On the units of an algebraic number field

By Katsuya MIYAKE

(Received Jan. 26, 1981)

In this paper, we extend the transcendental method of Ax[1], to apply the result of Brumer [2] to show Leopoldt's conjecture for certain non-abelian extensions of imaginary quadratic number fields (Theorem 4 in § 6).

§ 1. Preliminaries.

Let F be a finite algebraic extension of rational number field Q, and O_F the maximal order of F. For a prime divisor $\mathfrak p$ of F, let $F_{\mathfrak p}$ be the $\mathfrak p$ -adic completion of F, and $O_{\mathfrak p}$ the closure of O_F in $F_{\mathfrak p}$.

Let p be a prime number, and denote the p-adic completion of Q by Q_p . The closure of the ring of integers Z in Q_p is denoted by Z_p . Then $F \otimes_Q Q_p$ is naturally isomorphic to the direct sum $\bigoplus_{\mathfrak{p} \mid p} F_{\mathfrak{p}}$.

We denote the multiplicative groups of the invertible elements of F, $F_{\mathfrak{p}}$, $O_{\mathfrak{p}}$, etc. by F^{\times} , $F_{\mathfrak{p}}^{\times}$, $O_{\mathfrak{p}}^{\times}$, etc. Especially, $(\bigoplus_{\mathfrak{p}\mid p}F_{\mathfrak{p}})^{\times}$ is the direct product $\prod_{\mathfrak{p}\mid p}F_{\mathfrak{p}}^{\times}$. Let $W_{\mathfrak{p}}$ be the group of $(N_{F/Q}(\mathfrak{p})-1)$ -th roots of 1 in $F_{\mathfrak{p}}$. Then $O_{\mathfrak{p}}^{\times}=W_{\mathfrak{p}}\cdot(1+\mathfrak{p}\cdot O_{\mathfrak{p}})$. Put $U_0=\prod_{\mathfrak{p}\mid p}O_{\mathfrak{p}}^{\times}$ and $U_1=\prod_{\mathfrak{p}\mid p}(1+\mathfrak{p}\cdot O_{\mathfrak{p}})$. The action of Z on the compact abelian group U_1 as powers induces the action of Z_p on U_1 naturally. As a Z_p -module in this way, the essential rank of U_1 over Z_p is equal to $[F\colon Q]$, the degree of F over Q. In other words, the dimension of the vector space $U^{(p)}=U_1\otimes_Z Q=U_1\otimes_Z Q$ over Q_p is $[F\colon Q]$. Note that $U_0\otimes_Z Q=U_1\otimes_Z Q=U^{(p)}$.

Let V_0 be a finitely generated subgroup of $F^{\times} \cap U_0$. Here F^{\times} is considered to be diagonally imbedded in $\prod_{\mathfrak{p} \mid p} F_{\mathfrak{p}}^{\times}$. Put $V = V_0 \otimes_{\mathbb{Z}} \mathbb{Q}$, and $V^{(p)} = V \otimes_{\mathbb{Q}} \mathbb{Q}_p$. Then the inclusion map $V_0 \hookrightarrow U_0$ induces a \mathbb{Q}_p -linear map $\Phi_p : V^{(p)} \to U^{(p)}$. We are interested in the dimension over \mathbb{Q}_p of the subspace $\Phi_p(V^{(p)})$ of $U^{(p)}$. (Leopoldt's conjecture is equivalent to the injectivity of Φ_p for $V_0 = O_F^{\times} =$ the group of the units of F.) Note that

$$\dim_{\boldsymbol{Q}_{\mathcal{D}}}\!V^{\,\scriptscriptstyle{(\mathcal{P})}}\!=\dim_{\boldsymbol{Q}}\!V\!=\!\,\mathrm{ess.}\,\mathrm{rank}_{\boldsymbol{Z}}\!V_{\scriptscriptstyle{0}}$$
 ,

and that $\Phi_p|_V: V \rightarrow U^{(p)}$ is injective.

We use additive notation for the vector spaces V, $V^{(p)}$, and $U^{(p)}$.

$\S 2$. Analysis by the automorphisms of F.

Let W_F be the group of the roots of 1 in F. Put, for V_0 ,

$$G = G(V_0) = \{ \alpha \in \operatorname{Aut}(F) | \alpha(V_0) \subset W_F \cdot V_0 \}.$$

Since $V = V_0 \otimes_{\mathbf{Z}} \mathbf{Q} = (W_F \cdot V_0) \otimes_{\mathbf{Z}} \mathbf{Q}$, G acts on V \mathbf{Q} -linearly, and also on $V^{(p)}$ and on $U^{(p)}$ \mathbf{Q}_p -linearly. Let $\rho: G \to GL(V; \mathbf{Q})$ be the representation of G on V. Then ρ induces a homomorphism of the group algebra $\mathbf{Q}_p[G]$ into $\operatorname{End}_{\mathbf{Q}_p}(V^{(p)}) = \operatorname{Hom}_{\mathbf{Q}_p}(V^{(p)}, V^{(p)})$, which is also denoted by ρ .

The ${m Q}_p$ -linear map ${m \Phi}_p\colon V^{(p)}{
ightarrow} U^{(p)}$ is a homomorphism of G-modules. Therefore

$$\operatorname{Ker}(\Phi_p) = \{x \in V^{(p)} \mid \Phi_p(x) = 0\}$$

is a G-invariant subspace of $V^{(p)}$. From the complete reducibility of the representation of G over Q_p follows the existence of a G-subspace X of $V^{(p)}$ such that

$$V^{(p)} = \operatorname{Ker}(\Phi_p) \oplus X$$
 (direct sum).

Let $\pi = \pi(V_0) : V^{(p)} \to \operatorname{Ker}(\Phi_p)$ be the projection of $V^{(p)}$ onto $\operatorname{Ker}(\Phi_p)$. Regarded as an element of $\operatorname{End}_{Q_p}(V^{(p)})$, this π satisfies

- (1) $\pi \circ \pi = \pi$,
- (2) $\forall g \in G \ (\pi \circ \rho(g) = \rho(g) \circ \pi)$.

In other words, π is an idempotent of the commutor $\rho(Q_p[G])$ of $\rho(Q_p[G])$ in $\operatorname{End}_{Q_p}(V^{(p)})$, where

$$\widetilde{\rho(\boldsymbol{Q}_{p}[G])} = \{ \phi \in \operatorname{End}_{\boldsymbol{Q}_{p}}(V^{(p)}) \, | \, \forall x \in \rho(\boldsymbol{Q}_{p}[G]) (\phi \circ x = x \circ \phi) \} \ .$$

Since $V^{(p)} = V \otimes_{\mathbf{q}} \mathbf{Q}_p$, we have

$$\widetilde{\rho(\mathbf{Q} \lceil G \rceil)} = \widetilde{\rho(\mathbf{Q} \lceil G \rceil)} \otimes_{\mathbf{Q}} \mathbf{Q}_{p},$$

$$\widetilde{\rho(\mathbf{Q} \lceil G \rceil)} = \{ \phi \in \operatorname{End}_{\mathbf{Q}}(V) \mid \forall x \in \rho(\mathbf{Q} \lceil G \rceil) (\phi \circ x = x \circ \phi) \}.$$

Summing up, we have

PROPOSITION 1. The notation and the assumptions being as above, the projection $\pi: V^{(p)} \to \operatorname{Ker}(\Phi_p)$ is an idempotent of $\rho(Q[G]) \otimes_Q Q_p$, where $\rho(Q[G])$ is the commutor of $\rho(Q[G])$ in $\operatorname{End}_Q(V)$.

§ 3. Application of Brumer's result.

We prove the transcendentality of $\pi: V^{(p)} \to \operatorname{Ker}(\Phi_p)$ by Brumer's result in [2]. Let A be the algebraic closure of Q in Q_p .

THEOREM 1. Let V_0 be a finitely generated subgroup of $F^* \cap U_0$, and let $V = V_0 \otimes_{\mathbf{Z}} \mathbf{Q}$, $V^{(p)} = V \otimes_{\mathbf{Q}} \mathbf{Q}_p$, $\Phi_p : V^{(p)} \to U^{(p)}$ and $\pi : V^{(p)} \to \operatorname{Ker}(\Phi_p)$ be as above. Then we have

$$\{\pi\circ\phi\,|\,\phi\!\in\!\operatorname{End}_{\boldsymbol{Q}_{\mathcal{D}}}(V^{(p)})\}\cap\operatorname{End}_{\mathcal{A}}(V\bigotimes_{\boldsymbol{Q}}A)=\{0\}\ .$$

PROOF. Suppose that $\pi \circ \phi \in \operatorname{End}_A(V \otimes_{\boldsymbol{Q}} A)$ for some $\phi \in \operatorname{End}_{\boldsymbol{Q}_p}(V^{(p)})$. Since $\operatorname{End}_A(V \otimes A) = \operatorname{End}_{\boldsymbol{Q}}(V) \otimes_{\boldsymbol{Q}} A$, we can find $\alpha_1, \cdots, \alpha_t \in \operatorname{End}_{\boldsymbol{Q}}(V)$ and $a_1, \cdots, a_t \in A$ such that

$$\pi \circ \phi = a_1 \cdot \alpha_1 + \cdots + a_t \cdot \alpha_t$$
.

Put $r=\dim_{\mathbf{Q}}V$, and choose $u_1, \dots, u_r\in V_0$ so that these form a basis of V over \mathbf{Q} . Assume now that $\pi\circ\phi\neq 0$. Then for some $u\in V$, we have $\pi\circ\phi(u)\neq 0$. For each j $(1\leq j\leq r)$,

$$\alpha_i(u) = b_{i1} \cdot u_1 + \cdots + b_{ir} \cdot u_r$$

with b_{j1} , \cdots , $b_{jr} \in \mathbb{Q}$ because $\alpha_j \in \text{End}_{\mathbb{Q}}(V)$. Therefore we have

$$\pi \circ \phi(u) = c_1 \cdot u_1 + \cdots + c_r \cdot u_r$$

with $c_{\mu}=b_{1\mu}\cdot a_1+\cdots+b_{t\mu}\cdot a_t\in A$ for $\mu=1, \dots, r$. Note that all of c_{μ} 's are not equal to zero since $\pi\circ\phi(u)\neq 0$. Now $\pi\circ\phi(u)\in \mathrm{Ker}(\Phi_p)$. Therefore we have

$$(*) c_1 \cdot \boldsymbol{\Phi}_p(u_1) + \cdots + c_r \cdot \boldsymbol{\Phi}_p(u_r) = 0.$$

This $\Phi_p: V^{(p)} \to U^{(p)}$ was obtained from the imbedding $V_0 \hookrightarrow U_0 = \prod_{\mathfrak{p} \mid p} O_{\mathfrak{p}}^{\times}$. By \mathfrak{p} -adic logarithm map of $O_{\mathfrak{p}}^{\times}$ to $F_{\mathfrak{p}}$, we can define a Q_p -linear isomorphism

$$\lambda \colon U^{(p)} \longrightarrow \bigoplus_{\mathfrak{p} \mid p} F_{\mathfrak{p}}.$$

Then composing the canonical maps

$$\bigoplus_{\mathfrak{p}\mid p} F_{\mathfrak{p}} \cong F \otimes_{\mathbf{Q}} \mathbf{Q}_{p} \longrightarrow F \otimes_{\mathbf{Q}} \Omega_{p} \cong \Omega_{p}^{(F:\mathbf{Q})},$$

we get a Q_p -linear imbedding

$$\tilde{\lambda}: U^{(p)} \longrightarrow \Omega_{p}^{[F:Q]}$$

where Ω_p is the completion of the algebraic closure of \mathbf{Q}_p . Let $J = \{ \ell_i : F \to \Omega_p | i = 1, \dots, [F:\mathbf{Q}] \}$ be the set of all the imbeddings of F into Ω_p . Then for $u \in V_0 \subset F^\times \cap U_0$, the coordinates of the $[F:\mathbf{Q}]$ -dimensional vector $\tilde{\lambda} \circ \Phi_p(u)$ coincides with $\log \ell_i(u)$, $i = 1, \dots, [F:\mathbf{Q}]$. Here this log is the p-adic logarithm of Ω_p . From (*), therefore, we get a linear relation

$$c_1 \cdot \log(\ell_1(u_1)) + \cdots + c_r \cdot \log(\ell_1(u_r)) = 0$$

for i=1 for example. From the choice of u_1, \dots, u_r , it follows that $\log(\ell_1(u_1)), \dots, \log(\ell_1(u_r))$ are linearly independent over Q. Because c_1, \dots, c_r are the elements

of A, all of which are not equal to zero, this relation contradicts Brumer's Theorem 1 in [2]. The proof is completed.

§ 4. The key theorem.

THEOREM 2. Let the notation and the assumptions be as in Proposition 1 and in Theorem 1. If $\rho(Q[G]) \otimes_Q Q_p$ is isomorphic to a direct sum of division algebras (may be commutative), then $\Phi_p: V^{(p)} \to U^{(p)}$ is injective. Especially if $\rho(Q[G])$ is commutative, then Φ_p is injective for any prime p.

For the proof, we need two propositions.

PROPOSITION 2. Let S be a semi-simple algebra over Q. Then every central idempotent of $S \otimes_{Q} Q_{p}$ belongs to $S \otimes_{Q} A$.

PROOF. Let $S=S_1\oplus\cdots\oplus S_n$ be the decomposition of S to a direct sum of its simple components S_i , $i=1,\cdots,n$. Let C_i be the center of S_i . Then $C=C_1\oplus\cdots\oplus C_n$ is the center of S, and $C\otimes_{\boldsymbol{Q}}\boldsymbol{Q}_p$ is the center of $S\otimes_{\boldsymbol{Q}}\boldsymbol{Q}_p$. Since every idempotent of $C\otimes_{\boldsymbol{Q}}\boldsymbol{Q}_p$ is a sum of idempotents of $C_i\otimes_{\boldsymbol{Q}}\boldsymbol{Q}_p$, $i=1,\cdots,n$, it is sufficient to show the proposition in the case that S=C is a field. Suppose now that C is a finite algebraic extension field of \boldsymbol{Q} . Take an element a of C which generates C over \boldsymbol{Q} , and let $P(X)\in_{\boldsymbol{Q}}[X]$ be the irreducible polynomial of a, that is, P(a)=0, whose leading coefficient is equal to 1. Then C is isomorphic to the quotient field $\boldsymbol{Q}[X]/P\cdot_{\boldsymbol{Q}}[X]$. Let $P(X)=P_1(X)\cdots P_t(X)$ be the decomposition of P(X) in $\boldsymbol{Q}_p[X]$ by the irreducible polynomials $P_j(X)$, $j=1,\cdots,t$, whose leading coefficients are equal to 1. Then each $P_j(X)$ is in A[X] since A is the algebraic closure of \boldsymbol{Q} in \boldsymbol{Q}_p . We have the decompositions

$$C \otimes_{\mathbf{Q}} \mathbf{Q}_{p} = \mathbf{Q}_{p}[X]/P_{1} \cdot \mathbf{Q}_{p}[X] \oplus \cdots \oplus \mathbf{Q}_{p}[X]/P_{t} \cdot \mathbf{Q}_{p}[X],$$

$$C \otimes_{\mathbf{Q}} A = A[X]/P_{1} \cdot A[X] \oplus \cdots \oplus A[X]/P_{t} \cdot A[X].$$

For each j, $\mathbf{Q}_p[X]/P_j \cdot \mathbf{Q}_p[X]$ is a field which contains the field $A[X]/P_j \cdot A[X]$ naturally. Let e_j be the unit element of the field $\mathbf{Q}_p[X]/P_j \cdot \mathbf{Q}_p[X]$. Then e_j belongs to $A[X]/P_j \cdot A[X]$. Since every idempotent of $C \otimes_{\mathbf{Q}} \mathbf{Q}_p$ is a sum of some e_j 's, it certainly belongs to $C \otimes A$. Q. E. D.

PROPOSITION 3. Let S be a semi-simple algebra over a commutative field. Then every idempotent of S belongs to the center of S if and only if S is isomorphic to a direct sum of division algebras (may be commutative).

PROOF. Let S be a direct sum of simple algebras S_1, \dots, S_n . Each S_i is isomorphic to a full matrix algebra $M_{m_i}(D_i)$ over a division algebra D_i . If $m_i > 1$ for any i, then S_i surely contains non-central idempotents, which are also non-central idempotents of S. Conversely if $m_1 = \dots = m_n = 1$, then an idempotent of $S_i = D_i$ is either 0 or the unit element of D_i for $i = 1, \dots, n$. The proposition is now clear.

One can easily see Theorem 2 by Theorem 1 and Propositions 1, 2 and 3.

§ 5. Case of $V_0 = O_F^{\times}$.

Hereafter until the end of this paper, we restrict ourselves to the case that V_0 is the group O_F^{\times} of the units of a Galois extension F of an imaginary quadratic number field k.

In this section, we take G = Gal(F/k).

PROPOSITION 4. The commutor $\rho(Q[G])$ of $\rho(Q[G])$ in $\operatorname{End}_Q(V)$ is isomorphic to $\rho(Q[G])$. Furthermore the direct sum $Q \oplus \rho(Q[G])$ of algebras is isomorphic to the group algebra Q[G].

PROOF. Let ρ_0 be the trivial representation of G on $X_0 = \mathbf{Q}$. It is known by Herbrand [3] that the representation $\rho_0 \oplus \rho$ of G is equivalent to the regular representation of G. More precisely speaking, there exists an element ε of $V_0 = O_F^{\times}$ such that the vectors $g(\varepsilon)$, $g \in G$, of $V = V_0 \otimes_{\mathbb{Z}} \mathbb{Q}$ satisfy only one linear relation $\sum_{g \in G} g(\varepsilon) = 0$. (We use additive notation on V.) Therefore the left Q[G]modules $X = \mathbb{Q}[G]$ and $X_0 \oplus V$ are $\mathbb{Q}[G]$ -isomorphic. (For example, define $\phi: X$ $\to X_0 \oplus V$ by $\phi(g) = g(1 \oplus \varepsilon)$ for $g \in G$.) This shows that the subalgebra $Q \oplus \rho(Q[G])$ of $\operatorname{End}_{\boldsymbol{\varrho}}(X_0 \oplus V)$ is isomorphic to $\boldsymbol{\varrho}[G]$ which acts on $X = \boldsymbol{\varrho}[G]$ as left-translations. Now let $Q[G]^*$ be the inverse algebra of Q[G]. The action of Q[G] on X as right-translations defines a structure of a left $Q[G]^*$ -module on X. Then, as is well known, the commutor $\widetilde{Q[G]}$ of all the left-translations Q[G] in $\operatorname{End}_Q(X)$ is nothing but $Q[G]^*$. Since the involution $\iota: Q[G] \to Q[G]$ defined by $\iota(g) = g^{-1}$ for $g \in G$ gives an isomorphism of Q[G] onto $Q[G]^*$, Q[G] is isomorphic to Q[G]. Therefore the Q[G]-isomorphism of X onto $X_0 \oplus V$ gives an isomorphism of the commutor $Q \oplus \rho(Q[G])$ of $Q \oplus \rho(Q[G])$ in $\operatorname{End}_{Q}(X_{\circ} \oplus V)$ onto $Q[G] \cong Q[G]$. It is obvious that $Q \oplus \rho(Q[G]) = Q \oplus \rho(Q[G])$. The proposition is now clear.

THEOREM (Ax-Brumer). If an algebraic number field K of finite degree is contained in an abelian extension of an imaginary quadratic number field, then for K, Leopoldt's conjecture is true for any prime p.

PROOF. Let F be a finite abelian extension of an imaginary quadratic number field k, which contains K. Since $G = \operatorname{Gal}(F/k)$ is an abelian group, $\mathbf{Q}[G]$ is certainly commutative. It follows, therefore, from Proposition 4 that $\widehat{\rho}(\mathbf{Q}[G])$ is commutative. Then by Theorem 2, $\Phi_p: V^{(p)} \to U^{(p)}$ is injective for any prime p. Since $V_0 = O_F^*$, this is just Leopoldt's conjecture for F, which assures Leopoldt's conjecture for the subfield K.

PROPOSITION 5. For a finite group G, and for a prime p, the group algebra $Q_p[G]$ is isomorphic to a direct sum of division algebras (may be commutative) if and only if either (1) G is abelian, or

(2) p=2 and $G=G_1 \times G_2$:

$$G_1 = \langle a, b \rangle : a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1};$$

 G_2 =an abelian group of exponent m or 2m with $m \mid (2^{2\mu+1}-1)$.

PROOF. If G is abelian, then $Q_p[G]$ is isomorphic to a direct sum of fields for any p, as is well known. Suppose that G is not abelian, and that $Q_p[G]$ is a direct sum of division algebras. Then any idempotent of $Q_p[G]$ belongs to the center. Let H be a subgroup of G. Then $\iota = |H|^{-1} \cdot \sum_{h \in H} h$ is an idempotent of $Q_p[G]$. Therefore for any $g \in G$, we have $\iota = g^{-1} \cdot \iota \cdot g$. This shows that H is a normal subgroup of G. Because any subgroup of G is normal, G has to be a Hamiltonian group. In other words, $G = G_1 \times G_2$ where G_1 is as in the proposition and G_2 is an abelian group of exponent m or 2m for some odd m. Let Q be the algebra of Hamiltonian quaternions over Q, i.e.

$$Q = \{v \cdot 1 + w \cdot i + x \cdot j + y \cdot k \mid v, w, x, y \in \mathbf{Q}\}:$$
$$i^2 = j^2 = -1, i \cdot j = -j \cdot i = k.$$

Take a primitive n-th root ζ_n of 1 for each $n \mid m$. Then any non-commutative simple component of $\mathbf{Q}_p[G]$ is isomorphic to $Q \otimes_{\mathbf{Q}} \mathbf{Q}_p(\zeta_n)$ for $n \mid m$. If $p \neq 2$, then $Q \otimes_{\mathbf{Q}} \mathbf{Q}_p = M_2(\mathbf{Q}_p)$ is not a division algebra. Now suppose that p = 2. Then, as is well known, $Q \otimes_{\mathbf{Q}} \mathbf{Q}_p(\zeta_n)$ is a division algebra if and only if $[\mathbf{Q}_p(\zeta_n) \colon \mathbf{Q}_p]$ is odd. If $d = [\mathbf{Q}_p(\zeta_m) \colon \mathbf{Q}_p]$ is odd, then $[\mathbf{Q}_p(\zeta_n) \colon \mathbf{Q}_p]$ is also odd for $n \mid m$ because this is a divisor of d. Since m is odd, $\mathbf{Q}_p(\zeta_m)$ is unramified over \mathbf{Q}_p . Therefore the roots of 1 in $\mathbf{Q}_p(\zeta_m)$ are the $2 \cdot (2^d - 1)$ -th roots of 1. Thus we have $m \mid 2^d - 1$ for odd d. Conversely, if $m \mid 2^d - 1$ for odd d', then ζ_m belongs to the unramified extension of \mathbf{Q}_p of degree d'. Therefore $d = [\mathbf{Q}_p(\zeta_m) \colon \mathbf{Q}_p]$ divides d'. Since d' is odd, so is d. The proof is completed.

By the same way as in the above proof of Ax-Brumer Theorem, we have now

THEOREM 3. Let K be a subfield of a Galois extension F of an imaginary quadratic number field k whose Galois group over k is isomorphic to the group of Proposition 5, (2). Then for p=2, Leopoldt's conjecture is true for K.

§ 6. Main Theorem.

In this section, we verify Leopoldt's conjecture for some special types of Galois extensions of imaginary quadratic number fields.

NOTATION.

General quaternion group \mathbb{Q}_n of order 2^{n+1} $(n \geq 2)$,

$$\mathfrak{Q}_n = \langle a_n, b \rangle : a_n^{2^n} = 1, b^2 = a_n^{2^{n-1}}, b^{-1}a_nb = a_n^{-1};$$

Dihedral group \mathfrak{D}_n of order 2^{n+1} $(n \geq 2)$,

$$\mathfrak{D}_n = \langle a_n, c \rangle : a_n^{2n} = c^2 = 1, c^{-1}a_nc = a_n^{-1};$$

Quasi-dihedral group $\tilde{\mathfrak{D}}_n$ of order 2^{n+1} $(n \ge 3)$,

$$\tilde{\mathfrak{D}}_n = \langle a_n, d \rangle : a_n^{2^n} = d^2 = 1, d^{-1}a_n d = a_n^{-1+2^{n-1}}.$$

THEOREM 4. If an algebraic number field K is contained in a field F satisfying the following (**), then for K, Leopoldt's conjecture is true for any prime p.

- (**) F is a composite field $F_1 \cdot F_2$ such that
- (1) F_1 is a finite abelian extension of Q, the exponent of whose Galois group $Gal(F_1/Q)$ is either m or 2m for some odd m;
- (2) F_2 is a Galois extension of an imaginary quadratic number field k, which is also a Galois extension of \mathbf{Q} , such that $\mathfrak{G}=\mathrm{Gal}(F_2/\mathbf{Q})$ and its normal subgroup $\mathfrak{G}_1=\mathrm{Gal}(F_2/k)$ belong to the following list:
 - (i) $\mathfrak{S}=\langle a, b, c \rangle$: $a^4=c^2=1$, $b^2=a^2$, $b^{-1}ab=a^{-1}$, $c^{-1}ac=b$: $\mathfrak{S}_1=\langle a, b \rangle$;
 - (ii) $\mathfrak{G}=\mathfrak{Q}_{n+1}=\langle a_{n+1}, b \rangle \ (n \ge 2);$ $\mathfrak{G}_1=\mathfrak{Q}_n=\langle a_n, b \rangle, \ a_n=a_{n+1}^2;$
 - (iii) $\mathfrak{G}=\mathfrak{D}_{n+1}=\langle a_{n+1}, c \rangle \ (n \ge 2);$ $\mathfrak{G}_1=\mathfrak{D}_n=\langle a_n, c \rangle, \ a_n=a_{n+1}^2;$
 - (iv) $\mathfrak{G} = \widetilde{\mathfrak{D}}_{n+1} = \langle a_{n+1}, d \rangle \ (n \ge 2);$ $\mathfrak{G}_1 = \mathfrak{Q}_n = \langle a_n, b \rangle, \ a_n = a_{n+1}^2, \ b = d a_{n+1};$
 - (v) $\mathfrak{G} = \tilde{\mathfrak{D}}_{n+1} = \langle a_{n+1}, d \rangle \ (n \ge 2);$ $\mathfrak{G}_1 = \mathfrak{D}_n = \langle a_n, c \rangle, \ a_n = a_{n+1}^2, \ c = d.$

To prove the theorem, we show that the commutor $\rho(Q[G])$ of $\rho(Q[G])$ in $\operatorname{End}_Q(V)$ is commutative. Then the theorem follows from Theorem 2 immediately. For $G_1=\operatorname{Gal}(F/k)$, the basic structure of the commutor $\rho(Q[G_1])$ of $\rho(Q[G_1])$ in $\operatorname{End}_Q(V)$ has already been seen in Proposition 4.

For a positive integer ν , let ζ_{ν} be a primitive 2^{ν} -th root of 1, and put

$$\tau_{\nu} = \zeta_{\nu} + \zeta_{\nu}^{-1}$$
, and $\lambda_{\nu} = \zeta_{\nu} - \zeta_{\nu}^{-1}$.

If $\nu \ge 2$, then $Q(\zeta_{\nu}) = Q(\tau_{\nu}, \sqrt{-1}) = Q(\tau_{\nu}, \lambda_{\nu})$. Note that $Q(\tau_{\nu})$ is totally real, and that $Q(\lambda_{\nu})$ is totally imaginary if $\nu \ge 2$. We have

$$[Q(\zeta_{\nu}):Q(\tau_{\nu})]=[Q(\lambda_{\nu}):Q(\tau_{\nu-1})]=2$$
, $(\nu \geq 2)$,

$$[\mathbf{\mathcal{Q}}(\zeta_{\nu}):\mathbf{\mathcal{Q}}(\lambda_{\nu})] = egin{cases} 1 & (
u=2), \ 2 & (
u \geqq 3). \end{cases}$$

The following four propositions are easily seen.

PROPOSITION 6. Let $\mathfrak{G}=\langle a,b,c\rangle$ be the group of Theorem 4, (i). Then $\mathbf{Q}[\mathfrak{G}]\cong \mathbf{Q}^4\oplus M_2(\mathbf{Q})\oplus M_4(\mathbf{Q})$, where \mathbf{Q}^4 corresponds to the abelian group $\mathfrak{G}/\mathfrak{G}'=\mathfrak{G}/\langle a^{-1}b\rangle$, $M_2(\mathbf{Q})$ to $\psi_1:\mathfrak{G}\to\mathfrak{G}/\langle a^2\rangle\to GL_2(\mathbf{Q})$,

$$\psi_1(a) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \psi_1(b) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \psi_1(c) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

and $M_4(\mathbf{Q})$ to $\psi_2: G \rightarrow GL_4(\mathbf{Q})$,

$$\psi_{2}(a) = \begin{pmatrix} -1 & & \\ 1 & & \\ & & 1 \\ & & -1 \end{pmatrix}, \quad \psi_{2}(b) = \begin{pmatrix} & -1 & \\ & & -1 \\ 1 & & \\ & 1 \end{pmatrix}, \quad \psi_{2}(c) = \begin{pmatrix} 0 & & 1 \\ -1 & 0 & \\ & 0 & 1 \\ 1 & & 0 \end{pmatrix}.$$

PROPOSITION 7. For $\mathfrak{D}_n = \langle a_n, c \rangle$ $(n \ge 2)$,

$$Q[\mathfrak{D}_n]\cong Q^4 \bigoplus_{\nu=2}^n M_2(Q(\tau_{\nu})),$$

where Q^4 corresponds to $\chi_i^{(n)}: \mathfrak{D}_n \rightarrow Q^{\times}$ (i=0, 1, 2, 3),

$$\chi_i^{(n)}(a_n) = (-1)^{i(i-1)/2}, \quad \chi_i^{(n)}(c) = (-1)^i,$$

and $M_2(\mathbf{Q}(\tau_{\nu}))$ $(2 \leq \nu \leq n)$ to $\xi_{\nu}^{(n)} : \mathfrak{D}_n \to \mathfrak{D}_n / \langle a_n^{2\nu} \rangle \to GL_2(\mathbf{Q}(\tau_{\nu})),$

$$\xi_{\nu}^{(n)}(a_n) = \begin{pmatrix} 0 & -1 \\ 1 & \tau_{\nu} \end{pmatrix}, \qquad \xi_{\nu}^{(n)}(c) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Proposition 8. For $\tilde{\mathfrak{D}}_n = \langle a_n, d \rangle$ $(n \ge 3)$,

$$Q[\widetilde{\mathfrak{D}}_n] \cong Q^4 \oplus \bigoplus_{\nu=2}^{n-1} M_2(Q(\tau_{\nu})) \oplus M_2(Q(\lambda_n)),$$

where $\mathbf{Q}^4 \oplus \bigoplus_{\nu=2}^{n-1} M_2(\mathbf{Q}(\tau_{\nu}))$ corresponds to $\widetilde{\mathfrak{D}}_n/\langle a_n^{2^{n-1}} \rangle \cong \mathfrak{D}_{n-1}$, and $M_2(\mathbf{Q}(\lambda_n))$ to $\widetilde{\xi}^{(n)}$: $\widetilde{\mathfrak{D}}_n \to GL_2(\mathbf{Q}(\lambda_n))$,

$$\tilde{\xi}^{(n)}(a_n) = \begin{pmatrix} 0 & 1 \\ 1 & \lambda_n \end{pmatrix}, \quad \tilde{\xi}^{(n)}(d) = \begin{pmatrix} 1 & 0 \\ \lambda_n & -1 \end{pmatrix}.$$

PROPOSITION 9. Let Q be the algebra of Hamiltonian quaternions over Q, that is,

$$Q = \{v \cdot 1 + w \cdot i + x \cdot j + y \cdot k \mid v, w, x, y \in \mathbf{Q}\},$$
$$i^2 = j^2 = -1, \quad i \cdot j = -j \cdot i = k.$$

Then for $\mathfrak{Q}_n = \langle a_n, b \rangle$ $(n \geq 2)$,

$$Q[\mathfrak{Q}_n] \cong Q^4 \oplus \bigoplus_{\nu=0}^{n-1} M_2(Q(\tau_{\nu})) \oplus Q \otimes_Q Q(\tau_n)$$
,

where $Q^4 \bigoplus_{\nu} M_2(Q(\tau_{\nu}))$ (Q^4 if n=2) corresponds to $\mathfrak{D}_n/\langle a_n^{2^{n-1}} \rangle \cong \mathfrak{D}_{n-1}$, and $Q \otimes_Q Q(\tau_n)$ to $\eta^{(n)} : \mathfrak{D}_n \to (Q \otimes_Q Q(\tau_n))^{\times}$,

$$\eta^{(n)}(a_n) = \frac{1}{2} \cdot (\tau_n - \tau'_n \cdot i), \qquad \eta^{(n)}(b) = j,
\tau'_n = \zeta_n^{1+2^{n-2}} + \zeta_n^{-1-2^{n-2}} \in \mathbf{Q}(\tau_n).$$

Now let $F=F_1\cdot F_2$ satisfy the condition (**). By the assumption on the exponent of $Gal(F_1/Q)$, we easily see that there exists a subfield F_1' of F_1 such that $F_1=F_1'\cdot (F_1\cap F_2)$ and $F_1'\cap F_2=Q$. Replacing F_1 by F_1' , we may assume that $F_1\cap F_2=Q$. Then we have

$$G = \text{Gal}(F/Q) = \mathfrak{A} \times \mathfrak{G}$$
, and $G_1 = \text{Gal}(F/k) = \mathfrak{A} \times \mathfrak{G}_1$

with $\mathfrak{A} = \operatorname{Gal}(F_1/\mathbf{Q})$, $\mathfrak{G} = \operatorname{Gal}(F_2/\mathbf{Q})$ and $\mathfrak{G}_1 = \operatorname{Gal}(F_2/k)$. The exponent of \mathfrak{A} is either m or 2m for some odd m.

Let $Q[\mathfrak{G}_1]=B_0\oplus B_1\oplus\cdots\oplus B_s$ be the decomposition of $Q[\mathfrak{G}_1]$ to a direct sum of the commutative semi-simple subalgebra B_0 and non-commutative simple subalgebras B_1, \dots, B_s . Let e_j be the unit element of B_j for $j=0, 1, \dots, s$. By Propositions $6\sim 9$, we easily see that each non-commutative simple algebra B_j $(1\leq j\leq s)$ is contained in only one simple component of $Q[\mathfrak{G}]$. Moreover, all of e_0, e_1, \dots, e_s are central idempotents of $Q[\mathfrak{G}]$, and they give a decomposition

$$Q[\mathfrak{G}] = B_0' \oplus B_1' \oplus \cdots \oplus B_s', \quad B_j' = e_j \cdot Q[\mathfrak{G}] \qquad (0 \leq j \leq s).$$

If $1 \le j \le s$, then B'_j is simple.

For μ dividing m, let ζ'_{μ} be a primitive μ -th root of 1. Then $Q[\mathfrak{A}]$ is isomorphic to a direct sum of algebraic number fields $Q(\zeta'_{\mu})$ ($\mu|m$). (For each μ , a number of copies of $Q(\zeta'_{\mu})$ may appear.) Therefore $Q[G_1]=Q[\mathfrak{A}]\otimes_QQ[\mathfrak{G}_1]$ or $Q[G]=Q[\mathfrak{A}]\otimes_QQ[\mathfrak{G}]$ is a direct sum of semi-simple algebras $Q[\mathfrak{A}]\otimes_QB_0$ or $Q[\mathfrak{A}]\otimes_QB_0$, and $B_{j\mu}=B_j\otimes_QQ(\zeta'_{\mu})$ or $B'_{j\mu}=B'_j\otimes_QQ(\zeta'_{\mu})$ for $j=1,\cdots$, s and for $\mu|m$, respectively. The algebras $B_{j\mu}$ and $B'_{j\mu}$ are simple. In fact, their centers are fields because they can be regarded as subalgebras of $Q(\zeta_{\nu})\otimes_QQ(\zeta'_{\mu})$, which is a field since ζ_{ν} or ζ'_{μ} is a 2^{ν} -th or μ -th root of 1 respectively such that $Q[\mathfrak{A}]\otimes_QB_0$ is commutative. One can easily see the followings by Propositions $6\sim9$:

(I) In the case of (i) of the theorem, s=1, the center of $B_{1\mu}$ is equal to the center of $B'_{1\mu}$, and they are isomorphic to $Q(\zeta'_{\mu})$.

$$[B_{1\mu}: \mathbf{Q}(\zeta'_{\mu})] = 4$$
, and $[B'_{1\mu}: \mathbf{Q}(\zeta'_{\mu})] = 16$;

(II) In the cases of (ii) \sim (v) of the theorem, let $C_{j\mu}$ or $C'_{j\mu}$ be the center of

 $B_{j\mu}$ or $B'_{j\mu}$ respectively. Then

$$[C'_{j\mu}:C_{j\mu}]=2$$
, and $[B_{j\mu}:C_{j\mu}]=4$, $B'_{j\mu}=B_{j\mu}\otimes_{C_{j\mu}}C'_{j\mu}$.

We now show that the commutor $\rho(Q[G])$ of $\rho(Q[G])$ in $\operatorname{End}_Q(V)$ is commutative. Let B be a component $\rho(Q[\mathfrak{A}]\otimes B_0)$ or $\rho(B_{j\mu})$ of $\rho(Q[G_1])$ and B' the component of $\rho(Q[G])$ which contains B. Let e be the unit element of B. Then it is also the unit element of B'. Let \widetilde{B} and \widetilde{B}' be the commutors of B and B' in $\operatorname{End}_Q(e(V))$ respectively. Then \widetilde{B} contains \widetilde{B}' . Since $\rho(Q[G])$ is a direct sum of such \widetilde{B}' , it is sufficient to show that each \widetilde{B}' is commutative.

If $B = \rho(Q[\mathfrak{A}] \otimes B_0)$, then $B' = \rho(Q[\mathfrak{A}] \otimes B'_0)$. By Proposition 4, $\rho(Q[G_1])$ is isomorphic to $\rho(Q[G_1])$. We get $\widetilde{B} \cong B$ by this isomorphism. Since $B = \rho(Q[\mathfrak{A}] \otimes B_0)$ is commutative, the subalgebra \widetilde{B}' of $\widetilde{B} \cong B$ is also commutative. If $B = \rho(B_{j\mu})$ and $B' = \rho(B'_{j\mu})$, then e(V) becomes a vector space over the center $C' = \rho(C'_{j\mu})$ of B'. Then \widetilde{B}' coincides with the commutor of B' in $\operatorname{End}_{C'}(e(V))$. By Proposition 4, we see that the vector space e(V) is isomorphic to B as Q-spaces. Therefore as a vector space over $C = \rho(C_{j\mu})$, $\dim_C e(V) = 4$. Then by (I) or by (II), we immediately see that $\widetilde{B}' = C'$. Thus we have shown that $\rho(Q[G])$ is commutative in any case of Theorem 4. This establishes the theorem as was mentioned before.

REMARK. For $\mathfrak{G}_1 = \mathfrak{Q}_n$, \mathfrak{D}_n or $\tilde{\mathfrak{D}}_n$, a group \mathfrak{G} which contains \mathfrak{G}_1 as a subgroup of index 2 is one of the following groups besides the ones of $(i) \sim (v)$:

$$\begin{split} & \mathfrak{S}_{1} \times \mathbf{Z}/2 \cdot \mathbf{Z} \,; \\ & \mathfrak{S}_{1} \times (\mathbf{Z}/4 \cdot \mathbf{Z})/\langle (a_{n}^{2^{n-1}}, \, 2 (\text{mod } 4)) \rangle \,; \\ & \mathfrak{S} = \langle a_{n}, b, e \rangle \colon a_{n}^{2^{n}} = e^{2} = 1, \, b^{2} = a_{n}^{2^{n-1}}, \, b^{-1}a_{n}b = a_{n}^{-1}, \, e^{-1}a_{n}e = a_{n}^{1+2^{n-1}}, \, e^{-1}b^{-1}eb = 1 \,, \\ & \mathfrak{S}_{1} = \mathfrak{D}_{n} = \langle a_{n}, \, b \rangle \quad \text{or} \quad \tilde{\mathfrak{D}}_{n} = \langle a_{n}, \, (a_{n}be) \rangle \,; \\ & \mathfrak{S} = \langle a_{n}, \, c, \, e \rangle \colon a_{n}^{2^{n}} = c^{2} = e^{2} = 1, \, c^{-1}a_{n}c = a_{n}^{-1}, \, e^{-1}a_{n}e = a_{n}^{1+2^{n-1}}, \, e^{-1}c^{-1}ec = 1 \,, \\ & \mathfrak{S}_{1} = \mathfrak{D}_{n} = \langle a_{n}, \, c \rangle \quad \text{or} \quad \tilde{\mathfrak{D}}_{n} = \langle a_{n}, \, (ce) \rangle \,. \end{split}$$

But to these groups, we cannot apply our arguments above.

References

- [1] J. Ax, On the units of an algebraic number field, Illinois J. Math., 9 (1965), 584-589.
- [2] A. Brumer, On the units of an algebraic number field, Mathematica, 14 (1967), 121-124.

[3] J. Herbrand, Sur les unites d'un corps algébrique, C.R. Acad. Sci. Paris, 192 (1931), 24-27, and 188.

Katsuya MIYAKE
Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464
Japan