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Good reduction of elliptic modules
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In this paper we give a criterion for good reduction of elliptic modules
(Theorem 1, Section 2) which is an analogue of the criterion of N\’eron-Ogg-
\v{S}afarevi\v{c} for abelian varieties, cf. [7]. In the rest of the paper we give applica-
tions to elliptic modules of rank one over global function fields: In Section 3,
the main theorem of complex multiplication of elliptic modules ([3] and [5]) is
reformulated in a more relevant form to our subject (Theorem 2). Then, to
each elliptic module we can associate the “Hecke character” (Theorem 3) so that
the elliptic module has good reduction at a place $v$ if and only if the Hecke
character is unramified at $v$ . In Section 4, we give a classification theoran
(Theorem 4) by means of the Hecke characters. Ag an application, it will be
shown that each rank-one elliptic module over a global function field $K$ has a
K-form which has good reduction everywhere (Theorem 5).

1. Elliptic modules.

In this section we recall briefly the basic concepts of elliptic modules. For
details, see [31 and [5].

Let $F$ be a global field of chamcteristic $p>0,$ $F_{q}$ the finite field of consaants,
$\infty$ a fixed prime divisor and $A$ the ring of elements of $F$ which are integral
outside $\infty$ . For a commutative ring $K$ of characteristic $p$ we let denote $K\{\phi\}$

the (non commutative) ring of polynomials in $\phi$ over $K$ with the relation $\phi c=$

$ c^{q}\phi$ for $c\in K$. When $K$ is an A-algebra, $i$ . $e.$ , there is defined $i:A\rightarrow K$, the idear
Ker $i$ of $A$ is called the divisorial characteristic of $K$ $($notation: div char $K)_{-}$

An elliptic A-module $X$ over an algebra $K$ is a ring homomorphism $f:A\rightarrow K\{\phi\}$

satisfying the following three conditions:
(a) $D\circ f=i$, where $D:K\{\phi\}\rightarrow K$ is a homomorphism defined by $D(\sum c_{j}\phi^{j})=c_{0}$ .
(b) The leading coefficient of $f(a)$ is invertible in $K$ for each nonzero ele-

ment $a$ of $A$ .
(c) The image $f(A)$ is not contained in $K$.

We write $[a]_{X}$ , or simply $a_{X}$, for the image $\beta(a)$ of $a\in A$ under $f$. If $a_{K}=$
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$\sum c_{j}\phi^{j}$ , then $a_{X}(T)=\sum c_{j}T^{q^{j}}$ is an $F_{q}$-linear polynomial. When $K$ is a field, we put

$X_{\mathfrak{a}}=$ {$t\in K_{s}|a\cdot t(=a_{X}(t))=0$ for all $a\in \mathfrak{a}$ }

for an ideal $\mathfrak{a}$ of $A$ , where $K_{s}$ is the separable closure of $K$. Hence $X_{\mathfrak{a}}$ is the
A-module of $\mathfrak{a}$-division points of $X$ . If $\mathfrak{a}$ is prime to div char $K$, the module $X_{\mathfrak{a}}$

is a free $(A/\mathfrak{a})$-module of finite rank $r$ . The rank $r$ is independent of $\mathfrak{a}$ and
called the rank of $X$ .

PROPOSITION 1 ([3]). deg $a_{X}(T)=|a|_{\infty}^{r}$ for $a\in A$ .
Let $X$ and $Y$ be two elliptic A-modules over $K$. A homomorphism (over $K$ )

from $X$ to $Y$ is an element $\alpha\in K\{\phi\}$ such that $\alpha a_{X}=a_{Y}\alpha$ for all $a\in A$ . Hence
an isomorphim $u:X\rightarrow^{\sim}Y$ is an invertible element $u$ of $K$ such that $a_{Y}=ua_{X}u^{-1}$ .
In this case we write $Y=u(X)$ . A non zero homomorphism is called an isogeny.

2. Good reduction of elliptic modules.

Let $K$ be a field, $v$ an (additive) discrete valuation of $K$ and $O_{v}$ the valua-
tion ring of $v$ with a ring homomorphism $i$ of $A$ into $O_{v}$, that is, $O_{v}$ is an A-
algebra. We denote the residue field $O_{v}/\mathfrak{m}_{v}$ by $k(v)$ and the residue divisorial
characteristic by $\mathfrak{p}_{v}$ .

Let $X$ be an elliptic A-module over $K$. We say that $X$ has integral coeflicients
at $v$ if $a_{X}\in O_{v}\{\phi\}$ for all $a\in A$ and the homomorphism $a->$ ( $a_{X}$ mod $\mathfrak{m}_{v}$) defines
an elliptic A-module over $k(v)$ (the reduction of $X$ at $v$ , notation: $X(v)$). We say
that $X$ has stable reduction at $v$ if there exists an elliptic A-module $Y\cong X$ which
has integral coefficients at $v$ , and that $X$ has good reduction at $v$ if in addition
$Y$ is an elliptic A-module over $O_{v}$. We say that $X$ has potential stable (resp.

.good) reduction at $v$ if there exists a finite extension $(L, w)$ of $(K, v)$ such that
$X$ has stable (resp. good) reduction at $w$ .

We set

$v(\sum c_{i}\phi^{i})={\rm Min}\{\frac{1}{q^{i}-1}v(c_{i})|i>0\}$

for $\sum c_{i}\phi^{i}\in K\{\phi\}$ . For an element $u$ of $K^{\times}$ , we see that the elliptic module $u(X)$

has integral coefficients at $v$ if and only if

\langle 1) $v(u)={\rm Min}$ {$v(a_{X})|$ nonconstant $a\in A$}.

Since $A$ is a ring finitely generated over $F_{q}$ , the right-hand side of (1) exists
always (in $Q$). Hence:

PROPOSITION 2 ([3]). Every elliptic A-module has pOtentjal stable reduction.
More precisely, for each elliptic module $X$ over $K$, there is a natural number
$e_{v}(X)pnm$ to $P$ so that the following two prOpertjes are equivalent for a finite
extension $w$ of $v$ ;
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(a) $X$ has stable reduction at $w$ .
(b) The index of ramification of $w$ over $v$ is divisible by $e_{v}(X)$ .
COROLLARY. Every elliptic A-module of rank one has p0tential good reduction.
Let 1 be a prime ideal of $A$ different from $\mathfrak{p}_{v}$ .
THEOREM 1. An elliptic A-module $X$ over $K$ has good reduction at $v$ if and

only if the Galois module $X_{I}\infty=\bigcup_{n}X_{I^{n}}$ is unramified at $v$ .
PROOF. The “only if” part is a trivial consequence from the dePnition of

good reduction. Assume that the Galois module $X_{\iota^{\infty}}$ is unramified. Some power
of I is principal–say $I^{h}=bA$ . First, we show that $X$ has stable reduction at
$v$ . Let $\overline{v}$ be an extension of $v$ to $K_{s}$ . Since $X_{b}=\{t\in K_{s}|b_{X}(t)=0\}$ is unramified,
$\overline{v}(t)$ are integers for all non zero $t\in X_{b}$ and the maximum $M$ of these values is
equal to $-v(b_{X})$ . Indeed, let $b_{X}(T)=\sum b_{f}T^{q^{j}}=T\sum b_{j}T^{qJ- 1}$ . Then the maximal
value $M$ of the roots is given by the formula:

$M={\rm Max}\{(v(b_{0})-v(b_{f}))/(q^{f}-1)|j>0\}$ .
Since $I\neq \mathfrak{p}_{v},$ $b_{0}=D(b_{X})$ is a v-unit, hence $v(b_{0})=0$ . By definition of $v(b_{X})$ , we have
$M=-v(b_{X})$ . Especially, $v(b_{X})$ must be an integer. Let $(L, w)$ be a finite exten-
sion of $(K, v)$ where $X$ has stable reduction (Proposition 2). Let $u$ be an element
of $L^{\times}$ such that $u(X)$ has integral coefficients at $w$ . Since the reduction of $u(X)$

at $w$ is an elliptic module over $k(w),$ $ua_{X}u^{-1}$ mod $\mathfrak{m}_{w}$ has a positive degree as a
polynomial in $\phi$ with coefficients in $k(w)$ for nonconstant $a\in A$ (Proposition 1),

or equivalently, $w(u)=w(a_{X})$ . Hence $v(a_{X})$ is an integer $(=v(b_{X}))$ independent
of $a$ . This means that $e_{v}(X)=1$ and $X$ has stable reduction at $v$ . Thus we may
assume that $X$ has integral coefficients at $v$ . To prove that $X$ has good reduc-
tion at $v$ , it suffices to show that the leading coefficient of $b_{X}$ is a v-unit. Indeed,
when this is the case, the reduction of $X$ at $v$ has the same rank of $X$ (Prop-

osition 1). Assume that the leading coefficient of $b_{X}$ is not a v-unit. Since the
constant term $b_{0}(=D(b_{X}))$ of $b_{X}$ is a v-unit, there is an element $t_{1}$ of $X_{b}$ such that
(2) $\overline{v}(t_{1})<0$ .

Next, we can find a root $t_{2}$ of the equation

(3) $b_{X}(T)=t_{1}$

such that $\overline{v}(t_{1})<\overline{v}(t_{2})<0$ . Indeed, if $\overline{v}(t)\leqq\overline{v}(t_{1})$ holds for each root $t$ of the equa-
tion (3), the coefficients of $t_{1}^{-1}b_{X}t_{1}$ are v-integers, hence $\overline{v}(t_{1}^{-1})\leqq v(b_{X})=0$ . This
contradicts (2). It follows from (2) that none of roots of the equation (3) is a
v-integer, hence $\overline{v}(t_{2})<0$ . Similarly, we can find $t_{n}$ in $K_{s}$ such that

$b_{X}(t_{n+1})=t_{n}$ , $\overline{v}(t_{n})<\overline{v}(t_{n+1})<0$

for $n\geqq 1$ . Since $t_{n}$ is contained in $X_{bn}$ , hence in $ X_{1}\infty$ , the value $\overline{v}(t_{n})$ is an in-
teger for each $n$ . This is impossible, and proves Theorem 1.
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Let $\overline{v}$ be an extension of $v$ to $K_{s}$ . We denote the inertia group of $\overline{v}$ by $I(\overline{v})$

and the inertia Peld by $K_{v}^{nr}$ . Let

$\rho_{I}$ : Gal $(K_{s}/K)\rightarrow Aut_{A}(X_{I^{\infty}})\cong Aut_{A_{I}}(T_{I}(X))$

denote the I-adic representation of degree $r$ corresponding to the Galois module
$ X_{I}\infty$ or the Tate module $T_{1}(X)=inv\lim X_{I^{n}}$ .

COROLLARY 1. The elliptic A-module $X$ has potential good reduction at $v$ if
and only if the image of the inertia group $I(i^{i})$ by $\rho_{1}$ is finite. When this is the
case, the extensim $K_{v}^{nr}\langle X_{I^{\infty}}$) of $K_{v}^{nr}$ is indepmdmt of I and cyclic tamely ramified
of degree $e_{v}(X)$ .

PROOF. This follows from Theorem 1 and Proposition 2.
COROLLARY 2. Suppose that $X$ has potential good reduction at $v$ . Let $m\neq A$

be an ideaf of APnme to $\mathfrak{p}_{v}$.
(i) The extension $K_{v}^{nr}(X_{\mathfrak{m}})$ of $K_{v}^{nr}$ is independent of $\mathfrak{m}$ and tamely ramified

of degree $e_{v}(X)$ .
(ii) The Galois module X... is unramified if and only if $X$ has good reduction

at $v$ .
PROOF. Let I be a prime divisor of $\mathfrak{m}$ . The extension $K_{v}^{nr}(X_{\iota^{\infty}})$ of $K_{v}^{nr}(X_{I})$

is tamely ramified, and its Galois group is canonically isomorphic to a subgroup
of the kernel of the natural homomorphism of $Aut_{A}(X_{1^{\infty}})$ into $Aut_{A}(X_{I})$ which is
a pro-p-group. Therefore this extension is trivial. Since the extensions $K_{v}^{nr}(X_{\iota^{\infty}})$

$=K_{v^{f}}^{n}(X_{I})$ are independent of 1, we have $K_{v}^{nr}(X_{m})=K_{v}^{nr}(X_{I^{\infty}})$ . This proves Corol-
lary 2.

REMARK. Part (i) of Corollary 2 shows that if $X$ has potential good reduc-
tion at $v$ , the extensions $K(X.)/K$ are always tamely ramified at $v$ for all $\iota \mathfrak{n}$

prime to $\mathfrak{p}_{v}$. On the contrary, for an abelian variety $A$ , the primes $v$ at which
$K(A_{m})/K$ are wildly ramified play an especially nasty role, cf. [7].

LEMMA 1. Let $X$ be an ellipfic A-module over a field $k,$ $\alpha$ an $endomorph\iota^{\backslash }m$

of $X$, and $T_{I}(\alpha)$ the induced endomorphism of $T_{I}(X)$ ($I\neq div$ char $k$ ). Then the
characteristic polynomial of $T_{I}(\alpha)$ has coefficients in $A$ independent of I.

PROOF. The subring $A[\alpha]$ generated by $\alpha$ in End (X) is a commutative ring
without zero divisor, and let $E$ be its quotient field. Since End $(X)\otimes_{A}F_{\infty}$ is a
division ring ([3]), the prime $\infty$ does not split in $E$ . Let $B$ be the integral
closure of $A$ in $E$, then $A[\alpha]$ is an order of $B$ . Hence $X$ can be regarded as
an elliptic $A[a]$-module over $k$ . Since there exist an elliptic B-module which
is isogenous to $X$ [$5$ , Proposition 3.2], we may assume that $X$ is an elliptic B-
module over $k$ . Then the Tate module $T_{I}(X)$ is a free $(B\otimes_{\Delta}A_{I})$-module of finite
type. Therefore the I-adic representation $T_{I}(\alpha)$ of $\alpha$ is induced by the represen-
tation of $\alpha:\beta-\alpha\beta$ on $B$ . This proves Lemma 1.

LEMMA 2. Let $X$ be an $\ell lliptic$ A-moMe of rank $r$ over a $ffi\dot{x}te$ filu with
$q^{f}$ elements. Then the characteristic $pol^{\vee}ynomai$ of the $t$-adic $rePr\ell smationT_{i}(\phi^{f})$
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of the Frobenius endomorphism $\phi^{f}$ of $X$ has coefficients in $A$ independent of I.
The absolute values at $\infty$ of its roots are equal to $q^{f/r}$ .

PROOF. This follows from Lemma 1 and [4, Proposition 2.1].

PROPOSITION 3. Let $X$ be an elliptic A-module over $K$ of rank $r$ which has
p0tential good reduction at $v$ , and I $a$ $p$rime ideal of A different from $\mathfrak{p}_{v}$ .

(i) For $\sigma\in I(\overline{v})$ , the characteristic p0lyn0mial of $\rho_{I}(\sigma)$ has coefficients in $F_{q}$

independent of I.
(ii) Supp0se that the residue field $k(v)$ is finite, $q_{v}=Card(k(v))$ . Let $\sigma_{v}$ be a

Frobenius element in the decomp0sitj0n group of $v$ . Then the characteristic
p0lyn0mial of $\rho_{1}(\sigma_{v})$ has coefficients in $A$ independent of I. The absolute values
at $\infty$ of its roots are equal to $q_{v}^{1/r}$ .

PROOF. Let $w$ be the restriction of $\overline{v}$ to a Galois extension $L$ of $K$ of finite
degree where $X$ has good reduction. Let $u$ be an element of $L^{\times}$ such that
$Y=u(X)$ is an elliptic A-module over $O_{w}$ . Let rd: $Y\rightarrow Y(w)$ be the reduction
mapping. Since $\sigma\in I(\overline{v}),$ $u^{1-\sigma}$ is a w-unit and $(ux)^{\sigma}\equiv ux$ mod $\mathfrak{m}_{\overline{v}}$ for all $x\in X_{tors}$ .
This $shows_{\wedge}^{\iota}that$ the following diagram is commutative:

where $\zeta=$ ( $u^{1-\sigma}$ mod $\mathfrak{m}_{w}$ ) $\in k(w)$ . Since $\zeta:i-,\zeta t$ induces an automorphism of the
A-module $Y(w)_{I}\infty,$ $\zeta$ is an automorphism of the elliptic A-module $Y(w)$ . Asser-
tion (i) follows from Lemma 1 and the fact that $\zeta$ is a root of unity. Since (ii)

is concerned with the Frobenius automorphism, we may assume that $X$ has good
reduction at $v$ , replacing $K$, if necessary, by a totally ramified extension of $K$

of degree $e_{v}(X)$ . Then the I-adic representation of the Frobenius automorphism
$\sigma_{v}$ is equivalent to the I-adic representation of the Frobenius endomorphism of
the reduction $X(v)$ of $X$ at $v$ , and the assertion follows from Lemma 2.

3. Complex multiplication.

Let $C$ be the completion of the algebraic closure of the local field $F_{\infty}$ at $\infty$ .
Let $X$ be an elliptic A-module over $C$ of rank one. We know that there is a
holomorphic isomorphism $ X\cong C/\Gamma$ where $\Gamma$ is an A-lattice in $F(=$ a fractional
A-ideal of $F$). Then we notice that the torsion part $ X_{tors}\cong F/\Gamma$ Conversely,
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given $\Gamma$, there are corresponding elliptic A-modules over $C$ . For details, see $[3\rfloor$

and [5].

We denote by $J_{F}$ the id\‘ele group of $F$ and by $[s, F]\in Ga1(F^{ab}/F)$ the Artin
symbol for $s\in J_{F}$, where $F^{ab}$ is the maximal abelian extension of $F$.

LEMMA 3. Let $X$ be an elliptic A-module over a field $k$ of rank one. Then
End $(X)\cong A$ , hence Aut $(X)\cong F_{q}^{\times}$ .

PROOF. This follows from the facts that $A$ is integrally closed and that
End (X) is a projective A-module whose rank is not greater than $($rank $X)^{2}[8$ ,
Proposition 2.4, Corollary].

LEMMA 4. Let $X$ and $Y$ be two elliptic A-modules over a Dedekind $nng0$

and $L$ be a field containing $0$ . Then
$Hom_{L}(X, Y)\subset Hom_{0_{s}}(X, Y)$

where $O_{s}$ denotes the separable closure of $0$ .
PROOF. Let $\alpha\in Hom_{L}(X, Y)$ and $\alpha\neq 0$ . For a nonconstant $a\in A$ , let

a $X^{=\sum_{t=0}^{n}}$ a $i\phi^{i}$ , a $Y^{=\sum_{i=0}^{n}b_{i}\phi^{i}}$ (a $i,$
$b_{i}\in O$)

and
$\alpha=\sum_{j=0}^{m}x_{j}\phi^{j}$ $(x_{j}\in L)$

where $a_{n}$ and $b_{n}$ are units of $O$ and $x_{m}\neq 0$ . It is easily seen from $\alpha a_{X}=a_{Y}\alpha$

that
$b_{n}x_{m}^{q^{n}-1}=a_{n}^{q^{m}}$ hence $x_{m}\in O_{s}^{\times},$

and
$b_{n}x\S^{n}-a_{n}^{qJ}x_{j}\in O[x_{f+1}, x_{j+2}, \cdots x_{m}]$

for each $j=m-1,$ $m-2,$ $\cdots$ , $0$ . Tbis shows $x_{f}\in O_{s}$ for each $j$, and proves Lemma 4.
THEOREM 2. Let $X$ be an elliptic A-module over $C$ of rank one with an

isomorphism $\xi:C/\Gamma\rightarrow^{\sim}$ X. Let $a$ be an automorphism of $C$ over $F$ and $s$ an id\‘ele
of $F$ such that
(4) $\sigma|F^{ab}=[s, F]$ .
Then there is an isomorphism $\xi^{\prime}$ : $C/s^{-1}\Gamma\rightarrow^{\sim}X^{\sigma}$ such that

(5) $\xi(z)^{\sigma}=\xi^{\prime}(s^{-1}z)$

for every $z\in F/\Gamma,$ $i$ . $e.$ , the following diagram is commutative;
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Moreover, $\xi^{\prime}$ is uniquely determined by the above property.
PROOF (cf. [8, p. 117]). 1) We may assume that $X$ is an elliptic A-module

over a finite Galois extension of $F$.
Indeed, every elliptic module of rank one over $C$ is dePned over a finite

Galois extension of $F$ [$5$ , Proposition 8.7], and it is sufficient to prove the theorem
for an elliptic module in a given C-isomorphism class of elliptic modules.

2) For each ideal $\mathfrak{m}(\neq\{0\}, A)$ of $A$ there exists an isomorphism $\xi^{\prime}$ : $ C/s^{-1}\Gamma$

$\rightarrow^{\sim}X^{\sigma}$ such that (5) holds for every $ z\in \mathfrak{m}^{-1}\Gamma/\Gamma$

Indeed, let $K$ be a finite Galois extension of $F$ satisfying the following con-
ditions:

(a) $X$ and $X^{\sigma}$ are elliptic modules over $K$ and

$Hom_{K_{s}}(X, X^{\sigma})=Hom_{K}(X, X^{\sigma})$ .

(b) $K$ contains both $X_{\mathfrak{m}}$ and the ray class field of $F$ modulo $\mathfrak{m}$ .
Then we can find a prime $v$ of $K$ lying above a prime ideal $\mathfrak{p}$ of $A$ so that

the following conditions are satisfied:
(c) $v$ is unramified over $\mathfrak{p}$ and $\sigma|K$ is the Frobenius element $a_{v}$ of Gal $(K/F)$

for $v$ , so $\mathfrak{m}$ is prime to $\mathfrak{p}$ .
(d) $X$ and $X^{\sigma}$ are elliptic modules over $O_{v}$.
Consider a commutative diagram:

(6)

where $\alpha:X\rightarrow Y=X/X_{\mathfrak{p}}$ ( $=\mathfrak{p}*X$ , cf. [5]) is the canonical $O_{v}$-isogeny whose reduc-
tion at $v$ is the Frobenius morphism $\phi^{\deg \mathfrak{p}}$ . Then we have an isomorphism $u$ ;
$Y\rightarrow^{\sim}X^{\sigma}$ [$5$ , Theorem 8.5]. Since $Y$ and $X^{\sigma}$ have the same reduction $Y(v)=X^{\sigma}(v)$

at $v,$ $u$ induces an automorphism $c(\in F_{q}^{\times})$ of $X^{\sigma}(v)$ . Put $\kappa=c^{-1}u\circ\alpha$ and $\xi^{*}=$

$ c^{-1}u\circ\eta$ . Since $\mathfrak{m}$ is prime to $\mathfrak{p}$ and the reduction of $\kappa$ at $v$ is the Frobenius
morphism, we obtain from (6) a commutative diagram:
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(7)

It follows from the assumption (4) and the condition (b) that there is an element
$aIofF^{\times}$ such that $\mathfrak{p}=asA$ and $az\equiv s^{-1}z$ mod $ s^{-1}\Gamma$ for all $ z\in \mathfrak{m}^{-1}\Gamma$ Let $\xi^{\prime}$ : $ C/s^{-1}\Gamma$

$\rightarrow^{\sim}X^{\sigma}$ be the isomorphism dePned by

$\xi^{\prime}(z)=\xi^{*}(a^{-1}z)$ .
Then we see from (7) that (5) holds for every $ z\in \mathfrak{m}^{-1}\Gamma/\Gamma$

3) $\xi^{\prime}$ (in 2)) is uniquely determined by $\mathfrak{m}$, and consequently, independent of
$\mathfrak{m}$, this proves Theorem 2. Indeed, if $\xi_{1}^{\prime}$ and $\xi_{2}^{\prime}$ satisfy (5) for every $ z\in \mathfrak{m}^{-1}\Gamma/\Gamma$,
then $c=\xi_{2}^{\prime}\circ\xi_{1^{-1}}^{\prime}$ is an automorphism of $X^{\sigma}$ , hence $c\in F_{q^{x}}$ (Lemma 3). Since $c|X_{\iota \mathfrak{n}}^{\sigma}$

$=id.$ , we have $c\equiv 1mod \mathfrak{m}$ , hence $c=1$ and $\xi_{1}^{\prime}=\xi_{2}^{\prime}$ , $q$ . $e$ . $d$ .
Let $K$ be a finite separable extension of $F$, and $X$ an elliptic A-module over

$K$ of rank one. For a prime ideal I of $A$ , since $Aut_{A_{(}}(T_{I}(X))\cong A_{1}^{\times}$ (the t-adic
units) is abelian, class field theory allows us to identify the I-adic representation
$\rho_{1}$ with a continuous homomorphism

$\rho_{1}$ : $J_{K}\rightarrow A_{I}^{\times}\subset F_{\iota^{x}}$

which is trivial on $K^{\times}$ .
THEOREM 3. Notations being above, there exist two continuous homomorphisms

$\rho_{\infty}$ and $x$ ;
the “Grossencharakter” $\rho_{\infty}$ : $J_{K}\rightarrow F_{\infty}^{\times}$

which is trivial on $K^{\times}$ , and

the “Hecke character” $\chi;J_{K}\rightarrow F^{\times}$

satisfying the following conditions:

(R) $\rho_{I}(x)\cdot N_{K/F}(x)_{I}=\chi(x)$ in $F_{I}^{\times}$

for all $x\in J_{K}$ , and

(R) $\rho_{\infty}(x)\cdot N_{K/F}(x)_{\infty}=x(x)$ in $F_{\infty}^{\times}$

for all $x\in J_{K}$ . Hence the homomorphism

$\rho=\rho_{\infty}\times\prod_{I}\rho_{(}$ : $J_{K}\rightarrow F_{\infty}^{\times}\times\prod_{I}A_{1}^{\times}\subset J_{F}$
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has the property:

(R) $\rho(x)\cdot N_{K/F}(x)=x(x)$ in $J_{F}$

for all $x\in J_{K}$ .
PROOF. For $x\in J_{K}$ , put $\tau=[x, K]$ , $y=N_{K/F}x$ and $\chi_{I}(y)=\rho_{I}(x)y_{1}$ . Since

$\tau|F^{ab}=[y, F]$ , for a given isomorphism $\xi$ of $ C/\Gamma$ onto $X$ , there exists by Theo-
rem 2 an isomorphism $\xi^{\prime}$ of $ C/y^{-1}\Gamma$ onto $X^{\tau}$ such that $\xi(z)^{\tau}=\xi^{\prime}(y^{-1}z)$ for all
$ z\in F/\Gamma$ Since $X=X^{\tau},$ $w=\xi^{-1}\circ\xi^{\prime}$ is an isomorphism of $ C/y^{-1}\Gamma$ onto $ C/\Gamma$ Hence
$w\in F^{\times}$ and we obtain a commutative diagram:

This shows that $\rho_{1}(x)=wy_{I}^{-1}$ for all I, and consequently $\chi_{I}(x)=w\in F^{\times}$ is inde-
pendent of I. This proves $(R)_{I}$ . Put $\rho_{\infty}(x)=x(x)\cdot N_{K/F}(x)_{\infty}^{-1}$ . If $x\in K^{\times}$ , we obtain
by $(R)_{1}$ that $\chi(x)=N_{K’ F}(x)$ , hence $\rho_{\infty}(x)=1$ , $q$ . $e.d$ .

REMARK. From (R) we have

$N_{K/F}(J_{K})\subset F^{\times}\cdot(F_{\infty}^{\times}\times\prod_{l}A_{1}^{\times})$ .

This means that $K$ contains the Hilbert class field $H_{A}$ of $A(=the$ maximal abelian
unramified extension of $F$ completely split at $\infty$). Actually, it is well known
(cf. [5]) that the smallest field of definition is $H_{A}$ for any rank-one elliptic A-
module over $C$ .

Let $K_{\infty}^{\times}=(K\otimes_{F}F_{\infty})^{\times}$ denote the group of id\‘eles $x$ of $K$ such that $x_{v}=1$ for
all finite places $v$ ( $i$ . $e.$ , not lying above $\infty$ ) of $K$.

COROLLARY 1. (i) $\rho_{I}|K_{\infty}^{\times}=x|K_{\infty}^{\times}$ , and these have values in $F_{q}^{\times}$ .
(ii) Let $v$ be a finite place of $K$ lying above a prime ideal $\mathfrak{p}$ of $A$ and I $a$

prime ideal of A different from $\mathfrak{p}$ . Then

$\rho_{I}|K_{v}^{\times}=\rho_{\infty}|K_{v}^{\times}=x|K_{v}^{\times}$ .

Hence $\rho_{I}|K_{v}^{\times}$ has values in $F^{\times}$ independent of I.
COROLLARY 2. Let $v$ be a finite place of K. Then the following pr0perties

are equivalent:
(a) $X$ has good reduction at $v$ .
(b) $\chi$ is unramified at $v,$

$i$ . $e.,$ $\chi(O_{v}^{\times})=1$ .
(c) $\rho_{\infty}$ is unramified at $v,$ $i.e.,$ $\rho_{\infty}(O_{v}^{x})=1$
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Let $v$ be a Pnite place of $K$ where $X$ has good reduction, $\phi_{v}$ the Frobenius
endomorphism of the reduction $X(v)$ of $X$ at $v$ and $a_{v}$ the element of $A$ such
that $[a_{v}]_{X(v)}=\phi_{v}$ . Then

COROLLARY 3. The Hecke character $\chi$ associated to $X$ is characterized by the
following three properties:

(a) If $x$ is pnncipal id\‘ele of $K,$ $\chi(x)=N_{K/F}(x)$ .
(b) The kernel of $\chi$ is open in $J_{K}$ .
(c) If $X$ has good reducticn at $v,$ $\chi(x_{v})=a_{v}^{v(x_{v})}$ for all $x_{v}\in K_{v}^{\times}$ .

4. Classification of rank-one elliptic modules.

Let $K$ be a finite separable extension of $F$ including the Hilbert class field
$H_{A}$ of $A$ . We know that every elliptic A-module of rank one over an extension
of $F$ is isomorphic to an elliptic A-module over $H_{A}$ , hence over $K$. In this sec-
tion, by $X,$ $Y$ and $Z$ we shall always understand elliptic A-modules over $K$ of
rank one, hence, by Lemma 4, all homomorphisms are $K_{s}$-homomorphisms. By
a K-form of $X$ we mean an elliptic A-module over $K$ which is $K_{s}$-isomorphic
to $X$ . When $ X\cong C/\Gamma$, we denote by cl (X) the class of $\Gamma$ in Pic $(A)$ . Then the
correspondence $X\leftrightarrow c1(X)$ gives a bijection:

{$K_{s}$-isomorphism classes of rank-one elliptic $modules$} $-Pic(A)$ .
A homomorphism $\chi;J_{K}\rightarrow F^{\times}$ is called a Hecke character if it satisfies the

following conditions $H1$) $-3$):

Hl) $\chi|K^{\times}=N_{K/F}$ .
H2) Ker $\chi$ is open in $J_{K}$ .
H3) $\chi(K_{\infty}^{\times})\subset F_{q}^{\times}$ .

The Hecke character $\chi_{X}$ associated to a rank-one elliptic module $X$ over $K$ is a
Hecke character in this sense.

THEOREM 4. (i) Let $c$ be an element of Pic $(A)$ (the ideal class group of $A$)

and let $\chi$ be a Hecke character of $J_{K}$ into $F^{\times}$ . Then there exists an elliptic
module $X$ over $K$ of rank one with cl $(X)=c$ and $x_{X}=x$ .

(ii) The Hecke character $\chi_{X}$ determines the K-isogeny class of $X$ , and the pajr
(cl (X), $\chi_{X}$ ) deteryn ines the $K$-isomorphism class of $X$ .

Before proving this theorem, we remark that one can aPply the well known
“theory of K-forms” (cf. [2], [6]) to elliptic modules: First, notice that

$H^{1}$ ( $G$ , Aut $(X)$ ) $=H^{1}(G, F_{q}^{\times})=H^{1}(G, F^{\times})$

where $G=Ga1(K_{s}/K)$ , and that
$H^{1}(G, F_{q}^{\times})=Hom(G, F_{q}^{\times})$

where $Hom$ means continuous homomorphisms. To each pair (X, $Y$ ) of elliptic
modules, we associate $\omega_{Y/X}\in Hom(G, F_{q}^{x})$ as follows: Since $Y$ is isogenous to
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$X$ over $C$ , hence over $K_{s}$ , there are $K_{s}$-isogenies $\alpha;X\rightarrow Y$ and $\beta:Y\rightarrow X$ . For
$\sigma\in G$ let $a_{\sigma}$ be the element of $A$ such that $[a_{\sigma}]_{X}=\beta\cdot\alpha^{\sigma}$ . Then

$\omega_{Y/X}$ ; $G\rightarrow F^{\times}$ , $\sigma-a_{1}^{-1}a_{\sigma}$

defines a l-cocycle. Hence $\omega_{Y/X}(\sigma)\in F_{q}^{\times}$ . We see that $\omega_{Y/X}$ is characterized by
the following property:

(8) $\gamma\cdot\omega_{Y/x}(a)=\gamma^{\sigma}$ for all $\gamma\in Hom_{K_{S}}(X, Y)$ .
Thus, $\omega_{Y/X}$ is independent of $\alpha$ and $\beta$ . It is clear that the transitivity formula

(9) $\omega_{Z/X}=\omega_{Z/Y}\cdot\omega_{Y/X}$

holds.
LEMMA 5. (i) $Y$ and $Z$ are K-isogenous if and only if $\omega_{Y/X}=\omega_{Z/X}$ . When

this is the case,

$Hom_{K_{s}}(Y, Z)=Hom_{K}(Y, Z)$ .
(ii) $Y$ and $Z$ are K-isomorphic if and only if they are K-isogenous and $K_{s^{-}}$

isomorphic.
(iii) For given $X$ and $\omega\in Hom(G, F_{q}^{\times})$ , there exists a unique (up to K-isomor-

phism) K-form $Y$ (notation: $X^{\omega}$) of $X$ with $\omega_{Y/X}=\omega$ .
PROOF. Assertions (i) and (ii) follow immediately from (8) and (9). (iii):

By “Hilbert 90” there is an element $u$ of $K_{s}^{\times}$ such that $\omega(\sigma)=u^{-1}u^{\sigma}$ for all
$a\in G$ . Then $Y=u(X)$ has the required property, and the uniqueness follows
from (ii).

Now we prove Theorem 4. Class field theory allows us to identify the
character $\omega_{Y/X}$ with a continuous homomorphism

$\omega_{Y/X}$ : $J_{K}\rightarrow F_{q}^{\times}$

which is trivial on $K^{\times}$ . Assertion (ii) of Theorem 4 follows from Lemma 5 and
LEMMA 6. $\chi_{Y}=\omega_{Y/X}\cdot\chi_{X}$ .
PROOF. Let $V_{I}(X)=T_{I}(X)\otimes_{A_{I}}F_{1}$ . A $K_{s}$-isogeny $\alpha:X\rightarrow Y$ induces an isomor-

phism $V_{I}(\alpha):V_{I}(X)\rightarrow^{\sim}V_{\iota}(Y)$ . We obtain from (8) a commutative diagram:
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This diagram implies that $\omega_{Y/x}\cdot\rho_{X.I}=\rho_{Y.1}$ where $\rho_{X.1}$ and $\rho_{Y.1}$ are f-adic rep-
resentation of the Galois group associated to $X$ and $Y$ , respectively. This
proves Lemma 6.

PROOF OF THEOREM 4, (i). Given $c$ and $\chi$ , let $X$ be any elliptic module with
cl $(X)=c$ . Put $\omega=x/\chi_{X}$ ; $J_{K}\rightarrow F^{\times}$ . The homomorphism $\omega$ is continuous and trivial
on $K^{\times}$ . Since the id\‘ele class group $J_{K}^{0}/K^{\times}$ of degree zero is compact, we obtain
from H3) that $\omega(K_{\infty}^{\times}J_{K}^{0})\subset F_{q}^{\times}$ . Since $K_{\infty}^{\times}J_{K}^{0}$ has a finite index in $J_{K}$ , the image
$\omega(J_{K})$ lies in $F_{q}^{\times}$ . By Lemmas 5 and 6, $\chi$ is the Hecke character associated to
the elliptic module $X^{\omega}$ .

COROLLARY. For given $X$ there exists a K-form $Y$ of $X$ so that all infinite
places of $K$ completely split in $K(Y_{tors})$ .

PROOF. It follows from the theorem of Grunwald-Hasse-Wang (cf. [1, Chapter
10]) that there exists a continuous homomorphism $\omega:J_{K}\rightarrow F_{q}^{\times}$ trivial on $K^{\times}$ such
that $\omega|K_{\infty}^{\times}=x_{x^{1}}^{-}|$ K..S. Let $Y=X^{\omega}$ . Then we see that $\chi_{Y}$ is trivial on $K_{\infty}^{\times}$ . Hence
$\rho_{Y.1}$ are trivial on $K_{\infty}^{\times}$ for all I. This proves Corollary.

THEOREM 5. Let $X$ be an elliptic A-module of rank one over K. Then there
exists a K-form of $X$ which has good reduction everywhere ( $i$ . $e.$ , at every finite
place of $K$).

PROOF. Let $U_{f}$ be the group of id\‘eles $x=(x_{v})$ of $K$ such that $x_{v}\in O_{v}^{\times}$ for
finite $v$ and $x_{v}=1$ for infinite $v$ . First, we show that the Hecke character $\chi_{X}$

associated to $X$ is trivial on $U_{f}\cap K^{\times}J_{K}^{q-1}$ . Indeed, let $u\in U_{f}\cap K^{\times}J_{K}^{q-1}$ and $u=zx^{q-1}$

where $z\in K^{x}$ and $x\in J_{K}$ . For $s\in J_{K}$ and $y\in K^{\times}$ , let

$[s, y]_{K}=(y^{1/(q-1)})^{[s.K]-1}$

be the Hilbert symbol. Since the extension $K(z^{1/(q-1)})/K$ is unramified everywhere
and splits completely at every infinite place, we have $[s, z]_{K}=1$ for all $ s\in$

$K^{\times}K_{\infty}^{\times}U_{f}$ . The principal ideal theorem says that $J_{F}\subset K^{\times}K_{\infty}^{\times}U_{f}$ , as $K$ contains
the Hilbert class field of $A$ . Hence we have $[s, N_{K/F}z]_{F}=1$ for all $s\in J_{F}$. This
implies that $N_{K/F}z$ is a $(q-1)$ th power in $F^{\times}$ , hence $N_{K/F}u$ is a $(q-1)$ th power
in $J_{F}$ . We see from (R) that $x_{X}(u)$ is a local $(q-1)$ th power everywhere, hence
in global. Consequently we have $\chi_{X}(u)\in F_{q}^{\times}\cap F^{\times q-1}=\{1\}$ .

Thus $\chi_{X}$ induces a character of $U_{f}/(U_{f}\cap K^{\times}J_{K}^{q-1})$ valued in $F_{q}^{\times}$ . Since $U_{f}/$

$(U_{f}\cap K^{\times}J_{K}^{q-1})$ is a closed subgroup of a compact abelian group $J_{K}/K^{\times}J_{K}^{q-1}$ of ex-
ponent $q-1$ , we can extend this character $\chi_{X}|U_{f}$ to a character

$\omega:J_{K}\rightarrow F_{q}^{\times}$

which is trivial on $K^{\times}$ . Since $\chi_{X}|U_{f}=\omega|U_{f}$ , the Hecke character $\psi=\omega^{-1}\cdot\chi_{X}$ is
trivial on $U_{j}$ . This shows that the K-form of $X$ with the Hecke character $\psi$

has good reduction everywhere, $q$ . $e$ . $d$ .
REMARK. Let $B$ be the integral closure of $A$ in $K$. Hayes [5, Theorem 10.6]
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proved that if $F$ has a prime divisor of degree one, for given $X$, there is an
elliptic module over $B$ which is isomorphic to $X$ over $K_{s}$ .
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