Good reduction of elliptic modules

By Toyofumi TAKAHASHI

(Received Jan. 6, 1981)

In this paper we give a criterion for good reduction of elliptic modules (Theorem 1, Section 2) which is an analogue of the criterion of Néron-Ogg-Šafarevič for abelian varieties, cf. [7]. In the rest of the paper we give applications to elliptic modules of rank one over global function fields: In Section 3, the main theorem of complex multiplication of elliptic modules ([3] and [5]) is reformulated in a more relevant form to our subject (Theorem 2). Then, to each elliptic module we can associate the "Hecke character" (Theorem 3) so that the elliptic module has good reduction at a place v if and only if the Hecke character is unramified at v. In Section 4, we give a classification theorem (Theorem 4) by means of the Hecke characters. As an application, it will be shown that each rank-one elliptic module over a global function field K has a K-form which has good reduction everywhere (Theorem 5).

1. Elliptic modules.

In this section we recall briefly the basic concepts of elliptic modules. For details, see [3] and [5].

Let F be a global field of characteristic p>0, \mathbf{F}_q the finite field of constants, ∞ a fixed prime divisor and A the ring of elements of F which are integral outside ∞ . For a commutative ring K of characteristic p we let denote $K\{\phi\}$ the (non commutative) ring of polynomials in ϕ over K with the relation $\phi c = c^q \phi$ for $c \in K$. When K is an A-algebra, i. e., there is defined $i: A \to K$, the ideal Ker *i* of A is called the *divisorial characteristic* of K (notation: div char K). An elliptic A-module X over an algebra K is a ring homomorphism $f: A \to K\{\phi\}$ satisfying the following three conditions:

(a) $D \circ f = i$, where $D: K\{\phi\} \to K$ is a homomorphism defined by $D(\sum c_j \phi^j) = c_0$.

(b) The leading coefficient of f(a) is invertible in K for each nonzero element a of A.

(c) The image f(A) is not contained in K.

We write $[a]_x$, or simply a_x , for the image f(a) of $a \in A$ under f. If $a_x =$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 554020), Ministry of Education.

Τ. ΤΑΚΑΗΑSHI

 $\sum c_j \phi^j$, then $a_X(T) = \sum c_j T^{q^j}$ is an \mathbf{F}_q -linear polynomial. When K is a field, we put

$$X_{a} = \{t \in K_{s} \mid a \cdot t (= a_{X}(t)) = 0 \text{ for all } a \in \mathfrak{a}\}$$

for an ideal \mathfrak{a} of A, where K_s is the separable closure of K. Hence $X_{\mathfrak{a}}$ is the A-module of \mathfrak{a} -division points of X. If \mathfrak{a} is prime to div char K, the module $X_{\mathfrak{a}}$ is a free (A/\mathfrak{a}) -module of finite rank r. The rank r is independent of \mathfrak{a} and called the rank of X.

PROPOSITION 1 ([3]). deg $a_X(T) = |a|_{\infty}^r$ for $a \in A$.

Let X and Y be two elliptic A-modules over K. A homomorphism (over K) from X to Y is an element $\alpha \in K\{\phi\}$ such that $\alpha a_X = a_Y \alpha$ for all $a \in A$. Hence an *isomorphism* $u: X \xrightarrow{\sim} Y$ is an invertible element u of K such that $a_Y = u a_X u^{-1}$. In this case we write Y = u(X). A non zero homomorphism is called an *isogeny*.

2. Good reduction of elliptic modules.

Let K be a field, v an (additive) discrete valuation of K and O_v the valuation ring of v with a ring homomorphism i of A into O_v , that is, O_v is an Aalgebra. We denote the residue field O_v/\mathfrak{m}_v by k(v) and the residue divisorial characteristic by \mathfrak{p}_v .

Let X be an elliptic A-module over K. We say that X has integral coefficients at v if $a_X \in O_v\{\phi\}$ for all $a \in A$ and the homomorphism $a \mapsto (a_X \mod \mathfrak{m}_v)$ defines an elliptic A-module over k(v) (the reduction of X at v, notation: X(v)). We say that X has stable reduction at v if there exists an elliptic A-module $Y \cong X$ which has integral coefficients at v, and that X has good reduction at v if in addition Y is an elliptic A-module over O_v . We say that X has potential stable (resp. good) reduction at v if there exists a finite extension (L, w) of (K, v) such that X has stable (resp. good) reduction at w.

We set

$$v(\sum c_i \phi^i) = \operatorname{Min}\left\{\frac{1}{q^i - 1}v(c_i) \middle| i > 0\right\}$$

for $\sum c_i \phi^i \in K\{\phi\}$. For an element u of K^{\times} , we see that the elliptic module u(X) has integral coefficients at v if and only if

(1) $v(u) = \operatorname{Min} \{v(a_X) \mid \text{nonconstant } a \in A\}$.

Since A is a ring finitely generated over \mathbf{F}_q , the right-hand side of (1) exists always (in Q). Hence:

PROPOSITION 2 ([3]). Every elliptic A-module has potential stable reduction. More precisely, for each elliptic module X over K, there is a natural number $e_v(X)$ prime to p so that the following two properties are equivalent for a finite extension w of v;

476

(a) X has stable reduction at w.

(b) The index of ramification of w over v is divisible by $e_v(X)$.

COROLLARY. Every elliptic A-module of rank one has potential good reduction. Let i be a prime ideal of A different from \mathfrak{p}_v .

THEOREM 1. An elliptic A-module X over K has good reduction at v if and only if the Galois module $X_{1^{\infty}} = \bigcup_{n} X_{1^{n}}$ is unramified at v.

PROOF. The "only if" part is a trivial consequence from the definition of good reduction. Assume that the Galois module $X_{1^{\infty}}$ is unramified. Some power of I is principal—say $I^h = bA$. First, we show that X has stable reduction at v. Let \bar{v} be an extension of v to K_s . Since $X_b = \{t \in K_s | b_X(t) = 0\}$ is unramified, $\bar{v}(t)$ are integers for all non zero $t \in X_b$ and the maximum M of these values is equal to $-v(b_X)$. Indeed, let $b_X(T) = \sum b_j T^{q^j} = T \sum b_j T^{q^{j-1}}$. Then the maximal value M of the roots is given by the formula:

$$M = \operatorname{Max} \{ (v(b_0) - v(b_j)) / (q^j - 1) | j > 0 \}.$$

Since $i \neq \mathfrak{p}_v$, $b_0 = D(b_X)$ is a v-unit, hence $v(b_0) = 0$. By definition of $v(b_X)$, we have $M = -v(b_X)$. Especially, $v(b_X)$ must be an integer. Let (L, w) be a finite extension of (K, v) where X has stable reduction (Proposition 2). Let u be an element of L^{\times} such that u(X) has integral coefficients at w. Since the reduction of u(X) at w is an elliptic module over k(w), $ua_X u^{-1} \mod m_w$ has a positive degree as a polynomial in ϕ with coefficients in k(w) for nonconstant $a \in A$ (Proposition 1), or equivalently, $w(u) = w(a_X)$. Hence $v(a_X)$ is an integer $(=v(b_X))$ independent of a. This means that $e_v(X) = 1$ and X has stable reduction at v. Thus we may assume that X has integral coefficients at v. To prove that X has good reduction at v, it suffices to show that the leading coefficient of b_X is a v-unit. Indeed, when this is the case, the reduction of X at v has the same rank of X (Proposition 1). Assume that the leading coefficient of b_X is not a v-unit. Since the constant term b_0 ($=D(b_X)$) of b_X is a v-unit, there is an element t_1 of X_b such that

$$(2) \qquad \qquad \bar{v}(t_1) < 0$$

Next, we can find a root t_2 of the equation

$$b_{\mathbf{X}}(T) = t$$

such that $\bar{v}(t_1) < \bar{v}(t_2) < 0$. Indeed, if $\bar{v}(t) \leq \bar{v}(t_1)$ holds for each root t of the equation (3), the coefficients of $t_1^{-1}b_X t_1$ are \bar{v} -integers, hence $\bar{v}(t_1^{-1}) \leq v(b_X) = 0$. This contradicts (2). It follows from (2) that none of roots of the equation (3) is a \bar{v} -integer, hence $\bar{v}(t_2) < 0$. Similarly, we can find t_n in K_s such that

$$b_X(t_{n+1}) = t_n$$
, $\bar{v}(t_n) < \bar{v}(t_{n+1}) < 0$

for $n \ge 1$. Since t_n is contained in X_{b^n} , hence in $X_{t^{\infty}}$, the value $\bar{v}(t_n)$ is an integer for each n. This is impossible, and proves Theorem 1.

Let \bar{v} be an extension of v to K_s . We denote the inertia group of \bar{v} by $I(\bar{v})$ and the inertia field by K_v^{nr} . Let

$$\rho_{\mathfrak{l}}: \operatorname{Gal}(K_{\mathfrak{s}}/K) \longrightarrow \operatorname{Aut}_{\mathcal{A}}(X_{\mathfrak{l}^{\infty}}) \cong \operatorname{Aut}_{\mathcal{A}}(T_{\mathfrak{l}}(X))$$

denote the I-adic representation of degree r corresponding to the Galois module $X_{1^{\infty}}$ or the Tate module $T_1(X) = \text{inv} \lim X_{1^n}$.

COROLLARY 1. The elliptic A-module X has potential good reduction at v if and only if the image of the inertia group $I(\bar{v})$ by ρ_1 is finite. When this is the case, the extension $K_v^{nr}(X_{1^{\infty}})$ of K_v^{nr} is independent of \mathfrak{l} and cyclic tamely ramified of degree $e_v(X)$.

PROOF. This follows from Theorem 1 and Proposition 2.

COROLLARY 2. Suppose that X has potential good reduction at v. Let $\mathfrak{m} \neq A$ be an ideal of A prime to \mathfrak{p}_v .

(i) The extension $K_v^{nr}(X_m)$ of K_v^{nr} is independent of \mathfrak{m} and tamely ramified of degree $e_v(X)$.

(ii) The Galois module X_m is unramified if and only if X has good reduction at v.

PROOF. Let I be a prime divisor of m. The extension $K_v^{nr}(X_{1^{\infty}})$ of $K_v^{nr}(X_1)$ is tamely ramified, and its Galois group is canonically isomorphic to a subgroup of the kernel of the natural homomorphism of $\operatorname{Aut}_A(X_{1^{\infty}})$ into $\operatorname{Aut}_A(X_1)$ which is a pro-*p*-group. Therefore this extension is trivial. Since the extensions $K_v^{nr}(X_{1^{\infty}})$ $=K_v^{nr}(X_1)$ are independent of I, we have $K_v^{nr}(X_m)=K_v^{nr}(X_{1^{\infty}})$. This proves Corollary 2.

REMARK. Part (i) of Corollary 2 shows that if X has potential good reduction at v, the extensions $K(X_m)/K$ are always tamely ramified at v for all m prime to \mathfrak{p}_v . On the contrary, for an abelian variety A, the primes v at which $K(A_m)/K$ are wildly ramified play an especially nasty role, cf. [7].

LEMMA 1. Let X be an elliptic A-module over a field k, α an endomorphism of X, and $T_1(\alpha)$ the induced endomorphism of $T_1(X)$ ($1 \neq \text{div char } k$). Then the characteristic polynomial of $T_1(\alpha)$ has coefficients in A independent of 1.

PROOF. The subring $A[\alpha]$ generated by α in End(X) is a commutative ring without zero divisor, and let E be its quotient field. Since End(X) $\otimes_A F_{\infty}$ is a division ring ([3]), the prime ∞ does not split in E. Let B be the integral closure of A in E, then $A[\alpha]$ is an order of B. Hence X can be regarded as an elliptic $A[\alpha]$ -module over k. Since there exist an elliptic B-module which is isogenous to X [5, Proposition 3.2], we may assume that X is an elliptic Bmodule over k. Then the Tate module $T_1(X)$ is a free $(B \otimes_A A_1)$ -module of finite type. Therefore the I-adic representation $T_1(\alpha)$ of α is induced by the representation of $\alpha: \beta \mapsto \alpha\beta$ on B. This proves Lemma 1.

LEMMA 2. Let X be an elliptic A-module of rank r over a finite field with q^{f} elements. Then the characteristic polynomial of the i-adic representation $T_{i}(\phi^{f})$

of the Frobenius endomorphism ϕ^{f} of X has coefficients in A independent of \mathfrak{l} . The absolute values at ∞ of its roots are equal to $q^{f/r}$.

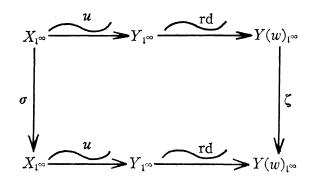
PROOF. This follows from Lemma 1 and [4, Proposition 2.1].

PROPOSITION 3. Let X be an elliptic A-module over K of rank r which has potential good reduction at v, and \mathfrak{l} a prime ideal of A different from \mathfrak{p}_{v} .

(i) For $\sigma \in I(\bar{v})$, the characteristic polynomial of $\rho_1(\sigma)$ has coefficients in \mathbf{F}_q independent of \mathfrak{l} .

(ii) Suppose that the residue field k(v) is finite, $q_v = \operatorname{Card}(k(v))$. Let σ_v be a Frobenius element in the decomposition group of \bar{v} . Then the characteristic polynomial of $\rho_1(\sigma_v)$ has coefficients in A independent of \mathfrak{l} . The absolute values at ∞ of its roots are equal to $q_v^{1/r}$.

PROOF. Let w be the restriction of \bar{v} to a Galois extension L of K of finite degree where X has good reduction. Let u be an element of L^{\times} such that Y=u(X) is an elliptic A-module over O_w . Let $\mathrm{rd}: Y \to Y(w)$ be the reduction mapping. Since $\sigma \in I(\bar{v})$, $u^{1-\sigma}$ is a w-unit and $(ux)^{\sigma} \equiv ux \mod \mathfrak{m}_{\bar{v}}$ for all $x \in X_{\mathrm{tors}}$. This shows that the following diagram is commutative:



where $\zeta = (u^{1-\sigma} \mod m_w) \in k(w)$. Since $\zeta : t \mapsto \zeta t$ induces an automorphism of the A-module $Y(w)_{1^{\infty}}, \zeta$ is an automorphism of the elliptic A-module Y(w). Assertion (i) follows from Lemma 1 and the fact that ζ is a root of unity. Since (ii) is concerned with the Frobenius automorphism, we may assume that X has good reduction at v, replacing K, if necessary, by a totally ramified extension of K of degree $e_v(X)$. Then the I-adic representation of the Frobenius automorphism σ_v is equivalent to the I-adic representation of the Frobenius endomorphism of the reduction X(v) of X at v, and the assertion follows from Lemma 2.

3. Complex multiplication.

Let C be the completion of the algebraic closure of the local field F_{∞} at ∞ . Let X be an elliptic A-module over C of rank one. We know that there is a holomorphic isomorphism $X \cong C/\Gamma$ where Γ is an A-lattice in F (= a fractional A-ideal of F). Then we notice that the torsion part $X_{\text{tors}} \cong F/\Gamma$. Conversely, given Γ , there are corresponding elliptic A-modules over C. For details, see [3] and [5].

We denote by J_F the idèle group of F and by $[s, F] \in \text{Gal}(F^{ab}/F)$ the Artin symbol for $s \in J_F$, where F^{ab} is the maximal abelian extension of F.

LEMMA 3. Let X be an elliptic A-module over a field k of rank one. Then $\operatorname{End}(X)\cong A$, hence $\operatorname{Aut}(X)\cong \mathbf{F}_{q}^{\times}$.

PROOF. This follows from the facts that A is integrally closed and that End(X) is a projective A-module whose rank is not greater than $(\operatorname{rank} X)^2$ [3, Proposition 2.4, Corollary].

LEMMA 4. Let X and Y be two elliptic A-modules over a Dedekind ring O and L be a field containing O. Then

$$\operatorname{Hom}_{L}(X, Y) \subset \operatorname{Hom}_{O_{\mathfrak{s}}}(X, Y)$$

where O_s denotes the separable closure of O.

PROOF. Let $\alpha \in \text{Hom}_L(X, Y)$ and $\alpha \neq 0$. For a nonconstant $a \in A$, let

$$a_{X} = \sum_{i=0}^{n} a_{i} \phi^{i}, \qquad a_{Y} = \sum_{i=0}^{n} b_{i} \phi^{i} \qquad (a_{i}, b_{i} \in O)$$
$$\alpha = \sum_{i=0}^{m} x_{j} \phi^{j} \qquad (x_{j} \in L)$$

and

$$\alpha = \sum_{j=0}^{m} x_j \phi^j \qquad (x_j \in L)$$

where a_n and b_n are units of O and $x_m \neq 0$. It is easily seen from $\alpha a_x = a_y \alpha$ that $b_n x_m^{q^n-1} = a_n^{q^m}$, hence $x_m \in O_s^{\times}$,

and

$$b_n x_j^{q^n} - a_n^{q^j} x_j \in O[x_{j+1}, x_{j+2}, \cdots, x_m]$$

for each $j=m-1, m-2, \dots, 0$. This shows $x_j \in O_s$ for each j, and proves Lemma 4.

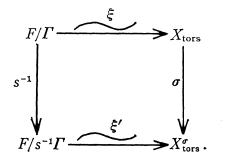
THEOREM 2. Let X be an elliptic A-module over C of rank one with an isomorphism $\xi: C/\Gamma \xrightarrow{\sim} X$. Let σ be an automorphism of C over F and s an idèle of F such that

(4)
$$\sigma | F^{ab} = [s, F].$$

Then there is an isomorphism $\xi': C/s^{-1}\Gamma \xrightarrow{\sim} X^{\sigma}$ such that

(5)
$$\hat{\xi}(z)^{\sigma} = \hat{\xi}'(s^{-1}z)$$

for every $z \in F/\Gamma$, i.e., the following diagram is commutative:



480

Moreover, ξ' is uniquely determined by the above property.

PROOF (cf. [8, p. 117]). 1) We may assume that X is an elliptic A-module over a finite Galois extension of F.

Indeed, every elliptic module of rank one over C is defined over a finite Galois extension of F [5, Proposition 8.7], and it is sufficient to prove the theorem for an elliptic module in a given C-isomorphism class of elliptic modules.

2) For each ideal $\mathfrak{m}(\neq \{0\}, A)$ of A there exists an isomorphism $\xi': C/s^{-1}\Gamma \longrightarrow X^{\sigma}$ such that (5) holds for every $z \in \mathfrak{m}^{-1}\Gamma/\Gamma$.

Indeed, let K be a finite Galois extension of F satisfying the following conditions:

(a) X and X^{σ} are elliptic modules over K and

$$\operatorname{Hom}_{K_{\mathfrak{o}}}(X, X^{\sigma}) = \operatorname{Hom}_{K}(X, X^{\sigma})$$

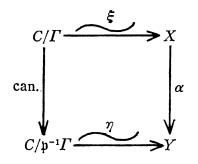
(b) K contains both X_m and the ray class field of F modulo m.

Then we can find a prime v of K lying above a prime ideal p of A so that the following conditions are satisfied:

(c) v is unramified over \mathfrak{p} and $\sigma | K$ is the Frobenius element σ_v of Gal(K/F) for v, so \mathfrak{m} is prime to \mathfrak{p} .

(d) X and X^{σ} are elliptic modules over O_{v} .

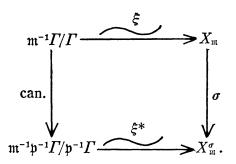
Consider a commutative diagram:



where $\alpha: X \to Y = X/X_{\mathfrak{p}} (=\mathfrak{p}*X, \text{ cf. [5]})$ is the canonical O_v -isogeny whose reduction at v is the Frobenius morphism $\phi^{\deg \mathfrak{p}}$. Then we have an isomorphism $u: Y \xrightarrow{\sim} X^{\sigma}$ [5, Theorem 8.5]. Since Y and X^{σ} have the same reduction $Y(v) = X^{\sigma}(v)$ at v, u induces an automorphism $c \ (\equiv \mathbf{F}_q^{\times})$ of $X^{\sigma}(v)$. Put $\kappa = c^{-1}u \circ \alpha$ and $\xi^* = c^{-1}u \circ \eta$. Since \mathfrak{m} is prime to \mathfrak{p} and the reduction of κ at v is the Frobenius morphism, we obtain from (6) a commutative diagram:

(6)

Τ. ΤΑΚΑΗΑSΗΙ



It follows from the assumption (4) and the condition (b) that there is an element a for F^{\times} such that $\mathfrak{p}=asA$ and $az\equiv s^{-1}z \mod s^{-1}\Gamma$ for all $z\in\mathfrak{m}^{-1}\Gamma$. Let $\xi': C/s^{-1}\Gamma$ $\xrightarrow{\sim} X^{\sigma}$ be the isomorphism defined by

$$\xi'(z) = \xi^*(a^{-1}z)$$

Then we see from (7) that (5) holds for every $z \in \mathfrak{m}^{-1}\Gamma/\Gamma$.

3) ξ' (in 2)) is uniquely determined by m, and consequently, independent of m, this proves Theorem 2. Indeed, if ξ'_1 and ξ'_2 satisfy (5) for every $z \in \mathfrak{m}^{-1}\Gamma/\Gamma$, then $c = \xi'_2 \circ \xi'_1^{-1}$ is an automorphism of X^{σ} , hence $c \in \mathbf{F}_q^{\times}$ (Lemma 3). Since $c | X_{\mathfrak{m}}^{\sigma} |$ =id., we have $c \equiv 1 \mod \mathfrak{m}$, hence c = 1 and $\xi'_1 = \xi'_2$, q. e. d.

Let K be a finite separable extension of F, and X an elliptic A-module over K of rank one. For a prime ideal I of A, since $\operatorname{Aut}_{A_{\mathrm{I}}}(T_{\mathrm{I}}(X)) \cong A_{\mathrm{I}}^{\times}$ (the I-adic units) is abelian, class field theory allows us to identify the I-adic representation ρ_{I} with a continuous homomorphism

$$\rho_{\mathfrak{l}}: J_{\mathcal{K}} \longrightarrow A_{\mathfrak{l}}^{\times} \subset F_{\mathfrak{l}}^{\times}$$

which is trivial on K^{\times} .

THEOREM 3. Notations being above, there exist two continuous homomorphisms ρ_{∞} and χ ;

the "Grössencharakter" $\rho_{\infty}: J_K \longrightarrow F_{\infty}^{\times}$

which is trivial on K^{\times} , and

the "Hecke character" $\chi: J_K \longrightarrow F^{\times}$

satisfying the following conditions:

$$(\mathbf{R})_{\mathfrak{l}} \qquad \rho_{\mathfrak{l}}(x) \cdot N_{K/F}(x)_{\mathfrak{l}} = \mathfrak{X}(x) \qquad in \quad F_{\mathfrak{l}}^{\mathfrak{l}}$$

for all $x \in J_K$, and

$$(\mathbf{R})_{\infty} \qquad \rho_{\infty}(x) \cdot N_{K/F}(x)_{\infty} = \chi(x) \qquad in \quad F_{\infty}^{\times}$$

for all $x \in J_K$. Hence the homomorphism

$$\rho = \rho_{\infty} \times \prod \rho_{\mathfrak{l}} : J_{K} \longrightarrow F_{\infty}^{\times} \times \prod A_{\mathfrak{l}}^{\times} \subset J_{F}$$

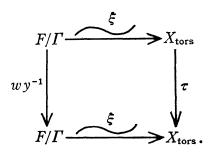
(7)

has the property:

(R)
$$\rho(x) \cdot N_{K/F}(x) = \chi(x)$$
 in J_F

for all $x \in J_K$.

PROOF. For $x \in J_K$, put $\tau = [x, K]$, $y = N_{K/F}x$ and $\chi_I(y) = \rho_I(x)y_I$. Since $\tau | F^{ab} = [y, F]$, for a given isomorphism ξ of C/Γ onto X, there exists by Theorem 2 an isomorphism ξ' of $C/y^{-1}\Gamma$ onto X^{τ} such that $\xi(z)^{\tau} = \xi'(y^{-1}z)$ for all $z \in F/\Gamma$. Since $X = X^{\tau}$, $w = \xi^{-1} \cdot \xi'$ is an isomorphism of $C/y^{-1}\Gamma$ onto C/Γ . Hence $w \in F^{\times}$ and we obtain a commutative diagram:



This shows that $\rho_{\mathfrak{l}}(x) = w y_{\mathfrak{l}}^{-1}$ for all \mathfrak{l} , and consequently $\chi_{\mathfrak{l}}(x) = w \in F^{\times}$ is independent of \mathfrak{l} . This proves $(R)_{\mathfrak{l}}$. Put $\rho_{\infty}(x) = \chi(x) \cdot N_{K/F}(x)_{\infty}^{-1}$. If $x \in K^{\times}$, we obtain by $(R)_{\mathfrak{l}}$ that $\chi(x) = N_{K/F}(x)$, hence $\rho_{\infty}(x) = \mathfrak{l}$, q. e. d.

REMARK. From (R) we have

$$N_{K/F}(J_K) \subset F^{\times} \cdot (F_{\infty}^{\times} \times \prod A_{\iota}^{\times}).$$

This means that K contains the Hilbert class field H_A of A (=the maximal abelian unramified extension of F completely split at ∞). Actually, it is well known (cf. [5]) that the smallest field of definition is H_A for any rank-one elliptic A-module over C.

Let $K_{\infty}^{\times} = (K \otimes_F F_{\infty})^{\times}$ denote the group of idèles x of K such that $x_v = 1$ for all *finite* places v (i. e., not lying above ∞) of K.

COROLLARY 1. (i) $\rho_1 | K_{\infty}^{\times} = \chi | K_{\infty}^{\times}$, and these have values in \mathbf{F}_q^{\times} .

(ii) Let v be a finite place of K lying above a prime ideal \mathfrak{p} of A and \mathfrak{l} a prime ideal of A different from \mathfrak{p} . Then

$$\rho_{\mathfrak{l}}|K_{v}^{\times}=\rho_{\infty}|K_{v}^{\times}=\mathfrak{X}|K_{v}^{\times}.$$

Hence $\rho_{\mathfrak{l}}|K_{\mathfrak{v}}^{\times}$ has values in F^{\times} independent of \mathfrak{l} .

COROLLARY 2. Let v be a finite place of K. Then the following properties are equivalent:

- (a) X has good reduction at v.
- (b) χ is unramified at v, i.e., $\chi(O_v^{\times})=1$.
- (c) ρ_{∞} is unramified at v, i.e., $\rho_{\infty}(O_v^{\times})=1$

Τ. ΤΑΚΑΗΑSΗΙ

Let v be a finite place of K where X has good reduction, ϕ_v the Frobenius endomorphism of the reduction X(v) of X at v and a_v the element of A such that $[a_v]_{X(v)} = \phi_v$. Then

COROLLARY 3. The Hecke character χ associated to X is characterized by the following three properties:

- (a) If x is principal idèle of K, $\chi(x) = N_{K/F}(x)$.
- (b) The kernel of χ is open in J_K .
- (c) If X has good reduction at v, $\chi(x_v) = a_v^{v(x_v)}$ for all $x_v \in K_v^{\times}$.

4. Classification of rank-one elliptic modules.

Let K be a finite separable extension of F including the Hilbert class field H_A of A. We know that every elliptic A-module of rank one over an extension of F is isomorphic to an elliptic A-module over H_A , hence over K. In this section, by X, Y and Z we shall always understand elliptic A-modules over K of rank one, hence, by Lemma 4, all homomorphisms are K_s -homomorphisms. By a K-form of X we mean an elliptic A-module over K which is K_s -isomorphic to X. When $X \cong C/\Gamma$, we denote by cl(X) the class of Γ in Pic(A). Then the correspondence $X \mapsto cl(X)$ gives a bijection:

 $\{K_s$ -isomorphism classes of rank-one elliptic modules $\} \longleftrightarrow \operatorname{Pic}(A)$.

A homomorphism $\chi: J_K \to F^{\times}$ is called a *Hecke character* if it satisfies the following conditions H1)-3):

- H1) $\chi | K^{\times} = N_{K/F}$.
- H2) Ker χ is open in J_K .
- H3) $\chi(K_{\infty}^{\times}) \subset \mathbf{F}_{q}^{\times}$.

The Hecke character χ_X associated to a rank-one elliptic module X over K is a Hecke character in this sense.

THEOREM 4. (i) Let c be an element of Pic(A) (the ideal class group of A) and let χ be a Hecke character of J_K into F^{\times} . Then there exists an elliptic module X over K of rank one with cl(X)=c and $\chi_X=\chi$.

(ii) The Hecke character χ_X determines the K-isogeny class of X, and the pair $(cl(X), \chi_X)$ determines the K-isomorphism class of X.

Before proving this theorem, we remark that one can apply the well known "theory of K-forms" (cf. [2], [6]) to elliptic modules: First, notice that

 $H^{1}(G, \operatorname{Aut}(X)) = H^{1}(G, \mathbf{F}_{q}^{\times}) = H^{1}(G, F^{\times})$

where $G = \text{Gal}(K_s/K)$, and that

$$H^1(G, \mathbf{F}_q^{\times}) = \operatorname{Hom}(G, \mathbf{F}_q^{\times})$$

where "Hom" means continuous homomorphisms. To each pair (X, Y) of elliptic modules, we associate $\omega_{Y/X} \in \text{Hom}(G, \mathbf{F}_q^{\times})$ as follows: Since Y is isogenous to

484

X over C, hence over K_s , there are K_s -isogenies $\alpha: X \to Y$ and $\beta: Y \to X$. For $\sigma \in G$ let a_{σ} be the element of A such that $[a_{\sigma}]_X = \beta \cdot \alpha^{\sigma}$. Then

 $\omega_{Y/X}: G \longrightarrow F^{\times}$, $\sigma \longmapsto a_1^{-1}a_{\sigma}$

defines a 1-cocycle. Hence $\omega_{Y/X}(\sigma) \in \mathbf{F}_q^{\times}$. We see that $\omega_{Y/X}$ is characterized by the following property:

(8)
$$\gamma \cdot \omega_{Y/X}(\sigma) = \gamma^{\sigma}$$
 for all $\gamma \in \operatorname{Hom}_{K_s}(X, Y)$.

Thus, $\omega_{Y/X}$ is independent of α and β . It is clear that the transitivity formula

$$(9) \qquad \qquad \omega_{Z/X} = \omega_{Z/Y} \cdot \omega_{Y/X}$$

holds.

LEMMA 5. (i) Y and Z are K-isogenous if and only if $\omega_{Y/X} = \omega_{Z/X}$. When this is the case,

$$\operatorname{Hom}_{K_{\mathfrak{s}}}(Y, Z) = \operatorname{Hom}_{K}(Y, Z)$$
.

(ii) Y and Z are K-isomorphic if and only if they are K-isogenous and K_s -isomorphic.

(iii) For given X and $\omega \in \text{Hom}(G, \mathbf{F}_q^{\times})$, there exists a unique (up to K-isomorphism) K-form Y (notation: X^{ω}) of X with $\omega_{Y/X} = \omega$.

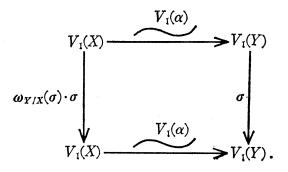
PROOF. Assertions (i) and (ii) follow immediately from (8) and (9). (iii): By "Hilbert 90" there is an element u of K_s^{\times} such that $\omega(\sigma) = u^{-1}u^{\sigma}$ for all $\sigma \in G$. Then Y = u(X) has the required property, and the uniqueness follows from (ii).

Now we prove Theorem 4. Class field theory allows us to identify the character $\omega_{Y/X}$ with a continuous homomorphism

 $\omega_{Y/X}: J_K \longrightarrow \mathbf{F}_q^{\times}$

which is trivial on K^{\times} . Assertion (ii) of Theorem 4 follows from Lemma 5 and LEMMA 6. $\chi_{Y} = \omega_{Y/X} \cdot \chi_{X}$.

PROOF. Let $V_1(X) = T_1(X) \bigotimes_{A_1} F_1$. A K_s -isogeny $\alpha : X \to Y$ induces an isomorphism $V_1(\alpha) : V_1(X) \xrightarrow{\sim} V_1(Y)$. We obtain from (8) a commutative diagram:



This diagram implies that $\omega_{Y/X} \cdot \rho_{X,I} = \rho_{Y,I}$ where $\rho_{X,I}$ and $\rho_{Y,I}$ are *I*-adic representation of the Galois group associated to X and Y, respectively. This proves Lemma 6.

PROOF OF THEOREM 4, (i). Given c and χ , let X be any elliptic module with $\operatorname{cl}(X)=c$. Put $\omega=\chi/\chi_X: J_K \to F^{\times}$. The homomorphism ω is continuous and trivial on K^{\times} . Since the idèle class group J_K^0/K^{\times} of degree zero is compact, we obtain from H3) that $\omega(K_{\infty}^{\times}J_K^0) \subset \mathbf{F}_q^{\times}$. Since $K_{\infty}^{\times}J_K^0$ has a finite index in J_K , the image $\omega(J_K)$ lies in \mathbf{F}_q^{\times} . By Lemmas 5 and 6, χ is the Hecke character associated to the elliptic module X^{ω} .

COROLLARY. For given X there exists a K-form Y of X so that all infinite places of K completely split in $K(Y_{tors})$.

PROOF. It follows from the theorem of Grunwald-Hasse-Wang (cf. [1, Chapter 10]) that there exists a continuous homomorphism $\omega: J_K \to \mathbf{F}_q^{\times}$ trivial on K^{\times} such that $\omega | K_{\infty}^{\times} = \chi_{X}^{-1} | K_{\infty}^{\times}$. Let $Y = X^{\omega}$. Then we see that χ_Y is trivial on K_{∞}^{\times} . Hence $\rho_{Y,I}$ are trivial on K_{∞}^{\times} for all \mathfrak{l} . This proves Corollary.

THEOREM 5. Let X be an elliptic A-module of rank one over K. Then there exists a K-form of X which has good reduction everywhere (i.e., at every finite place of K).

PROOF. Let U_f be the group of idèles $x=(x_v)$ of K such that $x_v \in O_v^{\times}$ for finite v and $x_v=1$ for infinite v. First, we show that the Hecke character χ_X associated to X is trivial on $U_f \cap K^{\times} J_K^{q-1}$. Indeed, let $u \in U_f \cap K^{\times} J_K^{q-1}$ and $u=zx^{q-1}$ where $z \in K^{\times}$ and $x \in J_K$. For $s \in J_K$ and $y \in K^{\times}$, let

$$[s, y]_{K} = (y^{1/(q-1)})^{[s, K]-1}$$

be the Hilbert symbol. Since the extension $K(z^{1/(q-1)})/K$ is unramified everywhere and splits completely at every infinite place, we have $[s, z]_K=1$ for all $s \in K^{\times}K_{\infty}^{\times}U_f$. The principal ideal theorem says that $J_F \subset K^{\times}K_{\infty}^{\times}U_f$, as K contains the Hilbert class field of A. Hence we have $[s, N_{K/F}z]_F=1$ for all $s \in J_F$. This implies that $N_{K/F}z$ is a (q-1)th power in F^{\times} , hence $N_{K/F}u$ is a (q-1)th power in J_F . We see from (R) that $\chi_X(u)$ is a local (q-1)th power everywhere, hence in global. Consequently we have $\chi_X(u) \in \mathbf{F}_q^{\times} \cap F^{\times q-1} = \{1\}$.

Thus χ_X induces a character of $U_f/(U_f \cap K^* J_K^{q-1})$ valued in \mathbf{F}_q^* . Since $U_f/(U_f \cap K^* J_K^{q-1})$ is a closed subgroup of a compact abelian group $J_K/K^* J_K^{q-1}$ of exponent q-1, we can extend this character $\chi_X|U_f$ to a character

$$\omega: J_K \longrightarrow \mathbf{F}_q^{\times}$$

which is trivial on K^{\times} . Since $\chi_X | U_f = \omega | U_f$, the Hecke character $\psi = \omega^{-1} \cdot \chi_X$ is trivial on U_f . This shows that the K-form of X with the Hecke character ψ has good reduction everywhere, q. e. d.

REMARK. Let B be the integral closure of A in K. Hayes [5, Theorem 10.6]

proved that if F has a prime divisor of degree one, for given X, there is an elliptic module over B which is isomorphic to X over K_s .

References

- [1] E. Artin and J. Tate, Class field theory, Benjamin, New York, 1968.
- [2] A. Borel et J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. Helv., 39 (1964), 111-164.
- [3] V.G. Drinfel'd, Elliptic modules (Russian), Mat. Sb., 94 (1974); Math. USSR-Sb., 23 (1974), 561-592.
- [4] V.G. Drinfel'd, Elliptic modules II (Russian), Mat. Sb., 102 (1977); Math. USSR-Sb., 31 (1977), 159-170.
- [5] D.R. Hayes, Explicit class field theory in global function fields, Studies in algebra and number theory, Advances in Math., Supplementary Studies, 6 (1980), 173-217.
- [6] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., No. 5, Springer-Verlag, 1964.
- [7] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517.
- [8] G. Shimura, Introduction to arithmetic theory of automorphic functions, Iwanami Shoten and Princeton Univ. Press, 1971.

Toyofumi TAKAHASHI

Department of Mathematics College of General Education Tôhoku University Kawauchi, Sendai 980 Japan