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Let $L$ be a first order finitary predicate logic with equality $L_{\omega,\omega}$ , or a first
order infinitary predicate logic with equality $L_{\omega_{1},\omega}$ , and $I,$ $J,$ $K$ three sets of
formulas in $L$ . Then, $I$ and $J$ are said to be equivalent in $L$ over $K$ if $A$ is
provable from $I$ in $L$ iff $A$ is provable from $J$ in $L$ , for any formula $A$ in $K$.
Also, $I$ is said to be an axiomatization of $J$ in $L$ , if $I$ is a subset of $J$ and, $I$

and $J$ are equivalent in $L$ over $J$. An axiomatization theorem of $J$ in $L$ is a
statement to give us a “ concrete “ method to construct a “ simple “ axiomati-
zation of $J$ in $L$ . Of course, “ concrete “ and “ simple “ have no precise mathe-
matical meanings and we use them rather informally. But, two remarks on
them will be given in the following. First, if $L=L_{\omega,\omega}$ and $J$ is a recursively
enumerable set of formulas in $L$ under a nice G\"odel-numbering, then there is a
method to construct a primitive recursive axiomatization of $J$ in $L$ by the well-
known theorem due to W. Craig (cf. Craig [2]). But the axiomatization of $J$

obtained by Craig’s method seems to be so complicated that, in practice, one
can not easily tell whether or not a given formula belongs to it, generally (cf.

p. 141 in Keisler [4]). This shows us that it is meaningful to give a concrete
method to construct a simple axiomatization of $J$, even if $J$ is recursively
enumerable. Secondly, the set $J$ is usually defined using some parameters
$p_{1},$ $p_{2},$ $\cdots$ , $p_{n}$ . So, in order to give an axiomatization theorem of $J$ in $L$ , we
should clearly state how to construct an axiomatization of $J$ from each values
of parameters $p_{1},$ $p_{2},$ $\cdots$ , $p_{n}$ , concretely. To define sets of formulas which we
are going to deal with, and to state their axiomatization theorem, we require
some definitions. Suppose that $W$ is a set of predicate symbols. Then, W-free
(W-positive, W-negative) formulas are formulas which have no (no negative, no
positive) occurrences of predicate symbols in $W$ . W-atomic formulas are formulas
of the form $P(\overline{t})$ for some $P\in W$ and some sequence $\overline{t}$ of terms. A formula $A$

is said to belong to a formula $B$ syntactically, if every predicate symbol
occurring in $A$ positively (negatively) occurs in $B$ positively (negatively). For
each sentence $A$ in $L$ , and each two sets $S,$ $Q$ of predicate symbols in $L$ , let
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$Pr_{L}(A;S, Q)$ be the set of S-positive and Q-negative formulas in $L$ which are
provable from $A$ in $L$ . In this paper, we construct a subset $Ax_{L}(A;S, Q)$ of
$Pr_{L}(A;S, Q)$ from $A,$ $S,$ $Q$ concretely, and prove the following

THEOREM I (Axiomatization Theorem). $Ax_{L}(A;S, Q)$ is an axiomatiza-
tion of the set $Pr_{L}(A;S, Q)$ in $L$ , which consists of sentences belonging to $A$

syntactically. In fact, for any formula $C$ in $Pr_{L}(A;S, Q)$ , we are able to obtain
a sentence $B$ in $Ax_{L}(A;S, Q)$ such that $B\supset C$ is provable in $L$ , concretely.

Also, we give a purely syntactical proof of this theorem, which gives us a
concrete procedure to obtain a sentence $B$ in $Ax_{L}(A;S, Q)$ such that $B\supset C$ is
provable in $L$ , from a proof-figure of a given S-positive and Q-negative formula
$C$ in $L$ from $A$ , (cf. Remark 1.7 below). This is an advantage of syntactical
methods.

To explain the construction of $Ax_{L}(A;S, Q)$ from $A,$ $S,$ $Q$ , we have to
introduce some notions. Primitive formulas are atomic formulas, negations of
atomic formulas, and open formulas which have no occurrences of predicate
symbols. Simple existence conditions of $W$ are sentences of the form
$\forall\overline{x}\exists yP_{i}(\overline{x}i\in Iy)$ , where $P_{i}\in W(i\in I)$ . $\forall x\exists yP(x, y)$ is a typical example of

simple existence conditions of $\{P\}$ , where $P$ is a binary predicate symbol.
Uniqueness conditions of $W$ are sentences of the form $\forall\overline{x}(B(\overline{x})\supset A(\overline{x}))$ , where
$B(\overline{x})$ is a finite (possibly empty) conjunction of W-atomic formulas, and $A(\overline{x})$ is
a W-free formula, called the principal formula of this uniqueness condition.
$\forall x\forall y\forall z(P(x, y)\wedge P(x, z).\supset y=z)$ is a typical example of uniqueness conditions of
$\{P\}$ , where $P$ is a binary predicate symbol. Primitive uniqueness conditions of
$W$ are uniqueness conditions of $W$ whose principal formulas are primitive. A
formula $F$ is said to be in negation normal form (abbre. by $n$ . $n$ . $f.$) if $F$ is
obtained from primitive formulas by applying $\Lambda$ (conjunctions), $\vee$ (disjunctions),
$\forall$ (universal quantifications), and $\exists$ (existential quantifications), (cf. p. 90 in [8]).

It is well-known that any formula $F$ in $L$ can be transformed into a formula
$F^{\prime}$ in $n$ . $n$ . $f.$ , canonically, which belongs to $F$ syntactically and is equivalent to
$F$ in $L$ (cf. p. 11 in [3]). This $F^{\prime}$ is called the negation normal form $(n. n. f.)$

of $F$, and denoted by $F(\neg)$ .
The construction of $Ax_{L}(A;S, Q)$ from $A,$ $S,$ $Q$ consists of the following

four steps:

1-ST STEP. Construction of the $n$ . $n$ . $f$ . $A(\neg)$ of $A$ .
2-ND STEP. Constructions of a countable set $V(A)$ of new predicate symbols

which do not occur in $A$ , a countable set $E(A)$ of simple existence conditions
of $V(A)$ , and a countable set $U(A)$ of primitive uniqueness conditions of $V(A)$ ,

whose principal formulas belong to $A$ syntactically, such that $\{A\}$ and
$E(A)\cup U(A)$ are equivalent in $L$ over the set of $V(A)$-free formulas. For the
sake of simplicity, we show, here, how to construct $V(A),$ $E(A),$ $U(A)$ from $A$
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in case that $A$ is a finitary sentence ( $i$ . $e$ . sentence in $L_{\omega,\omega}$ ). The exact method
to construct them in a general case will be given in \S 2 below (cf. Definitions
2.1, 2.3, 2.5 below). First, we construct a sequence of three finite sets $V_{k}(A)$ ,
$E_{k}(A),$ $U_{k}(A),$ $k=0,1,2,$ $\cdots$ , such that;

Let $ V_{0}(A)=E_{0}(A)=\emptyset$ (the empty set) and $U_{0}(A)=\{\wedge\emptyset\supset A(\neg)\}$ . Assume that
$V_{k}(A),$ $E_{k}(A),$ $U_{k}(A)$ are defined and satisfy $(*)_{k}$ . If every uniqueness condition
of $V_{k}(A)$ in $U_{k}(A)$ is primitive, the construction comes to an end. If there is
at least one uniqueness condition of $V_{k}(A)$ in $U_{k}(A)$ which is not primitive, let
$F$ be such one. Then, $F$ has the form $\forall\overline{x}(B(\overline{x})\supset C(\overline{x}))$ , where $B$ is a finite
(possibly empty) conjunction of $V_{k}(A)$-atomic formulas, and $C$ is a formula in
$n$ . $n$ . $f$ . which belongs to $A$ syntactically.

Case 1. If $C$ is $C_{1}\wedge C_{2}$ , let $V_{k+1}(A)=V_{k}(A),$ $E_{k+1}(A)=E_{k}(A)$ , and $U_{k+1}(A)=$

$U_{k}(A)\cup\{\forall\overline{x}(B(\overline{x})\supset C_{1}(\overline{x})), \forall\overline{x}(B(\overline{x})\supset C_{2}(\overline{x}))\}-\{F\}$ .
Case 2. If $C$ is $\forall yD(y)$ , let $V_{k+1}(A)=V_{k}(A),$ $E_{k+1}(A)=E_{k}(A)$ , and $U_{k+1}(A)=$

$U_{k}(A)\cup\{\forall\overline{x}\forall y(B(\overline{x})\supset D(\overline{x}, y))\}-\{F\}$ .
Case 3. If $C$ is $C_{1}\vee C_{2}$ . Let $P_{1}$ and $P_{2}$ be two distinct $(n+1)$-ary predicate

symbols which occur neither in $A$ nor in $V_{k}(A)$ , where $n$ is the length of $\overline{x}$ .
Let $V_{k+1}(A)=V_{k}(A)\cup\{P_{1}, P_{2}\},$ $E_{k+1}(A)=E_{k}(A)\cup\{\forall\overline{x}\exists y(P_{1}(\overline{x}, y)\vee P_{2}(\overline{x}, y))\}$ , and
$ U_{k+1}(A)=U_{k}(A)\cup$ { $\forall\overline{x}\forall y(B(\overline{x})$ A $P_{1}(\overline{x},$ $y).\supset C_{1}(\overline{x})),$ $\forall\overline{x}\forall y(B(\overline{x})\Lambda P_{2}(\overline{x},$ $y).\supset C_{2}(\overline{x}))$ }
$-\{F\}$ .

Case 4. If $C$ is $\exists yD(y)$ . Let $P$ be an $(n+1)$-ary predicate symbol which
occurs neither in $A$ nor in $V_{k}(A)$ . Let $V_{k+1}(A)=V_{k}(A)\cup\{P\}$ , $E_{k+1}(A)=$

$E_{k}(A)\cup\{\forall\overline{x}\exists yP(\overline{x}, y)\}$ , and $ U_{k+1}(A)=U_{k}(A)\cup$ { $\forall\overline{x}\forall y(B(\overline{x})$ A $P(\overline{x},$ $y).\supset D(\overline{x},$ $y))$}
$-\{F\}$ .
(Using the notions $V^{*}(F),$ $E^{*}(F),$ $U^{*}(F)$ in Definition 2.1 below, $V_{k+1}(A)$ is
$V_{k}(A)\cup V^{*}(F),$ $E_{k+1}(A)$ is $E_{k}(A)\cup E^{*}(F)$ , and $U_{k+1}(A)$ is $(U_{k}(A)\cup U^{*}(F))-\{F\}.)$

Since $V_{k}(A),$ $E_{k}(A),$ $U_{k}(A)$ satisfy $(*)_{k}$ , and $V_{k}(A)\subseteqq V_{k+1}(A)$ , we can easily
see that $V_{k+1}(A),$ $E_{k+1}(A),$ $U_{k+1}(A)$ satisfy $(*)_{k+1}$ , by using the following two
obvious facts (1) and (2) (cf. the proof of Theorem 7.2 in [6], or (i), (ii) in
Corollary 2.2 below);

(1) $\{\forall\overline{x}(B(\overline{x})\supset.C_{1}(\overline{x})\vee C_{2}(\overline{x}))\}$ and $\{\forall\overline{x}\exists y(P_{1}(\overline{x}, y)\vee P_{2}(\overline{x}, y))$ ,
$\forall\overline{x}\forall y(B(\overline{x})\Lambda P_{1}(\overline{x}, y).\supset C_{1}(\overline{x})),$ $\forall\overline{x}\forall y(B(\overline{x})\wedge P_{2}(\overline{x}, y).\supset C_{2}(\overline{x}))$ } are equivalent in
$L$ over the set of $\{P_{1}, P_{2}\}$ -free formulas.
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(2) $\{\forall\overline{x}(B(\overline{x})\supset\exists yD(\overline{x}, y))\}$ and { $\forall\overline{x}\exists yP(\overline{x},$ $y),$ $\forall\overline{x}\forall y(B(\overline{x})$ A $P(\overline{x},$ $y).\supset D(\overline{x},$ $y))$ }
are equivalent in $L$ over the set of $\{P\}$ -free formulas.

Since $A$ is finitary, this construction comes to an end within a finite number
of steps and we obtain three finite sets $V_{N}(A),$ $E_{N}(A),$ $U_{N}(A)$ which satisfy $(*)_{N}$

such that every uniqueness condition of $V_{N}(A)$ in $U_{N}(A)$ is primitive. In fact,
$N$ is no more than the number of occurrences of logical symbols in $A(\neg)$ . Let
$V(A)=V_{N}(A),$ $E(A)=E_{N}(A)$ , and $U(A)=U_{N}(A)$ .

3-RD STEP. Construction of a countable set $O(A)$ of primitive uniqueness
conditions of $V(A)$ from $U(A),$ $S$ and $Q$ such that $E(A)\cup O(A)$ and $E(A)\cup U(A)$

are equivalent in $L$ over the set of S-positive and Q-negative formulas, and
every principal formula of any uniqueness condition in $O(A)$ is not only a
formula which belongs to $A$ syntactically, but also S-positive and Q-negative.
$\tilde{U}(A)$ is the set obtained from $U(A)$ by deleting every uniqueness condition of
$V(A)$ whose principal formula is not S-positive or not Q-negative, and by adding
every primitive uniqueness condition of $V(A)$ of the form; $\forall\overline{x}\forall\overline{y}(B(\overline{x})\Lambda C(\overline{y}).\supset$

$\neg\overline{t}(\overline{x})=\overline{s}(\overline{y}))$ , where $\forall\overline{x}(B(\overline{x})\supset P(\overline{t}(\overline{x})))\in U(A),$ $\forall\overline{y}(C(\overline{y})\supset\neg P(\overline{s}(\overline{y})))\in U(A)$ for
some $P$ in $S\cup Q$ , $\overline{t}(\overline{x})$ and $\overline{s}(y)$ are two sequences $\langle t_{1}(\overline{x}), t_{2}(\overline{x}), \cdots , t_{n}(\overline{x})\rangle$ ,
$\langle s_{1}(\overline{y}), s_{2}(\overline{y}), \cdots , s_{n}(\overline{y})\rangle$ of terms, and $\overline{t}(\overline{x})=\overline{s}(\overline{y})$ is the formula $t_{1}(\overline{x})=s_{1}(\overline{y})\wedge t_{2}(\overline{x})$

$=s_{2}(\overline{y})\wedge\cdots\wedge t_{n}(\overline{x})=s_{n}(\overline{y})$ . Then, $\tilde{U}(A)$ has the required properties (cf. Lemma
1.3 below).

$4$-TH STEP. Construction of $Ax_{L}(A;S, Q)$ . Let $Ax_{L}(A;S, Q)$ be the set of
simple approximations of $O(A)$ by $E(A)$ (cf. DePnition 1.4 below). The simple
approximation theorem of uniqueness conditions by simple existence conditions
(cf. Theorem 1.6 below) and the definition of simple approximations of unique-
ness conditions by simple existence conditions (cf. Definition 1.4 below) show us
that $Ax_{L}(A;S, Q)$ has the desired properties. Therefore, we complete our
construction of $Ax_{L}(A;S, Q)$ . The construction of $Ax_{L}(A;S, Q)$ from $A,$ $S,$ $Q$ ,
explained above roughly, is so simple that we can easily tell whether or not a
given formula belongs to it. As immediate consequences of Theorem I, we have
the following two corollaries.

COROLLARY II (Axiomatization of $\Sigma_{1}^{1}$ -sentences, cf. Harnik [5]). For each
sentence $A$ , and each predicate symbol $S$ , the set $Ax_{L}(A;\{S\}, \{S\})$ is essentially
an axiomatization of the set of all the first order formulas in $L$ which are
pr0vable from the second order sentence $\exists S(A)$ .

COROLLARY III (Lyndon-Lopezescobar Interpolation Theorem, cf. [3]). If
a sentence $A\supset B$ is Provable in $L$ , then there is a sentence $C$ which belongs to
$A$ and $B$ , syntactically, such that $A\supset C$ and $C\supset B$ are prOvable in L. In fact,
we can choose such a $C$ in $Ax_{L}(A;S, Q)$ , where $S(Q)$ is the set of predicafe
symbols in A which do not occur in $B$ negatively (positively).

Note that, in [5], V. Harnik gave a similar axiomatization of $\sum_{1}^{1}$-sentences
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by using Vaught sentences. But, Vaught sentences are very big sentences
which do not belong to $L_{\omega_{1}.\omega}$ . On the other hand, we do not use any such big
sentences in this paper. Moreover, if $A$ is finitary and $L=L_{\omega,\omega}$ , then the con-
struction of $Ax_{L}(A;\{S\}, \{S\})$ from $A$ and $S$ is also finitary in Hilbert’s sense
(cf. p. 81 in Takeuti [8]). Therefore, our result here is more constructive than
Harnik’s.

In \S 1 of this paper, we shall explain our notions and notations which are
not introduced above, and state some necessary results about them, including
the simple approximation theorem in [6] (Theorem 1.6 below), with slight
modifications. Note that Lemma 1.3 below is an essentially new result which
can be considered as one of elimination theorems treated in [7]. In \S 2, we
shall give a procedure to construct the set $Ax_{L}(A;S, Q)$ from $A,$ $S,$ $Q$ and
prove Theorem I.

The author wishes to thank the referee and Professor T. Uesu for their
very helpful criticism and suggestions on a first version of this paper.

\S 1. Preliminaries.

Suppose that $L$ is a fixed infinitary first order predicate logic $L_{\omega_{1}.\omega}$ . Every
result in this paper holds for any finitary first order predicate logic with a few
natural modifications. So, we treat only the case that $L=L_{\omega_{1},\omega}$ . Also, we shall
consider the extended logic $L(W)$ for each set $W$ of new predicate symbols. As
logical symbols in $L$ , we use: $\neg$ (negation), $\wedge$ (countable conjunction), $\vee$

(countable disjunction), $\forall$ (universal quantifier), $\exists$ (existential quantifier) and $=$

(equality). $\supset$ (implication) will be used as an abbreviation $a8$ usual. If $\overline{k}$ and $\overline{l}$

are two sequences of symbols, then $\overline{k}^{\wedge}\overline{l}$ is the concatenation of $\overline{k}$ and $\overline{l}$. If $\overline{i}$

and $\overline{s}$ are two sequences $\langle t_{1}, t_{2}, \cdots , t_{n}\rangle,$ $\langle s_{1}, s_{2}, \cdots , s_{n}\rangle$ of terms of the same
length, then $\overline{t}=\overline{s}$ is the formula;

$t_{1}=s_{1}\wedge t_{2}=s_{2}\wedge\cdots\wedge t_{n}=s_{n}$ .
By a k-ary formula in $L$ , we mean a pair $(A,\overline{a})$ of a formula $A$ in $L$ and a
sequence $\overline{a}$ of distinct free variables of length $k$ such that every free variable
in $A$ occurs in $\overline{a}$ . But, $A(\overline{a}),$ $\cdots$ , will be used to denote both the formula $A,$ $\cdots$

and the k-ary formula $(A,\overline{a}),$ $\cdots$ , if no confusion is likely to occur. A replacing
function $f$ is a mapping such that the domain of $f$ is a set of predicate symbols
and $f(P)$ is a k-ary formula for each k-ary predicate symbol $P$ in the domain
of $f$. If $f$ is a replacing function and $A$ is a formula, then $A[f]$ is the formula
obtained from $A$ by replacing every $P$ in the domain of $f$ by $f(P)$ , simultane-
ously. For any k-ary formula $(A, a)$ , let $(A,\overline{a})[f]$ be the k-ary formula
$(A[f],\check{a})$ . The next lemma is an obvious, but important fact;

LEMMA 1.1 (Positive Lemma). Supp0se that $S$ and $Q$ are countable sets of
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predicate symbols. If $A$ is an $S$-positive and Q-negative formula, then the formula
$\bigwedge_{P\in S-Q}\forall\overline{x}(f(P)(\overline{x})\supset P(\overline{x}))\wedge\bigwedge_{P\in Q- S}\forall\overline{x}(F(\overline{x})\supset f(P)(\overline{x}))\wedge A[f].\supset A$

is provable in $L$ .
DEFINITION 1.2. Suppose that $U$ is a set of primitive uniqueness conditions

of a set $W$ of predicate symbols, and $P$ is a predicate symbol. Then, $Eq(U;P)$

is the set of all the primitive uniqueness conditions of $W$ of the form;
$\forall\overline{x}\forall\overline{y}(B(\overline{x})\wedge C(\overline{y}).\supset\neg(\overline{t}(\overline{x})=\overline{s}(\overline{y})))$ , where $\forall\overline{x}(B(\overline{x})\supset P(\overline{t}(\overline{x})))\in U$ , and $\forall\overline{y}(C(\overline{y})$

$\supset\neg P(\overline{s}(\overline{y})))\in U$ . For each two sets $S,$ $Q$ of predicate symbols, let De$(U;S, Q)$

be the set $(U\cup\bigcup_{P\in S\cup Q}Eq(U;P))-(U_{1}\cup U_{2})$ , where $U_{1}$ is the set of primitive

uniqueness conditions in $U$ whose principal formulas are negations of S-atomic
formulas and $U_{2}$ is the set of primitive uniqueness conditions in $U$ whose
principal formulas are Q-atomic formulas.

Then, the following result is a new elimination theorem (cf. [7]).

LEMMA 1.3. SuppOse that $U$ is a countable set of primitive uniqueness con-
ditions of $W$, and $S,$ $Q$ are two sets of predicate symbols such that $ W\cap(S\cup Q)=\emptyset$

(the empty set). Then, $U$ and De$(U;S, Q)$ are equivalent in $L$ over the set of
S-positive and Q-negative formulas.

PROOF. Since $\wedge Eq(U;P)$ is provable from $U$ for any predicate symbol $P$,
it is sufficient to prove that if $A$ is provable from $U$ in $L$ , then $A$ is provable
from De$(U;S, Q)$ in $L$ , for any S-positive, Q-negative formula $A$ . Assume that
$A$ is an S-positive, Q-negative formula which is provable from $U$ in $L$ . Without
loss of generality, we can assume that $S$ and $Q$ are countable. Let $f$ be the
replacing function defined by: the domain of $\beta$ is $S\cup Q$ , and $f(P)(\overline{a})$ is the
k-ary formula $\vee\{\exists\overline{y}(\overline{a}=\overline{t}(\overline{y})\Lambda B(\overline{y}))|\forall\overline{y}(B(\overline{y})\supset P(\overline{t}(\overline{y})))\in U\}$ , if $P\in S$ , and
$\neg\vee$ { $\exists\overline{y}$ ( $\overline{a}=\overline{t}(\overline{y})$ A $B(\overline{y})$) $|\forall\overline{y}(B(\overline{y})\supset\neg P(\overline{t}(\overline{y})))\in U$ }, if $P\in Q-S$ . Suppose that $F$

is a sentence in $U$ . If the principal formula of $F$ is a $(Q-S)$-atomic formula
or the negation of an S-atomic formula, then $F[f]$ is provable from $\bigcup_{P\in S\cup Q}Eq(U;P)$

in $L$ . If the principal formula of $F$ is an S-atomic formula or the negation of a
\langle $Q-S$)-atomic formula, then $F[f]$ is provable in $L$ . Hence, we conclude that
every sentence in $U[f]=\{F[f]|F\in U\}$ is provable from De$(U;S, Q)$ in $L$ . On
the other hand, $A[f]$ is provable from $U[f]$ in $L$ , because $A$ is provable from
$U$ in $L$ . Therefore, $A[f]$ is provable from De$(U;S, Q)$ in $L$ . Also, the
sentences $\forall\overline{x}(f(P)(\overline{x})\supset P(\overline{x})),$ $P\in S-Q$ , and the sentences $\forall\overline{x}(P(\overline{x})\supset f(P)(\overline{x}))$ ,
$P\in Q-S$ , are all provable from De$(U;S, Q)$ in $L$ . Since $A$ is S-positive and
Q-negative, the $formula\bigwedge_{P\in S-Q}\forall\overline{x}(f(P)(\overline{x})\supset P(\overline{x}))\bigwedge_{P\in}\bigwedge_{Q-S}\forall\overline{x}(P(\overline{x})\supset f(P)(\overline{x}))\wedge A[f].\supset A$

is provable in $L$ by Lemma 1.1. This means that $A$ is provable from De$(U;S, Q)$

in L. (Q. E. D.)
Suppose that $X$ is a countable set of $W$-atomic formulas and $F$ is a unique-
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ness condition of $W$ . Then, $F[X]$ is the formula

$\bigwedge_{P_{1}(s_{1})\in XP_{n}(}\cdots\bigwedge_{s_{n})\in X}\forall\overline{x}(\overline{t}_{1}(\overline{x})=\overline{s}_{1}\wedge\cdots\wedge\overline{t}_{n}(\overline{x})=\overline{s}_{n}.\supset A(\overline{x}))$ ,

where $F$ is $\forall\overline{x}(P_{1}(\overline{t}_{1}(\overline{x}))\wedge\cdots\wedge P_{n}(\overline{t}_{n}(\overline{x})).\supset A(\overline{x}))$ .
DEFINITION 1.4. Suppose that $U$ is a countable set of uniqueness conditions

of $W,$ $E$ is a set of simple existence conditions of $W,$ $X$ is a countable set of
W-atomic formulas, and $\alpha$ is a countable ordinal number. Then, the set of $\alpha$-th
approximations of $U$ by $E$ over $X$, denoted by $Ap^{\alpha}(U, E, X)$ , is dePned by the
following (i), (ii), and (iii):

(i) $Ap^{0}(U, E, X)=\{\bigwedge_{F\in U}F[X]\}$ .
(ii) $Ap^{\alpha}(U, E, X)=\{\bigwedge_{\beta<\alpha}A_{\beta}|A_{\beta}\in Ap^{\beta}(U, E, X)\}$ , if $\alpha$ is a limit ordinal

number.
(iii) $Ap^{\alpha+1}(U, E, X)=\{\forall\overline{x}\exists yA_{t}(\overline{x}i\in Iy)|\forall\overline{x}\exists yP_{i}(\overline{x}i\in Iy)\in E$ , $ A_{i}(\overline{a}, b)\in$

$Ap^{a}(U, E, X\cup\{P_{i}(\overline{a}, b)\})$ for some sequence $\overline{a},$
$b$ of variables none of which

occurs in any formula in $X,$ $i\in I$}.
Let $Ap(U, E, X)=UAp^{\alpha}(U\alpha<\omega_{1}E, X)$ and $Ap(U, E)=Ap(U, E, \emptyset)$ . Formulas

in $Ap(U, E)$ are called “ simple approximations” of $U$ by $E$ . Note that the
definition of $Ap(U, E)$ given above is slight different from that in [6]. The
following lemma is an immediate consequence of Definition 1.4.

LEMMA 1.5. (i) Every formula in $Ap(U, E)$ is a W-free sentence which is
pr0vable from $U\cup E$ .

(ii) Supp0se that $U$ is a set of primitive uniqueness conditions of $W,$ $P$ is a
predicate symbol, and $A$ is a simple appr0ximati0n of $U$ by E. If $P$ occurs in
A p0sitjvely (negatively), then there is a prjmitive uniqueness condition of $W$ in
$U,$ whqse principal formula is (the negation of) $a\{P\}$ -atomic $fom\iota ula$ .

By the simple approximation theorem in [6], we have:
THEOREM 1.6. Supp0se that $W$ is a countable set of predicate symbols, $U$ is

a countable set of uniqueness conditions of $W$ , and $E$ is a set of simple existence
conditions of W. Then, for any W-free formula $A,$ $A$ is pr0vable from $U\cup E$ in
$L$ if and only if $A$ is pr0vable from some simple appr0ximati0n of $U$ by $E$ , in $L$ .

REMARK 1.7. The simple approximation theorem in [6] is proved syntacti-
cally, and we can obtain a simple approximation $B$ of $U$ by $E$ such that $B\supset A$

is provable in $L$ , from a given proof-Pgure of a W-free formula $A$ from $U\cup E$

in $L$ , concretely.

\S 2. A construction of $Ax_{L}(A;S,Q)$ .
Let $V$ be a set of new predicate symbols which do not belong to $L$ . We

assume that $V$ has sufficiently many predicate symbols.
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DEFINITION 2.1. For each uniqueness condition $F$ of $V$ of the form $\forall\overline{x}(B(\overline{x})$

$\supset C(\overline{x}))$ , where $C(\overline{x})$ is in $n$ . $n$ . $f.$ , we associate a countable set $V^{*}(F)$ of predicate
symbols in $V$ , which do not occur in $F$, a countable set $E^{*}(F)$ of simple existence
conditions of $V^{*}(F)$ , a countable set $U^{*}(F)$ of uniqueness conditions of $V^{*}(F)$ ,

and a replacing function $f_{F}^{*}$, whose domain is $V^{*}(F)$ , by the following $(i)-(v)$ :
(i) If $C(\overline{x})$ is primitive, let $ V^{*}(F)=E^{*}(F)=f_{F}^{*}=\emptyset$ and $U^{*}(F)=\{F\}$ .
(ii) If $C(\overline{x})$ is $\bigwedge_{i\in I}C_{t}(\overline{x})$ , let $ V^{*}(F)=E^{*}(F)=f_{F}^{*}=\emptyset$ and $ U^{*}(F)=\{\forall\overline{x}(B(\overline{x})\supset$

$C_{i}(\overline{x}))|i\in I\}$ .
(iii) If $C(\overline{x})$ is $\forall yD(\overline{x}, y)$ , let $ V^{*}(F)=E^{*}(F)=f_{F}^{*}=\emptyset$ and $U^{*}(F)=\{\forall\overline{x}\forall y(B(\overline{x})$

$\supset D(\overline{x}, y))\}$ .
(iv) If $C(\overline{x})$ is $i\in IC_{t}(\overline{x})$ , let $\{P_{i}\}_{i\in I}$ be a set of distinct $(n+1)$-ary predicate

symbols in $V$ , which do not occur in $F$, where $n$ is the length of the sequence
$\overline{x}$ . Let $V^{*}(F)=\{P_{i}|i\in I\},$ $E^{*}(F)=\{\forall\overline{x}\exists yP_{i}(\overline{x}i\in Iy)\}$ , $U^{*}(F)=\{\forall\overline{x}\forall y(B(\overline{x})$ A

$P_{t}(\overline{x}, y).\supset C_{i}(\overline{x})|i\in I\}$ , and $f_{F}^{*}(P_{i})=(B(\overline{x})\supset C_{i}(\overline{x}),\overline{x}^{\sim}y),$ $i\in I$ .
(v) If $C(\overline{x})$ is $\exists yD(\overline{x}, y)$ , let $P$ be an $(n+1)$-ary predicate symbol in $V$ ,

which does not occur in $F$, where $n$ is the length of the sequence $\overline{x}$ . Let
$V^{*}(F)=\{P\},$ $E^{*}(F)=\{\forall\overline{x}\exists yP(\overline{x}, y)\},$ $U^{*}(F)=\{\forall\overline{x}\forall y(B(\overline{x})\wedge P(\overline{x}, y).\supset D(\overline{x}, y))\}$ ,

and $ff(P)=(B(\overline{x})\supset D(\overline{x}, y),\overline{x}^{\rightarrow}y)$ .
Note that $V^{*}(F),$ $E^{*}(F)$ , and $U^{*}(F)$ are finite sets if $F$ is a finitary sentence.

Then, the following facts are immediate consequences of Definition 2.1.
COROLLARY 2.2. (i) $F$ is pr0vable from $E^{*}(F)\cup U^{*}(F)$ in $L(V)$ .
(ii) $C[ff]$ is pr0vable from $F$ in $L(V)$ for any $C$ in $E^{*}(F)\cup U^{*}(F)$ .
(iii) If $F$ is nat primitive, then the principal formula of any uniqueness

condition in $U^{*}(F)$ is a pr0per subformula of the principal fonnula of $F$ (cf. $p$ .
30 in [8] for the notion “ subformula”).

DEFINITION 2.3. For each sentence $A$ in $L$ , and each natural number $k$ , we
define a countable set $l^{I_{k}}(A)$ of predicate symbols in $V$ , a countable set $E_{k}(A)$

of simple existence conditions of $V_{k}(A)$ , a countable set $U_{k}(A)$ of uniqueness
conditions of $V_{k}(A)$ , whose principal formula belongs to $A$ syntactically, and a
replacing function $f_{A}^{k}$ , by the following: Let $ V_{0}(A)=E_{0}(A)=f_{A}^{0}=\emptyset$, and $U_{0}(A)=$

$\{\wedge\emptyset\supset A(\neg)\}$ . Assume that $V_{k}(A),$ $E_{k}(A),$ $U_{k}(A)$ , and $f_{A}^{k}$ are defined. Without
loss of generality, we can assume that $V^{*}(F)(F\in U_{k}(A)),$ $V_{k}(A)$ are all disjoint.
Let $V_{k+1}(A)=V_{k}(A)\bigcup_{F\in}\bigcup_{U_{k}(A)}V^{*}(F),$ $E_{k+1}(A)=E_{k}(A)\cup\bigcup_{F\in U_{i}(A)}E^{*}(F),$

$U_{k+1}(A)=$

$F\in U_{k}(A)UU^{*}(F)$ , and $f_{A}^{k+1}(P)=f_{A}^{k}(P)$ if $P\in V_{k}(A)$ , and $f_{A}^{k+1}(P)=f_{F}^{*}(P)[f_{A}^{k}]$ if

$P\in V^{*}(F),$ $F\in U_{k}(A)$ .
Then, the following fact is an obvious consequence of Definition 2.3 and (ii)

in Corollary 2.2.
COROLLARY 2.4. For any sentence $C$ in $E_{k}(A)\cup U_{k}(A),$ $C[f_{A}^{k}]$ is pr0vable

from $A$ in $L$ .
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DEFINITION 2.5. For any sentence $A$ in $L$ , let $V(A)=\bigcup_{k<\omega}V_{k}(A),$ $E(A)=$

$k<\omega UE_{k}(A),$ $f_{A}=\bigcup_{k<\omega}f_{A}^{k}$ , and $U(A)=$ {$F\in\bigcup_{k<\omega}U_{k}(A)|F$ is primitive}.

Then, from Corollary 2.4, we have;
COROLLARY 2.6. For any sentence $C$ in $E(A)\cup U(A),$ $C[f_{A}]$ is provable from

$A$ in $L$ .
Also, we have the following lemma whose proof is essentially due to Pro-

fessor T. Uesu.
LEMMA 2.7. Every sentence $F$ in $\bigcup_{k<\omega}U_{k}(A)$ is pr0vable from $E(A)\cup U(A)$ in

$L(V)$ . Hence, $A$ is provable from $E(A)\cup U(A)$ in $L(V)$ .
PROOF. Assume that there is a sentence $F_{0}$ in $\bigcup_{k<\omega}U_{k}(A)$ such that $F_{0}$ is not

provable from $E(A)\cup U(A)$ in $L(V)$ . If $F_{0}$ is primitive, then $F_{0}$ is provable from
$E(A)\cup U(A)$ because $F_{0}$ belongs to $U(A)$ . So, $F_{0}$ is not primitive. Since $F_{0}$ is
provable from $E^{*}(F_{0})\cup U^{*}(F_{0})$ , and $E^{*}(F_{0})\subseteqq E(A)$ , there is a sentence $F_{1}$ in $U^{*}(F_{0})$

such that $F_{1}$ is not provable from $E(A)\cup U(A)$ in $L(V)$ . By (iii) in Corollary
2.2, the principal formula of $F_{1}$ is a proper subformula of the principal formula
of $F_{0}$ . By continuing this process, we have an infinite sequence $\{F_{k}\}_{k<\omega}$ of
sentences in $k<\omega UU_{k}(A)$ such that each $F_{k}$ is not provable from $E(A)\cup U(A)$ in

$L(V)$ , and the principal formula of $F_{k+1}$ is a proper subformula of the principal
formula of $F_{k}$ for each $ k<\omega$ . But, this is impossible because there is no infinite
sequence $\{C_{h}\}_{k<\omega}$ of formulas such that $C_{k+1}$ is a proper subformula of $C_{k}$ for
each $ k<\omega$ . Therefore, every sentence in $k<\omega UU_{k}(A)$ is provable from $E(A)\cup U(A)$

in $L(V)$ . (Q. E. $D.\rangle$

From Corollary 2.6 and Lemma 2.7, we have:
LEMMA 2.8. $\{A\}$ and $E(A)\cup U(A)$ are equivalent in $L(V)$ over the set of

$V(A)$-free formulas.
Now we can define $Ax_{L}(A;S, Q)$ explicitly as follows: Suppose that a

sentence $A$ and two sets $S,$ $Q$ of predicate symbols in $L$ are given. Take the
negation normal form $A(\neg)$ of $A$ , and construct $V(A),$ $E(A),$ $U(A)$ by Definitioll
2.5. Let $\tilde{U}(A)=De(U(A);S, Q)$ and $Ax_{L}(A;S, Q)=Ap(\tilde{U}(A), E(A))$ . Then, we
can easily see that every sentence in $Ax_{L}(A;S, Q)$ is S-positive, Q-negative and
belongs to $A$ syntactically, by DePnition 1.2, (ii) in Lemma 1.5, and Definition 2.5.

SuPpose that $C$ is an S-positive, Q-negative formula in $L$ . Then,

$C$ is provable from $A$ in $L$

$\Leftrightarrow C$ is provable from $E(A)\cup U(A)$ in $L(V)$ , (by Lemma 2.8)
$\Leftrightarrow C$ is provable from $E(A)\cup\tilde{U}(A)$ in $L(V)$ , (by Lemma 1.3)

$\Leftrightarrow C$ is provable from some $B$ in $Ap(\tilde{U}(A), E(A))$ , in $L$ , (by Theorem 1.6)

$\Leftrightarrow C$ is provable from some $B$ in $Ax_{L}(A;S, Q)$ , in $L$ .
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This completes our proof of Theorem I.
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