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Introduction.

Let $\mathfrak{K}$ be a separable c\={o}mplex Hilbert space and $\{\mathfrak{K}_{n}\}_{n\in Z}$ be the c\={o}untable
family \={o}f c\={o}pies \={o}f $\mathfrak{K}$, where $Z$ is the set \={o}f all integers. Let $\mathfrak{H}$ be the direct
sum $\sum_{n\in Z}\oplus \mathfrak{K}_{n}$ \={o}f $\{\mathfrak{K}_{n}\}_{n\in Z}$ . A unitary \={o}perat\={o}r $U$ \={o}n $\mathfrak{H}$ is called a shift \={o}perat\={o}r

if $U$ maps $\mathfrak{K}_{n}$ \={o}nt\={o} $\mathfrak{K}_{n+1}$ f\={o}r all $n$ in $Z$ . We den\={o}te by $S$ the shift \={o}perat\={o}r

on $\mathfrak{H}$ :
$x=\sum_{n\in Z}\oplus\xi_{n}\rightarrow y=\sum_{n\in Z}\oplus\eta_{n}$ ,

where $\eta_{n}=\xi_{n-1}$ .
A study \={o}f invariant subspaces \={o}f the shift \={o}perat\={o}r $S$ was \={o}riginated by

the Beurling’s paper [2], in which he c\={o}mpletely described the structure \={o}f

invariant subspaces \={o}f the unilateral shift \={o}perat\={o}r \={o}f multiplicity \={o}ne. The s\={o}-

called Beurling’s the\={o}rem f\={o}r invariant subspaces was stated in Hels\={o}n [4] and
Halm\={o}s [3]. They dem\={o}nstrated the the\={o}rem fr\={o}m ge\={o}metric c\={o}nsiderati\={o}n in
c\={o}ntrast t\={o} a functi\={o}n the\={o}retic pr\={o}\={o}f by Beurling. Halm\={o}s, in his paper [3],
c\={o}nsidered the case \={o}f c\={o}untable (and finite) multiplicity and n\={o}ticed that the
study \={o}f shift-invariant subspaces might be useful f\={o}r the case \={o}f general b\={o}unded
linear \={o}perat\={o}rs \={o}n a Hilbert space. The w\={o}rks [6], [7] \={o}f McAsey, Muhly and
Sait\^o were the first attempt t\={o} characterize invariant subspaces \={o}f a family \={o}f

shift \={o}perat\={o}rs. But they seem t\={o} study n\={o}n-self-adj\={o}int algebras rather than
invariant subspaces. Thus the underlying Hilbert space in their paper heavily
depends \={o}n the structure \={o}f algebras.

Our purp\={o}se is t\={o} study the structure \={o}f invariant subspaces \={o}f a family $S$

of shift \={o}perat\={o}rs \={o}n a given Hilbert space. In \={o}ur discussi\={o}n, we use ge\={o}metric
meth\={o}ds in the the\={o}ry \={o}f \={o}perat\={o}r algebras as in [6] and [7]. In the present
paper, we give a necessary and sufficient c\={o}nditi\={o}n f\={o}r a family $S$ under which
every invariant subspaces is \={o}f Beurling type. The c\={o}nditi\={o}n, \={o}f c\={o}urse, is
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deeply related to the underlying Hilbert space. In the case where $S$ does not
satisfy the condition, the structure of invariant subspaces of $S$ seems to be
complicated. However, for the case of multiplicity one, the author has succeeded
in showing the structure of those spaces [11].

For a family $S$ of shift operators, we denote by $W(s)$ the set of diagonal
operators corresponding to the operators in $S$ . In this paper, the diagonal part
of a shift operator $U$ means the unitary operator $W$ on $\mathfrak{H}$ such that $U=WS$ .
Since every shift operator is unitarily equivalent to $S$ , we assume that $S$ con-
tains $S$ , that is, $W(S)$ contains the identity operator $I$ on $\mathfrak{H}$ . Indeed, for an
operator $U$ in $S,$ $W=US^{*}$ is of the form $W=\sum_{n\in Z}\oplus u_{n}$ , where each $u_{n}$ is a uni-

tary operator on $\mathfrak{K}$ . For this unitary operator $W$, we define a unitary operator
$V=\sum_{n\in Z}\oplus v_{n}$ as follows; $v_{n}=u_{n}u_{n-1}\cdots u_{1}(n\geqq 1),$ $v_{0}=1$ and $v_{n}=u_{n+1}^{*}u_{n+2}^{*}\cdots u_{0}^{*}$

$(n\leqq-1)$ . We put $S^{\prime}=V^{*}SV$ . Then $S^{\prime}$ contains $S$ and it follows that the sub-
space $\mathfrak{M}$ is invariant under $S$ if and only if $V^{*}\mathfrak{M}$ is invariant under 8’.

An invariant subspace $\mathfrak{M}$ is said to be simply invariant if the closed linear
span $[S\mathfrak{M}]$ of $S\mathfrak{M}$ is a proper subspace of $\mathfrak{M}$ . In \S 1, we study the relation
between the structure of simply invariant subspaces of $S$ and the properties of

$S$ . We prove that each pure simply invariant subspace $\mathfrak{M},$
$i$ . $e.\bigcap_{n=0}^{\infty}[S^{n}\mathfrak{M}]=\{0\}$ ,

is of the form
$\mathfrak{M}=\mathfrak{M}_{0}\oplus[S\mathfrak{M}_{0}]\oplus[S^{2}\mathfrak{M}_{0}]\oplus\cdots$

under the condition that $W(S)$ is a group and $S^{*}W(S)S\subset W(S)$ (Proposition 1.7).

In particular, in the case where $S^{*}W(S)S=W(S)$ , we have $\mathfrak{M}_{n}=[S^{n}\mathfrak{M}_{0}]=$

$S^{n}[W(S)\mathfrak{M}_{0}]$ . Obviously, each simply invariant subspace does not reduce $S$ .
However, in general, there are many examples of non-reducing invariant sub-
spaces $\mathfrak{M}$ such that $[S\mathfrak{M}]=\mathfrak{M}$ . At the end of this section, we prove that only
reducing subspaces $\mathfrak{M}$ have the property $[S\mathfrak{M}]=\mathfrak{M}$ under the condition that
$W(S)^{k}$ is a group for some integer $k>0$ and $S^{*}W(S)S=W(S)$ .

We now recall the Beurling’s theorem [4, Lecture II, Theorem 3]. Namely,
every simply invariant subspace $\mathfrak{M}$ of the shift $S$ on $L^{2}(T)$ is of the form $\mathfrak{M}=$

$M_{u}H^{2}(T)$ , where $M_{u}$ is the multiplication operator by a unitary function $u$ in
$L^{\infty}(T)$ . We easily find that $M_{u}$ commutes with $S$ . In this context, we say that
$S$ has Property (B) if $S$ satisfies the following condition: every pure simply
invariant subspace $\mathfrak{M}$ of $S$ is of the form $\mathfrak{M}=U\mathfrak{N}$ , where $\mathfrak{N}$ is an invariant
subspace of $S$ such that $\mathfrak{N}_{n}$ is contained in $\mathfrak{K}_{n}$ for all $n\geqq 0$ and $U$ is a partiaI
isometry on $\mathfrak{H}$ which satisfies a suitable condition (Definition 2.3). In \S 2, we
seek a necessary and sufficient condition for $S$ to have Property (B). We denote
by $M(S)$ (resp. $D(S)$) the von Neumann algebra generated by $S$ (resp. $W(S)$).

We prove that if $S$ has Property (B) then $M(S)$ must be the crossed product of
a von Neumann algebra $D_{0}$ on $\mathfrak{K}$ by $Z$ with respect to a spatial $*$-automorphism
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$\alpha$ of $D_{0}$ (Proposition 2.7). Ultimately we prove that $S$ has Property (B) if and
only if $\alpha$ leaves the central finite projections in the commutant $D_{0}^{\prime}$ element-
wise fixed (Theorem 2.12). Hence we find, in the case of tensor product, that
for each group $A$ of unitary operators on $\mathfrak{K}$ , the family of shift operators $s=$

$s\otimes A$ on $L^{2}(T)\otimes \mathfrak{K}$ always has Property (B). At the end of this section, we
show some results concerning the reducing subspaces generated by simply
invariant subspaces.

\S 1. Decompositions of invariant subspaces.

Let $\mathfrak{M}$ be a subspace of the Hilbert space $\mathfrak{H}=\sum_{n\in Z}\oplus \mathfrak{K}_{n}$ , where each $\mathfrak{K}_{n}$ is a
copy of a Hilbert space $\mathfrak{K}$ . Throughout this paper, we mean by a subspace a
closed subspace. Let $\mathcal{T}$ be a set of bounded linear operators on $\mathfrak{H}$ . We say
that $\mathfrak{M}$ is invariant under $\mathcal{T}$ if $\mathcal{T}\mathfrak{M}\subset \mathfrak{M}$ and $\mathfrak{M}$ reduces $\mathcal{T}$ if, in addition, $\mathcal{T}^{*}\mathfrak{M}$

$\subset \mathfrak{M}$ . Let $S$ be a family of shift operators on $\mathfrak{H}$ . We denote by $M(S)$ the von
Neumann algebra generated by the set $S\cup S^{*}$ . If $\mathfrak{M}$ is invariant under $\mathcal{T}$, then
$\mathfrak{M}$ is also invariant under the strongly closed linear span of $\mathcal{T}$ . Hence we im-
mediately have the following proposition.

PROPOSITION 1.1. A subspace $\mathfrak{M}$ reduces $S$ if and only if $\mathfrak{M}=P\mathfrak{H}$ for some
projection $P$ in the commutant $M(S)^{\prime}$ .

Let us consider the von Neumann algebra $M(S)$ . We denote by $L^{2}(T)$ the
Hilbert space of square integrable scalar valued functions on the unit circle $T$

in the complex plane with respect to the normalized Lebesgue measure and
$L^{\infty}(T)$ the set of all essentially bounded functions on $T$ . When $s=\{S\},$ $M(S)$

is spatially isomorphic to the von Neumann algebra $M_{L^{\infty}(T)}\otimes C(\mathfrak{K})$ on $L^{2}(T)\otimes \mathfrak{K}$,
where $M_{L^{\infty}(T)}$ is the von Neumann algebra of all the multiplication operators
$M_{f}$ on $L^{2}(T)$ by a function $f$ in $L^{\infty}(T)$ and $C(\mathfrak{K})$ is the scalar multiples of the
identity on $\mathfrak{K}$ . We denote by $\mathfrak{S}$ the set of all shift operators on $\mathfrak{H}$, then $M(\mathfrak{S})$

becomes the full operator algebra $B(\mathfrak{H})$ . Hence, for an arbitrary family $S,$ $M(S)$

contains $M_{L^{\infty}(T)}\otimes C(\mathfrak{K})$ and is contained in $B(\mathfrak{H})$ . For a family $S$ of shift opera-
tors on $\mathfrak{H}$ , we put $W(S)=\{W:W=US^{*}, U\in S\}$ . Every operator $W$ in $W(S)$ is a
unitary operator on $\mathfrak{H}$ such that $W\mathfrak{K}_{n}=\mathfrak{K}_{n}$ for all $n$ in $Z$, hence $W$ is of the
form $\sum_{n\in Z}\oplus u_{n}$ , where each $u_{n}$ is a unitary operator on $\mathfrak{K}$ . We denote by $U(\mathfrak{K})$

the group of all unitary operators on $\mathfrak{K}$. In the following, we shall show some
examples of $W(S)$ and von Neumann algebras $M(S)$ .

EXAMPLE 1.2. Let $W(S)=$ {$W=\sum_{n\in Z}\oplus u_{n}$ : $u_{n}=u_{0}$ for all $n$ in $Z,$ $u_{0}\in A$ }, where

$A$ is a subset of $U(\mathfrak{K})$ . Then we can consider $S$ as the tensor product $s\otimes A$ on
$L^{2}(T)\otimes \mathfrak{K}$, where $s$ means the usual shift operator on $L^{2}(T)$ . Hence we have
$M(S)=M_{L^{\infty}(T)}\otimes M$, where $M$ is the von Neumann algebra generated by $A$ .

EXAMPLE 1.3. Let $\alpha$ be a $*$-automorphism of $B(\mathfrak{K})$ and $A$ a subset of $U(\mathfrak{K})$ .
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Let $W(S)=$ {$W=\sum_{n\in Z}(\oplus u_{n}$ : $u_{n}=\alpha^{-n}(u_{0})$ for all $n$ in $Z,$ $u_{0}\in A$ }. Then $M(S)$ is the

crossed product $\mathcal{R}(M, \alpha)$ of $M$ by $Z$ with respect to $\alpha$ , where $M$ is the von
Neumann algebra on $\mathfrak{K}$ generated by the set $\{\alpha^{n}(u_{0}):u_{0}\in A, n\in Z\}$ (cf. [10;

p. 364]).

EXAMPLE 1.4. Let $W(S)=$ {$W=\sum_{n\in Z}\oplus u_{n}$ : $u_{n}=1$ or $-1$ for each $n$ in $Z$}.

Then we have $M(S)=B(L^{2}(T))\otimes C(\mathfrak{K})$ .
Let $\mathfrak{M}$ be an invariant subspace of $S$ which does not reduce $S$ . Then we

have two possibilities, that is, either $[S\mathfrak{M}]\subsetneqq \mathfrak{M}$ or $[S\mathfrak{M}]=\mathfrak{M}$ , where $[S\mathfrak{M}]$ is the
closure of linear span of $S\mathfrak{M}$ . If $\mathfrak{M}$ reduces $S$ , we have $[S\mathfrak{M}]=\mathfrak{M}$ because $\mathfrak{M}$

$=SS^{*}\mathfrak{M}\subset S\mathfrak{M}\subset S\mathfrak{M}\subset \mathfrak{M}$ . Moreover, in the case where $s=\{S\}$ , only reducing
subspaces have the property $[S\mathfrak{M}]=\mathfrak{M}$ . But, in general, there are non-reducing
subspaces $\mathfrak{M}$ such that $[S\mathfrak{M}]=\mathfrak{M}$ even if dim $\mathfrak{K}=1$ (cf. Example 1.5). When $\mathfrak{M}$

is a non-reducing invariant subspace such that $[S\mathfrak{M}]=\mathfrak{M}$ , the structure of $\mathfrak{M}$

seems to be very complicated. It is our purpose to analyze the structure of
invariant subspaces $\mathfrak{M}$ of $S$ such that $[S\mathfrak{M}]$ is a proper subspace of $\mathfrak{M}$ . Such
a subspace $\mathfrak{M}$ is said to be simply invariant. It is then asked whether $[S^{2}\mathfrak{M}]$

$\subsetneqq[S\mathfrak{M}]$ or not if $\mathfrak{M}$ is a simply invariant subspace. Unfortunately, we have
examples of simply invariant subspaces $\mathfrak{M}$ such that $[S\mathfrak{M}]\subsetneqq \mathfrak{M}$ but $[S^{2}\mathfrak{M}]=$

$[S\mathfrak{M}]$ .
EXAMPLE 1.5. Let $\mathfrak{H}=L^{2}(T)=\sum_{n\in Z}\oplus[e_{n}]$ , where $e_{n}(z)=z^{n}$ on $T$ . Let $W(S)$

$=$ {$W=\sum_{n\in Z}\oplus u_{n}$ : $u_{n}=1$ for all $n\leqq-1,$ $u_{n}=1$ or $-1$ for $n\geqq 0$}. For $f=\sum_{n=2}^{\infty}(1/2^{n})e_{-n}$

in $\mathfrak{H}$ we put $\mathfrak{M}=[f]\oplus[e_{-1}]\oplus H^{2}(T)$ . Then we have $\mathfrak{M}\ominus[S\mathfrak{M}]=[g]$ , where $g=$

$f-(1/6)e_{-1}$ and $[S\mathfrak{M}]=[f^{\prime}]\oplus H^{2}(T)=[S^{2}\mathfrak{M}]$ where $f^{\prime}=\sum_{n=1}^{\infty}(1/2^{n})e_{-n}$ .
In the next example, we give an example of a simply invariant subspace

such that $[S\mathfrak{M}]\subset \mathfrak{M},$ $[S^{2}\mathfrak{M}]\subsetneqq[S\mathfrak{M}]$ but $S(\mathfrak{M}\ominus[S\mathfrak{M}])\not\subset[S\mathfrak{M}]\ominus[S^{2}\mathfrak{M}]$ .
EXAMPLE 1.6. Let $\mathfrak{H}=L^{2}(T)\otimes L^{2}(T)$ and $S=s\otimes A$ , where $A=\{s^{n}\}_{n=0}$ . We

put $\mathfrak{M}=$ { $f\in \mathfrak{H}:\hat{f}(n,$ $m)=0$ for all $(n,$ $m)\not\in L_{1}\cup L_{2}$}, where $f$ is the Fourier trans-
form of $f$ and $L_{1}=\{(n, m)\in Z^{2} : m\geqq 0\},$ $L_{2}=\{(n, m)\in Z^{2} : n\geqq 0, m=-1\}$ . Then
we have that $\mathfrak{M}\ominus[S\mathfrak{M}]=$ { $f\in \mathfrak{H}:\hat{f}(n,$ $m)=0$ for all $(n,$ $m)\neq(O,$ $-1)$}, $[S\mathfrak{M}]\ominus[S^{2}\mathfrak{M}]$

$=$ { $f\in \mathfrak{H}:\hat{f}(n,$ $m)=0$ for all $(n,$ $m)\neq(1,$ $-1)$} but $S(\mathfrak{M}\ominus[S\mathfrak{M}])=\{f\in \mathfrak{H}:\hat{f}(n, m)=0$

for all $(n, m)\not\in L_{3}$}, where $L_{3}=\{(n, m)\in Z:n=1, m\geqq-1\}$ .
Let $\mathfrak{M}$ be an invariant subspace of $S$ such that $\mathfrak{M}_{\infty}=\bigcap_{n=1}^{\infty}[S^{n}\mathfrak{M}]=\{0\}$ . Then

$[S^{n+1}\mathfrak{M}]$ is a proper subspace of $[S^{n}\mathfrak{M}]$ for all $n\geqq 0$ . Indeed, if we have
$[S^{n_{0+1}}\mathfrak{M}]=[S^{n_{0}}\mathfrak{M}]$ for some integer $n_{0}>0$ , then $[S^{n_{0}+k}\mathfrak{M}]=[S^{n_{0}}\mathfrak{M}]$ for all integer

$k\geqq 1$ , that is, $\bigcap_{n=1}^{\infty}[S^{n}\mathfrak{M}]=[S^{n_{0}}\mathfrak{M}]\neq\{0\}$ . We put $\mathfrak{M}_{n}=[S^{n}\mathfrak{M}]\ominus[S^{n+1}\mathfrak{M}]$ , then we

have $\mathfrak{M}=\mathfrak{M}_{0}\oplus \mathfrak{M}_{1}\oplus \mathfrak{M}_{2}\oplus\cdots$ . An invariant subspace $\mathfrak{M}$ of $S$ such that $\mathfrak{M}_{\infty}=\{0\}$

is called a pure simply invariant subspace.
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PROPOSITION 1.7. Suppose that $W(S)$ is a group such that $S^{*}W(S)S\subset W(S)$ .
Then, for each pure simply invariant subspace $\mathfrak{M}$ of $S$ , we have $\mathfrak{M}_{n}=[S^{n}\mathfrak{M}_{0}]$ for
all $n\geqq 0$ . Moreover, in the case where $S^{*}W(S)S=W(S)$ , we have $\mathfrak{M}_{n}=S^{n}[W(S)\mathfrak{M}_{0}]$

for all $n\geqq 1$ .
PROOF. Obviously $S\mathfrak{M}_{0}\subset S\mathfrak{M}$ . For each $x\in \mathfrak{M}_{0},$ $y\in \mathfrak{M}$ and each $W_{1},$ $W_{2},$ $W_{3}$

$\in W(S)$ , we have

$\langle W_{1}S(x), W_{3}SW_{2}S(y)\rangle=\langle x, S^{*}W_{1}^{*}W_{3}SW_{2}S(y)\rangle=0$ .
Hence $S\mathfrak{M}_{0}$ is contained in $\mathfrak{M}_{1}=[S\mathfrak{M}]\ominus[S^{2}\mathfrak{M}]$ . Similarly we have $S\mathfrak{M}_{n}\subset \mathfrak{M}_{n+1}$ .
Since $\mathfrak{M}$ has a decomposition

$\mathfrak{M}=\mathfrak{M}_{0}\oplus \mathfrak{M}_{1}\oplus \mathfrak{M}_{2}\oplus\cdots$ ,

$[S\mathfrak{M}]$ also has a decomposition

$[S\mathfrak{M}]=[S\mathfrak{M}_{0}]\oplus[S\mathfrak{M}_{1}]\oplus[S\mathfrak{M}_{2}]\oplus\cdots$ .
By the definition of $\mathfrak{M}_{0}$ , we have

$\mathfrak{M}_{0}=\mathfrak{M}\ominus[S\mathfrak{M}]=\mathfrak{M}_{0}\oplus(\mathfrak{M}_{1}\ominus[S\mathfrak{M}])\oplus(\mathfrak{M}_{2}\ominus[S\mathfrak{M}_{1}])\oplus\cdots$ .
Thus $M_{n}=[S\mathfrak{M}_{n-1}]$ for all $n\geqq 0$ . If $S^{*}W(S)S=W(S)$ , that is, $W(S)S=SW(S)$ ,

then we have $S^{n}=S^{n}W(S)$ . Hence the second assertion holds.
Next, we give a decomposition theorem concerning simply invariant sub-

spaces.
THEOREM 1.8. Suppose that $W(S)$ is a group such that $S^{*}W(S)S\subset W(S)$ . Then,

for each simply invariant subspace $\mathfrak{M}$ of $S,$ $\mathfrak{M}$ has a decomPosition
$\mathfrak{M}=\mathfrak{M}_{p}\oplus \mathfrak{M}_{r}$

such that $\mathfrak{M}_{p}$ is a non-zero pure simPly invariant subspace and $\mathfrak{M}_{r}$ is a reducing
subspace.

PROOF. Put $\mathfrak{M}_{r}=\bigcap_{n=1}^{\infty}[S^{n}\mathfrak{M}]$ and $\mathfrak{M}_{p}=\mathfrak{M}\ominus \mathfrak{M}_{r}$ . Since $S^{*}W(S)^{*}W(S)S\subset W(S)$ ,

we have $S^{*}[S^{n}\mathfrak{M}]\subset[S^{n-1}\mathfrak{M}]$ for $n\geqq 2$ . Thus, $\mathfrak{M}_{r}$ reduces $S$ and $\mathfrak{M}_{p}$ is invariant
under $S$ . Since $\mathfrak{M}_{p}\ominus[S\mathfrak{M}_{p}]=\mathfrak{M}\ominus[S\mathfrak{M}]\neq\{0\},$ $\mathfrak{M}_{p}$ is a simply invariant subspace.

Moreover $(\mathfrak{M}_{p})_{\infty}=\{0\}$ because $(\mathfrak{M}_{p})_{\infty}=\bigcap_{n=0}^{\infty}[S^{n}(\mathfrak{M}_{p})]$ is contained in $\mathfrak{M}_{p}$ and $\mathfrak{M}_{r}$ .
Under the hypothesis of Theorem 1.8, we can easily find that for each non-

reducing invariant subspace $\mathfrak{M}$ of $S$ , we have $[S^{n+1}\mathfrak{M}]\subsetneqq[S^{n}\mathfrak{M}]$ for all $n\geqq 0$ .
Moreover, we find that the decomposition of $\mathfrak{M}$ in Theorem 1.8 does not hold if
we drop any of the conditions of $W(S)$ . In fact, we have examples of simply
invariant subspaces such that $[S\mathfrak{M}]=[S^{2}\mathfrak{M}]$ in Example 1.5 ($W(S)$ is a group)

and Example 1.6 $(S^{*}W(S)S=W(S))$ . In this case, $\mathfrak{M}_{r}=[S\mathfrak{M}]$ is not a reducing
subspace of $S$ .
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For an invariant subspace $\mathfrak{M}$ of $S$, we denote by $\Re_{\mathfrak{M}}$ the smallest reducing
subspace containing M. We put $[W(S)]=\bigcup_{n\in Z}S^{*n}G(S)S^{n}$ where $G(S)$ is the group

generated by $W(S)$ , and $[S]=[W(S)]S$ . Then we have $\Re_{\mathfrak{M}}=[\bigcup_{n\in Z}[S]^{n}\mathfrak{M}]$ . Thus,

if $W(S)$ is a group such that $S^{*}W(S)S=W(S)$ then we have $\Re_{\mathfrak{M}}=\mathfrak{M}_{-\infty}=[\bigcup_{n\in Z}S^{n}\mathfrak{M}]$ .
THEOREM 1.9. Suppose that $W(S)$ is a group such that $S^{*}W(S)S\subset W(S)$ .

Then, for each simply invariant subspace $\mathfrak{M}$ of $S,$ $\mathfrak{H}$ is decomposed into three
reducing subspaces;

(i) $\mathfrak{H}=\Re_{\mathfrak{M}_{p}}\oplus \mathfrak{M}_{r}\oplus \mathfrak{M}_{c}$

such that $\Re_{\mathfrak{M}}=\Re_{\mathfrak{M}_{p}}\oplus \mathfrak{M}_{r}$ . Moreover, in the case where $S^{*}W(S)S=W(S)$ , we have

(ii) $\Re_{\mathfrak{M}_{p}}=(\mathfrak{M}_{p})_{-\infty}=\sum_{n\in Z}\oplus S^{n}[W(S)\mathfrak{M}_{0}]$ .
PROOF. For a simply invariant subspace $\mathfrak{M}$ of $S$ , we have the decomposi-

tion $\mathfrak{M}=\mathfrak{M}_{p}\oplus \mathfrak{M}_{\gamma}$ by Theorem 1.8. Since $\mathfrak{M}_{r}$ reduces $S,$ $\Re_{\mathfrak{M}_{p}}$ is orthogonal to
$\mathfrak{M}_{r}$ and $\Re_{\mathfrak{M}}=\Re_{\mathfrak{M}_{p}}\oplus \mathfrak{M}_{r}$ . We put $\mathfrak{M}_{c}=\mathfrak{H}\ominus\Re_{\mathfrak{M}}$ . To show the decomposition (ii),

we assume that $S^{*}W(S)S=W(S)$ and $\mathfrak{M}$ is pure. By Proposition 1.7, we have
$\mathfrak{M}=\mathfrak{M}_{0}\oplus \mathfrak{M}_{1}\oplus \mathfrak{M}_{2}\oplus\cdots$ and $\mathfrak{M}_{n}=S^{n}[W(S)\mathfrak{M}_{0}]$ for all $n\geqq 1$ . Moreover we have
that $[S^{n}\mathfrak{M}_{0}]=S^{n}[W(S)\mathfrak{M}_{0}]$ for all $n\leqq-1$ and the subspaces $\{S^{n}[W(S)\mathfrak{M}_{0}]\}_{n\in Z}$

are mutually orthogonal. In fact, for $x,$ $y\in \mathfrak{M}_{0},$ $W_{1},$ $W_{2}\in W(S)$ and $n,$ $m\in Z$

$(n<m)$ , it follows that

$\langle S^{n}W_{1}(x), S^{m}W_{2}(y)\rangle=\langle x, W_{1}S^{m-n}W_{2}(y)\rangle=\langle x, W_{1}(S^{m-n}W_{2}S^{n-m})S^{m-n}(y)\rangle=0$ .

Hence we have, for all $n\neq 0$ ,

$ S^{n}\mathfrak{M}=[S^{n}\mathfrak{M}_{0}]\oplus[S^{n+1}W(S)\mathfrak{M}_{0}]\oplus[S^{n+2}W(S)\mathfrak{M}_{0}]\oplus\cdots$

$=S^{n}[W(S)\mathfrak{M}_{0}]\oplus S^{n+1}[W(S)\mathfrak{M}_{0}]\oplus S^{n+2}[W(S)\mathfrak{M}_{0}]\oplus\cdots$ .
Consequently we have $\Re_{\mathfrak{M}}=[US^{n}\mathfrak{M}]=\sum_{nn\in Z\in Z}\oplus S^{n}[W(S)\mathfrak{M}_{0}]$ .

COROLLARY 1.10. Let $u$ be a unitary operator on $\mathfrak{K}$ with the spectrum $\sigma(u)$

$=\{e^{i\theta_{1}}, e^{i\theta_{2}}\}$ . Let $A=\{1, u\}$ and $S=s\otimes A$ on $L^{2}(T)\otimes \mathfrak{K}$ . Then, for each simPly
invariant subspace $\mathfrak{M}$ of $S,$ $\mathfrak{H}$ has the decomposition in Theorem 1.9.

PROOF. We may assume that $e^{i\theta_{1}}\neq e^{i\theta_{2}}$ . We show that the linear span
Lin $A$ of $A$ contains a unitary operator $v$ on $\mathfrak{K}$ such that $v^{2}=1$ . Since $A$ con-
tains the identity 1 and $u=e^{i\theta_{1}}e_{1}+e^{i\theta_{2}}e_{2}$ where $e_{1}$ and $e_{2}$ are the spectral pro-
jections of $u$ , Lin $A$ contains $e_{1}$ and $e_{2}$ . We put $v=e_{1}-e_{2}$ and $s^{\prime}=\{s\otimes 1, s\otimes v\}$ .
Then $W(S^{\prime})=\{I, 1\otimes v\}$ is a group such that $S^{*}W(S^{\prime})S=W(S^{\prime})$ and Lin $W(S)=$

Lin $W(S^{\prime})$ . Since Lin $S=LinS^{\prime}$ , the structure of invariant subspaces of 8 is the
same as that of $S^{\prime}$ . Thus the assertion holds by Theorem 1.9.

From Corollary 1.10, we immediately have the following.
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COROLLARY 1.11. Let $u$ be a unitary operator on $\mathfrak{K}$ . Let $A=\{1, u\}$ and $s=$

$s\otimes A$ . If dim $\mathfrak{K}\leqq 2$ , then for each simply invariant subspace $\mathfrak{M}$ of $S,$ $\mathfrak{H}$ has the
decomposition in Theorem 1.9.

In the above theorems, we have shown the structure of reducing subspaces
and simply invariant subspaces of $S$ . However, in general, there are many non-
reducing subspaces $\mathfrak{M}$ such that $[S\mathfrak{M}]=\mathfrak{M}$ . For example, the subspace $[S\mathfrak{M}]=$

$[f^{\prime}]\oplus H^{2}(T)$ in Example 1.5 is such an invariant subspace. In the next prop-
osition, we give a condition of $S$ under which every non-reducing invariant
subspace has the property $[S\mathfrak{M}]\subsetneqq \mathfrak{M}$ .

PROPOSITION 1.12. Supp0se that $W(S)$ satisfies the following conditions.
(1) $W(S)^{k}$ is a group for some integer $k\geqq 1$ .
(2) $S^{*}W(S)S=W(S)$ .

Then a subspace $\mathfrak{M}$ is simply invariant under $S$ if and only if $\mathfrak{M}$ is a non-reducing
invariant subspace of $S$ .

PROOF. Let $\mathfrak{M}$ be an invariant subspace such that $[S\mathfrak{M}]=\mathfrak{M}$ . Since $W(S)^{k}$

is a group, we have $W(S)^{k+n}=W(S)^{k}$ for all $n\geqq 0$ and $W(S)^{k}$ contains $W(S)^{*}$ .
By condition (2), we have $S^{n}=W(S)^{n}S^{n}$ for all $n\geqq 1$ , so that $S^{k+1}\mathfrak{M}=W(S)^{k+1}S^{k+1}\mathfrak{M}$

$=W(S)^{k}S^{k+1}\mathfrak{M}=SW(S)^{k}S^{k}\mathfrak{M}=SS^{k}\mathfrak{M}$ . Since $[S^{n}\mathfrak{M}]=\mathfrak{M}$ for all $n\geqq 1$ , we have
$\mathfrak{M}=[S^{k+1}\mathfrak{M}]=S[S^{k}\mathfrak{M}]=S\mathfrak{M}$ . Thus $S^{*}\mathfrak{M}=\mathfrak{M}$ . Moreover we have $S^{*}\mathfrak{M}\subset \mathfrak{M}$ . In
fact, $S^{*}\mathfrak{M}=S^{*}W(S)^{*}\mathfrak{M}\subset S^{*}W(S)^{k}\mathfrak{M}=S^{*k+1}W(S)^{k}S^{k}\mathfrak{M}=S^{*k+1}S^{k}\mathfrak{M}\subset \mathfrak{M}$ .

COROLLARY 1.13. Let $u$ be a unitary operator on $\mathfrak{K}$ such that $u^{k}=1$ for some
integer $k>0$ . Let $s=\{s\otimes 1, s\otimes u\}$ . Then $\mathfrak{M}$ is simply invariant under $S$ if and
only if $\mathfrak{M}$ is a non-reducing invariant subspace of $S$ .

We now denote by Alg $(S)$ the algebra generated by $S$ . Suppose that $W(s)$

is a group and $S^{*}W(S)S=W(S)$ . Then Alg $(S)=\{T\in B(\mathfrak{H}):T=D_{1}S+\cdots+D_{n}S^{n}$ ,
$D_{l}\in D(S),$ $1\leqq i\leqq n,$ $n\geqq 1$ } and $M(S)$ is the closure of the algebra $\{T\in B(\mathfrak{H}):T=$

$D_{m}S^{-m}+$ $+D_{0}+\cdots+D_{n}S^{n},$ $D_{i}\in D(S),$ $-m\leqq i\leqq n,$ $m,$ $n\geqq 0$} with respect to
the a-weak topology on $B(\mathfrak{H})$ . Hence Alg $(S)+D(S)$ is a subdiagonal algebra
with respect to the natural conditional expectation $\epsilon$ of $M(S)$ onto $D(S)$ (cf. [1,

Definition 2.1.1]). We here remark that, in the case of general subdiagonal
algebras, the decomposition (i) in Theorem 1.9 has been shown by Loebl and
Muhly [5, Theorem V.2].

\S 2. The structure of invariant subspace.

Let $S$ be a family of shift operators on $\mathfrak{H}$ . We shall study relations be-
tween the structure of invariant subspaces of $S$ and the properties of the von
Neumann algebra $M(S)$ generated by $S$ . Throughout this paper, we assume that
$W(S)$ is a group and $S^{*}W(S)S=W(S)$ . Then the von Neumann algebra $M(S)$ is
generated by the two groups $W(S)$ and $\{S^{n}\}_{n\in Z}$ . We now consider the von
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Neumann algebra $D(S)$ generated by $W(S)$ . For each $n$ in $Z$ , the projection $P_{n}$

of $\mathfrak{H}$ onto $\mathfrak{K}_{n}$ belongs to the commutant $D(S)^{\prime}$ . The induced von Neumann alge-
bras $D(S)_{p_{n}}$ with respect to $P_{n}$ are all isomorphic each other because of the
hypothesis $S^{*}W(S)S=W(S)$ . In fact, the natural isomorphism $\Phi_{n}$ from $D(S)_{P_{0}}$

onto $D(S)_{P_{n}}$ is given as follows;

$\Phi_{n}(TP_{0})=S^{n}TS^{*n}P_{n}$ $(T\in D(S))$ .

We point out that if $D(s)$ is a factor, then $D(S)_{P_{n}}$ are all isomorphic to $D(S)$

(cf. [9; 3.13, Proposition]). Among the induced von Neumann algebras $\{D(S)_{P_{n}}\}_{n\in Z}$,
we especially denote by $D(S)_{0}$ the von Neumann algebra $D(S)_{P_{0}}$ on $\mathfrak{K}_{0}$ and we
sometimes regard $D(s)_{0}$ as a subalgebra of the full operator algebra $B(\mathfrak{K})$ on $\mathfrak{K}$ .
Furthermore, we denote by $D(S)_{0}^{\prime}$ the reduced von Neumann algebra $D(S)_{P_{0}}^{\prime}$ on
$\mathfrak{K}_{0}$ . For an element $x$ in $B(\mathfrak{K})$ , we denote by $i(x)$ the operator $\sum_{n\in Z}\oplus x_{n}$ on
$\mathfrak{H}=\sum_{n\in Z}\oplus \mathfrak{K}_{n}$ , where $x_{n}=x$ for all $n$ in $Z$.

At first, we show some typical simply invariant subspaces. We put

$\mathcal{H}^{2}=\sum_{n=0}^{\infty}\oplus \mathfrak{K}_{n}$ .

Then $\mathcal{H}^{2}$ is a pure simply invariant subspace of an arbitrary family $S$ . Further-
more, for each subspace $\mathfrak{M}_{0}$ of $\mathfrak{K}_{0}$ , we put

$\mathfrak{M}=\sum_{n=0}^{\infty}\oplus[S^{n}\mathfrak{M}_{0}]$ ,

then $\mathfrak{M}$ is a pure simply invariant subspace of $S$ and $S^{n}\mathfrak{M}_{0}$ is contained in $\mathfrak{K}_{n}$

for all $n\geqq 0$ .
DEFINITION 2.1. A simply invariant subspace $\mathfrak{M}$ is said to be of type-H2 if

$\mathfrak{M}_{0}=\mathfrak{M}\ominus[S\mathfrak{M}]$ is contained in $\mathfrak{K}_{0}$ .
PROPOSITION 2.2. Let $\mathfrak{M}$ be a $rype- H^{2}$ simply invariant subspace of $S$ , then

$\mathfrak{M}_{-\infty}$ is expressed as
$\mathfrak{M}_{-\infty}=\sum_{n\in Z}\oplus e\mathfrak{K}_{n}=i(e)\mathfrak{H}$

for some projection $e$ in the commutant $D(S)_{0}^{\prime}$ . Moreover $i(e)$ is a projection in
the commutant $M(S)^{\prime}$ .

PROOF. By Theorem 1.9, the reducing subspace $\mathfrak{M}_{-\infty}$ has a decomposition
$\mathfrak{M}_{-\infty}=\sum_{n\in Z}\oplus S^{n}[W(s)\mathfrak{M}_{0}]$ . Since $P_{0}$ commutes with $W(S),$ $[W(S)\mathfrak{M}_{0}]$ is a subspace

of $\mathfrak{K}_{0}$ . The projection $e$ of $\mathfrak{K}_{0}$ onto the subspace $[W(S)\mathfrak{M}_{0}]$ is an element of the
commutant $(D(S)_{0})^{\prime}=D(S)_{0}^{\prime}$ . Furthermore $i(e)$ belongs to $M(S)^{\prime}$ . In fact, for
$W=\sum_{n\in Z}\oplus u_{n}\in W(S)$ , we have
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$i(e)W=\sum_{n\in Z}\oplus eu_{n}=\sum_{n\in Z}S^{n}(S^{*n}i(e)S^{n})(S^{*n}WS^{n})S^{*n}P_{n}$

$=\sum_{n\in Z}S^{n}i(e)P_{0}(S^{*n}WS^{n})P_{0}S^{*n}P_{n}=\sum_{n\in Z}S^{n}P_{0}(S^{*n}WS^{n})P_{0}i(e)S^{*n}P_{n}$

$=\sum_{n\in Z}\oplus u_{n}e=Wi(e)$ .

Obviously, $i(e)$ commutes with $S$ and $S^{*}$ .
Here we recall Beurling’s theorem [4; Lecture II, Theorem 3] for invariant

subspaces of the usual shift $S$ on $L^{2}(T)$ . Namely, every simply invariant sub-
space $\mathfrak{M}$ of $S$ is expressed as $\mathfrak{M}=M_{u}H^{2}(T)$ , where $M_{u}$ is the multiplication
operator by a unitary function $u$ in $L^{\infty}(T)$ . Beurling’s theorem has been gener-
alized to the case of arbitrary multiplicity by Halmos [5]. The shift $S$ on
$\mathfrak{H}=\sum_{n\in Z}\oplus \mathfrak{K}_{n}$ can be regarded as a multiplication operator on the Hilbert space
$L^{2}(T, \mathfrak{K})$ of all $\mathfrak{K}$-valued $L^{2}$-functions on $T$ . In fact, $(SG)(z)=zG(z)$ for $G=G(z)$

in $L^{2}(T, \mathfrak{K})$ . By Halmos’ theorem, every pure simply invariant subspace $\mathfrak{M}$ of
$S$ is expressed as $\mathfrak{M}=M_{F}\mathcal{H}^{2}$ , where $M_{F}$ is the multiplication operator on $L^{2}(T, \mathfrak{K})$

by a $B(\mathfrak{K})$-valued measurable function $F=F(z)$ on $T$ whose values are isometries
of $\mathfrak{K}^{\prime}\subset \mathfrak{K}$ onto $\mathfrak{K}$ .

We now consider the von Neumann algebra $M(S)$ on $L^{2}(T, \mathfrak{K})$ generated by
$S$ and its commutant. For a von Neumann algebra $M$ on $\mathfrak{K}$, let $L^{\infty}(T, M)$

denote the M-valued essentially bounded measurable function on $T$ . We denote
by $M_{L^{\infty}(T,M)}$ the von Neumann algebra of all the multiplication operator $M_{F}$ on
$L^{2}(T, \mathfrak{K})$ by $F$ in $L^{\infty}(T, M)$ . Then we have $M(S)=M_{L^{\infty}(T.C(R))}$ and $M(S)^{\prime}=$

$M_{L^{\infty}(T,B(R))}$ (cf. [10; Theorem 7.10]). In the case of multiplicity one, we have
$M(S)=M_{L^{\infty}(T)}$ and $(M_{L^{\infty}(T)})^{\prime}=M_{L(T)}\infty$ . In connection with Beurling’s and Halmos’
theorems we give the following definition, which is fundamental in this paper.

DEFINITION 2.3. A family $S$ is said to have Property (B) if every pure
simply invariant subspace $\mathfrak{M}$ of $S$ is expressed as $\mathfrak{M}=U\mathfrak{N}$ , where $\mathfrak{N}$ is a type-
$H^{2}$ invariant subspace of $S$ and $U$ is a partial isometry in the commutant $M(S)^{\prime}$

whose initial space is $\mathfrak{N}_{-\infty}$ and whose final space is $\mathfrak{M}_{-\infty}$ .
We here note the equivalence of projections in a von Neumann algebra $M$.

Two projections $e$ and $f$ in $M$ are said to be equivalent and this relation is
denoted by $e\sim f$, if there exists a partial isometry $u$ in $M$ such that $e=u^{*}u$

and $f=uu^{*}$ . We say that $e$ is dominated by $f$, and we denote by $e\prec f$ this
relation, if $e$ is equivalent to a subprojection of $f$ (cf. [9; Chapter 4]). For a
subspace $\mathfrak{M}$ of $\mathfrak{H}$, we denote by $P_{\mathfrak{M}}$ the projection of $\mathfrak{H}$ onto M.

Let $\mathfrak{M}$ be a subspace of the form $\mathfrak{M}=U\mathfrak{N}$ in the above definition. Then $\mathfrak{N}$

has a decomposition
$\mathfrak{N}=\mathfrak{N}_{0}\oplus \mathfrak{N}_{1}\oplus \mathfrak{N}_{2}\oplus\cdots$

such that $\mathfrak{N}_{0}=\mathfrak{N}\ominus[S\mathfrak{N}]\subset \mathfrak{K}_{0}$ and $\mathfrak{N}_{n}=S^{n}[W(S)\mathfrak{N}_{0}]\subset \mathfrak{K}_{n}$ . Since $U^{*}U=P_{J-}${:we
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have
$\mathfrak{M}=U\mathfrak{N}=U\mathfrak{N}_{0}\oplus U\mathfrak{N}_{1}\oplus U\mathfrak{N}_{2}\oplus\cdots$

and it follows that $SU\mathfrak{N}_{n}=US\mathfrak{N}_{n}=U\mathfrak{N}_{n+1}$ for all $n\geqq 0$ . Hence we have $\mathfrak{M}_{0}=$

$U\mathfrak{N}\ominus[SU\mathfrak{N}]=U\mathfrak{N}_{0}$ , so that $\mathfrak{M}_{n}=U\mathfrak{N}_{n}$ for all $n\geqq 0$ . Since $\mathfrak{N}$ is of $type- H^{2}$ , we
have $P_{\mathfrak{R}-\infty}=i(e)$ for some projection $e$ in the commutant $D(S)_{0}^{\prime}$ . Hence we have
$P_{\mathfrak{M}-\infty}\sim i(e)$ in $M(S)^{\prime}$ by the partial isometry $U$ . Moreover, it follows that
$P_{[W(S)\mathfrak{M}_{0}]}\sim P_{[W(S)\Re_{0}]}=i(e)P_{0}\leqq P_{0}$ in $D(S)^{\prime}$ . In fact, $V=UP_{0}$ is a partial isometry in
$D(S)^{\prime}$ such that $V^{*}V=P_{[W(S)\mathfrak{R}_{0}]}\leqq P_{0}$ and $VV^{*}=P_{[W(S)\mathfrak{M}_{0}]}$ , because $U[W(S)\mathfrak{N}_{0}]=$

$[W(S)U\mathfrak{N}_{0}]=[W(S)\mathfrak{M}_{0}]$ . Furthermore, we find that $P_{\mathfrak{M}_{n}}\sim i(e)P_{n}\leqq P_{n}$ for all $n\geqq 1$ .
We here remark that the subspace $[W(S)\mathfrak{M}_{0}]$ and $\mathfrak{K}_{0}$ are wandering subspaces,
that is, $\{S^{n}[W(S)\mathfrak{M}_{0}]\}_{n\in Z}$ and $\{S^{n}\mathfrak{K}_{0}\}_{n\in Z}$ are sequences of mutually orthogonal
subspaces.

DEFINITION 2.4. A projection $P$ in $B(\mathfrak{H})$ is called a wandering projection
for $S$ , if $P$ commutes with $W(S)$ and $PS^{n}P=0$ for all $n\neq 0$ .

DEFINITION 2.5. A family $S$ is said to have Property (W), if every wander-
ing projection for $S$ is dominated by $P_{0}$ .

In the above, we proved that if $S$ has Property (B) then $S$ has Property
(W). In the following, we show that Property (W) is also a sufficient condition
for $S$ to have Property (B).

PROPOSITION 2.6. A family $S$ has Property (B) if and only if $S$ has Prop-
erty (W).

PROOF. Suppose that $S$ has Property (W). Let $\mathfrak{M}$ be a pure simply invariant
subspace of $S$ . Then the wandering projection $P_{[W(S)\mathfrak{M}_{0}]}$ is dominated by $P_{0}$ .
Namely, there exists a partial isometry $V$ in $D(S)^{\prime}$ such that $V^{*}V\leqq P_{0}$ and
$VV^{*}=P_{[W(S)\mathfrak{M}_{0}]}$ . We put $V=\sum_{n\in Z}S^{n}VS^{*n}$ . Since $SW(S)S^{*}=W(S),$ $V$ commutes

with $W(S)$ , and obviously $Vs=sV$ . Hence $V$ is a partial isometry in $M(S)^{\prime}$

such that $V^{*}S^{n}[W(S)\mathfrak{M}_{0}]\subset \mathfrak{K}_{n}$ for all $n$ in $Z$ . If we put $\mathfrak{N}=V^{*}\mathfrak{M}$ , then $\mathfrak{N}$ is a
desired invariant subspace of type-H2.

There are many kinds of families $S$ such that $W(S)$ is a group and $S^{*}W(S)S$

$=W(S)$ . In general, $S$ does not necessarily have Property (B). For example,
the family $\mathfrak{S}$ of all shift operators on $\mathfrak{H}$ does not have Property (B). In fact,

$\mathfrak{M}=\sum_{n=1}^{\infty}\oplus \mathfrak{K}_{n}$ is a pure simply invariant subspace of $\mathfrak{S}$ but the commutant $M(\mathfrak{S})^{\prime}$

$=B(\mathfrak{H})^{\prime}=C(\mathfrak{H})$ contains no partial isometry $U$ such that $U\mathcal{H}^{2}=\mathfrak{M}$ . Furthermore,
McAsey, Muhly and Sait\^o [6], [7] has given a necessary and sufficient condition
for $S$ to have Property (B) in the case where $M(S)$ is the crossed product deter-
mined by a finite von Neumann algebra $M$ in the standard form and a trace
invariant $*$-automorphism. Though the von Neumann algebra $M(S)$ in their
paper are special ones in $B(\mathfrak{H})$ , we can aPply their technique to the general case.
In the following, we give a necessary condition for $S$ to have Property (B).
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PROPOSITION 2.7. $SuPP^{ose}$ that $S$ has Property(B). Then $M(S)$ is the crossed
$P^{roduct}$ of $D(S)_{0}$ by $Z$ with respect to a spatial*-automorphism $\alpha=Adu$ of $D(S)_{0}$

for some unitary operatOr $u$ on $\mathfrak{K}$ . Moreover, $\alpha=Adu$ leaves the set of all cm-
tral finite Projections in $D(S)_{0}^{\prime}$ element-wise fixed.

PROOF. Since $P_{1}$ (resp. $P_{-1}$) is a wandering projection, $P_{1}$ (resp. $P_{-1}$ ) domi-
nated by $P_{0}$ in $D(S)^{\prime}$ from Proposition 2.6. Let $V$ be a partial isometry in $D(S)^{\prime}$

such that $V^{*}V=P_{-1}$ and $VV^{*}\leqq P_{0}$ . Then $V_{S}=SVS^{*}$ is a partial isometry in $D(S)^{\prime}$

such that $V\S V_{s}=P_{0}$ and $V_{S}V\S\leqq P_{1}$ because $V$ is in $D(S)^{\prime}$ and $S^{*}D(S)S=D(S)$ .
Hence $P_{1}\succ P_{0}$ and $P_{0}\prec P_{1}$ , so that $P_{0}\sim P_{1}$ by virtue of the Bernstein type theorem
[9; Theorem 4.7]. Let $U$ be a partial isometry in $D(S)^{\prime}$ such that $U^{*}U=P_{0}$ and
$UU^{*}=P_{1}$ . We put

$u=the$ restriction of $U^{*}S$ to $\mathfrak{K}_{0}$ .
Then $u$ is a unitary operator on $\mathfrak{K}_{0}$ and, regarding $u$ as an operator on $\mathfrak{K}$, we
have $U=Si(u^{*})P_{0}$ . Let $X=\sum_{n\in Z}\oplus x_{n}$ be an element of $D(S)$ . Since $UX=XU$ , we
have

Si$(u^{*})P_{0}(\sum_{n\in Z}\oplus x_{n})P_{0}i(u)S^{*}=(\sum_{n\in Z}\oplus x_{n})P_{1}$ .

Namely, we have $u^{*}x_{0}u=x_{1}$ . Since $U_{n}=S^{n}US^{*n}$ is also a partial isometry in
$D(S)^{\prime}$ and $U_{n}=Si(u^{*})P_{n}$ , it follows that $u^{*}x_{n}u=x_{n+1}$ for all $n$ in $Z$ . Therefore,

we have $x_{n}=u^{*n}x_{0}u^{n}$ for all $n$ in $Z$ . Since $S^{*}W(S)S=W(S),$ $ux_{0}u^{*}$ and $u^{*}x_{0}u$

are also elements of $D(S)_{0}$ , that is, $Adu(D(S)_{0})=u(D(S)_{0})u^{*}=D(S)_{0}$ . Hence
$\alpha=Adu$ is a $*$-automorphism of $D(S)_{0}$ and $X=\sum_{n\in Z}\oplus\alpha^{-n}(x_{0})$ . Since $M(S)$ is

generated by $D(S)$ and the group $\{S^{n}\}_{n\in Z},$ $M(S)$ is the crossed product of $D(S)_{0}$

by $Z$ with respect to $\alpha=Adu$ .
We now remark that $\alpha$ is also a $*$-automorphism of the commutant $D(S)_{0}^{\prime}$

and suppose that there exists a central finite projection $e$ in $D(S)_{0}^{\prime}$ such that
$\alpha(e)\neq e$ . We put $f=e-e\alpha(e)$ if $e\alpha(e)\neq e$ , otherwise $f=\alpha(e)-e\alpha(e)$ . Then $f$ is a
non-zero central projection in $D(S)_{0}^{\prime}$ such that $\alpha(f)f=0$ . We put

$\mathfrak{M}=f\mathfrak{K}_{0}\oplus(\sum_{n=1}^{\infty}\oplus(f+\alpha^{-1}(f))\mathfrak{K}_{n})$ .

Then $\mathfrak{M}$ is a pure simply invariant subspace of $S$ such that $\mathfrak{M}_{0}=\mathfrak{M}\ominus[S\mathfrak{M}]=$

$f\mathfrak{K}_{0}\oplus\alpha^{-1}(f)\mathfrak{K}_{1}$ . By Property (W), there exists a projection $R$ in $D(S)^{\prime}$ such that

$P_{\mathfrak{M}_{0}}=i(f)P_{0}+i(\alpha^{-1}(f))P_{1}\sim R\leqq P_{0}$ . $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(*)$

Hence, the central support of $P_{\mathfrak{M}_{0}}$ is the same as that of $R$ in $D(S)^{\prime}$ . We put
$\pi(f)=\sum_{n\in Z}\oplus f_{n}$ , where $f_{n}=\alpha^{-n}(f)$ for all $n$ in $Z$ . Then $\pi(f)$ is a central pro-

jection in $D(S)_{0}^{\prime}$ , which majorizes the projection $i(f)P_{0}+i(\alpha^{-1}(f))P_{1}$ . Hence $ P_{\mathfrak{M}_{0}}\leqq$

$\pi(f)$ , so that $R\leqq\pi(f)$ . Thus $R=PP_{0}\leqq\pi(f)P_{0}=i(f)P_{0}$ . By relation $(*),$ $R$ is of
the form $R=R_{1}+R_{2}$ , $R_{1}R_{2}=0$ , where $R_{1}\sim i(f)P_{0}$ and $R_{2}\sim i(\alpha^{-1}(f))P_{1}$ . Since
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$U=Si(u^{*})P_{0}$ is a partial isometry in $D(S)^{\prime}$ with initial projection $i(f)P_{0}$ and final
projection $i(\alpha^{-1}(f))P_{1}$ , we have $i(f)P_{0}\sim i(\alpha^{-1}(f))P_{1}$ in $D(S)^{\prime}$ . We put $g=RP_{0}$ ,
$g_{1}=R_{1}P_{0}$ and $g_{2}=R_{2}P_{0}$ . Then we can consider $g,$ $g_{1}$ and $g_{2}$ as projections in
$D(S)_{0}^{\prime}$ and it follows that

$f\geqq g=g_{1}+g_{2}$ , $g_{1}g_{2}=0$ and $g_{1}\sim g_{2}\sim f$

in $D(S)_{0}^{\prime}$ . This contradicts that $f$ is a finite projection in $D(S)_{0}^{\prime}$ . Therefore,
$\alpha(e)=e$ for each central finite projection $e$ in $D(S)_{0}^{\prime}$ and this completes the proof.

Next, we shall show, step by step, that the condition in Proposition 2.7 is
also sufficient for $S$ to have Property (B). We denote by $\mathcal{R}(D(S)_{0}, \alpha)$ the crossed
product of $D(S)_{0}$ by $Z$ with respect to a spatial $*$-automorphism $\alpha=Adu$ (cf.

[9; V. 7]).

PROPOSITION 2.8. Suppose that $M(S)=\mathcal{R}(D(S)_{0}, \alpha)$ and $M(S)^{\prime}$ is finite. If $\alpha$

leaves the center of $D(S)_{0}$ element-wise fixed, then $S$ has Property(B).
PROOF. Let $P$ be a wandering projection for $S$ . By the comparability

theorem [9; Theorem 4.6], there exists a central projection $Z$ in $D(S)^{\prime}$ , such
that

$ZP_{0}\prec ZP$ and $(I-Z)P_{0}\succ(I-Z)P$

in $D(S)^{\prime}$ . We shall show that $ZP_{0}\sim ZP$. Since $Z$ is also a central projection
in $D(s),$ $Z$ is of the form $Z=\sum_{n\in Z}\oplus z_{n}$ where $z_{n}=\alpha^{-n}(z_{0})$ for all $n$ in $Z$ and $z_{0}$

is a central projection in $D(S)_{0}$ . Since $\alpha(z_{0})=z_{0}$ , we have $Z=i(z_{0})$ . Hence $Z$ is
also in the commutant $M(S)^{\prime}$ . We put

$\tilde{P}=\sum_{n\in Z}S^{n}PS^{*n}$ , $ ZP=\sum_{n\in Z}S^{n}ZPS^{*n}\sim$ and $ ZP_{0}=\sum_{n\in Z}S^{n}ZP_{0}S^{*n}\sim$ .

Since $P,$ $ZP$ and $ZP_{0}$ are wandering projections for $S,\tilde{P},\overline{ZP}$ and $ ZP_{0}\sim$ converge
to projections in $M(s)^{\prime}$ and it follows that $\overline{ZP}=Z\tilde{P}$ and $ ZP_{0}=Z\sim$ . Since $ZP_{0}$

$\prec ZP$ in $D(S)^{\prime}$ , there exists a partial isometry $V$ in $D(S)^{\prime}$ such that $V^{*}V=ZP_{0}$

and $VV^{*}\sim Q\leqq ZP$. We put $\tilde{V}=\sum_{n\in Z}S^{n}VS^{*n}$ . Then $V$ converges to a partial

isometry in $M(S)^{\prime}$ such that $\tilde{v}*V=\overline{ZP_{0}}=Z$ and $ V\tilde{V}^{*}=\tilde{Q}=\sum_{n\in Z}S^{n}QS^{*n}\leqq ZP\leqq Z\sim$ .
Namely, we have $Z\sim\tilde{Q}\leqq Z$ in $M(S)^{\prime}$ . Since $M(S)^{\prime}$ is finite, we have $ Z=ZP=\tilde{Q}\sim$ .
Thus $ZP=Q$ , that is, $ZP_{0}\sim ZP$ in $D(S)^{\prime}$ . Consequently, we have $P\prec P_{0}$ in
$D(S)^{\prime}$ . By Proposition 2.6, $S$ has Property (B).

We note that the commutant $\mathcal{R}(D(S)_{0}, \alpha)^{\prime}$ in Proposition 2.8 is isomorphic
to the crossed product $\mathcal{R}(D(S)_{0}^{\prime}, \alpha)$ because $\alpha$ is a spatial $*$-automorphism [10;

P. 373], so that $D(S)_{0}^{\prime}$ must be finite under the condition that $M(S)^{\prime}$ is finite
[8; Theorem 7.11.8]. In the case where $D(S)_{0}^{\prime}$ is properly infinite, we get the
following.

PROPOSITION 2.9. Suppose that $M(S)=\mathcal{R}(D(S)_{0}, \alpha)$ . If the commutant $D(S)_{0}^{\prime}$
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is Properly infinite, then $S$ has Property(B).
PROOF. Let $u$ be the unitary operator on $\mathfrak{K}$ by which $\alpha$ is implemented.

We define a unitary operator $W$ on $\mathfrak{H}=\sum_{n\in Z}\oplus \mathfrak{K}_{n}$ as follows; $W=\sum_{n\in Z}\oplus u_{n}$ , where

$u_{n}=u^{*n}$ for all $n$ in $Z$ . Then $\Phi(\cdot)=W\cdot W^{*}$ is a spatial $*$-automorphism of $B(\mathfrak{H})$

and $\Phi(D(S))=$ {$W=\sum_{n\in Z}\oplus v_{n}$ : $v_{n}=v_{0}$ for all $n$ in $Z,$ $v_{0}\in D(S)_{0}$}. Thus $\Phi(D(S))$ is

spatially isomorphic to the tensor product $C(L^{2}(T))\otimes D(S)_{0}$ on $L^{2}(T)\otimes \mathfrak{K}$ . Hence
the commutant $D(S)^{\prime}$ is isomorphic to the tensor product $B(L^{2}(T))\otimes D(s)_{0}^{\prime}$ and
$P_{0}$ (resp. $I$) corresponds to $q_{0}\otimes 1$ (resp. $1\otimes 1$ ) in $B(L^{2}(T))\otimes D(s)_{0}^{\prime}$ where $q_{0}$ is
the projection of $L^{2}(T)$ onto the one dimensional subspace of constant valued
functions on $T$ . Obviously, $q_{0}\otimes 1$ is properly infinite in $B(L^{2}(T))\otimes D(s)_{0}^{\prime}$ and
the central support of $q_{0}\otimes 1$ is the identity on $L^{2}(T)\otimes \mathfrak{K}$ . Hence we have $q_{0}\otimes 1$

$\sim 1\otimes 1$ [ $9$ ; Proposition 4.13]. Consequently we have $P_{0}\sim I$ in $D(S)^{\prime}$ , so that for
each wandering projection $P$ is dominated by $P_{0}$ . Hence $S$ has Property (W).

In order to apply the preceding propositions, we prepare a lemma. Let $e$

be a projection in the commutant $D(S)_{0}^{\prime}$ and $\mathfrak{H}_{e}=\sum_{n\in Z}\oplus e\mathfrak{K}_{n}$ . Since $W(S)$ commutes

with $i(e),$ $Ui(e)$ is a shift operator on $\mathfrak{H}_{e}$ for each shift operator $U$ in $S$ . We
denote by $S_{e}$ the family of shift operators $\{Ui(e):U\in S\}$ on $\mathfrak{H}_{e}$ . Then we have
$M(S_{e})=M(S)i(e),$ $D(S_{e})=D(S)i(e)$ and $D(S_{e})_{0}=D(S)_{0}e$ . If $e$ is a central projection
in $D(S)_{0}^{\prime}$ , then we have $M(S)^{\prime}=M(S_{e})^{\prime}\oplus M(S_{1-e})^{\prime}$ and, for each wandering pro-
jection $P$ for $S,$ $Pi(e)$ (resp. $Pi(1-e)$ ) is a wandering projection for $S_{e}$ (resp. $S_{1-e}$).

Hence we have the following lemma by Proposition 2.6.
LEMMA 2.10. Let $e$ be a central projection in $D(S)_{0}$ . If $S_{e}$ and $S_{1-e}$ have

Property(B), then $S$ has Property(B).

PROPOSITION 2.11. Suppose that $M(S)=\mathcal{R}(D(S)_{0}, \alpha)$ . If $\alpha$ leaves the finite
central projections in $D(S)_{0}^{\prime}$ element-wise fixed, then $S$ has Property $(B)$ .

PROOF. For the von Neumann algebra $D(S)_{0}^{\prime}$ , there exists a central projec-
tion $e$ in $D(S)_{0}^{\prime}$ such that $D(S)_{0}^{\prime}e$ is finite and $D(S)_{0}^{\prime}(1-e)$ is properly infinite [10;

V. Theorem 1.19]. Since $e$ is a finite central projection in $D(S)_{0}^{\prime}$ , we have $\alpha(e)$

$=e$ . Hence $e$ commutes with the unitary operator $u$ on $\mathfrak{K}$ by which $\alpha$ is imple-
mented. We put $\alpha_{e}=Ad(ue)$ and $\alpha_{1-e}=Ad(u(1-e))$ . Then $\alpha_{e}$ and $\alpha_{1-e}$ are
$*$-automorphisms of $D(S)_{0}e,$ $D(S)_{0}(1-e)$ and their commutants respectively. More-
over, $\alpha_{e}$ leaves the center of $D(S)_{0}^{\prime}e$ element-wise fixed. Since $M(S_{1-e})=$

$\mathcal{R}(D(S_{1-e})_{0}, \alpha_{1- e})$ and $D(S_{1-e})^{\prime}=D(S)_{0}^{\prime}(1-e),$ $S_{1-e}$ has Property (B) by Proposition
2.9. On the other hand, since the commutant $D(S_{e})_{0}^{\prime}=D(S)_{0}^{\prime}e$ is finite, there
exists a unique faithful normal center valued trace $T$ on $D(S_{e})_{0}^{\prime}$ . By the uni-
queness of $T$, we have $T(\alpha_{e}(x))=T(x)$ for each $x$ in $D(\alpha_{e})_{0}^{\prime}$ . Hence there exists
a $\alpha_{e}$-invariant faithful normal trace on $D(S_{e})_{0}^{\prime}$ . By Theorem 7.11.8 in [8], the
crossed product $\mathcal{R}(D(S_{e})_{0}^{\prime}, \alpha_{e})$ is finite and this crossed product is isomorphic to
the commutant $M(S_{e})^{\prime}=\mathcal{R}(D(S_{e})_{0}, \alpha_{e})^{\prime}$ . Thus, by Proposition 2.8, $S_{e}$ has Property
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(B) and we have the conclusion by Lemma 2.10.
The preceding propositions 2.7, 2.8, 2.9 and 2.10 implies our main theorem.
THEOREM 2.12. A family $S$ has Property (B) if and only if $S$ satisfies the

following conditions:
(1) $M(S)=\mathcal{R}(D(S)_{0}, \alpha)$ , where $\alpha$ is a sPatial $*$-automorphism of $D(S)_{0}$ .
(2) $\alpha$ leaves the finite central projectiom in $D(S)_{0}^{\prime}$ element-wise fixed.
Let $\alpha$ be trivial in the crossed product $M(S)=\mathcal{R}(D(S)_{0}, \alpha)$ . Then, of course,

$S$ satisfies the conditions in the above theorem and $D(S)=\{X=\sum_{n\in Z}\oplus x_{n}$ : $x_{n}=x_{0}$

for all $n$ in $Z$}. Thus $D(S)$ is isomorphic to the tensor product $1\otimes D(S)_{0}$ on
$L^{2}(T)\otimes \mathfrak{K}$, so that $M(S)$ is isomorphic to $M_{L(T)}\infty\otimes D(S)_{0}$ . In this case, $S$ is
regarded as the tensor product $s\otimes A$ on $L^{2}(T)\otimes \mathfrak{K}$ . Hence we have the following.

COROLLARY 2.13. Let $\mathfrak{H}=L^{2}(T)\otimes \mathfrak{K}$ and $S=s\otimes A$ where $A$ is a group of
unitary operators on $\mathfrak{K}$ . Then $S$ has Property (B).

We have shown, in Theorem 1.9, that for each simply invariant subspace
$\mathfrak{M}$ of $A(S),$ $\mathfrak{H}$ has a decomposition $\mathfrak{H}=(\mathfrak{M}_{p})_{-\infty}\oplus \mathfrak{M}_{r}\oplus \mathfrak{M}_{c}$ . We here show that if
$M(S)^{\prime}$ is finite then this decomposition corresponds to a simple decomposition of
$\mathfrak{H}$ under the conditions in Theorem 2.12.

THEOREM 2.14. SupPose that $S$ satisfies conditions (1) and (2) in Theorem 2.12
and $W(S)^{\prime}$ is finite. Then, for each simply invariant subspace $\mathfrak{M}$ of $A(S),$ $\mathfrak{H}$ has
a couple of decompositions;

(1) $\mathfrak{H}=(\mathfrak{M}_{p})_{-\infty}\oplus \mathfrak{M}_{\gamma}\oplus \mathfrak{M}_{c}$

(2) $\mathfrak{H}=\mathfrak{N}_{-\infty}\oplus \mathfrak{N}_{c}$

such that

(i) $\mathfrak{N}$ is an invariant subspace of type-H2 that is, $\mathfrak{N}=\sum_{n=0}^{\infty}\oplus e\mathfrak{K}_{n}$ for some
projection $e$ in $D(S)_{0}^{\prime}$ .

(ii) $U\mathfrak{N}_{-\infty}=(\mathfrak{M}_{p})_{-\infty},$ $U\mathfrak{N}=\mathfrak{M}_{p}$ and $U\mathfrak{N}_{c}=\mathfrak{M}_{r}\oplus \mathfrak{M}_{c}$ for some unitary operator
$U$ in $M(S)^{\prime}$ .

PROOF. By Theorem 1.9, $\mathfrak{H}$ has a decomposition (1) such that $\mathfrak{M}=\mathfrak{M}_{r}\oplus \mathfrak{M}_{p}$

and $\mathfrak{M}_{p}$ is a non-zero pure simply invariant subspace. By Theorem 2.12, there
exist an invariant subspace $\mathfrak{N}$ of $type- H^{2}$ and a partial isometry $V$ in $M(S)^{\prime}$

such that $V^{*}V=P_{\mathfrak{N}-\infty},$ $VV^{*}=P_{(\mathfrak{M}_{p})_{-\infty}}$ and $V\mathfrak{N}_{n}=(\mathfrak{M}_{p})_{n}$ for all $n\geqq 0$ . Since $M(S)^{\prime}$

is finite, we have $P_{\mathfrak{H}\ominus(\mathfrak{M}_{p})_{-\infty}}\sim P_{\mathfrak{H}\ominus \mathfrak{R}-\infty}$ .
If we drop the condition that $W(S)^{\prime}$ is finite, then Theorem 2.14 does not

necessarily hold. We shall show this fact in the case of properly infinite.
EXAMPLE 2.15. Let $\mathfrak{K}$ be an infinite dimensional Hilbert space with base

$\{\xi_{n}\}_{n=0}^{\infty}$ and $\mathfrak{H}=L^{2}(T, \mathfrak{K})$ . Let $s=\{S\}$ , where $S$ is the usual shift on $\mathfrak{H}$, that is,
$(SG)(z)=zG(z)a$ . $e$ . $z$ in $T$ for each vector $G$ in $\mathfrak{H}$ . Then $M(S)=M_{L^{\infty}(T,C(R))}$ and
$M(S)^{\prime}=M_{L^{\infty}(T,B(R))}$ . Let $u$ be the unilateral shift on $\mathfrak{K}$ with respect to the base
$\{\xi_{n}\}_{n=0}^{\infty}$ . We define a function $F$ in $L^{\infty}(T, B(\mathfrak{K}))$ as follows; $F(z)=1$ if $0\leqq\arg z$



Invariant subspaces of shift operatOrs 353

$<\pi,$ $=u$ if $\pi\leqq\arg z<2\pi$ . Then $\mathfrak{M}=M_{F}H^{2}(T, \mathfrak{K})$ is a pure simply invariant
subspace such that $P_{\mathfrak{M}-\infty}(z)=1$ if $0\leqq\arg z<\pi,$ $=1-e_{0}$ if $\pi\leqq\arg z<2\pi$ , where $e_{\alpha}$

is the projection of $\mathfrak{K}$ onto the one dimensional subspace generated by $\xi_{0}$ . For
this invariant subspace $\mathfrak{M},$

$\mathfrak{H}$ has a decomposition $\mathfrak{H}=\mathfrak{M}_{-\infty}\oplus \mathfrak{M}_{c}$ , then $P_{\mathfrak{M}_{c}}(z)=0$

if $0\leqq\arg z<\pi,$ $=e_{0}$ if $\pi\leqq\arg z<2\pi$ . For an invariant subspace $\mathfrak{N}$ of $type- H^{2}$,

we consider a decomposition of $\mathfrak{H},$ $\mathfrak{H}=\mathfrak{N}_{-\infty}\oplus \mathfrak{N}_{c}$ . Then $P_{\mathfrak{R}-\infty}=i(e)$ for some pro-
iection $e$ in $B(\mathfrak{K})$ by Proposition 2.2, so that $P_{\Re_{c}}=i(1-e)$ . Hence $P_{\mathfrak{M}_{c}}$ cannot be
equivalent to $P_{\mathfrak{R}_{c}}$ for any invariant subspace $\mathfrak{N}$ of type-H2.

Next we note that decomposition (2) in Theorem 2.14 is unique up to equi-
valence in $M(S)^{\prime}$ and $D(S)^{\prime}$ . Suppose that $\mathfrak{H}=\mathfrak{N}_{-\infty}^{\prime}\oplus \mathfrak{N}_{c}^{\prime}$ is a decomposition of $\mathfrak{H}$

satisfying conditions (i) and (ii). Then we immediately find that $P_{\mathfrak{R}-\infty}\sim P_{\mathfrak{N}^{\prime}-\infty}$ in
$M(S)^{\prime}$ and $P_{\mathfrak{R}_{n}}\sim P_{g_{n}^{\prime}}$ in $D(S)^{\prime}$ for all $n$ in $Z$ .

REMARK. Let $S$ be a family of shift operators on $\mathfrak{H}$ . When the set $W(S)$

does not satisfy conditions (1) $W(S)$ is a group (2) $S^{*}W(S)S=W(S)$ , we cannot
apply our results directly to the study of structure of invariant subspaces of $S$ .
But, if $W(S, S^{\prime})=\{W:W=U(S^{\prime})^{*}, U\in S\}$ satisfies the conditions (1) and (2) for
some shift operator $S^{\prime}$ on $\mathfrak{H}$, we can apply our results indirectly to the study of
invariant subspaces of $S$ . We note that $W(S)$ depends on $S$ , but the structure
of invariant subspaces of $S$ does not depend on $S$ .
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