{1}(x)=z(\frac{l(s)}{l(t)}x)$ , $ 0\leqq x<\infty$ ,

then we obtain inequalities of the above forms with a positive constant $C$ . Under
$(*)$ we can show (cf. Kenmochi [13]) that the function $t\rightarrow\phi_{l,g}^{t}(Bu(t))$ is absolutely

continuous on $[0, T]$ . This implies that $t\rightarrow|\beta(u)(t, )|_{X}$ is continuous on $[0, T]$ ,
so that $\beta(u)\in C([0, T];X)$ .

B. Let $l_{0}>0,$ $g,$ $u_{0},$ $f$ be as in (b) of Theorem 1.1 and let $h$ be a function
in $L^{2}(0, T)$ . Then, by $QVP(l_{0}, g, u_{0}, f, h)$ we mean the problem to find a
couple $\{l, u\}$ satisfying (B1), (B2) of DePnition 1.2 and (B3) below instead of
(B3):

(B3) $l(t)=l_{0}-\int_{0}^{t}g(r)dr+\int_{0}^{t}h(r)dr+\int_{0}^{l_{0}}u_{0}(x)dx$

$+\int_{0}^{t}\int_{0}^{l(r)}f(r, x)dxdr-\int_{0}^{\infty}u(t, x)dx$ , $\forall t\in[0, T]$ .

This integral equation (B3) is corresponding to the following type of Stefan
condition

$\frac{dl(t)}{dt}=-|\beta(u)_{x}(t, l(t)-)|^{p- 2}\beta(u)_{x}(t, l(t)-)+h(t)$ , for $0<t<T$ .

In this case we should notice that the unknown boundary curve $x=l(t)$ is not
necessarily non-decreasing in $t$ . However the same approach is possible to
$QVP(l_{0}, g, u_{0}, f, h)$ .
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C. Finally we consider the problem to Pnd a couple $\{1, u\}$ satisfying

(5.1) $u_{l}-\beta(u)_{xx}=f$ for $l(t)>0,0<x<l(t)$

subject to

(5.2) $1(0)=l_{0}$ and if $l_{0}>0$ , then $u(O, x)=u_{0}(x)$ for $0<x<l_{0}$ ,

(5.3) $\left\{\begin{array}{ll}\beta(u)(t, 0)=g_{0}(i) & for 0<t<T ,\\\beta(u)(t, l(t))=0 & for 0<t<T\end{array}\right.$

and

\langle 5.4) $\frac{dl(t)}{dt}=-\beta(u)_{x}(t, l(t)-)$ for $0<t<T$ ,

where $l_{0}\geqq 0$ is given as well as $u_{0}\geqq 0$ in $W^{1.2}(0, \infty)$ with $u_{0}=0$ on $[l_{0}, \infty$ ), $f\geqq 0$

in $L^{2}(0, T;H)$ and $g_{0}\geqq 0$ in $W^{1,2}(0, T)$ . By means of the family $\{\tilde{\phi}_{l,g_{0}}^{t} ; 0\leqq t\leqq T\}$

of convex functions given by

$\oint_{l,g_{0}}^{t}(z)=\left\{\begin{array}{ll}\frac{1}{2}\int_{0}^{\infty}|z_{x}|^{2}dx & if z\in\tilde{K}_{l.g_{0}}(r),\\\infty & otherwise\end{array}\right.$

with $\tilde{K}_{l,g_{0}}(t)=$ {$z\in W^{1,2}(0,$ $\infty);z(O)=g_{0}(t),$ $z=0$ on $[l(t),$ $\infty)$ }, we can similarly
give a quasi-variational formulation associated with system $\{(5.1)-(5.4)\}$ , in
which (5.4) is transformed into the integral equation

$l(t)^{2}=l_{0}^{2}+2\int_{0}^{t}g_{0}(r)dr+2\int_{0}^{\iota_{0}}xu_{0}(x)dx-2\int_{0}^{\infty}xu(t, x)dx$

$+2\int_{0}^{t}\int_{0}^{l(r)}xf(r, x)dxdr$ , $\forall t\in[0, T]$ .

Also in this case we can show the existence and uniqueness (in case $f\equiv 0$) of a
solution to this quasi-variational problem by modifying the arguments developed
in sections 2, 3 and 4.
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