Good reduction of elliptic modules

By Toyofumi Takahashi

(Received Jan. 6, 1981)

In this paper we give a criterion for good reduction of elliptic modules Theorem 1, Section 2) which is an analogue of the criterion of Néron-OggŠafarevič for abelian varieties, cf. [7]. In the rest of the paper we give applications to elliptic modules of rank one over global function fields: In Section 3, the main theorem of complex multiplication of elliptic modules ([3] and [5]) is reformulated in a more relevant form to our subject (Theorem 2). Then, to each elliptic module we can associate the "Hecke character" (Theorem 3) so that the elliptic module has good reduction at a place v if and only if the Hecke character is unramified at v. In Section 4, we give a classification theorem (Theorem 4) by means of the Hecke characters. As an application, it will be shown that each rank-one elliptic module over a global function field K has a K-form which has good reduction everywhere Theorem 5).

1. Elliptic modules.

In this section we recall briefly the basic concepts of elliptic modules. For details, see [3] and [5].

Let F be a global field of characteristic $p>0, \mathbf{F}_{q}$ the finite field of constants, ∞ a fixed prime divisor and A the ring of elements of F which are integral outside ∞. For a commutative ring K of characteristic p we let denote $K\{\phi\}$ the (non commutative) ring of polynomials in ϕ over K with the relation $\phi c=$ $c^{q} \phi$ for $c \in K$. When K is an A-algebra, i. e., there is defined $i: A \rightarrow K$, the ideal Ker i of A is called the divisorial characteristic of K (notation: div char K). An elliptic A-module X over an algebra K is a ring homomorphism $f: A \rightarrow K\{\phi\}$ satisfying the following three conditions:
(a) $D \circ f=i$, where $D: K\{\phi\} \rightarrow K$ is a homomorphism defined by $D\left(\Sigma c_{j} \phi^{j}\right)=c_{0}$.
(b) The leading coefficient of $f(a)$ is invertible in K for each nonzero element a of A.
(c) The image $f(A)$ is not contained in K.

We write $[a]_{X}$, or simply a_{X}, for the image $f(a)$ of $a \in A$ under f. If $a_{X}=$

[^0]$\Sigma c_{j} \phi^{j}$, then $a_{X}(T)=\Sigma c_{j} T^{q^{j}}$ is an \mathbf{F}_{q}-linear polynomial. When K is a field, we put
$$
X_{\mathfrak{a}}=\left\{t \in K_{s} \mid a \cdot t\left(=a_{X}(t)\right)=0 \quad \text { for all } a \in \mathfrak{a}\right\}
$$
for an ideal \mathfrak{a} of A, where K_{s} is the separable closure of K. Hence X_{a} is the A-module of \mathfrak{a}-division points of X. If \mathfrak{a} is prime to div char K, the module X_{a} is a free (A / a)-module of finite rank r. The rank r is independent of \mathfrak{a} and called the rank of X.

Proposition 1 ([3]): $\operatorname{deg} a_{X}(T)=|a|_{\infty}^{r} \quad$ for $a \in A$.
Let X and Y be two elliptic A-modules over K. A homomorphism (over K) from X to Y is an element $\alpha \in K\{\phi\}$ such that $\alpha a_{X}=a_{Y} \alpha$ for all $a \in A$. Hence an isomorphism $u: X \xrightarrow{\sim} Y$ is an invertible element u of K such that $a_{Y}=u a_{X} u^{-1}$. In this case we write $Y=u(X)$. A non zero homomorphism is called an isogeny.

2. Good reduction of elliptic modules.

Let K be a field, v an (additive) discrete valuation of K and O_{v} the valuation ring of v with a ring homomorphism i of A into O_{v}, that is, O_{v} is an A algebra. We denote the residue field O_{v} / \mathfrak{n}_{v} by $k(v)$ and the residue divisorial characteristic by \mathfrak{p}_{v}.

Let X be an elliptic A-module over K. We say that X has integral coefficients at v if $a_{X} \in O_{v}\{\phi\}$ for all $a \in A$ and the homomorphism $a \mapsto\left(a_{X} \bmod \mathfrak{m}_{v}\right)$ defines an elliptic A-module over $k(v)$ (the reduction of X at v, notation: $X(v)$). We say that X has stable reduction at v if there exists an elliptic A-module $Y \cong X$ which has integral coefficients at v, and that X has good reduction at v if in addition Y is an elliptic A-module over O_{v}. We say that X has potential stable (resp. good) reduction at v if there exists a finite extension (L, w) of (K, v) such that X has stable (resp. good) reduction at w.

We set

$$
v\left(\sum c_{i} \phi^{i}\right)=\operatorname{Min}\left\{\left.\frac{1}{q^{i}-1} v\left(c_{i}\right) \right\rvert\, i>0\right\}
$$

for $\sum c_{i} \phi^{i} \in K\{\phi\}$. For an element u of K^{\times}, we see that the elliptic module $u(X)$ has integral coefficients at v if and only if

$$
\begin{equation*}
v(u)=\operatorname{Min}\left\{v\left(a_{X}\right) \mid \text { nonconstant } a \in A\right\} \tag{1}
\end{equation*}
$$

Since A is a ring finitely generated over \mathbf{F}_{q}, the right-hand side of (1) exists always (in \boldsymbol{Q}). Hence:

Proposition 2 ([3]). Every elliptic A-module has potential stable reduction. More precisely, for each elliptic module X over K, there is a natural number $e_{v}(X)$ prime to p so that the following two properties are equivalent for a finite extension w of v;
(a) X has stable reduction at w.
(b) The index of ramification of w over v is divisible by $e_{v}(X)$.

Corollary. Every elliptic A-module of rank one has potential good reduction.
Let \mathfrak{l} be a prime ideal of A different from \mathfrak{p}_{v}.
Theorem 1. An elliptic A-module X over K has good reduction at v if and only if the Galois module $X_{\mathrm{I}^{\infty}}=\bigcup_{n} X_{1 n}$ is unramified at v.

Proof. The "only if" part is a trivial consequence from the definition of good reduction. Assume that the Galois module $X_{1} \infty$ is unramified. Some power of \mathfrak{l} is principal - say $\mathfrak{l}^{h}=b A$. First, we show that X has stable reduction at v. Let \bar{v} be an extension of v to K_{s}. Since $X_{b}=\left\{t \in K_{s} \mid b_{X}(t)=0\right\}$ is unramified, $\bar{v}(t)$ are integers for all non zero $t \in X_{b}$ and the maximum M of these values is equal to $-v\left(b_{X}\right)$. Indeed, let $b_{X}(T)=\Sigma b_{j} T^{q^{j}}=T \Sigma b_{j} T^{q^{j-1}}$. Then the maximal value M of the roots is given by the formula:

$$
M=\operatorname{Max}\left\{\left(v\left(b_{0}\right)-v\left(b_{j}\right)\right) /\left(q^{j}-1\right) \mid j>0\right\} .
$$

Since $\mathfrak{l} \neq \mathfrak{p}_{v}, b_{0}=D\left(b_{X}\right)$ is a v-unit, hence $v\left(b_{0}\right)=0$. By definition of $v\left(b_{X}\right)$, we have $M=-v\left(b_{X}\right)$. Especially, $v\left(b_{X}\right)$ must be an integer. Let (L, w) be a finite extension of (K, v) where X has stable reduction (Proposition 2). Let u be an element of L^{\times}such that $u(X)$ has integral coefficients at w. Since the reduction of $u(X)$ at w is an elliptic module over $k(w), u a_{X} u^{-1} \bmod \mathfrak{m}_{w}$ has a positive degree as a polynomial in ϕ with coefficients in $k(w)$ for nonconstant $a \in A$ (Proposition 1), or equivalently, $w(u)=w\left(a_{X}\right)$. Hence $v\left(a_{X}\right)$ is an integer $\left(=v\left(b_{X}\right)\right.$) independent of a. This means that $e_{v}(X)=1$ and X has stable reduction at v. Thus we may assume that X has integral coefficients at v. To prove that X has good reduction at v, it suffices to show that the leading coefficient of b_{X} is a v-unit. Indeed, when this is the case, the reduction of X at v has the same rank of X (Proposition 1). Assume that the leading coefficient of b_{X} is not a v-unit. Since the constant term $b_{0}\left(=D\left(b_{X}\right)\right)$ of b_{X} is a v-unit, there is an element t_{1} of X_{b} such that

$$
\begin{equation*}
\bar{v}\left(t_{1}\right)<0 . \tag{2}
\end{equation*}
$$

Next, we can find a root t_{2} of the equation

$$
\begin{equation*}
b_{X}(T)=t_{1} \tag{3}
\end{equation*}
$$

such that $\bar{v}\left(t_{1}\right)<\bar{v}\left(t_{2}\right)<0$. Indeed, if $\bar{v}(t) \leqq \bar{v}\left(t_{1}\right)$ holds for each root t of the equation (3), the coefficients of $t_{1}^{-1} b_{X} t_{1}$ are \bar{v}-integers, hence $\bar{v}\left(t_{1}^{-1}\right) \leqq v\left(b_{X}\right)=0$. This contradicts (2). It follows from (2) that none of roots of the equation (3) is a \bar{v}-integer, hence $\bar{v}\left(t_{2}\right)<0$. Similarly, we can find t_{n} in K_{s} such that

$$
b_{X}\left(t_{n+1}\right)=t_{n}, \quad \bar{v}\left(t_{n}\right)<\bar{v}\left(t_{n+1}\right)<0
$$

for $n \geqq 1$. Since t_{n} is contained in $X_{b n}$, hence in $X_{t} \infty$, the value $\bar{v}\left(t_{n}\right)$ is an integer for each n. This is impossible, and proves Theorem 1.

Let \bar{v} be an extension of v to K_{s}. We denote the inertia group of \bar{v} by $I(\bar{v})$ and the inertia field by K_{v}^{nr}. Let

$$
\rho_{\mathfrak{l}}: \operatorname{Gal}\left(K_{s} / K\right) \longrightarrow \operatorname{Aut}_{A}\left(X_{\mathfrak{r}^{\infty}}\right) \cong \operatorname{Aut}_{A_{\mathfrak{l}}}\left(T_{\mathfrak{r}}(X)\right)
$$

denote the \mathfrak{r}-adic representation of degree r corresponding to the Galois module $X_{1} \infty$ or the Tate module $T_{\mathrm{r}}(X)=\operatorname{inv} \lim X_{1} n$.

Corollary 1. The elliptic A-module X has potential good reduction at v if and only if the image of the inertia group $I(\bar{v})$ by $\rho_{\mathfrak{l}}$ is finite. When this is the case, the extension $K_{v}^{\operatorname{nr}}\left(X_{1^{\infty}}\right)$ of K_{v}^{nr} is independent of \mathfrak{L} and cyclic tamely ramified of degree $e_{v}(X)$.

Proof. This follows from Theorem 1 and Proposition 2,
Corollary 2. Suppose that X has potential good reduction at v. Let $\mathfrak{m} \neq A$ be an ideal of A prime to \mathfrak{p}_{v}.
(i) The extension $K_{v}^{\mathrm{nr}}\left(X_{\mathrm{m}}\right)$ of K_{v}^{nr} is independent of \mathfrak{m} and tamely ramified of degree $e_{v}(X)$.
(ii) The Galois module X_{m} is unramified if and only if X has good reduction at v.

Proof. Let \mathfrak{l} be a prime divisor of \mathfrak{m}. The extension $K_{v}^{\mathrm{nr}}\left(X_{\mathrm{t}^{\infty}}\right)$ of $K_{v}^{\mathrm{nr}}\left(X_{\mathfrak{t}}\right)$ is tamely ramified, and its Galois group is canonically isomorphic to a subgroup of the kernel of the natural homomorphism of $\left.\operatorname{Aut}_{A}\left(X_{1}\right)^{\infty}\right)$ into $\operatorname{Aut}_{A}\left(X_{\mathfrak{1}}\right)$ which is a pro- p-group. Therefore this extension is trivial. Since the extensions $\left.K_{v}^{\mathrm{nr}}\left(X_{1}\right)^{\infty}\right)$ $=K_{v}^{\mathrm{nt}}\left(X_{\mathfrak{l}}\right)$ are independent of \mathfrak{l}, we have $K_{v}^{\mathrm{nr}}\left(X_{\mathrm{m}}\right)=K_{v}^{\mathrm{nr}}\left(X_{1} \infty\right)$. This proves Corollary 2.

Remark. Part (i) of Corollary 2 shows that if X has potential good reduction at v, the extensions $K\left(X_{\mathrm{m}}\right) / K$ are always tamely ramified at v for all \mathfrak{m} prime to p_{v}. On the contrary, for an abelian variety A, the primes v at which $K\left(A_{m}\right) / K$ are wildly ramified play an especially nasty role, cf. [7].

Lemma 1. Let X be an elliptic A-module over a field k, α an endomorphism of X, and $T_{\mathfrak{r}}(\alpha)$ the induced endomorphism of $T_{\mathrm{l}}(X)(\mathfrak{l} \neq \operatorname{div} \operatorname{char} k)$. Then the characteristic polynomial of $T_{\mathfrak{l}}(\alpha)$ has coefficients in A independent of \mathfrak{l}.

Proof. The subring $A[\alpha]$ generated by α in $\operatorname{End}(X)$ is a commutative ring without zero divisor, and let E be its quotient field. Since $\operatorname{End}(X) \otimes_{A} F_{\infty}$ is a division ring ([3]), the prime ∞ does not split in E. Let B be the integral closure of A in E, then $A[\alpha]$ is an order of B. Hence X can be regarded as an elliptic $A[\alpha]$-module over k. Since there exist an elliptic B-module which is isogenous to X [5, Proposition 3.2], we may assume that X is an elliptic B module over k. Then the Tate module $T_{\mathrm{r}}(X)$ is a free $\left(B \otimes_{4} A_{\mathrm{r}}\right)$-module of finite type. Therefore the l-adic representation $T_{\mathrm{r}}(\alpha)$ of α is induced by the representation of $\alpha: \beta \mapsto \alpha \beta$ on B. This proves Lemma 1.

Lemma 2. Let X be an elliptic A-module of rank r over a finite field with q^{f} elements. Then the characteristic polynomial of the \mathfrak{r}-adic representation $T_{1}\left(\phi^{f}\right)$
of the Frobenius endomorphism ϕ^{f} of X has coefficients in A independent of \mathfrak{r}. The absolute values at ∞ of its roots are equal to $q^{f / r}$.

Proof. This follows from Lemma 1] and [4, Proposition 2.1].
Proposition 3. Let X be an elliptic A-module over K of rank r which has potential good reduction at v, and \mathfrak{l} a prime ideal of A different from \mathfrak{p}_{v}.
(i) For $\sigma \in I(\bar{v})$, the characteristic polynomial of $\rho_{\mathrm{r}}(\sigma)$ has coefficients in \mathbf{F}_{q} independent of \mathfrak{I}.
(ii) Suppose that the residue field $k(v)$ is finite, $q_{v}=\operatorname{Card}(k(v))$. Let σ_{v} be a Frobenius element in the decomposition group of \bar{v}. Then the characteristic polynomial of $\rho_{1}\left(\sigma_{v}\right)$ has coefficients in A independent of \mathfrak{l}. The absolute values at ∞ of its roots are equal to $q_{v}^{1 / r}$.

Proof. Let w be the restriction of \bar{v} to a Galois extension L of K of finite degree where X has good reduction. Let u be an element of L^{\times}such that $Y=u(X)$ is an elliptic A-module over O_{w}. Let rd: $Y \rightarrow Y(w)$ be the reduction mapping. Since $\sigma \in I(\bar{v}), u^{1-\sigma}$ is a w-unit and $(u x)^{\sigma} \equiv u x \bmod \mathfrak{m}_{\overline{\bar{o}}}$ for all $x \in X_{\text {tors }}$. This shows that the following diagram is commutative:

where $\zeta=\left(u^{1-\sigma} \bmod \mathfrak{n}_{w}\right) \in k(w)$. Since $\zeta: t \mapsto \zeta t$ induces an automorphism of the A-module $Y(w)_{\mathrm{r}^{\infty}}, \zeta$ is an automorphism of the elliptic A-module $Y(w)$. Assertion (i) follows from Lemma 1 and the fact that ζ is a root of unity. Since (ii) is concerned with the Frobenius automorphism, we may assume that X has good reduction at v, replacing K, if necessary, by a totally ramified extension of K of degree $e_{v}(X)$. Then the \mathfrak{I}-adic representation of the Frobenius automorphism σ_{v} is equivalent to the r -adic representation of the Frobenius endomorphism of the reduction $X(v)$ of X at v, and the assertion follows from Lemma 2,

3. Complex multiplication.

Let C be the completion of the algebraic closure of the local field F_{∞} at ∞. Let X be an elliptic A-module over C of rank one. We know that there is a holomorphic isomorphism $X \cong C / \Gamma$ where Γ is an A-lattice in F ($=$ a fractional A-ideal of F). Then we notice that the torsion part $X_{\text {tors }} \cong F / \Gamma$. Conversely,
given Γ, there are corresponding elliptic A-modules over C. For details, see [3] and [5].

We denote by J_{F} the idèle group of F and by $[s, F] \in \operatorname{Gal}\left(F^{\mathrm{ab}} / F\right)$ the Artin symbol for $s \in J_{F}$, where F^{ab} is the maximal abelian extension of F.

Lemma 3. Let X be an elliptic A-module over a field k of rank one. Then $\operatorname{End}(X) \cong A$, hence $\operatorname{Aut}(X) \cong \mathbf{F}_{q}^{\times}$.

Proof. This follows from the facts that A is integrally closed and that $\operatorname{End}(X)$ is a projective A-module whose rank is not greater than $(\operatorname{rank} X)^{2}[3$, Proposition 2.4, Corollary.

Lemma 4. Let X and Y be two elliptic A-modules over a Dedekind ring O and L be a field containing O. Then

$$
\operatorname{Hom}_{L}(X, Y) \subset \operatorname{Hom}_{O_{s}}(X, Y)
$$

where O_{s} denotes the separable closure of O.
Proof. Let $\alpha \in \operatorname{Hom}_{L}(X, Y)$ and $\alpha \neq 0$. For a nonconstant $a \in A$, let
and

$$
a_{X}=\sum_{i=0}^{n} a_{i} \phi^{i}, \quad a_{Y}=\sum_{i=0}^{n} b_{i} \phi^{i} \quad\left(a_{i}, b_{i} \in O\right)
$$

$$
\alpha=\sum_{j=0}^{m} x_{j} \phi^{j} \quad\left(x_{j} \in L\right)
$$

where a_{n} and b_{n} are units of O and $x_{m} \neq 0$. It is easily seen from $\alpha a_{X}=a_{Y} \alpha$ that

$$
b_{n} x_{m}^{q^{n}-1}=a_{n}^{q^{m}}, \quad \text { hence } \quad x_{m} \in O_{s}^{\times},
$$

and

$$
b_{n} x_{j}^{q^{n}}-a_{n}^{q^{j}} x_{j} \in O\left[x_{j+1}, x_{j+2}, \cdots, x_{m}\right]
$$

for each $j=m-1, m-2, \cdots, 0$. This shows $x_{j} \in O_{s}$ for each j, and proves Lemma 4.
Theorem 2. Let X be an elliptic A-module over C of rank one with an isomorphism $\xi: C / \Gamma \xrightarrow{\sim} X$. Let σ be an automorphism of C over F and s an idèle of F such that

$$
\begin{equation*}
\sigma \mid F^{\mathrm{ab}}=[s, F] . \tag{4}
\end{equation*}
$$

Then there is an isomorphism $\xi^{\prime}: C / s^{-1} \Gamma \xrightarrow{\sim} X^{\sigma}$ such that

$$
\begin{equation*}
\xi(z)^{\sigma}=\xi^{\prime}\left(s^{-1} z\right) \tag{5}
\end{equation*}
$$

for every $z \in F / \Gamma$, i.e., the following diagram is commutative:

Moreover, ξ^{\prime} is uniquely determined by the above property.
Proof (cf. [8, p. 117]). 1) We may assume that X is an elliptic A-module over a finite Galois extension of F.

Indeed, every elliptic module of rank one over C is defined over a finite Galois extension of F [5, Proposition 8.7], and it is sufficient to prove the theorem for an elliptic module in a given C-isomorphism class of elliptic modules.
2) For each ideal $\mathfrak{m}(\neq\{0\}, A)$ of A there exists an isomorphism $\xi^{\prime}: C / s^{-1} \Gamma$ $\xrightarrow{\sim} X^{\sigma}$ such that (5) holds for every $z \in \mathfrak{m}^{-1} \Gamma / \Gamma$.

Indeed, let K be a finite Galois extension of F satisfying the following conditions:
(a) X and X^{σ} are elliptic modules over K and

$$
\operatorname{Hom}_{K_{s}}\left(X, X^{\sigma}\right)=\operatorname{Hom}_{K}\left(X, X^{\sigma}\right) .
$$

(b) K contains both X_{m} and the ray class field of F modulo m .

Then we can find a prime v of K lying above a prime ideal \mathfrak{p} of A so that the following conditions are satisfied:
(c) v is unramified over \mathfrak{p} and $\sigma \mid K$ is the Frobenius element σ_{v} of $\operatorname{Gal}(K / F)$ for v, so \mathfrak{m} is prime to \mathfrak{p}.
(d) X and X^{σ} are elliptic modules over O_{v}.

Consider a commutative diagram:
(6)

where $\alpha: X \rightarrow Y=X / X_{p}\left(=\mathfrak{p} * X\right.$, cf. [5]) is the canonical O_{v}-isogeny whose reduction at v is the Frobenius morphism $\phi^{\text {deg } p}$. Then we have an isomorphism u : $Y \xrightarrow{\sim} X^{\sigma} \quad\left[5\right.$, Theorem 8.5]. Since Y and X^{σ} have the same reduction $Y(v)=X^{\sigma}(v)$ at v, u induces an automorphism $c\left(\in \mathbf{F}_{q}^{\times}\right)$of $X^{\sigma}(v)$. Put $\kappa=c^{-1} u^{\circ} \alpha$ and $\xi^{*}=$ $c^{-1} u \circ \eta$. Since \mathfrak{m} is prime to \mathfrak{p} and the reduction of κ at v is the Frobenius morphism, we obtain from (6) a commutative diagram:

It follows from the assumption (4) and the condition (b) that there is an element a Iof F^{\times}such that $\mathfrak{p}=a s A$ and $a z \equiv s^{-1} z \bmod s^{-1} \Gamma$ for all $z \in \mathfrak{m}^{-1} \Gamma$. Let $\xi^{\prime}: C / s^{-1} \Gamma$ $\xrightarrow{\sim} X^{\sigma}$ be the isomorphism defined by

$$
\xi^{\prime}(z)=\xi^{*}\left(a^{-1} z\right) .
$$

Then we see from (7) that (5) holds for every $z \in \mathfrak{m}^{-1} \Gamma / \Gamma$.
3) ξ^{\prime} (in 2)) is uniquely determined by \mathfrak{m}, and consequently, independent of \mathfrak{m}, this proves Theorem 2. Indeed, if ξ_{1}^{\prime} and ξ_{2}^{\prime} satisfy (5) for every $z \in \mathfrak{m}^{-1} \Gamma / \Gamma$, then $c=\xi_{2}^{\prime} \rho_{1}^{\prime \prime-1}$ is an automorphism of X^{σ}, hence $c \in \mathbf{F}_{q}^{\times}$Lemma 3). Since $c \mid X_{\mathrm{m}}^{\sigma}$ $=$ id., we have $c \equiv 1 \bmod \mathfrak{m}$, hence $c=1$ and $\xi_{1}^{\prime}=\xi_{2}^{\prime}$,
q.e.d.

Let K be a finite separable extension of F, and X an elliptic A-module over K of rank one. For a prime ideal \mathfrak{l} of A, since $\operatorname{Aut}_{A_{\mathfrak{l}}}\left(T_{\mathfrak{l}}(X)\right) \cong A_{\mathfrak{1}}^{\times}$(the \mathfrak{l}-adic units) is abelian, class field theory allows us to identify the \mathfrak{l}-adic representation ρ_{l} with a continuous homomorphism

$$
\rho_{\mathrm{I}}: J_{K} \longrightarrow A_{1}^{\times} \subset F_{\mathfrak{r}}^{\times}
$$

which is trivial on K^{\times}.
Theorem 3. Notations being above, there exist two continuous homomorphisms ρ_{∞} and χ;

$$
\text { the "Grössencharakter" } \rho_{\infty}: J_{K} \longrightarrow F_{\infty}^{\times}
$$

which is trivial on K^{\times}, and

$$
\text { the "Hecke character" } \chi: J_{K} \longrightarrow F^{\times}
$$

satisfying the following conditions:
(R)

$$
\rho_{\mathrm{I}}(x) \cdot N_{K / F}(x)_{\mathrm{I}}=\chi(x) \quad \text { in } \quad F_{\mathrm{i}}^{\times}
$$

for all $x \in J_{K}$, and
$(\mathrm{R})_{\infty} \quad \rho_{\infty}(x) \cdot N_{K / F}(x)_{\infty}=\chi(x)$ in F_{∞}^{\times}
for all $x \in J_{K}$. Hence the homomorphism

$$
\rho=\rho_{\infty} \times \prod_{1} \rho_{1}: J_{K} \longrightarrow F_{\infty}^{\times} \times \prod_{1} A_{1}^{\times} \subset J_{F}
$$

has the property:
(R)

$$
\rho(x) \cdot N_{K / F}(x)=\chi(x) \quad \text { in } \quad J_{F}
$$

for all $x \in J_{K}$.
Proof. For $x \in J_{K}$, put $\tau=[x, K], y=N_{K / F} x$ and $\chi_{\mathrm{r}}(y)=\rho_{\mathrm{r}}(x) y_{\mathrm{r}}$. Since $\tau \mid F^{\mathrm{ab}}=[y, F]$, for a given isomorphism ξ of C / Γ onto X, there exists by Theorem 2 an isomorphism ξ^{\prime} of $C / y^{-1} \Gamma$ onto X^{τ} such that $\xi(z)^{\tau}=\xi^{\prime}\left(y^{-1} z\right)$ for all $z \in F / \Gamma$. Since $X=X^{\tau}, w=\xi^{-1} \circ \xi^{\prime}$ is an isomorphism of $C / y^{-1} \Gamma$ onto C / Γ. Hence $w \in F^{\times}$and we obtain a commutative diagram:

This shows that $\rho_{\mathrm{l}}(x)=w y_{1}^{-1}$ for all \mathfrak{l}, and consequently $\chi_{\mathrm{I}}(x)=w \in F^{\mathrm{x}}$ is independent of \mathfrak{l}. This proves $(\mathrm{R})_{\mathfrak{t}}$. Put $\rho_{\infty}(x)=\chi(x) \cdot N_{K / F}(x)_{\infty}^{-1}$. If $x \in K^{\times}$, we obtain by $(\mathrm{R})_{\mathfrak{r}}$ that $\chi(x)=N_{K / F}(x)$, hence $\rho_{\infty}(x)=1$,
q. e.d.

Remark. From (R) we have

$$
N_{K / F}\left(J_{K}\right) \subset F^{\times} \cdot\left(F_{\infty}^{\times} \times \prod_{l} A_{\mathrm{l}}^{\times}\right) .
$$

This means that K contains the Hilbert class field H_{A} of A (=the maximal abelian unramified extension of F completely split at ∞). Actually, it is well known (cf. [5]) that the smallest field of definition is H_{A} for any rank-one elliptic A module over C.

Let $K_{\infty}^{\times}=\left(K \bigotimes_{F} F_{\infty}\right)^{\times}$denote the group of idèles x of K such that $x_{v}=1$ for all finite places v (i. e., not lying above ∞) of K.

Corollary 1. (i) $\rho_{\mathrm{i}}\left|K_{\infty}^{\times}=\chi\right| K_{\infty}^{\times}$, and these have values in \mathbf{F}_{q}^{\times}.
(ii) Let v be a finite place of K lying above a prime ideal \mathfrak{p} of A and $\mathfrak{l} a$ prime ideal of A different from \mathfrak{p}. Then

$$
\rho_{\mathrm{I}}\left|K_{v}^{\times}=\rho_{\infty}\right| K_{v}^{\times}=\chi \mid K_{v}^{\times} .
$$

Hence $\rho_{\mathrm{I}} \mid K_{v}^{\times}$has values in F^{\times}independent of \mathfrak{I}.
Corollary 2. Let v be a finite place of K. Then the following properties are equivalent:
(a) X has good reduction at v.
(b) χ is unramified at v, i.e., $\chi\left(O_{v}^{\times}\right)=1$.
(c) ρ_{∞} is unramified at v, i.e., $\rho_{\infty}\left(O_{v}^{\times}\right)=1$

Let v be a finite place of K where X has good reduction, ϕ_{v} the Frobenius endomorphism of the reduction $X(v)$ of X at v and a_{v} the element of A such that $\left[a_{v}\right]_{X(v)}=\phi_{v}$. Then

Corollary 3. The Hecke character χ associated to X is characterized by the following three properties:
(a) If x is principal idèle of $K, \chi(x)=N_{K / F}(x)$.
(b) The kernel of χ is open in J_{K}.
(c) If X has good reduction at $v, \chi\left(x_{v}\right)=a_{v}^{v\left(x_{v}\right)}$ for all $x_{v} \in K_{v}^{\times}$.

4. Classification of rank-one elliptic modules.

Let K be a finite separable extension of F including the Hilbert class field H_{A} of A. We know that every elliptic A-module of rank one over an extension of F is isomorphic to an elliptic A-module over H_{A}, hence over K. In this section, by X, Y and Z we shall always understand elliptic A-modules over K of rank one, hence, by Lemma 4, all homomorphisms are K_{s}-homomorphisms. By a K-form of X we mean an elliptic A-module over K which is K_{s}-isomorphic to X. When $X \cong C / \Gamma$, we denote by $\operatorname{cl}(X)$ the class of Γ in $\operatorname{Pic}(A)$. Then the correspondence $X \mapsto \mathrm{cl}(X)$ gives a bijection:
$\left\{K_{s}\right.$-isomorphism classes of rank-one elliptic modules $\} \longleftrightarrow \operatorname{Pic}(A)$.
A homomorphism $\chi: J_{K} \rightarrow F^{\times}$is called a Hecke character if it satisfies the following conditions H1)-3):

H1) $\chi \mid K^{\times}=N_{K / F}$.
H2) $\operatorname{Ker} \chi$ is open in J_{K}.
H3) $\chi\left(K_{\infty}^{\times}\right) \subset \mathbf{F}_{q}^{\times}$.
The Hecke character χ_{X} associated to a rank-one elliptic module X over K is a Hecke character in this sense.

Theorem 4. (i) Let c be an element of $\operatorname{Pic}(A)$ (the ideal class group of A) and let χ be a Hecke character of J_{K} into F^{\times}. Then there exists an elliptic module X over K of rank one with $\operatorname{cl}(X)=c$ and $\chi_{X}=\chi$.
(ii) The Hecke character χ_{X} determines the K-isogeny class of X, and the pair (cl $\left.(X), \chi_{X}\right)$ determines the K-isomorphism class of X.

Before proving this theorem, we remark that one can apply the well known "theory of K-forms" (cf. [2], [6]) to elliptic modules: First, notice that

$$
H^{1}(G, \operatorname{Aut}(X))=H^{1}\left(G, \mathbf{F}_{q}^{\times}\right)=H^{1}\left(G, F^{\times}\right)
$$

where $G=\operatorname{Gal}\left(K_{s} / K\right)$, and that

$$
H^{1}\left(G, \mathbf{F}_{q}^{\times}\right)=\operatorname{Hom}\left(G, \mathbf{F}_{q}^{\times}\right)
$$

where "Hom" means continuous homomorphisms. To each pair (X, Y) of elliptic modules, we associate $\omega_{Y / X} \in \operatorname{Hom}\left(G, \mathbf{F}_{q}^{\times}\right)$as follows: Since Y is isogenous to
X over C, hence over K_{s}, there are K_{s}-isogenies $\alpha: X \rightarrow Y$ and $\beta: Y \rightarrow X$. For $\sigma \in G$ let a_{σ} be the element of A such that $\left[a_{\sigma}\right]_{X}=\beta \cdot \alpha^{\sigma}$. Then

$$
\omega_{Y / X}: G \longrightarrow F^{\times}, \quad \sigma \longmapsto a_{1}^{-1} a_{\sigma}
$$

defines a 1-cocycle. Hence $\omega_{Y / X}(\sigma) \in \mathbf{F}_{q}^{\times}$. We see that $\omega_{Y / X}$ is characterized by the following property:

$$
\begin{equation*}
\gamma \cdot \omega_{Y / X}(\sigma)=\gamma^{\sigma} \quad \text { for all } \quad \gamma \in \operatorname{Hom}_{K_{s}}(X, Y) \tag{8}
\end{equation*}
$$

Thus, $\omega_{Y / X}$ is independent of α and β. It is clear that the transitivity formula

$$
\begin{equation*}
\omega_{Z / X}=\omega_{Z / Y} \cdot \omega_{Y / X} \tag{9}
\end{equation*}
$$

holds.
Lemma 5. (i) Y and Z are K-isogenous if and only if $\omega_{Y / X}=\omega_{Z / X}$. When this is the case,

$$
\operatorname{Hom}_{K_{s}}(Y, Z)=\operatorname{Hom}_{K}(Y, Z)
$$

(ii) Y and Z are K-isomorphic if and only if they are K-isogenous and $K_{s^{-}}$ isomorphic.
(iii) For given X and $\omega \in \operatorname{Hom}\left(G, \mathbf{F}_{q}^{\times}\right)$, there exists a unique (up to K-isomorphism) K-form Y (notation: X^{ω}) of X with $\omega_{Y / X}=\omega$.

Proof. Assertions (i) and (ii) follow immediately from (8) and (9). (iii): By "Hilbert 90 " there is an element u of K_{s}^{\times}such that $\omega(\sigma)=u^{-1} u^{\sigma}$ for all $\sigma \in G$. Then $Y=u(X)$ has the required property, and the uniqueness follows from (ii).

Now we prove Theorem 4. Class field theory allows us to identify the character $\omega_{Y / X}$ with a continuous homomorphism

$$
\omega_{Y / X}: J_{K} \longrightarrow \mathbf{F}_{q}^{\times}
$$

which is trivial on K^{\times}. Assertion (ii) of Theorem 4 follows from Lemma 5 and
Lemma 6. $\chi_{Y}=\omega_{Y / X} \cdot \chi_{X}$.
Proof. Let $V_{\mathrm{I}}(X)=T_{\mathrm{r}}(X) \otimes_{A_{\mathrm{I}}} F_{\mathrm{r}}$. A K_{s}-isogeny $\alpha: X \rightarrow Y$ induces an isomorphism $V_{\mathrm{r}}(\alpha): V_{\mathrm{r}}(X) \xrightarrow{\sim} V_{\mathrm{I}}(Y)$. We obtain from (8) a commutative diagram:

This diagram implies that $\omega_{Y / X} \cdot \rho_{X, 1}=\rho_{Y, 1}$ where $\rho_{X, 1}$ and $\rho_{Y, 1}$ are \mathfrak{l}-adic representation of the Galois group associated to X and Y, respectively. This proves Lemma 6.

Proof of Theorem 4, (i). Given c and χ, let X be any elliptic module with $\operatorname{cl}(X)=c$. Put $\omega=\chi / \chi_{X}: J_{K} \rightarrow F^{\times}$. The homomorphism ω is continuous and trivial on K^{\times}. Since the idèle class group J_{K}^{0} / K^{\times}of degree zero is compact, we obtain from H3) that $\omega\left(K_{\infty}^{\times} J_{K}^{0}\right) \subset \mathbf{F}_{q}^{\times}$. Since $K_{\infty}^{\times} J_{K}^{0}$ has a finite index in J_{K}, the image $\omega\left(J_{K}\right)$ lies in \mathbf{F}_{q}^{\times}. By Lemmas 5 and $6, \chi$ is the Hecke character associated to the elliptic module X^{ω}.

Corollary. For given X there exists a K-form Y of X so that all infinite places of K completely split in $K\left(Y_{\text {tors }}\right)$.

Proof. It follows from the theorem of Grunwald-Hasse-Wang (cf. [1, Chapter 10]) that there exists a continuous homomorphism $\omega: J_{K} \rightarrow \mathbf{F}_{\mathcal{q}}^{\times}$trivial on K^{\times}such that $\omega\left|K_{\infty}^{\times}=\chi_{\bar{X}}^{-1}\right| K_{\infty}^{\times}$. Let $Y=X^{\omega}$. Then we see that χ_{Y} is trivial on K_{∞}^{\times}. Hence $\rho_{Y, 1}$ are trivial on K_{∞}^{\times}for all $\mathfrak{\Upsilon}$. This proves Corollary.

Theorem 5. Let X be an elliptic A-module of rank one over K. Then there exists a K-form of X which has good reduction everywhere (i.e., at every finite place of K).

Proof. Let U_{f} be the group of idèles $x=\left(x_{v}\right)$ of K such that $x_{v} \in O_{v}^{\times}$for finite v and $x_{v}=1$ for infinite v. First, we show that the Hecke character χ_{X} associated to X is trivial on $U_{f} \cap K^{\times} J_{K}^{q-1}$. Indeed, let $u \in U_{f} \cap K^{\times} J_{K}^{q-1}$ and $u=z x^{q-1}$ where $z \in K^{\times}$and $x \in J_{K}$. For $s \in J_{K}$ and $y \in K^{\times}$, let

$$
[s, y]_{K}=\left(y^{1 /(q-1)}\right)^{[s, K]-1}
$$

be the Hilbert symbol. Since the extension $K\left(z^{1 /(q-1)}\right) / K$ is unramified everywhere and splits completely at every infinite place, we have $[s, z]_{K}=1$ for all $s \in$ $K^{\times} K_{\infty}^{\times} U_{f}$. The principal ideal theorem says that $J_{F} \subset K^{\times} K_{\infty}^{\times} U_{f}$, as K contains the Hilbert class field of A. Hence we have $\left[s, N_{K / F} z\right]_{F}=1$ for all $s \in J_{F}$. This implies that $N_{K / F} z$ is a $(q-1)$ th power in F^{\times}, hence $N_{K / F} u$ is a $(q-1)$ th power in J_{F}. We see from (R) that $\chi_{X}(u)$ is a local $(q-1)$ th power everywhere, hence in global. Consequently we have $\chi_{x}(u) \in \mathbf{F}_{q}^{\times} \cap F^{\times q-1}=\{1\}$.

Thus χ_{X} induces a character of $U_{f} /\left(U_{f} \cap K^{\times} J_{K}^{q-1}\right)$ valued in \mathbf{F}_{q}^{\times}. Since $U_{f} /$ ($U_{f} \cap K^{\times} J_{K}^{q-1}$) is a closed subgroup of a compact abelian group $J_{K} / K^{\times} J_{K}^{q-1}$ of exponent $q-1$, we can extend this character $\chi_{X} \mid U_{f}$ to a character

$$
\omega: J_{K} \longrightarrow \mathbf{F}_{q}^{\times}
$$

which is trivial on K^{\times}. Since $\chi_{X}\left|U_{f}=\omega\right| U_{f}$, the Hecke character $\psi=\omega^{-1} \cdot \chi_{X}$ is trivial on U_{f}. This shows that the K-form of X with the Hecke character ψ has good reduction everywhere,
q.e.d.

Remark. Let B be the integral closure of A in K. Hayes [5, Theorem 10.6]
proved that if F has a prime divisor of degree one, for given X, there is an elliptic module over B which is isomorphic to X over K_{s}.

References

[1] E. Artin and J. Tate, Class field theory, Benjamin, New York, 1968.
[2] A. Borel et J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. Helv., 39 (1964), 111-164.
[3] V.G. Drinfel'd, Elliptic modules (Russian), Mat. Sb., 94 (1974) ; Math. USSR-Sb., 23 (1974), 561-592.
[4] V.G. Drinfel'd, Elliptic modules II (Russian), Mat. Sb., 102 (1977) ; Math. USSRSb., 31 (1977), 159-170.
[5] D.R. Hayes, Explicit class field theory in global function fields, Studies in algebra and number theory, Advances in Math., Supplementary Studies, 6 (1980), 173-217.
[6] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., No. 5, SpringerVerlag, 1964.
[7] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517.
[8] G. Shimura, Introduction to arithmetic theory of automorphic functions, Iwanami Shoten and Princeton Univ. Press, 1971.

Toyofumi Takahashi
Department of Mathematics
College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 554020), Ministry of Education.

