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Let L be a first order finitary predicate logic with equality L, ,, or a first
order infinitary predicate logic with equality L, ., and I, J, K three sets of
formulas in L. Then, I and J are said to be equivalent in L over K if A is
provable from I in L iff A is provable from J in L, for any formula A in K.
Also, I is said to be an axiomatization of J in L, if I is a subset of J and, [
and J are equivalent in L over /. An axiomatization theorem of Jin L is a
statement to give us a “ concrete ” method to construct a “simple” axiomati-
zation of J in L. Of course, “ concrete” and “ simple” have no precise mathe-
matical meanings and we use them rather informally. But, two remarks on
them will be given in the following. First, if L=L, , and J is a recursively
enumerable set of formulas in L under a nice Godel-numbering, then there is a
method to construct a primitive recursive axiomatization of J in L by the well-
known theorem due to W. Craig (cf. Craig [2]). But the axiomatization of J
obtained by Craig’s method seems to be so complicated that, in practice, one
can not easily tell whether or not a given formula belongs to it, generally (cf.
p. 141 in Keisler [4]). This shows us that it is meaningful to give a concrete
method to construct a simple axiomatization of J, even if J is recursively
enumerable. Secondly, the set J is usually defined using some parameters
D1, P2y =+, Du. S0, in order to give an axiomatization theorem of [ in L, we
should clearly state how to construct an axiomatization of J from each values
of parameters pi, D, -, Pn, concretely. To define sets of formulas which we
are going to deal with, and to state their axiomatization theorem, we require
some definitions. Suppose that W is a set of predicate symbols. Then, W-free
(W-positive, W-negative) formulas are formulas which have no (no negative, no
positive) occurrences of predicate symbols in W. W-atomic formulas are formulas
of the form P(f) for some P<W and some sequence { of terms. A formula A
is said to belong to a formula B syntactically, if every predicate symbol
occurring in A positively (negatively) occurs in B positively (negatively). For
each sentence A in L, and each two sets S, Q of predicate symbols in L, let
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Pr.(A; S, @) be the set of S-positive and @-negative formulas in L which are
provable from A in L. In this paper, we construct a subset Ax;(A4; S, @) of
Pr.(A; S, Q) from A, S, Q concretely, and prove the following

THEOREM 1 (Axiomatization Theorem). Ax;(A4; S, Q) is an axiomatiza-
tion of the set Pri(A; S, Q) in L, which consists of sentences belonging to A
syntactically. In fact, for any formula C in Pri(A; S, Q), we are able to obtain
a sentence B in Ax;(A; S, Q) such that BDOC is provable in L, concretely.

Also, we give a purely syntactical proof of this theorem, which gives us a
concrete procedure to obtain a sentence B in Ax;(A4; S, @) such that BDC is
provable in L, from a proof-figure of a given S-positive and @Q-negative formula
C in L from A, (cf. Remark 1.7 below). This is an advantage of syntactical
methods.

To explain the construction of Ax;(A4; S, @) from A, S, @, we have to
introduce some notions. Primitive formulas are atomic formulas, negations of
atomic formulas, and open formulas which have no occurrences of predicate
symbols. Simple existence conditions of W are sentences of the form
Vxﬂyié/IPi(f, y), where P,eW (el). Vx3yP(x, y) is a typical example of

simple existence conditions of {P}, where P is a binary predicate symbol.
Uniqueness conditions of W are sentences of the form VX(B(Z)DA(X)), where
B(%) is a finite (possibly empty) conjunction of W-atomic formulas, and A(%) is
a W-free formula, called the principal formula of this uniqueness condition.
VxVyVz(P(x, y)AP(x, z2.Dy=z) is a typical example of uniqueness conditions of
{P}, where P is a binary predicate symbol. Primitive uniqueness conditions of
W are uniqueness conditions of W whose principal formulas are primitive. A
formula F is said to be in negation normal form (abbre. by n.n.f.) if F is
obtained from primitive formulas by applying A (conjunctions), \/ (disjunctions),
Y (universal quantifications), and 3 (existential quantifications), (cf. p. 90 in [8]).
It is well-known that any formula F in L can be transformed into a formula
F’ in n.n.f, canonically, which belongs to F syntactically and is equivalent to
F in L (cf. p. 11 in [3]). This F’ is called the negation normal form (n.n.f.)
of F, and denoted by F(—).

The construction of Ax;(A; S, Q) from A, S, Q@ consists of the following
four steps:

1-sT sTEP. Construction of the n.n.f. A(—) of A.

2-ND STEP. Constructions of a countable set V(A) of new predicate symbols
which do not occur in A, a countable set E(A) of simple existence conditions
of V(A), and a countable set U(A) of primitive uniqueness conditions of V(A),
whose principal formulas belong to A syntactically, such that {A} and
E(A)JU(A) are equivalent in L over the set of V(A)-free formulas. For the
sake of simplicity, we show, here, how to construct V(A), E(A), U(A) from A
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in case that A is a finitary sentence (i.e. sentence in L, ,). The exact method
to construct them in a general case will be given in §2 below (cf. Definitions
21 2.3 below). First, we construct a sequence of three finite sets V .(A),
E(A), U(A), k=0, 1, 2, ---, such that;

Vi(A) is a finite set of predicate symbols which do not occur in A,
E(A) is a finite set of simple existence conditions of V ,(A), U(A) is
()5 a finite set of uniqueness conditions of V ,(A4), whose principal formulas
1 belong to A syntactically, and, {4} and E,(A)JU,(A) are equivalent in
L over the set of V,(A)-free formulas.

Let V(A)=FE,(A)=0 (the empty set) and U,(A4A)={ADDA(—)}. Assume that
V(A), E (A), U(A) are defined and satisfy (x),. If every uniqueness condition
of V,(A) in U,(A) is primitive, the construction comes to an end. If there is
at least one uniqueness condition of V,(A) in U,(A) which is not primitive, let
F be such one. Then, F has the form Vx(B(¥)DC(x)), where B is a finite
(possibly empty) conjunction of V ,(A)-atomic formulas, and C is a formula in
n.n. f. which belongs to A syntactically.

Case 1. If C is CiAC,, let Vi (A)=V 1 (A), Erii(A)=E(A), and Uz (A)=
U (A {VE(B(2)DCy(X)), YE(B(ER)DCo(EN} — {F}.

Case 2. If C is VyD(y), let Vs1(A)=V 1 (A), E4s:(A)=E(A), and U j+,(A)=
U(AI{VEVy(B(X)DD(X, y)} —{F}.

Case 3. If Cis C,vvC, Let P, and P, be two distinct (n+1)-ary predicate
symbols which occur neither in A nor in V,(A), where n is the length of Z.
Let Vii(A)=V (AP, Py}, Errs(A)=E (A {VEIY(Pi(X, )V P(%, y))}, and
Uri(A)=U (A V2V y(B(X) A\ Pi(X, ¥). DCy(X)), VEVy(B(X) A\ P(Z, y).DCo(X))}
—{F}.

Case 4. 1f C is 3yD(y). Let P be an (n-+1)-ary predicate symbol which
occurs neither in A nor in V,(A). Let V. (A)=V (AJ{P}, E...(A)=
E(A)\J{NVzIyP(x, y)}, and U,+i(A)=U(A)\J{NVEVY(B(X) A P(%, 3).D D(%, y))}
—{F?}.

(Using the notions V*(F), E*(F), U*(F) in below, V,..(A4) is
Vi (AVVHE), Epei(A) is E(ANJEXF), and U+1(A) is (U (A)\JUXF))—{F}.)

Since V ,(A4), E(A), U,(A) satisfy (%), and V,(A)EV ;.. (A), we can easily
see that V,.,(A), Epei(A), Urii(A) satisfy (%),+5, by using the following two
obvious facts (1) and (2) (cf. the proof of Theorem 7.2 in [6], or (i), (ii) in

below) ;

(1) {Vx(B(x)D.Ci(x)VC (X))} and {VXIy(Pu(X, y)V PX, v)),
VEVy(B(Z)AP(%, y).DCy(%)), VEVY(B(X)APZ, v).DCy(%))} are equivalent in
L over the set of {P,, P,}-free formulas.
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2) {Vi(B(x)D3yD(z, y)} and {V¥3yP(x, y), VEVy(B(X)AP(Z, y).DD(X, y)}
are equivalent in L over the set of {P}-free formulas.

Since A is finitary, this construction comes to an end within a finite number
of steps and we obtain three finite sets Vy(A), Ex(A), Ux(A) which satisfy (¥)y
such that every uniqueness condition of Vy(A) in Ux(A) is primitive. In fact,
N is no more than the number of occurrences of logical symbols in A(—). Let
V(A)=V xy(A), E(A)=Ex(A), and U(A)=U y(A).

3-RD STEP. Construction of a countable set [7(A) of primitive uniqueness
conditions of V(A) from U(A), S and Q such that E(A)JU(A) and E(A\JU(A)
are equivalent in L over the set of S-positive and Q-negative formulas, and
every principal formula of any uniqueness condition in J(A) is not only a
formula which belongs to A syntactically, but also S-positive and Q-negative.
U(A4) is the set obtained from U(A) by deleting every uniqueness condition of
V(A) whose principal formula is not S-positive or not Q-negative, and by adding
every primitive uniqueness condition of V(A) of the form; ViVy(B(Z)AC(H).D
—8(%)=3(5)), where YZ(B(x)DP(I(x))cUA), V¥(C(5) D P(EHF)) eUA) for
some P in SUQ, (%) and 35(y) are two sequences <{(%), to(%), =, ta(X)D,
{s4(F), so(F), -+, sa(¥)) of terms, and #(X)=3(¥) is the formula #,(Z)=s.(F)At(%)
=5y(F) A Atn(E)=5.(¥). Then, /(A) has the required properties (cf.
1.3 below).

4-TH STEP. Construction of Ax;(A; S, Q). Let Ax.(A; S, Q) be the set of
simple approximations of 0 (A) by E(A) (cf. Definition 1.4 below). The simple
approximation theorem of uniqueness conditions by simple existence conditions
(cf. [Theorem 1.6 below) and the definition of simple approximations of unique-
ness conditions by simple existence conditions (cf. below) show us
that Ax;(A; S, Q) has the desired properties. Therefore, we complete our
construction of Ax;(A; S, Q). The construction of Ax;(A; S, Q) from A4, S, Q,
explained above roughly, is so simple that we can easily tell whether or not a
given formula belongs to it. As immediate consequences of Theorem I, we have
the following two corollaries.

CorOLLARY II (Axiomatization of 2)i-sentences, cf. Harnik [5]). For each
sentence A, and each predicate symbol S, the set Ax (A; {S}, {S}) is essentially
an axiomatization of the set of all the first order formulas in L which are
provable from the second order sentence IS(A).

CoroLLARY III (Lyndon-Lopezescobar Interpolation Theorem, cf. [31). If
a sentence ADB is provable in L, then there is a sentence C which belongs to
A and B, syntactically, such that ADC and CDB are provable in L. In fact,
we can choose such a C in Axi(A; S, Q), where S(Q) is the set of predicate
symbols in A which do not occur in B negatively (positively).

Note that, in [5], V. Harnik gave a similar axiomatization of 3)!-sentences
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by using Vaught sentences. But, Vaught sentences are very big sentences
which do not belong to L, .. On the other hand, we do not use any such big
sentences in this paper. Moreover, if A is finitary and L=L,, ,, then the con-
struction of Ax;(A; {S}, {S}) from A and S is also finitary in Hilbert’'s sense
(cf. p. 81 in Takeuti [8]). Therefore, our result here is more constructive than
Harnik’s.

In §1 of this paper, we shall explain our notions and notations which are
not introduced above, and state some necessary results about them, including
the simple approximation theorem in below), with slight
modifications. Note that below is an essentially new result which
can be considered as one of elimination theorems treated in [7]. In §2, we
shall give a procedure to construct the set Ax;(A; S, Q) from A4, S, Q and
prove Theorem 1.

The author wishes to thank the referee and Professor T. Uesu for their
very helpful criticism and suggestions on a first version of this paper.

§1. Preliminaries.

Suppose that L is a fixed infinitary first order predicate logic L, .. Every
result in this paper holds for any finitary first order predicate logic with a few
natural modifications. So, we treat only the case that L=L, .. Also, we shall
consider the extended logic L(W) for each set W of new predicate symbols. As
logical symbols in L, we use: — (negation), A (countable conjunction), \/
(countable disjunction), V (universal quantifier), 3 (existential quantifier) and =
(equality). D (implication) will be used as an abbreviation as usual. If 2 and [
are two sequences of symbols, then 2~ is the concatenation of % and [. If 7
and § are two sequences (i, ty, -+, 2>, <S1, Se, =+, Say Of terms of the same
length, then =3 is the formula;

t1:$1/\t2:32/\"'/\tn:3n .

By a k-ary formula in L, we mean a pair (4, @) of a formula A in L and a
sequence & of distinct free variables of length % such that every free variable
in A occurs in 4. But, A(g@), -+, will be used to denote both the formula 4, -,
and the k-ary formula (4, &), -+, if no confusion is likely to occur. A replacing
function f is a mapping such that the domain of f is a set of predicate symbols
and f(P) is a k-ary formula for each k-ary predicate symbol P in the domain
of f. If f is a replacing function and A is a formula, then A[ ] is the formula
obtained from A by replacing every P in the domain of f by f(P), simultane-
ously. For any k-ary formula (A, @), let (A4, @)[f] be the k-ary formula
(ACf], @). The next lemma is an obvious, but important fact:

LEmMMA 1.1 (Positive Lemma). Suppose that S and Q are countable sets of
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predicate symbols. If Ais an S-positive and Q-negative formula, then the formula

PE/S\_QVf(f(P)(f)DP(JE))/\PE{?\_SVJ'E(P(JE)D FPYENAA[f1.DA

1S provable in L.
DEFINITION 1.2. Suppose that U is a set of primitive uniqueness conditions
of a set W of predicate symbols, and P is a predicate symbol. Then, Eq(U; P)
is the set of all the primitive uniqueness conditions of W of the form;
VEVI(B(X)AC(H).D(1(X)=5(%))), where VX(B(x)DP(i(%))eU, and Vy(C(¥)
D PE(#)eU. For each two sets S, Q of predicate symbols, let De(U; S, Q)
be the set (UUPGLS}UQEq(U ; PY)—(U,\JU,), where U, is the set of primitive

uniqueness conditions in U whose principal formulas are negations of S-atomic
formulas and U, is the set of primitive uniqueness conditions in U whose
principal formulas are Q-atomic formulas.

Then, the following result is a new elimination theorem (cf. [7])).

LEMMA 1.3. Suppose that U is a countable set of primitive uniqueness con-
ditions of W, and S, Q are two sets of predicate symbols such that WN\(S\UQ)=0
(the empty set). Then, U and De(U; S, Q) are equivalent in L over the set of
S-positive and @Q-negative formulas.

Proor. Since AEq(U; P) is provable from U for any predicate symbol P,
it is sufficient to prove that if A is provable from U in L, then A is provable
from De(U; S, Q) in L, for any S-positive, Q-negative formula A. Assume that
A is an S-positive, Q-negative formula which is provable from U in L. Without
loss of generality, we can assume that S and @ are countable. Let f be the
replacing function defined by: the domain of f is S\JQ, and f(P)a) is the
k-ary formula V{I3y¥y@=t@ ANB@)V¥B@DPEH) U}, if PeS, and
=V A{3¥a=tFHABENIVF(BEF)DPEHFNeEU}, if PEQ—S. Suppose that F
is a sentence in U. If the principal formula of F is a (Q—S)-atomic formula
or the negation of an S-atomic formula, then F[f] is provable from U Eq(U P

in L. If the principal formula of F is an S-atomic formula or the negatlon of a
(Q@—>S)-atomic formula, then F[f] is provable in L. Hence, we conclude that
every sentence in UL f1={F[f]]|F<U} is provable from De(U; S,,' Q) in L. On
‘the other hand, A[f] is provable from U[f] in L, because A is provable from
U in L. Therefore, A[f] is provable from DelU; S, Q) in L. Also, ‘the
sentences Vi(f(P)%)DP(x)), P=S—Q, and the sentences Vx(P(x):)f(P)(x)),
P<=Q—S, are all provable from De(UU; S, Q) in L. Since A is S-positive and
Q-negative, the formuvla /\ Vx(f(P)(x)DP(x))/}JE{?\_SVx(P(x)Df(P)(x))AA[f].DA

is provable in L by m This means that A is pf,ovable from De(U ;S, Q)

in L. : ‘ : . Q.E.D)
Suppose that X is a countable set of W-atomic formulas and F is a unique-
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ness condition of W. Then, F[X] is the formula

N VEE(R)=5N A E(R)=5..DA(X)),
PiPEX PpGp)EX
where F is VZ(Py({,(X)A - APp(t,(X)).DA(X)).

DEFINITION 1.4. Suppose that U is a countable set of uniqueness conditions
of W, E is a set of simple existence conditions of W, X is a countable set of
W-atomic formulas, and « is a countable ordinal number. Then, the set of a-th
approximations of U by E over X, denoted by Ap*(U, E, X), is defined by the
following (i), (ii), and (iii):

(i) ApU, E, X)= {FQUF[X]}-

(ii) Ap*(U, E, X)= {ﬁ/<\ A[QIA‘BEAPIS(U, E, X))}, if « is a limit ordinal
number.
(i) Ap**(U, E, X)={Vz3dy ,\E/IAi(ﬂ?, )| Vx3y ,\E/IPz(ﬁ?, »wekE, Ala be

Ap*(U, E, X\J{P/a, b)}) for some sequence &, b of variables none of which
occurs in any formula in X, /=1}.

Let Ap(U, E, X)= y Ap*(U, E, X) and Ap(U, E)=Ap(U, E, 0). Formulas
alwy

in Ap(U, E) are called “simple approximations” of U by E. Note that the
definition of Ap(U, E) given above is slight different from that in [6] The
following lemma is an immediate consequence of

LEMMA 15. (i) Every formula in Ap(U, E) is a W-free sentence which is
provable from U\JE.

(ii) Suppose that U is a set of primitive uniqueness conditions of W, P is a
predicate symbol, and A is a simple approximation of U by E. If P occurs in
A positively (negatively), then there is a primitive uniqueness condition of W in
U, whose principal formula is (the negation of) a {P}-atomic formula.

By the simple approximation theorem in [6], we have:

THEOREM 1.6. Suppose that W is a countable set of predicate symbols, U is
a countable set of uniqueness conditions of W, and E is a set of simple existence
conditions of W. Then, for any W-free formula A, A is provable from U\JE in
L if and only if A is provable from some simple approximation of U by E, in L.

REMARK 1.7. The simple approximation theorem in is proved syntacti-
cally, and we can obtain a simple approximation B of U by E such that BDA
is provable in L, from a given proof-figure of a W-free formula A from UUE
in L, concretely. '

§2. A construction of Ax;(A; S, Q).

Let V be a set of new predicate symbols which do not belong to L. We
assume that V has sufficiently many predicate symbols.
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DEeFINITION 2.1. For each uniqueness condition F of V of the form Vx(B(%)
DC(%)), where C(%) is in n.n. f., we associate a countable set V*(F) of predicate
symbols in V, which do not occur in F, a countable set E*(F) of simple existence
conditions of V*(F), a countable set U*(F) of uniqueness conditions of V*(F),
and a replacing function f¥, whose domain is V*(F), by the following (i)-(v):

(1) If C(%) is primitive, let V¥(F)=FE*(F)=f¥=0 and U*(F)={F}.

(ii) If C(x) is ié\ICi(f), let V¥F)=E*(F)=f#=0 and U*(F)={Vx(B(X)D
Cx)lisl}.

(iii) If C(x) is YyD(Z, y), let V¥ F)=E*(F)=f#=0 and U*(F)={ViVy(B(%)
DD(x, y)}.

(iv) If C(%) is i\E/ICi(JE), let {P;}ic; be a set of distinct (n+1)-ary predicate

symbols in V, which do not occur in F, where n is the length of the sequence
. Let V¥(F)={P|i€l}, E*<F)={V733y.\/ll’i(f, Nt UXF)={VxVy(B(X)A
e

Pz, y).DC«(x)|i€l}, and fHP)=(B(%)DC«(X), £"y), icl.

(v) If C(x)is 3yD(X, y), let P be an (n-+1)-ary predicate symbol in V,
which does not occur in F, where n is the length of the sequence %. Let
V¥(F)={P}, EX(F)={Vx3yP(X, y)}, U*(F)={VxVy(B(X)AP(%, y).OD(%, y)},
and fHP)=(B(x)DD(X, y), £~ ).

Note that V*(F), E*(F), and U*(F) are finite sets if F is a finitary sentence.
Then, the following facts are immediate consequences of [Definition 2.1.

COROLLARY 2.2. (i) F is provable from EX(F)JU*(F) in L(V).

(ii) CLf¥] is provable from F in L(V) for any C in E*(F)JU*(F).

(ili) If F is not primitive, then the principal formula of any uniqueness
condition in U*(F) is a proper subformula of the principal formula of F (cf. p.
30 in [8] for the notion “ subformula ”).

DEFINITION 2.3. For each sentence A in L, and each natural number %, we
define a countable set V .(A) of predicate symbols in V, a countable set E.(A)
of simple existence conditions of V;(A), a countable set U,(A) of uniqueness
conditions of V,(A), whose principal formula belongs to A syntactically, and a
replacing function f%, by the following: Let V (A)=E (A)=f%=0, and U(A)=
{AODA(—)}. Assume that V(A4), Ex(A), U(A), and f% are defined. Without
loss of generality, we can assume that VX(F) (FeU,(A)), Vi(A) are all disjoint.
Let Vi i(A)=V(AY_ U V*F), Ezni(A)=E(AY_U E*(F), Upn(A)=

FeEU g (4) FeU g4

U, and fENP)=FLAP) if PEV.(A), and fEHP)=FFP)LFA] if

FelUp (4
PeV*F), FeU,(A).

Then, the following fact is an obvious consequence of [Definition 2.3 and (ii)
in |Corollary 2.2

COROLLARY 24. For any sentence C in E(A)JU(A), CLf4] is provable
from A in L.
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DEFINITION 2.5. For any sentence A in L, let V(A):kU Vi(A), E(A)=
<w
kK<J E.(A), fA:ky f%, and U(A)= {Feky U.(A)|F is primitive}.

Then, from Corollary 2.4, we have;

COROLLARY 2.6. For any sentence C in E(A)\JU(A), C[f4] is provable from
A in L.

Also, we have the following lemma whose proof is essentially due to Pro-
fessor T. Uesu.

LEMMA 2.7. Every sentence F in kk<ij,,(A) is provable from E(ANJU(A) in

L(V). Hence, A is provable from E(A)JU(A) in L(V).
Proor. Assume that there is a sentence F, in k\<J U,(A) such that F, is not

provable from E(A)\JU(A) in L(V). If F, is primitive, then F, is provable from
‘E(A)\JU(A) because F, belongs to U(A). So, F, is not primitive. Since F, is
provable from E*(F,)\JU*(F,), and E*(F,)S E(A), there is a sentence F; in U*(F,)
such that F, is not provable from E(A)JU(A) in L(V). By (iii) in
2.2, the principal formula of F, is a proper subformula of the principal formula
of F,. By continuing this process, we have an infinite sequence {F.} <, Of
sentences in k\<JwU #(A) such that each F, is not provable from E(A)JU(A) in

L(V), and the principal formula of F., is a proper subformula of the principal
formula of F, for each k<w. But, this is impossible because there is no infinite
sequence {C:} r<o Of formulas such that C,.; is a proper subformula of C, for
each k<w. Therefore, every sentence in kk<)wU #(A) is provable from E(A)\JU(A)
wm L(V). Q.E.D.)

From [Corollary 2.6 and [Lemma 2.7, we have:

LEMMA 28. {A} and E(A)JU(A) are equivalent in L(V) over the set of
V(A)-free formulas.

Now we can define Ax;(A; S, Q) explicitly as follows: Suppose that a
sentence A and two sets S, @ of predicate symbols in L are given. Take the
negation normal form A(—) of A, and construct V(A4), E(A), U(A) by Definition
25. Let U(A)=De(U(A); S, Q) and Ax.(4; S, Q)=ApJ(A), E(A). Then, we
can easily see that every sentence in Ax;(A; S, Q) is S-positive, Q-negative and
belongs to A syntactically, by Definition 1.2, (ii) in [Lemma 1.5 and [Definition 2.5

Suppose that C is an S-positive, Q-negative formula in L. Then,

C is provable from A in L
&= C is provable from E(A)JU(A) in L(V), (by
& C is provable from E(A)JU(A) in L(V), (by Lemma 1.3)
& C is provable from some B in Ap({f(4), E(A)), in L, (by
& C is provable from some B in Ax;(A4; S, @), in L.
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This completes our proof of Theorem I.
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