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1. Introduction.

Throughout this paper, all spaces considered are to be completely regular.
Pasynkov [6] introduced the notion of rectangular product as follows;
DEFINITION. A product space $X\times Y$ is rectangular if every cozero subset

of $X\times Y$ is a $\sigma$ -locally finite union of cozero-set rectangles ( $i$ . $e$ . products $U\times V$

of cozero subsets of $X\times Y$).

Rectangularity guarantees the product theorem for covering dimension: $i$ . $e$ .
if a product $X\times Y$ is rectangular, then dim $X\times Y\leqq\dim X+\dim Y$ . He has shown
in many cases the product is rectangular and asked; Is every product $X\times Y$

rectangular ?
This question has been answered negatively by examples of Wage [8] and

Przymusi\’{n}ski [7] which do not satisfy the product theorem for covering dimen-
sion. As a simpler non-rectangular product, it was announced [6] that V. Zolo-
tarev had proved that (Sorgenfrey line)2 is not rectangular. As another famous
non-normal example, we know the example of E. Michael [3]. In this note we
establish the following theorem;

THEOREM. Let $X_{A}$ be a Hannerization of a metric space $X$ with respect to
a subset $A$ of X. Then $A\times X_{A}$ is rectangular if and only if $A\times X_{A}$ is normal
if and only if $A$ is $F_{\sigma}$ in $X$.

As a corollary we obtain that (Michael’s $line$) $\times(Irrationals)$ is not rectangular.
It is known [6] normality induces rectangularity in products with a metric

factor. At the end of this note we give an example of non-normal rectangular
product with a metric factor and we will show that rectangularity cannot be
preserved under perfect maps.

2. Rectangularity means normality for product $A\times X_{A}$ .
DEFINITION 1. Let $A$ be a subspace of a space $X$. The family of all sets

of the form $U\cup K$, where $U$ is an open subset of $X$ and $K\subset A$ , is a topology
on $X$ : The set $X$ with this topology is called a Hannerization of $X$ with
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respect to $A$ and denoted by $X_{A}$ . For elementary properties of $X_{A}$ , see [1,
Chapter 5].

DEFINITION 2. A space $(X, \mathcal{T})$ is submetrizable if there is a metrizable topol-
ogy $\mathcal{M}$ on $X$ having $\mathcal{M}\subset \mathcal{T}$ . Subspace $A$ of a space (X, $\mathcal{M}$ ) is denoted by
$(A, \mathcal{M})$ .

We will show that if $X$ is a perfectly normal submetrizable space and $A\subset X$,
then the rectangularity of the product $(A, \mathcal{M})\times X_{A}$ means normality.

THEOREM 1. Let $X$ be a metric space and $A\subset X$. If the product $A\times X_{A}$ is
rectangular, then $A$ is $F_{\sigma}$ in $X$.

Claim 1. Let $B\subset A$ and $B=\bigcup_{i=1}^{\infty}F_{i}$ where each $F_{i}$ is a discrete closed subset

of $X$. Then $\Delta_{B}--\{(x, x)\in A\times X_{A} : x\in B\}$ is a zero set of $A\times X_{A}$ .
PROOF. Let $\mathcal{U}_{i}=\{(V_{1/i}(x)\cap A)\times\{x\}:x\in F_{i}\}$ , where $V_{\epsilon}(x)$ is a $\epsilon$ -neighbor-

hood of $x$ in a metric space $X$. Then $\mathcal{U}=\bigcup_{i=1}^{\infty}\mathcal{U}_{i}$ is a locally finite cozero-set

collection in $A\times X_{A}$, and for each $x\in F_{i},$ $\{(x, x)\}$ is a zero set in $A\times X_{A}$ con-
tained in $(V_{1/i}(x)\cap A)\times\{x\}$ . Then by [4, Lemma 2.3] $\Delta_{B}$ is a zero set in $A\times X_{A}$ .

Claim 2. Let $B$ be a dense subset of $A$ , and $U\times V$ is a cozero-set rectangle
of $A\times X_{A}$ . If $ U\times V\cap\Delta_{B}=\emptyset$ , then $U\times(U\cap V)$ is a cozero-set rectangle in $ A\times$

$\langle cl_{X}A)_{A}$ .
PROOF. Take an open set $U^{\prime}$ in $X$ such that $U=U^{\prime}\cap A$ . As $U^{\prime}$ is a cozero

set in $X$, so in $X_{A},$ $U^{\prime}\cap V\cap(cl_{X}A)_{A}$ is a cozero set in $(cl_{X}A)_{A}$ . It suffices to
show that $U^{\prime}\cap V\cap cl_{X}A\subset A$ because then $U^{\prime}\cap V\cap cl_{X}A=U^{\prime}\cap V\cap A=(U^{\prime}\cap A)\cap V$

$=U\cap V$ . Suppose there exists a point $x\in U^{\prime}\cap V\cap cl_{X}A\backslash A$ . Since $B$ is dense
in $A,$ $cl_{x_{A}}A\backslash A=cl_{x_{A}}B\backslash B$ . Hence there is a point $b\in U^{\prime}\cap V\cap B$ . Then $(b, b)\in$

$U\times V\cap\Delta_{B}$ . Contradiction.
For a collection of rectangles $\mathcal{U}=\{U_{a}\times V_{\alpha}\}_{\alpha\in\Omega}$ in $X\times Y$ , we put $\pi_{X}\mathcal{U}=$

$\{U_{a}\}_{\alpha\in\Omega}$ .
Claim 3. Let $X$ be a metric space and $Y$ be any space. If $ G=\cup(U\mathcal{U}_{i})i=1\infty$

where each $\mathcal{U}_{i}$ is a locally finite collection of cozero-set rectangles in $X\times Y$ ,

then $G$ can be written as $G=\cup(\bigcup_{i=1}^{\infty}\mathcal{V}_{i})$ such that each $\mathcal{V}_{i}$ is a locally finite

collection of cozero-set rectangles in $X\times Y$ and furthermore $\pi_{X}\mathcal{V}_{i}$ is locally
finite in $X$.

PROOF. Let $\{\mathcal{B}_{i}\}_{i=1}^{\infty}$ be a $\sigma$ -locally finite base of $X$. Fix $i$ and $j$ . For each
$U\in \mathcal{B}_{i}$ , put

$ V_{U}=\cup$ { $V$ : there exists $U^{\prime}\times V\in \mathcal{U}_{i}$ such that $U\times V\subset U^{\prime}\times V$}.

Because of the local finiteness of the right hand collection, $V_{U}$ is a cozero set
of $Y$ . Put $\mathcal{V}_{ij}=\{U\times V_{U} : U\in \mathcal{B}_{i}\}$ . Then $\{\mathcal{V}_{ij}\}_{ij}$ is the desired collection.

PROOF OF THEOREM 1. Take a dense subset $B$ of $A$ such that $B$ can be



E. Michael’s example and rectangular pr0ducts 189

written as $ B=i\approx 1UF_{i}\infty$ where each $F_{i}$ is a discrete closed subset of $X$. By Claim

1, $\Delta_{B}$ is a zero set of $A\times X_{A}$ . Let $G=A\times X_{A}\backslash \Delta_{B}$ . $G$ is a cozero set and by the

rectangularity of the product and by Claim 3, $G$ can be written as $G=\cup(\bigcup_{i=1}^{\infty}\mathcal{V}_{i})$

where each $\mathcal{V}_{i}=\{U_{a}\times V_{a} : \alpha\in\Omega_{i}\}$ is a collection of cozero-set rectangles and
$\{U_{a}\}_{\alpha\in\Omega_{l}}$ is locally finite in $A$ . In addition we can assume $\{U_{\alpha}\}_{a\in\Omega_{i}}$ is locally
finite in $X$.

Now, by Claim 2, for each $i,$ $\mathcal{V}_{i}^{\prime}=\{U_{\alpha}\times(U_{a}\cap V_{\alpha})\}_{\alpha\in\Omega_{i}}$ is a collection of

cozero-set rectangles in $A\times(cl_{X}A)_{A}$ , and $\cup(\bigcup_{i=1}^{\infty}\mathcal{V}_{i}^{\prime})$ covers $\Delta_{A}\cap G=\Delta_{A}\backslash \Delta_{B}$ . Since

$\{U_{a}\}_{a\in\Omega_{i}}$ is locally finite in $X,$ $\{U_{\alpha}\cap V_{\alpha}\}_{a\in\Omega_{i}}$ is locally finite in $X_{A}$ . Hence $W_{i}$

$=\bigcup_{a\in\Omega_{i}}(U_{\alpha}\cap V_{\alpha})$
is a cozero set of $(cl_{X}A)_{A}$ and $\bigcup_{i=1}^{\infty}W_{i}=A\backslash B$ . Thus $A\backslash B$ is $F_{\sigma}$

in $(cl_{X}A)_{A}$ , so in $X_{A}$ . Since $B$ is $F_{\sigma}$ in $X,$ $A$ is $F_{\sigma}$ in $X$. This completes the
proof.

By the same technique as above, we can prove the next theorem.
THEOREM 1’. Let (X, $\mathcal{T}$ ) be a submetrizable space with a metrizable toPology

$\mathcal{M}$ , and $A\subset X$. If the product $(A, \mathcal{M})\times X_{A}$ is rectangular, then $A$ is $F_{\sigma}$ in (X, $\mathcal{T}$ ).

THEOREM 2. Let $X$ be a metric space, $((X, \mathcal{T})$ be a perfectly normal sub-
metrizable space with a metrizable topOlOgy $\mathcal{M}$ ), and $A\subset X$. Then the following
conditions are equivalent.

(a) $A\times X_{A}((A, \mathcal{M})\times X_{A})$ is rectangular.
(b) $A$ is $F_{\sigma}$ in $X$.
(c) $X_{A}$ is metrizable (perfectly normal).

(d) $A\times X_{A}((A, \mathcal{M})\times X_{A})$ is normal.

PROOF. From the above theorem, we have $(a)\Rightarrow(b)$ . For $(b)\Rightarrow(c)$ , see [1,

5.5.2]. $(c)\Rightarrow(d)$ ; It is well known that every product of a metric space and a
perfectly normal space is perfectly normal. $(d)\Rightarrow(a)$ ; It is known [6] that nor-
mality induces rectangularity in products with a metric factor.

3. Examples.

EXAMPLE 1 (Michael’s line). Let $R$ be a real line with a usual topology,
and $P$ be all irrational numbers. Then $R_{P}$ is called as Michael’s line. From
our previous theorem, $P\times R_{P}$ is not rectangular. Replacing $P$ by another subset
of $R$ , we can make Michael’s line to be Lindel\"of [3]. Thus even a product of
a separable metric space and a Lindel\"of space need not to be rectangular.

REMARK. Wage’s example [8] is also a non-rectangular product of a sepa-
rable metric space and a Lindel\"of space. Terasawa [5] has shown a product
theorem of covering dimension for products with a factor of Michael’s line type.
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We can see that his theorem does not follow from Pasynkov’s theorem for
rectangular products.

The following example is suggested by T. Hoshina.
EXAMPLE 2 (Non-normal rectangular product). For every space $Y$ , there is

an extremally disconnected space $E(Y)$ called an absolute of $Y$ , and a perfect
irreducible map $E:E(Y)\rightarrow Y$ . Let $X$ be a metrizable space and $Y$ be a space
such that the product $X\times Y$ is not normal. We consider the perfect map
$1_{X}\times E:X\times E(Y)\rightarrow X\times Y$ . Ohta [2] proved that every product of a metric space
and an extremally disconnected space is rectangular. Since perfect maps pre-
serves normality, $X\times E(Y)$ is a non-normal rectangular product. Let $X$ and $Y$

be spaces of example 1, then we can find a non-normal rectangular product of
a separable metric space and a Lindel\"of space. Further in this case we can
see that rectangularity cannot be preserved under perfect maps.
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