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On the units of an algebraic number field

By Katsuya MIYAKE

(Received Jan. 26, 1981)

In this paper, we extend the transcendental method of Ax[1], to apply the
result of Brumer to show Leopoldt’s conjecture for certain non-abelian ex-
tensions of imaginary quadratic number fields in §6).

§1. Preliminaries.

Let F be a finite algebraic extension of rational number field @, and Oy the
maximal order of F. For a prime divisor p of F, let F, be the p-adic comple-
tion of F, and O, the closure of Op in F,.

Let p be a prime number, and denote the p-adic completion of @ by @Q,.
The closure of the ring of integers Z in Q, is denoted by Z,. Then FReQp

is naturally isomorphic to the direct sum @ F,.
pip

We denote the multiplicative groups of the invertible elements of F, F,, O,,

etc. by F*, F§, Of, etc. Especially, (@ F,)* is the direct product TT F;. Let W,
pip pID

be the group of (Np,e(p)—1)-th roots of 1 in F,. Then O;=W,-(1+p-0,). Put
U,=T10; and U,=1I(14+p-0,). The action of Z on the compact abelian group
pip pip

U, as powers induces the action of Z, on U, naturally. As a Z,-module in this
way, the essential rank of U, over Z, is equal to [F: @], the degree of F over
Q. In other words, the dimension of the vector space U =U,Q,Q=U,Qz,Q
over Q, is [F: Q1. Note that U,XQ=U,Q,Q=U®.

Let V, be a finitely generated subgroup of F*N\U, Here F* is considered
to be diagonally imbedded in TIF;. Put V=V,Q:Q, and V®=VQ®qeQ,. Then

P
the inclusion map V,oU, induces a Q,-linear map @,: V®P U, We are in-
terested in the dimension over @, of the subspace @,(V®) of U®. (Leopoldt’s
conjecture is equivalent to the injectivity of @, for V=03 =the group of the
units of F.) Note that

dimg VP = dimqV = ess. rankzV,,

and that @,],: VoU® is injective.
We use additive notation for the vector spaces V, V®, and U®.
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§2. Analysis by the automorphisms of F.
Let W be the group of the roots of 1 in F. Put, for V,,
G=GVy)={acsAut(F)|a(V )CTWg- V4.

Since V=V, QR,Q=Wr-V)X-Q, G acts on V Q-linearly, and also on V® and
on U® @Q,linearly. Let p: G—>GL(V; @) be the representation of G on V.
Then p induces a homomorphism of the group algebra Q,[G] into Endg p(V“”)
:Home (Ve , V) which is also denoted by p.

The Q,-linear map @,: V»-U® is a homomorphism of G-modules. There-
fore

Ker(®,)={xeV® |0 ,(x)=0}

is a G-invariant subspace of V. From the complete reducibility of the rep-
resentation of G over @, follows the existence of a G-subspace X of V'
such that

Vor=Ker(0D,)PX (direct sum).

Let 7=n(V,): V®»—-Ker(®,) be the projection of V® onto Ker(®,). Regarded
as an element of Endg p(V‘P’), this = satisfies

1) zmem=m,
(2) VgeG (z-p(g)=p(g)r).

In other words, = is an idempotent of the commutor p(Qp/\[G]/) of p(@,LG)) in
Endg (V®), where

p(@,0CT) = {$ =Endq (V®)|Vx € p(Q,LCIN e x=x-)} .
Since V=V R®qQ,, we have
o(Q,LCD) =p@[CDDeQ ,
P(QLCT) = {$ €Endo(V)|Vx € pQIGTNGox=x-0)} .

Summing up, we have
PROPOSITION 1. The notation and the assumptions being as above, the projec-

tion w: V®—Ker(@,) is an idempotent of M(X)QQP, where m s the
commutor of p(Q[GJ) in Endge(V).

§3. Application of Brumer’s result.

We prove the transcendentality of = : V® —Ker(®,) by Brumer’s result in [2].
Let A be the algebraic closure of @ in Q,.
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THEOREM 1. Let V, be a finitely generated subgroup of F*NU,, and let
V=VR2Q, VP=VReQ,, D,: VP ->UP and 7:VP->Ker(D,) be as above.
Then we have

{m-glg<=Endq (V) NEndu(V&eAd) = {0} .
PROOF. Suppose that meg €End(V®eA) for some ¢<Ende (V7). Since

End,(VRA)=Endeo(V)ReA, we can find a;, -+, a,=Ende(V) and a,, -+, a;€A
such that

7T°¢):al'0(1—|- —{—ayat .
Put r=dimqV, and choose u,, ---, u,€V, so that these form a basis of V over Q.

Assume now that wo¢+#0. Then for some ucV, we have we¢(u)#0. For
each j (1=7=r),

aj(u>:bj1'u1+ —{—bjr-ur
with by, ---, bj,=Q because a;=Ende(V). Therefore we have
To@(U)=Ci U+ - FCprr Uy

with ¢,=b,,-a,+ -+ +bsura,€A for p=1, ---, . Note that all of ¢,’s are not
equal to zero since weg(u)#0. Now rmed(u)=Ker(®,). Therefore we have

(%) Cl'@p(u1>+ +Cr'@p(ur):0-
This @,: V®-U® was obtained from the imbedding V,&.U,=TI1 O;. By p-adic

pip
logarithm map of Oy to F,, we can define a @,-linear isomorphism

2 UP —> DF,.

pip

Then composing the canonical maps
p@FPEF@QQp T, FReN2,=00
1D

we get a Q,-linear imbedding
1 U® 5 ‘QEDF:Q]

where £, is the completion of the algebraic closure of @,. Let J={;: F—
2,1i=1, ---, [F: Q]} be the set of all the imbeddings of F into £,. Then for
ueV,cF*NU,, the coordinates of the [F: Q]-dimensional vector Zo@p(u) coin-
cides with log ¢;(u), 1=1, ---, [F: @]. Here this log is the p-adic logarithm of
Q,. From (x), therefore, we get a linear relation

cy+log (ex(u))+ -+ +cprlog (e:(u,))=0

for 7=1 for example. From the choice of uy, -+, u,, it follows that log (¢;(u,)), -+,
log (¢,(u,)) are linearly independent over Q. Because c,, -+, ¢, are the elements
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of A, all of which are not equal to zero, this relation contradicts Brumer’s
in [2]. The proof is completed.

§4. The key theorem.

THEOREM 2. Let the notation and the assumptions be as in Proposition 1 and
in Theorem 1. If /;;Z(TGT)@)QQP 1s 1somorphic to a direct sum of division alge-
bras (may be commutative), then @,: VP -UD isinjective. Especially z'fm
1s commutative, then @, is injective for any prime p.

For the proof, we need two propositions.

PROPOSITION 2. Let S be a semi-simple algebra over Q. Then every central
idempotent of SQReQ, belongs to SR A.

Proor. Let S=S5.,4 ---@S, be the decomposition of S to a direct sum of
its simple components S;, 7=1, ---, n. Let C; be the center of S;. Then C=
CiP - BC, is the center of S, and CReQ, is the center of SXeQ,. Since
every idempotent of CRQ, is a sum of idempotents of C;Xe®p, 1=1, -+, n, it
is sufficient to show the proposition in the case that S=C is a field. Suppose
now that C is a finite algebraic extension field of @. Take an element a of C
which generates C over @, and let P(X)=Q[X] be the irreducible polynomial of
a, that is, P(a)=0, whose leading coefficient is equal to 1. Then C is isomorphic
to the quotient field Q[ X]/P-Q[X]. Let P(X)=P,(X) -+ P,(X) be the decomposi-
tion of P(X) in Q,[X] by the irreducible polynomials Py X), j=1, ---, ¢, whose
leading coefficients are equal to 1. Then each Py(X) is in A[X] since A is the
algebraic closure of @ in @Q,. We have the decompositions

CRe@p=Qp[X1/P:-Q,[XID - BQ,LX]/Pr- Q[ X],
CQeA=ALX]/P,- ALX]D - BALX]/ P ALX] .

For each j, Q,[X]/P;-Q,[X] is a field which contains the field A[X]/P;- A[X]
naturally. Let e¢; be the unit element of the field Q,[X1/P;Q,[X]. Then ¢,
belongs to A[X]/P;- ALX]. Since every idempotent of CXqeQ, is a sum of some
e;’s, it certainly belongs to CQRA. Q.E.D.

PROPOSITION 3. Let S be a semi-simple algebra over a commutative field.
Then every idempotent of S belongs to the center of S if and only if S is isomor-
phic to a dirvect sum of division algebras (may be commutative).

PROOF. Let S be a direct sum of simple algebras S,, ---, S,. Each S; is
isomorphic to a full matrix algebra M, (D;) over a division algebra D;. If m;>1
for any 7, then S; surely contains non-central idempotents, which are also non-
central idempotents of S. Conversely if m,= --- =m,=1, then an idempotent of

S;=D; is either 0 or the unit element of D; for =1, ---, n. The proposition
is now clear.
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One can easily see [Theorem 2 by [Theorem 1| and Propositions 1, 2 and 3.

§5. Case of V,=0%.

Hereafter until the end of this paper, we restrict ourselves to the case that

V, is the group O of the units of a Galois extension F of an imaginary quadratic
number field %.

In this section, we take G=Gal(F/k).

PROPOSITION 4. The commutor m of p(QLG]) in Endo(V) is isomorphic

to p(QLG]). Furthermore the direct sum Q@;(Q\[G_]/) of algebras is isomorphic
to the group algebra QLG].

PrOOF. Let p, be the trivial representation of G on X,=@Q. It is known
by Herbrand [3] that the representation p,Pp of G is equivalent to the regular
representation of G. More precisely speaking, there exists an element ¢ of
V,=0% such that the vectors g(e), g=G, of V=V ,Q,Q satisfy only one linear
relation g%,“G g(e)=0. (We use additive notation on V.) Therefore the left Q[G]-

modules X=Q[G] and X, DV are Q[G]J-isomorphic. (For example, define ¢: X
— XDV by ¢(g)=g(1Pe) for g&G.) This shows that the subalgebra QP p(QLG))
of Endo(X,PV) is isomorphic to Q[G] which acts on X=Q[G] as left-transla-
tions. Now let Q[ GJ* be the inverse algebra of Q[G]. The action of Q[G] on
X as right-translations defines a structure of a left Q[ GJ*-module on X. Then, as
is well known, the commutor Q[ G] of all the left-translations @[ G] in Ende(X)
is nothing but Q[ GJ*. Since the involution ¢: Q[G]—Q[G] defined by ¢(g)=g*
for geG gives an isomorphism of Q[G] onto Q[GI*, Q[G] is isomorphic to
Q[G]. Therefore the Q[ GJ-isomorphism of X onto X,PV gives an isomorphism
— T ——————— . P
of the commutor QP p(QLG]) of QPp(QLG]) in Ende(X,PV) onto QLGI1=Q[G].
. —_— T ———— T — P .
It is obvious that QDp(Q[G1)=QDp(Q[G]). The proposition is now clear.
THEOREM (Ax-Brumer). If an algebraic number field K of finite degree is

contained in an abelian extension of an imaginary quadratic number field, then
for K, Leopoldt’s conjecture is true for any prime p.

PrOOF. Let F be a finite abelian extension of an imaginary quadratic
number field k2, which contains K. Since G=Gal(F/k) is an abelian group, Q[ G]
is certainly commutative. It follows, therefore, from Proposition 4 that ;(—Q[\Gj/)
is commutative. Then by Theorem 2, @,: V®-U® is injective for any prime
p. Since V,=0j, this is just Leopoldt’s conjecture for F, which assures Leopoldt’s
conjecture for the subfield K. Q.E.D.

PROPOSITION 5. For a finite group G, and for a prime p, the group algebra

Q,[G] is isomorphic to a direct sum of division algebras (may be commutative)
if and only if either (1) G is abelian, or
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(2) p:2 and G:G1><G2:
G,=<a, by a*=1, a®*=b% b 'ab=a"?;
G,=an abelian group of exponent m or 2m with m|(2*#*1—1).

Proor. If G is abelian, then Q,[G] is isomorphic to a direct sum of fields
for any p, as is well known. Suppose that G is not abelian, and that Q,[G] is
a direct sum of division algebras. Then any idempotent of @,[G] belongs to
the center. Let H be a subgroup of G. Then (=|H |‘1-h§1 h is an idempotent

of Q,[G]. Therefore for any gG, we have (=g~ '-¢-g. This shows that H is
a normal subgroup of G. Because any subgroup of G is normal, G has to be a
Hamiltonian group. In other words, G=G,;X G, where G, is as in the proposi-
tion and G, is an abelian group of exponent m or 2m for some odd m. Let @Q
be the algebra of Hamiltonian quaternions over @, i.e.

Q={v-14w-i+x-j+y-klv, w, x, yEQ} :

2

P=jrt=—1, i j=—ji=k.

Take a primitive n-th root {, of 1 for each n|m. Then any non-commutative
simple component of @,[G] is isomorphic to QXeQ,(&,) for n|m. If p+#2, then
QReQ,=My@,) is not a division algebra. Now suppose that p=2. Then, as
is well known, Q®eQ,((») is a division algebra if and only if [Q,((.): Q,] is
odd. If d=[Q,(): Q] is odd, then [@,(,): Q,] is also odd for n|m because
this is a divisor of d. Since m is odd, Q,(,) is unramified over @,. Therefore
the roots of 1 in Q,({,) are the 2-(2¢—1)-th roots of 1. Thus we have m|2¢—1
for odd d. Conversely, if m|2% —1 for odd d’, then {, belongs to the unramified
extension of @, of degree d’. Therefore d=[Q,(.): Q,] divides d’. Since d’
is odd, so is d. The proof is completed.

By the same way as in the above proof of Ax-Brumer [Theorem, we have
now

THEOREM 3. Let K be a subfield of a Galois extension F of an imaginary
quadratic number field k whose Galois group over k is isomorphic to the group
of Proposition 5, (2). Then for p=2, Leopoldt’s conjecture is true for K.

§6. Main Theorem.

In this section, we verify Leopoldt’s conjecture for some special types of
Galois extensions of imaginary quadratic number fields.

NOTATION.

General quaternion group L, of order 2"*! (n=2),

Q,=<a,, b>: a¥"=1, b*=a?""", b-lab=az':
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Dihedral group 9, of order 2**! (n=2),

Dp=Lan, ¢>: al'=c*=1, ¢ la,c=a3z’;

Quasi-dihedral group ®, of order 2"*! (n=3),

Dn=(an, dy: a¥'=d*=1, d'a,d=a7""*""".

THEOREM 4. If an algebraic number field K is contained in a field F satisfy-
ing the following (xx), then for K, Leopoldt’s conjecture is true for any prime p.

(%) F is a composite field Fy-F; such that

(1) F, is a finite abelian extension of Q, the exponent of whose Galois group
Gal(F,/Q) is either m or 2m for some odd m;

(2) F; is a Galois extension of an imaginary quadratic number field k, which
is also a Galois extension of Q, such that 8=Gal(F,/Q) and its normal subgroup
®,=Gal(F;/k) belong to the following list:

(i) G=(a, b, ¢>: a*=c*=1, b*=a? b lab=a"1, ¢ lac=b:

8,=<a, b>;
(ii) O=8Q,.1=<an+1, b (n=2);
G,=0,={(a., b, a,=ai,,;

(i) G=D,1=<Lan+1, ¢ (n=2);

®1:@n:<an; C>y an:a%+1;

(V) =Dy =(ans:, &> (n22);

@lan:<an’ b>, an:a721+1; b:dan+1;
(v) ®:®n+1:<an+1y d> (n=2);
G, =D,=<a,, ¢, ap=ai., c=d.

To prove the theorem, we show that the commutor p/(Q\[G_j of p(QLG)) in
Endy(V) is commutative. Then the theorem follows from immediately.

For G,=Gal(F/k), the basic structure of the commutor p/(m of p(Q[G.))
in Ende(V) has already been seen in
For a positive integer v, let {, be a primitive 2*-th root of 1, and put

Tu:Cu+C;1; and Zv:Cu—‘Cljl-

1f v=2, then Q(,)=Q(z,, ~v/—1)=Q(z,, ,). Note that Q(z,) is totally real, and
that Q(4,) is totally imaginary if v=2. We have

[QL): Q(z,)]=[QA): Q(z,-)]=2, (v=2),
(v=2),

1
[QE.): Q(L)]Z{
2 (v=3).
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The following four propositions are easily seen.

PROPOSITION 6. Let &=<a, b, ¢) be the group of Theorem 4, (i). Then
Q[G1=Q*DM,(Q)PM,(Q), where Q* corresponds to the abelian group &/G' =
B/<a by, Mx@Q) to ¢1: G—-8/<a*)—>GLAQ),

( (—1 0 " 1 0) © (0 1)
Pa)= 0 1>, 1 )-(O ) ¢16—1 o)

and M,(Q) to ¢: G-GLAQ),
—1 —1 0 1

10 sz(b): 1 , sz(c):
—1 1 1 0

¢'2(a): 1

PROPOSITION 7. For ®,={a,, ¢ (n=2),
AD.I=Q'D HM(Q(),
where Q* corresponds to X{™ : D,—Q* (=0, 1, 2, 3),
AW (ap)=(=1-nre xm(e)=(—1),
and MyQ(z,)) 2=v=n) to &M D,—D,/<a>—=GLyQ(z.)),

0 —1 0 1
)
1 z, 10

PROPOSITION 8. For D,=<a,, d> (n=3),

QADI=Q'D D MQE)ISMLQ)

where Q“@@:Mz(Q(n)) corresponds to D,/<ay H>=D, 1, and MLQ(1,) to E™:

. 0 1 B 1 0
6"”(an)=< ) E<’”(d)=< )
1 4 An —1

PROPOSITION 9. Let Q be the algebra of Hamiltonian quaternions over @,
that 1is,

Q={v-1tw-i+x-j+y-klv, w, x, yEqQ},
P=jr=—1, ij=—jei=k.
Then for Qp,=<a,, b (n=2),
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Q. 1=Q'D D MQ)DRRAr)

where QDD M(Q(z,)) (Q* if n=2) corresponds to Qn/<a% "> =Dp_y, and QReQ(ry)
to ™ 0y (QReQ(74)),

1 . .
PP (e)=5 @a=thei),  7™PB)=],
=0 G T Q)

Now let F=F,-F, satisfy the condition (*%). By the assumption on the ex-
ponent of Gal(F;/@), we easily see that there exists a subfield F; of F; such
that F,.=F{-(F;NF,) and F{NF,=Q. Replacing F, by Fi, we may assume that
FiNF,=Q. Then we have

G=Gal(F/Q)=AXG, and G;=Gal(F/k)=AXES,

with A=Gal(F,/Q), &=Gal(F./Q) and &,=Gal(F,/k). The exponent of U is
either m or 2m for some odd m.

Let Q[ 1=BPB:D --- & B; be the decomposition of Q[S,] to a direct sum
of the commutative semi-simple subalgebra B, and non-commutative simple sub-
algebras By, ---, B,. Let ¢; be the unit element of B; for j=0,1, .-, s. By
Propositions 6~9, we easily see that each non-commutative simple algebra B;
(1=j=<s) is contained in only one simple component of Q[S]. Moreover, all of
ey, €1, =+, @, are central idempotents of Q[&], and they give a decomposition

QLEI=BiDBID - DB, B;=¢;;Q[6] (0=j=s).

If 1=j<s, then Bj is simple.

For p dividing m, let {} be a primitive p-th root of 1. Then Q[¥] is iso-
morphic to a direct sum of algebraic number fields Q(}) (u|m). (For each g,
a number of copies of Q({},) may appear.) Therefore Q[G,]1=Q[ATRAR[S,] or
Q[G]=Q[N]RQ[B] is a direct sum of semi-simple algebras Q[UAIXeB, or
Q[W]ReBs, and B;,=B;RQeQ}) or Bj,=BiQeQ(}) for j=1, ---, s and for u|m,
respectively. The algebras B;, and Bj, are simple. In fact, their centers are
fields because they can be regarded as subalgebras of Q(,)X¢Q()), which is a
field since &, or ), is a 2”-th or p-th root of 1 respectively such that (2%, p)=1.
Note that Q[UAIXeB, is commutative. One can easily see the followings by
Propositions 6~9:

(I) In the case of (i) of the theorem, s=1, the center of B,, is equal to
the center of Bi,, and they are isomorphic to Q(C}).

[Bix: QCwI=4, and [Bi,:QC1=16;

(II) In the cases of (ii)~(v) of the theorem, let C;, or Cj, be the center of
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B;, or Bj, respectively. Then
[C;# . CJ'#]:2 ’ and I:Bj;l . Cj;l]:4 3
B;'/t:Bj;z@cij.;',u .

We now show that the commutor m of p(Q[G)) in Ende(V) is com-
mutative. Let B be a component p(Q[QI]@BO) or p(B;,) of p(Q[G,]) and B’
the component of o(Q[GJ) which contains B. Let e be the unit element of B.
Then it is also the unit element of B’. Let B and B’ be the commutors of B
and B’ in Endg(e(V)) respectively. Then B contains B’. Since ;(—Q[\G]/) is a
direct sum of such ﬁ’, it is sufficient to show that each B’ is commutative.

If B=p(Q[AIRB.), then B'=p(Q[AIRB;). By p@CG.) is
isomorphic to p(Q[G.]). We get B=B by this isomorphism. Since B=
p(Q[ATRB,) is commutative, the subalgebra B’ of B=B is also commutative.
If B=p(B;,) and B’=p(Bj,), then e(V) becomes a vector space over the center
C’=p(Cj,) of B’. Then B’ coincides with the commutor of B’ in Endg.(e(V)).
By we see that the vector space e(V) is isomorphic to B as Q-
spaces. Therefore as a vector space over C=p(C;,), dimge(V)=4. Then by (1)
or by (II), we immediately see that B’=C’. Thus we have shown thatm
is commutative in any case of This establishes the theorem as was
mentioned before.

REMARK. For 8,=0Q,, ®, or D,, a group & which contains &, as a sub-
group of index 2 is one of the following groups besides the ones of (i)~(v):

8, xZ/2-Z,

®,}(Z/4- Z)/<(a¥" ™", 2(mod 4))) ;

G=<a,,b,e>: a¥=e*=1,b*=a% "}, b lab=a;’, ¢ tae=ak?*" ", e b leb=1,
G =0,=<an, b5 or D,={ay, (azbe));

B=<a,, ¢, e): a¥ =c*=e’=1, ¢ la,c=a3;}, e laje=alt*" ", e lctec=1,
G, =D,=<an, ¢> or D,={a,, (ce)).

But to these groups, we cannot apply our arguments above.
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