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Analytic functions with finite Dirichlet integrals
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1. In the classification theory of Riemann surfaces (cf. $e$ . $g$ . Sario-Nakai
[2]), the problem whether the inclusion $O_{AD}\subset O_{ABD}$ is strict or not had long
been open and only recently the identity $O_{AD}=O_{ABD}$ is established by an elaborate
work [1] of Sakai. On the other hand, Uy [4] also recently proved the follow-
ing interesting theorem: If $E$ is an arbitrary compact subset of the complex
plane $C$ with positive area, then there exists a nonconstant bounded analytic
function $\phi(z)$ on $C-E$ satisfying the Lipschitz condition on $C-E$ . We first
remark here that the above theorem implies the identity $O_{AD}=O_{ABD}$ . In fact,
suppose there exists a nonconstant analytic function $f$ on a Riemann surface $R$

with the finite Dirichlet integral $D_{R}(f)=\int\int_{R}|f^{\prime}(z)|^{2}dxdy<+\infty,$ $i$ . $e$ . $f\in AD(R)-C$ .
The image region $f(R)$ has a finite area since $ D_{R}(f)<+\infty$ , and a fortiori $C-f(R)$

has a positive area (and in fact an infinite area). Therefore we can find a
compact subset $E$ with positive area in $C-f(R)$ . Let $\phi(z)$ be the function in
the above theorem associated with $E$ . It is readily checked that $\phi\circ f\in ABD(R)$

$-C$, and we have seen the inclusion $O_{AD}\supset O_{ABD}$ . This with the trivial inclusion
$O_{AD}\subset O_{ABD}$ implies the identity $O_{AD}=O_{ABD}$ .

One step further Sakai [1] proved that $ABD(R)$ is dense in $AD(R)$ with
respect to the Dirichlet seminorm $D(\cdot)^{1/2}$ . By observing the proof of $O_{AD}=O_{ABD}$

mentioned above, we naturally come across the question (suggested to the author
by Professor Nakai) whether there exists a sequence $t\phi_{n}$ } on $C$ such that $\phi_{n^{\circ}}f$

$\in ABD(R)$ and $\{\phi_{n}\}$ converges to the identity function on $f(R)$ so that the
sequence $\{\phi_{n}\circ f\}$ gives the desired approximation of the given $f\in AD(R)$ . The
purpose of this note is to prove the following theorem by which the above
procedure is certainly possible.

THEOREM. SuPpose that a closed set $E$ in the complex plane $C$ satisfies the
condition

$’(1)$ $\lim_{r\rightarrow}\sup_{\infty}\frac{m(E\cap\{r<|z|<2r\})}{r^{2}}>0$

with $m$ the Lebesgue measure on C. Then there exists a sequence of functions
$\{\phi_{n}(z)\}$ satisfying the following three conditions:
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$(\alpha)$ each $\phi_{n}(z)$ is bounded and analytic on $C-E\cap\{|z|\geqq n\}$ ,
$i$ . $e$ . $\phi_{n}\in AB(C-E\cap\{|z|\geqq n\})$ ,

$(\beta)$ $\sup_{n}\{\sup\{|\phi_{n}^{\prime}(z)|;z\in C-E\cap\{|z|\geqq n\}\}\}<+\infty$ ,

$(\gamma)$ $\{\phi_{n}(z)\}$ converges to $z$ uniformly on each compact subset of $C$ .
The proof of this theorem will be given in nos. 2 and 3. Here we show

that the above theorem implies the approximation theorem: $ABD(R)$ is $D(\cdot)^{1/2_{-}}$

dense in $AD(R)$ . Let $f\in AD(R)$ and $E=C-f(R)$ . It is readily seen that $E$

satisfies (1) since $ m(f(R))<+\infty$ . Choose the sequence $\{\phi_{n}\}$ in the above theorem
constructed for the present $E=C-f(R)$ . Observe that

$D_{R}(f-\phi_{n}\circ f)=\int\int_{R}|1-\phi_{n}^{\prime}(f(z))|^{2}|f^{\prime}(z)|^{2}dxdy$ .

Let $K$ be an arbitrary compact set in $R$ and $c$ be the quantity in $(\beta)$ in the
above theorem. Then

$D_{R}(f-\phi_{n}\circ f)\leqq\int\int_{K}|1-\phi_{n}^{\prime}(f(z))|^{2}|f^{\prime}(z)|^{2}dxdy+(1+c)^{2}D_{R- K}(f)$ .

On letting $ n\rightarrow\infty$ in the above inequality, the condition $(\gamma)$ implies that

$\lim_{n\rightarrow}\sup_{\infty}D_{R}(f-\phi_{n}\circ f)\leqq(1+c)^{2}D_{R-K}(f)$ .

Again by letting $K\uparrow R$ , we conclude that $D_{R}(f-\phi_{n^{o}}f)\rightarrow 0(n\rightarrow+\infty)$ .

2. For the proof of our theorem we use notations and results in Uy [4].

We denote by $M(C)$ the set of the finite Borel measures on $C$ and consider

$B\mu(z)=p.v.\int\int\frac{d\mu(\zeta)}{(\zeta-z)^{2}}$ (p.v. $=principal$ value)

for each $\mu\in M(C)$ . It is well known (cf. $e$ . $g$ . Stein [3], Zygmund [5]) that the
above singular integral exists almost everywhere and that there exists a universal
constant $A$ such that

(2) $m(\{z;|Bu(z)|>\lambda\})\leqq\frac{A||\mu\Vert}{\lambda}$

for any $\mu\in M(C)$ . By taking $a$ the Dirac measure in (2) we in particular see
that $ A\geqq\pi$ . If $E$ is any compact set in $C$ such that $m(E)>0$ and $O\not\in E$ , then we
denote by $\Gamma(E)$ the set of functions $h\in L^{\infty}(E)$ such that $\Vert h\Vert_{\infty}\leqq 1$ and $\Vert Bh\Vert_{\infty}\leqq 1$ ,
where $Bh$ stands for $ B\mu$ with $d\mu(z)=h(z)dm(z)$ . We set

$b(E)=\sup_{h\in\Gamma(E)}|Bh(0)|=\sup_{h\in\Gamma(E)}|\int\int\frac{h(\zeta)}{\zeta^{2}}dm(\zeta)|$ .

If, moreover, $E$ is the closure of an open set whose boundary consists of a finite
number of analytic Jordan curves, then we also consider the quantity
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$\theta^{*}(E)=\sup_{h\in \mathcal{D}(E)\cap\Gamma(E)}|Bh(0)|$

where $\mathcal{D}(E)$ is the set of $C^{\infty}$-functions on $C$ with supports in $E$ .

3. The proof of our theorem can be divided into lemmas, the Prst of
which is:

LMMA 1. The inequality

(3) $b(E)\geqq\frac{1m(E)}{8Ar^{2}}$

is valid for any compact set $E\subset\{r\leqq|z|\leqq 2r\}(r>0)$ .
PROOF. We use an argument similar as in the proof of Theorem 5.1 in Uy

[4]. Set $E_{r}=\{z/r;z\in E\}\subset\{1\leqq|z|\leqq 2\}$ . It is off hand to see that $b(E)=b(E_{r})$ .
By Lemma 4.2 of Uy [4], it suffices to show that

(4) $b^{*}(E_{r})\geqq\frac{1}{8A}m(E_{r})$

for any compact set $E_{r}$ with $E_{r}\subset\{1\leqq|z|\leqq 2\}$ and with a boundary consisting
of a finite number of analytic Jordan curves. By using Theorem 3.7 of Uy [4],

we have

$ l^{*}(E_{r})\geqq\int\int_{E_{r}}|\frac{1}{z^{2}}-B\nu(z)|dm(z)+\Vert\nu\Vert$

for some $\nu\in M(C)$ . Let $F=\{z\in E_{r} ; |B\nu(z)|>1/8\}$ . By (2), we have $ m(F)\leqq 8A\Vert\nu\Vert$

and

$\int\int_{E_{r}}|\frac{1}{z^{2}}-B\nu(z)|dm(z)+\Vert\nu\Vert\geqq\int\int_{E_{r^{-}}F}|\frac{1}{z^{2}}-B\nu(z)|dm(z)+\Vert\nu\Vert$

$\geqq\frac{1}{8}m(E_{r}-F)+\frac{1}{8A}m(F)\geqq\frac{1}{8A}m(E_{r})$ .

Hence (4) is established. Q. E. D.
Our theorem can be deduced at once from the following
LEMMA 2. If $E$ is a compact set with posifive measure contained in $\{r\leqq|z|$

$\leqq 2r\}(r>0)$ , then there exis $ts$ a function $g(z)$ such that

(a) $g(z)$ is bounded and analytic on $C-E$ ,

(b) $|g^{\prime}(z)|\leqq 9A\frac{r^{2}}{m(E)}$ on $C-E$ ,

(c) $|g^{\prime}(z)-1|\leqq 12A\frac{r}{m(E)}|z|$ for $|z|<r$ .

PROOF. By Lemma 1, there exists an $h\in L^{\infty}(E)$ such that
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$\hat{h}(z)=\int\int\frac{h(\zeta)}{\zeta-z}dm(\zeta)$

satisPes the following properties:

1 $\hat{h}(z)$ is continuous on $C$ ,

2 $|\frac{d}{dz}\hat{h}(z)|=|Bh(z)|\leqq 1$ on $C-E$ ,

3 $|\frac{d}{dz}h(0)|=|Bh(0)|\geqq\frac{1m(E)}{9Ar^{2}}$ .

The function

$g(z)=h_{(Z})(\frac{d\hat{h}}{dz}(0))^{-1}$

is clearly bounded and analytic on $C-E$ and satisfies (b). Since $ 1\leqq 3\pi r^{2}/m(E\rangle$

$\leqq 3Ar^{2}/m(E)$ (recall $ A\geqq\pi$), applying the Schwarz lemma to $g^{\prime}-1,$ $g$ also satisfies
(c). Q. E. D.
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