Equivariant embeddings and isotopies of a sphere in a representation

Dedicated to Professor Kentaro Murata on his 60 th birthday

By Katsuhiro Komiya

(Received Nov. 11, 1980)

§ 1. Introduction and statement of results.

Let G be a finite group. Let M, N be smooth (i. e., infinitely differentiable) G-manifolds, and R the real line with trivial G-action. A level preserving smooth G-embedding

$$
H: M \times R \longrightarrow N \times R
$$

defines smooth G-embeddings H_{t} of M in N, for all $t \in R$, by the relation

$$
H(x, t)=\left(H_{t}(x), t\right) \quad \text { for any } \quad x \in M .
$$

Let $f, g: M \rightarrow N$ be smooth G-embeddings. If, for some $a<b$,

$$
\begin{array}{ll}
H_{t}=f & \text { for any } t \leqq a, \\
H_{t}=g & \text { for any } t \geqq b,
\end{array}
$$

then H is called a smooth G-isotopy between f and g, and f, g are called to be G-isotopic. The isotopy class [f] is the set of all smooth G-embeddings which are G-isotopic to f. Denote by $\operatorname{Iso}^{a}(M, N)$ the set of all isotopy classes of smooth G-embeddings of M in N.

Let U be a finite dimensional representation of $G . S(U)$ denotes the unit sphere in U with respect to some G-invariant inner product. Then $S(U)$ is a smooth G-manifold. The purpose of this paper is to enumerate $\operatorname{Iso}^{G}(S(U), V)$ for finite dimensional representations U, V of G. In this paper we restrict ourselves to the case
(C)

$$
0<\operatorname{dim} U^{a}<\operatorname{dim} U,
$$

where U^{G} is the fixed point set in U by the G-action. All representations considered are real representations, and dim denotes the real dimension.

[^0]Let $\operatorname{Hom}^{G}(U, V)$ be the set of all G-equivariant R-linear homomorphisms from U to V. This is a vector space over R. Let $\left\{W_{j} \mid j \in J(G)\right\}$ be a complete set of nontrivial, nonisomorphic, irreducible representations of G. Define

$$
J(G ; U)=\left\{j \in J(G) \mid \operatorname{dim} \operatorname{Hom}^{G}\left(W_{j}, U\right) \neq 0\right\} .
$$

Then positive integers m_{j} for all $j \in J(G ; U)$ are defined by splitting U into

$$
U=U^{G} \oplus \oplus_{j \in J(G ; U)} m_{j} W_{j},
$$

where $m_{j} W_{j}$ is the direct sum of m_{j} copies of W_{j}. Similarly positive integers n_{j} for all $j \in J(G ; V)$ are defined by splitting V into

$$
V=V^{G} \oplus \oplus_{j \in J(G ; V)} n_{j} W_{j} .
$$

For the case (C), there is a smooth G-embedding of $S(U)$ in V if and only if U is a subrepresentation of V. For such representations U, V we see that

$$
\begin{aligned}
& J(G ; U) \subset J(G ; V), \\
& m_{j} \leqq n_{j} \quad \text { for any } \quad j \in J(G ; U) .
\end{aligned}
$$

Define

$$
\begin{aligned}
& \nu\left(S\left(U^{G}\right)\right)=\left(\tau(S(U)) \mid S\left(U^{G}\right)\right) / \tau\left(S\left(U^{G}\right)\right), \\
& \nu\left(V^{G}\right)=\left(\tau(V) \mid V^{G}\right) / \tau\left(V^{G}\right),
\end{aligned}
$$

the normal bundles of $S\left(U^{G}\right)$ in $S(U)$ and of V^{G} in V, respectively. Then there are smooth G-vector bundle isomorphisms

$$
\begin{aligned}
& \Psi^{U}: \nu\left(S\left(U^{G}\right)\right) \cong S\left(U^{G}\right) \times \oplus_{j \in J(G ; U)} m_{j} W_{j}, \\
& \Psi^{V}: \nu\left(V^{G}\right) \cong V^{G} \times \oplus_{j \in(G ; V)} n_{j} W_{j} .
\end{aligned}
$$

Let $f: S(U) \rightarrow V$ be a smooth G-embedding, and $d f: \tau(S(U)) \rightarrow \tau(V)$ the differential of f. Since $(d f)^{-1}\left(\tau\left(V^{G}\right)\right)=\tau\left(S\left(U^{G}\right)\right), d f$ induces a smooth G-vector bundle embedding $d f: \nu\left(S\left(U^{G}\right)\right) \rightarrow \nu\left(V^{G}\right)$. A map

$$
\Phi(f): S\left(U^{G}\right) \longrightarrow \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \oplus_{j \in J(G ; V)} n_{j} W_{j}\right)
$$

is defined by the relation

$$
\Psi^{V} \circ d f_{\circ}\left(\Psi^{U}\right)^{-1}(x, w)=(f(x), \Phi(f)(x)(w))
$$

for $x \in S\left(U^{G}\right)$ and $w \in \bigoplus_{j \in J(G ; U)} m_{j} W_{j}$, where $\operatorname{Mon}^{G}(-,-)$ denotes the subspace of $\operatorname{Hom}^{G}(-,-)$ consisting of all G-equivariant R-linear monomorphisms. If f and g are G-isotopic smooth G-embeddings of $S(U)$ in $V, \Phi(f)$ and $\Phi(g)$ are homotopic. Thus the transformation

$$
\Phi: \mathrm{Iso}^{G}(S(U), V) \longrightarrow\left[S\left(U^{G}\right), \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \oplus_{j \in J(G ; V)} n_{j} W_{j}\right)\right]
$$

is defined, where $[-,-]$ denotes the homotopy set.
For any $j \in J(G)$, define $d_{j}=\operatorname{dim} \operatorname{Hom}^{G}\left(W_{j}, W_{j}\right)$. Then $d_{j}=2$ if W_{j} is the real restriction of a complex representation, $d_{j}=4$ if W_{j} is the real restriction of a quaternionic representation, and $d_{j}=1$ for other W_{j}. Let F_{j} be the real numbers R if $d_{j}=1$, the complex numbers C if $d_{j}=2$, and the quaternionic numbers Q if $d_{j}=4$.

For positive integers $m \leqq n$, consider the vector space $n F_{j}$ over F_{j} and an ordered $m F_{j}$-linearly independent vectors $\left\{v_{1}, \cdots, v_{m}\right\}$ in $n F_{j}$. Such $\left\{v_{1}, \cdots, v_{m}\right\}$ is called an m-frame in $n F_{j}$. Denote by $V\left(m, n ; F_{j}\right)$ the space of all m-frames in $n F_{j}$. $V\left(m, n ; F_{j}\right)$ is identified with $G L\left(n ; F_{j}\right) / G L\left(n-m ; F_{j}\right)$, and is called the open Stiefel manifold. The closed Stiefel manifold consists of all orthonormal m-frames in $n F_{j}$, and is identified with $O(n) / O(n-m), U(n) / U(n-m)$ or $S p(n) /$ $S p(n-m) . V\left(m, n ; F_{j}\right)$ is $\left(d_{j}(n-m+1)-2\right)$-connected, since the closed Stiefel manifold is a deformation retract of the open Stiefel manifold.

Since W_{j} is the real restriction of a representation over F_{j}, the scalar multiplication gives an isomorphism

$$
\operatorname{Hom}^{a}\left(W_{j}, W_{j}\right) \cong F_{j} .
$$

Thus we see that $\operatorname{Mon}^{G}\left(m_{j} W_{j}, n_{j} W_{j}\right)$ and $V\left(m_{j}, n_{j} ; F_{j}\right)$ are identified. By Schur's lemma

$$
\operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \oplus_{j \in J(G ; V)} n_{j} W_{j}\right) \approx \prod_{j \in J(G ; U)} \operatorname{Mon}^{G}\left(m_{j} W_{j}, n_{j} W_{j}\right) .
$$

Thus Φ gives a transformation

$$
\tilde{\Phi}: \mathrm{Is}^{G}(S(U), V) \longrightarrow \Pi_{j \in J(G ; U)}\left[S\left(U^{G}\right), V\left(m_{j}, n_{j} ; F_{j}\right)\right]
$$

We obtain
Theorem 1. Let V be a finite dimensional representation of a finite group G, and let U be a subrepresentation of V with $0<\operatorname{dim} U^{G}<\operatorname{dim} U$. Suppose the G-action on V is semifree. Then
(1) $\tilde{\Phi}$ is surjective, if
$\operatorname{dim} U+\max \left\{\operatorname{dim} U-1, \operatorname{dim} V^{G}\right\} \leqq \operatorname{dim} V$,
(2) $\tilde{\Phi}$ is bijective, if
$3 \operatorname{dim} U^{G}<2 \operatorname{dim} V^{G}$, and
$\operatorname{dim} U+\max \left\{\operatorname{dim} U-1, \operatorname{dim} V^{G}\right\}<\operatorname{dim} V$.
Now let G be the cyclic group of prime power order p^{r}. For each integer s with $0 \leqq s \leqq r, G$ has just one subgroup $H(s)$ of order p^{s} such that

$$
\{1\}=H(0) \subset H(1) \subset \cdots \subset H(r)=G .
$$

For each s let $\left\{W_{j} \mid j \in J(H(s))\right\}$ be a complete set of nontrivial, nonisomorphic, irreducible representations of $H(s)$. Let U, V be finite dimensional representa-
tions of G. By restricting the G-actions on U, V to $H(s)$-actions, we consider U, V as representations of $H(s)$. As before, define

$$
J(H(s) ; U)=\left\{j \in J(H(s)) \mid \operatorname{dim} \operatorname{Hom}^{H(s)}\left(W_{j}, U\right) \neq 0\right\},
$$

and define positive integers m_{j} for all $j \in J(H(s) ; U)$ by the relation

$$
U=U^{H(s)} \oplus \oplus_{j \in J(H(s) ; U)} m_{j} W_{j} .
$$

Similarly positive integers n_{j} for all $j \in J(H(s) ; V)$ are defined by the relation

$$
V=V^{H(s)} \oplus \oplus_{j \in J(H(s) ; V)} n_{j} W_{j} .
$$

Also define $d_{j}=\operatorname{dim} \operatorname{Hom}^{H(s)}\left(W_{j}, W_{j}\right)$ for any $j \in J(H(s))$.
We obtain
Theorem 2. Let G be the cyclic group of prime power order p^{r}. Let V be a finite dimensional representation of G, and U a subrepresentation of V with $0<\operatorname{dim} U^{G}<\operatorname{dim} U$. Then
(1) $\tilde{\Phi}$ is surjective, if
$\operatorname{dim} U^{H(s)}+\max \left\{\operatorname{dim} U^{H(s)}-1, \operatorname{dim} V^{H(s+1)}\right\} \leqq \operatorname{dim} V^{H(s)}$ for any s with $0 \leqq s<r$, and
$\operatorname{dim} U^{H(s)} \leqq d_{j}\left(n_{j}-m_{j}+1\right)$ for any $j \in J(H(s) ; U)$ and any s with $0<s<r$,
(2) $\widetilde{\Phi}$ is bijective, if
$3 \operatorname{dim} U^{G}<2 \operatorname{dim} V^{G}$,
$\operatorname{dim} U^{H(s)}+\max \left\{\operatorname{dim} U^{H(s)}-1, \operatorname{dim} V^{H(s+1)}\right\}<\operatorname{dim} V^{H(s)}$ for any s with $0 \leqq s<r$, and
$\operatorname{dim} U^{H(s)}<d_{j}\left(n_{j}-m_{j}+1\right)$ for any $j \in J(H(s) ; U)$ and any s with $0<s<r$.
In $\S 2$ we provide some lemmas for the proofs of our theorems. We prove the surjectivity of $\tilde{\Phi}$ in $\S 3$, and the injectivity of $\tilde{\Phi}$ in $\S 4$.

Note. K. Abe [1] studied $\mathrm{Iso}^{\epsilon}(S(U), S(V))$, and obtained the triviality and the infiniteness of the set for very restricted U, V. Since the one-point compactification S^{V} of V is identified with $S(R \oplus V)$, there is a bijective transformation

$$
\mathrm{Iso}^{G}(S(U), V) \approx \mathrm{Iso}^{G}(S(U), S(R \oplus V)),
$$

if " $\operatorname{dim} U^{G}<\operatorname{dim} V^{G}$. Thus Iso ${ }^{G}(S(U), S(R \oplus V))$ is enumerated from our theorems. Theorem A and Theorem B (2) in [1] are corollaries of our Theorem 1.

§ 2. Lemmas.

In this section we provide four lemmas. Lemma 3 and Lemma 4 are fundamental facts in differential topology.

Lemma 3. Let M, N be smooth manifolds with boundary, and M compact. Let $f: M \rightarrow N$ be a continuous map such that (1) $f^{-1}(\partial N)=\partial M$, and (2) f is a
smooth embedding on some neighborhood of ∂M in M. If

$$
2 \operatorname{dim} M+1 \leqq \operatorname{dim} N,
$$

then there is a smooth embedding $g: M \rightarrow N$ such that (1) $g=f$ on some neighborhood of ∂M in M, and (2) $g \simeq f$ relative to the neighborhood of ∂M in M.

Lemma 4. Let M, N be smooth manifolds with boundary, and M compact. Let $f, g: M \rightarrow N$ be smooth embeddings, and $H: M \times R \rightarrow N \times R$ a level preserving continuous map such that
(1) $H_{t}=f$ for $t \leqq-1$, $H_{t}=g$ for $t \geqq 1$,
(2) $H^{-1}(\partial N \times R)=\partial M \times R$,
(3) H is a smooth embedding on some neighborhood of $\partial M \times R$ in $M \times R$. If

$$
2 \operatorname{dim} M+2 \leqq \operatorname{dim} N
$$

then, for any $\lambda>1$, there is a smooth isotopy $K: M \times R \rightarrow N \times R$ such that
(1) $K_{t}=f$ for $t \leqq-\lambda$,
$K_{t}=g$ for $t \geqq \lambda$,
(2) $K=H$ on some neighborhood of $\partial M \times R$ in $M \times R$.

Lemma 5. Let G be a finite group. Let M be a compact smooth free G manifold with boundary, and $N a(\operatorname{dim} M-1)$-connected smooth G-manifold with boundary. If fis a smooth G-map from a G-invariant neighborhood of ∂M in M to N, then there is a smooth G-map $g: M \rightarrow N$ such that $g=f$ on some neighborhood of ∂M in M.

Proof. Consider the smooth fibre bundle $M \times{ }_{G} N \rightarrow M / G$ with fibre N. The smooth cross sections $s: M / G \rightarrow M \times{ }_{G} N$ and the smooth G-maps $h: M \rightarrow N$ are in bijective correspondence by the relation

$$
s([x])=[x, h(x)] \quad \text { for any } \quad x \in M .
$$

Let A be a G-invariant open neighborhood of ∂M in M where f is defined. Let $s^{(1)}: A / G \rightarrow A \times{ }_{G} N$ be the smooth cross section corresponding to f. By the assumption that the fibre N is ($\operatorname{dim} M-1$)-connected and by the differentiable approximation theorem [4; 6.7], we obtain a smooth cross section $s^{(2)}: M / G \rightarrow$ $M \times{ }_{G} N$ such that $s^{(2)}=s^{(1)}$ on a neighborhood of $\partial M / G$ in M / G. Let $g: M \rightarrow N$ be the smooth G-map corresponding to $s^{(2)}$. Then $g=f$ on a neighborhood of ∂M in M.
Q.E.D.

Lemma 6. Let H be a subgroup of a finite group G. Let M, N be smooth G-manifolds with boundary, and M compact. Let $f: A \rightarrow N$ be a smooth G-embedding with $f(\partial M) \subset \partial N$, where A is a G-invariant open neighborhood of ∂M in M. Suppose that $d f: \nu\left(M^{H}\right) \mid A^{H} \rightarrow \nu\left(N^{H}\right)$ extends to a smooth G-vector bundle embedding
$\zeta: \nu\left(M^{H}\right) \rightarrow \nu\left(N^{H}\right)$. Then there are a G-invariant tubular neighborhood T of M^{H} in M and a smooth G-embedding $g: T \rightarrow N$ such that
(1) $g=f$ on $T \cap B$, where B is some neighborhood of ∂M in M, and
(2) $d g=\zeta: \nu\left(M^{H}\right) \longrightarrow \nu\left(N^{H}\right)$.

Proof. Give a G-invariant smooth Riemannian metric \langle,\rangle_{1} on the tangent bundle $\tau(M)$ of M, and let $\nu^{1}\left(M^{H}\right)$ be the orthogonal complement of $\tau\left(M^{H}\right)$ in $\tau(M) \mid M^{H}$ with respect to the metric \langle,\rangle_{1}. Let

$$
p_{M}: \tau(M) \mid M^{H} \longrightarrow\left(\tau(M) \mid M^{H}\right) / \tau\left(M^{H}\right)=\nu\left(M^{H}\right)
$$

be the projection. Then

$$
p_{M}^{\prime}=p_{M} \mid \nu^{1}\left(M^{H}\right): \nu^{1}\left(M^{H}\right) \longrightarrow \nu\left(M^{H}\right)
$$

is a smooth G-vector bundle isomorphism. We can give $\tau(N)$ a G-invariant smooth Riemannian metric \langle,\rangle_{2} such that

$$
d f\left(\nu^{1}\left(M^{H}\right) \mid \tilde{A}^{H}\right) \subset \nu^{2}\left(N^{H}\right),
$$

where \tilde{A} is a neighborhood, contained in A, of ∂M in M, and where $\nu^{2}\left(N^{H}\right)$ is the orthogonal complement of $\tau\left(N^{H}\right)$ in $\tau(N) \mid N^{H}$ with respect to the metric \langle,\rangle_{2}. Let

$$
p_{N}^{\prime}=p_{N} \mid \nu^{2}\left(N^{H}\right): \nu^{2}\left(N^{H}\right) \longrightarrow \nu\left(N^{H}\right)
$$

be the smooth G-vector bundle isomorphism which is the restriction of the projection

$$
p_{N}: \tau(N) \mid N^{H} \longrightarrow\left(\tau(N) \mid N^{H}\right) / \tau\left(N^{H}\right)=\nu\left(N^{H}\right) .
$$

For small $\varepsilon, \delta>0$, define

$$
\begin{aligned}
& \nu_{\varepsilon}^{1}\left(M^{H}\right)=\left\{v \in \nu^{1}\left(M^{H}\right) \mid\langle v, v\rangle_{1} \leqq \varepsilon^{2}\right\}, \\
& \nu_{\delta}^{2}\left(N^{H}\right)=\left\{v \in \nu^{2}\left(N^{H}\right) \mid\langle v, v\rangle_{2} \leqq \delta^{2}\right\} .
\end{aligned}
$$

There are the exponential maps

$$
\begin{aligned}
& \exp : \nu_{\varepsilon}^{1}\left(M^{H}\right) \longrightarrow M \\
& \exp : \nu_{\delta}^{2}\left(N^{H}\right) \longrightarrow N
\end{aligned}
$$

These exponential maps are smooth G-embeddings onto tubular neighborhoods of M^{H}, N^{H} in M, N, respectively. The sequence of smooth G-embeddings

$$
M \stackrel{\exp }{\longleftarrow} \nu_{\delta}^{1}\left(M^{H}\right) \xrightarrow{p_{M}^{\prime}} \nu\left(M^{H}\right) \xrightarrow{\zeta} \nu\left(N^{H}\right) \stackrel{p_{N}^{\prime}}{\longleftrightarrow} \nu_{\delta}^{2}\left(N^{H}\right) \xrightarrow{\exp } N
$$

gives a desired smooth G-embedding $g: T \rightarrow N$.
Q.E.D.

§ 3. Surjectivity of $\tilde{\Phi}$.

[I] Proof of the surjectivity of $\tilde{\Phi}$ for Theorem 1. Let U, V be such representations of G as in Theorem 1. Let

$$
[g] \in\left[S\left(U^{G}\right), \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \oplus_{j \in J(G ; V)} n_{j} W_{j}\right)\right]
$$

be an arbitrary class, whose representative g can be taken to be a smooth map. To prove the surjectivity of $\tilde{\Phi}$ it suffices to show that there exists a smooth G-embedding $f: S(U) \rightarrow V$ with $\Phi(f)=g$.

Since U^{G} is a subspace of V^{G}, there is a smooth embedding $\iota: S\left(U^{G}\right) \rightarrow V^{G}$. Define

$$
h: S\left(U^{G}\right) \times \oplus_{j \in J(G ; U)} m_{j} W_{j} \longrightarrow V^{G} \times \oplus_{j \in J(G ; V)} n_{j} W_{j}
$$

by, for $x \in S\left(U^{G}\right)$ and $w \in \oplus_{j \in J(G ; U)} m_{j} W_{j}$,

$$
h(x, w)=(\iota(x), g(x)(w)) .
$$

Then h is a smooth embedding. By Lemma 6 the smooth G-vector bundle embedding

$$
\left(\Psi^{V}\right)^{-1} \circ h \circ \Psi^{U}: \nu\left(S\left(U^{G}\right)\right) \longrightarrow \nu\left(V^{G}\right)
$$

induces a smooth G-embedding

$$
f^{(1)}: T_{\varepsilon}\left(S\left(U^{G}\right)\right) \longrightarrow V
$$

with $d f^{(1)}=\left(\Psi^{V}\right)^{-1} \circ h \circ \Psi^{U}$, where $T_{\varepsilon}\left(S\left(U^{G}\right)\right)$ is a G-invariant closed tubular neighborhood of $S\left(U^{G}\right)$ in $S(U)$ with radius $\varepsilon>0$. Let $T_{\dot{\delta}}\left(V^{G}\right)$ be a G-invariant closed tubular neighborhood of V^{G} in V with radius $\delta>0$. Take δ such as

$$
\operatorname{Int} T_{\epsilon}\left(S\left(U^{G}\right)\right) \supset\left(f^{(1)}\right)^{-1}\left(T_{\delta}\left(V^{G}\right)\right)
$$

The boundary of $T_{\dot{\delta}}\left(V^{G}\right)$ and the image of $f^{(1)}$ intersect transversally, as we see in the proof of Lemma 6. Therefore

$$
M=S(U)-\operatorname{Int}\left(f^{(1)}\right)^{-1}\left(T_{\delta}\left(V^{G}\right)\right)
$$

is a smooth free G-manifold with boundary. Also

$$
N=V-\operatorname{Int} T_{\dot{\delta}}\left(V^{G}\right)
$$

is a smooth free G-manifold with boundary. N has the same homotopy type as the $\left(\operatorname{dim} V-\operatorname{dim} V^{G}-1\right)$-dimensional sphere. By the assumption

$$
\operatorname{dim} U+\operatorname{dim} V^{G} \leqq \operatorname{dim} V,
$$

we see that N is ($\operatorname{dim} M-1$)-connected. By Lemma 5 we obtain a G-map $f^{(2)}: M \rightarrow N$ which coincides with $f^{(1)}$ on some neighborhood of ∂M in M. Mak-
ing use of collars of ∂M and ∂N, we may take $f^{(2)}$ such as $\left(f^{(2)}\right)^{-1}(\partial N)=\partial M$. Passing to the orbit spaces, we obtain the map

$$
f^{(2)} / G: M / G \longrightarrow N / G
$$

which coincides with the smooth embedding $f^{(1)} / G$ on a neighborhood of $\partial M / G$ in M / G. The assumption $2 \operatorname{dim} U-1 \leqq \operatorname{dim} V$ implies

$$
2 \operatorname{dim} M / G+1 \leqq \operatorname{dim} N / G
$$

Thus, by Lemma 3, we obtain a smooth embedding

$$
f^{(3)}: M / G \longrightarrow N / G
$$

such that
(1) $f^{(3)}=f^{(1)} / G$ on a neighborhood of $\partial M / G$ in M / G, and
(2) $f^{(3)} \simeq f^{(2)} / G$ relative to the neighborhood.

By the covering homotopy property for $M \rightarrow M / G$ and $N \rightarrow N / G, f^{(3)}$ induces a smooth G-embedding $f^{(4)}: M \rightarrow N$ which coincides with $f^{(1)}$ on a neighborhood of ∂M in M. Pasting $f^{(1)}$ and $f^{(4)}$, we obtain a smooth G-embedding $f: S(U) \rightarrow V$ with

$$
\tilde{d} f=d f^{(1)}=\left(\Psi^{V}\right)^{-1} \circ h \circ \Psi^{U} .
$$

This implies $\Phi(f)=g$, and completes the proof of surjectivity of $\tilde{\Phi}$ for Theorem 1.
[II] Proof of the surjectivity of $\tilde{\Phi}$ for Theorem 2, Let G, U, V be as in Theorem 2, Let

$$
[g] \in\left[S\left(U^{G}\right), \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \oplus_{j \in J(G ; V)} n_{j} W_{j}\right)\right]
$$

be an arbitrary class, whose representative g can be taken to be a smooth map. It suffices to show that there exists a smooth G-embedding $f: S(U) \rightarrow V$ with $\Phi(f)=g$.

Let $\iota: S\left(U^{G}\right) \rightarrow V^{G}$ be a smooth embedding, and define a smooth G-embedding

$$
h: S\left(U^{G}\right) \times \oplus_{j \in J(G ; U)} m_{j} W_{j} \longrightarrow V^{G} \times \oplus_{j \in J(G ; V)} n_{j} W_{j}
$$

by, for $x \in S\left(U^{G}\right)$ and $w \in \bigoplus_{j \in J(G ; U)} m_{j} W_{j}$,

$$
h(x, w)=(\iota(x), g(x)(w)) .
$$

As in the proof of surjectivity for Theorem 1, we obtain a smooth G-embedding $\tilde{f}: T\left(S\left(U^{G}\right)\right) \rightarrow V$ with $\tilde{d} \tilde{f}=\left(\Psi^{V}\right)^{-1} \circ h \circ \Psi^{U}$, where $T\left(S\left(U^{G}\right)\right)$ is a G-invariant closed tubular neighborhood of $S\left(U^{G}\right)$ in $S(U)$.

Consider the following assertion $\mathcal{A}(s)$ for any s with $0 \leqq s \leqq r$:
$\mathcal{A}(s)$. There exist a G-invariant compact smooth submanifold M_{s} of $S(U)$ and a smooth G-embedding $f^{(s)}: M_{s} \rightarrow V$ such that
(1) $\operatorname{dim} M_{s}=\operatorname{dim} S(U)$,
(2) Int $M_{s} \supset S\left(U^{H(s)}\right)$, and
(3) $f^{(s)}=\tilde{f}$ on some neighborhood of $S\left(U^{G}\right)$ in $S(U)$.

In the assertion $\mathcal{A}(0), M_{0}$ must be $S(U)$, and $f^{(0)}$ is the required embedding. We can prove all $\mathcal{A}(s)$ by induction descending on s. First $\mathcal{A}(r)$ is insured by the smooth G-embedding $\tilde{f}: T\left(S\left(U^{G}\right)\right) \rightarrow V$. Assuming $\mathcal{A}(s+1)$ for $0 \leqq s<r$, we will prove $\mathcal{A}(s)$.

Take a G-invariant closed tubular neighborhood $T\left(V^{H(s+1)}\right)$ of $V^{H(s+1)}$ in V such as

$$
\operatorname{Int} M_{s+1} \supset\left(f^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right)\right) .
$$

If the radius of $T\left(V^{H(s+1)}\right)$ is appropriately small, then

$$
L=S(U)-\operatorname{Int}\left(f^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right)\right)
$$

is a smooth G-manifold with boundary. Also

$$
N=V-\operatorname{Int} T\left(V^{H(s+1)}\right)
$$

is a smooth G-manifold with boundary. $f^{(s+1)}$ is defined on a G-invariant open neighborhood of ∂L in L. Let A be such a neighborhood.

We split U and V as representations of $H(s)$ into

$$
U=U^{H(s)} \oplus U_{1}, \quad V=V^{H(s)} \oplus V_{1},
$$

where

$$
\begin{aligned}
& U_{1}=\bigoplus_{j \in J(H(s) ; U)} m_{j} W_{j}, \\
& V_{1}=\bigoplus_{j \in J(H(s) ; V)} n_{j} W_{j} .
\end{aligned}
$$

We may consider U_{1} and V_{1} as G-invariant subspaces of U and V, respectively. Let $\nu\left(L^{H(s)}\right), \nu\left(N^{H(s)}\right)$ be the normal bundles of $L^{H(s)}, N^{H(s)}$ in L, N, respectively. Then there are smooth G-vector bundle isomorphisms

$$
\begin{aligned}
& \alpha: \nu\left(L^{H(s)}\right) \cong L^{H(s)} \times U_{1}, \\
& \beta: \nu\left(N^{H(s)}\right) \cong N^{H(s)} \times V_{1} .
\end{aligned}
$$

Since $A^{H(s)}=A \cap L^{H(s)}$,

$$
d f^{(s+1)}: \nu\left(L^{H(s)}\right) \mid A^{H(s)} \longrightarrow \nu\left(N^{H(s)}\right)
$$

is defined. $\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)$ admits the smooth G-action such that $H(s)$ acts trivially on it. Define a smooth G-map

$$
k^{(1)}: A^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)
$$

by, for $x \in A^{H(s)}$ and $u \in U_{1}$,

$$
\beta \circ d f^{(s+1)} \circ \alpha^{-1}(x, u)=\left(f^{(s+1)}(x), k^{(1)}(x)(u)\right) .
$$

As in $\S 1$ we see

$$
\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right) \approx \Pi_{j \in J(H(s) ; U)} V\left(m_{j}, n_{j} ; F_{j}\right) .
$$

The assumption

$$
\operatorname{dim} U^{H(s)} \leqq d_{j}\left(n_{j}-m_{j}+1\right)
$$

implies that $\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)$ is ($\left.\operatorname{dim} L^{H(s)}-1\right)$-connected. We may consider $L^{H(s)}$ and $\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)$ as $G / H(s)$-manifolds, and $k^{(1)}$ as a $G / H(s)$-map. Then the $G / H(s)$-action on $L^{H(s)}$ is free. Thus, by Lemma 5, we obtain a smooth $G / H(s)$ map

$$
k^{(2)}: L^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)
$$

which coincides with $k^{(1)}$ on a neighborhood of $\partial L^{H(s)}$ in $L^{H(s)}$. We reconsider $k^{(2)}$ as a smooth G-map.

Since $N^{H(s)}=V^{H(s)}-\operatorname{Int} T\left(V^{H(s+1)}\right)^{H(s)}$, and $T\left(V^{H(s+1)}\right)^{H(s)}$ is a tubular neighborhood of $V^{H(s+1)}$ in $V^{H(s)}$, then $N^{H(s)}$ has the same homotopy type as the ($\operatorname{dim} V^{H(s)}-\operatorname{dim} V^{H(s+1)}-1$)-dimensional sphere. Thus the assumption

$$
\operatorname{dim} U^{H(s)}+\operatorname{dim} V^{H(s+1)} \leqq \operatorname{dim} V^{H(s)}
$$

implies that $N^{H(s)}$ is $\left(\operatorname{dim} L^{H(s)}-1\right)$-connected. So, by Lemma 5, we obtain a G-map

$$
k^{(3)}: L^{H(s)} \longrightarrow N^{H(s)}
$$

which coincides with $f^{(s+1)}$ on a neighborhood of $\partial L^{H(s)}$. Making use of collars of $\partial L^{H(s)}$ and $\partial N^{H(s)}$, we may take $k^{(3)}$ such as $\left(k^{(3)}\right)^{-1}\left(\partial N^{H(s)}\right)=\partial L^{H(s)}$. Passing to the orbit spaces, we obtain the map

$$
k^{(s)} / G: L^{H(s)} / G \longrightarrow N^{H(s)} / G
$$

which coincides with the smooth embedding $f^{(s+1)} / G$ on a neighborhood of $\partial L^{H(s)} / G$. The assumption

$$
2 \operatorname{dim} U^{H(s)}-1 \leqq \operatorname{dim} V^{H(s)}
$$

implies

$$
2 \operatorname{dim} L^{H(s)} / G+1 \leqq \operatorname{dim} N^{H(s)} / G .
$$

Thus we can apply Lemma 3 to $k^{(3)} / G$, and obtain a smooth embedding

$$
k^{(4)}: L^{H(s)} / G \longrightarrow N^{H(s)} / G
$$

such that
(1) $k^{(4)}=f^{(s+1)} / G$ on a neighborhood of $\partial L^{H(s)} / G$, and
(2) $k^{(4)} \simeq k^{(3)} / G$ relative to the neighborhood of $\partial L^{H(s)} / G$.

By the covering homotopy property for $L^{H(s)} \rightarrow L^{H(s)} / G$ and $N^{H(s)} \rightarrow N^{H(s)} / G$, $k^{(4)}$ induces a smooth G-embedding

$$
k^{(5)}: L^{H(s)} \longrightarrow N^{H(s)}
$$

which coincides with $f^{(s+1)}$ on a neighborhood of $\partial L^{H(s)}$.
Define

$$
k^{(6)}: L^{H(s)} \times U_{1} \longrightarrow N^{H(s)} \times V_{1}
$$

by, for $x \in L^{H(s)}$ and $u \in U_{1}$,

$$
k^{(6)}(x, u)=\left(k^{(5)}(x), k^{(2)}(x)(u)\right) .
$$

This is a smooth G-embedding. Consider the smooth G-vector bundle embedding

$$
\beta^{-1} \circ k^{(6)} \circ \alpha: \nu\left(L^{H(s)}\right) \longrightarrow \nu\left(N^{H(s)}\right) .
$$

This coincides with $\tilde{d} f^{(s+1)}$ on $\nu\left(L^{H(s)}\right) \mid \tilde{A}^{H(s)}$, where \tilde{A} is some G-invariant open neighborhood of ∂L in L which is contained in A. By Lemma 6 there is a G invariant tubular neighborhood $T\left(L^{H(s)}\right)$ of $L^{H(s)}$ in L and a smooth G-embedding

$$
k^{(7)}: T\left(L^{H(s)}\right) \longrightarrow N
$$

which coincides with $f^{(s+1)}$ on $T\left(L^{H(s)}\right) \cap B$, where B is a neighborhood of ∂L in L.

Take M_{s} as a G-invariant closed tubular neighborhood of $S\left(U^{H(s)}\right)$ in $S(U)$ which is contained in

$$
\left(f^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right)\right) \cup T\left(L^{H(s)}\right) .
$$

Define $f^{(s)}: M_{s} \rightarrow V$ by

$$
\begin{array}{lll}
f^{(s)}=f^{(s+1)} & \text { on } & M_{s} \cap\left(f^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right)\right), \\
f^{(s)}=k^{(7)} & \text { on } & M_{s} \cap T\left(L^{H(s)}\right) .
\end{array}
$$

This is a smooth G-embedding, and coincides with \tilde{f} on some neighborhood of $S\left(U^{G}\right)$ in $S(U)$. Thus we see that the assertion $\mathcal{A}(s+1)$ implies the assertion $\mathcal{A}(s)$.

§4. Injectivity of $\widetilde{\Phi}$.

[I] Proof of the injectivity of $\tilde{\Phi}$ for Theorem 1. Let U, V be such representations of G as in Theorem 1. For

$$
[f],[g] \in \operatorname{Iso}^{G}(S(U), V)
$$

assume that

$$
\Phi(f), \Phi(g): S\left(U^{G}\right) \longrightarrow \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \bigoplus_{j \in J(G ; V)} n_{j} W_{j}\right)
$$

are homotopic. We will construct a smooth G-isotopy between f and g.

There is a level preserving smooth map

$$
H^{(1)}: S\left(U^{G}\right) \times R \longrightarrow \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \oplus_{j \in J(G ; V)} n_{j} W_{j}\right) \times R
$$

such that

$$
\begin{array}{ll}
H_{t}^{(1)}=\Phi(f) & \text { for } \quad t \leqq-1, \\
H_{t}^{(1)}=\Phi(g) & \text { for } \quad t \geqq 1 .
\end{array}
$$

It is known that any two smooth embeddings of n-sphere in R^{m} are smoothly isotopic if $m>3(n+1) / 2$. (See Haefliger [2], [3].) Thus our assumption $3 \operatorname{dim} U^{G}$ $<2 \operatorname{dim} V^{G}$ implies that there is a smooth isotopy

$$
H^{(2)}: S\left(U^{G}\right) \times R \longrightarrow V^{G} \times R
$$

such that

$$
\begin{array}{lll}
H_{t}^{(2)}=f \mid S\left(U^{G}\right) & \text { for } & t \leqq-1, \\
H_{t}^{(2)}=g \mid S\left(U^{G}\right) & \text { for } & t \geqq 1 .
\end{array}
$$

Define

$$
H^{(3)}:\left(S\left(U^{G}\right) \times \oplus_{j \in J(G ; U)} m_{j} W_{j}\right) \times R \longrightarrow\left(V^{G} \times \oplus_{j \in J(G ; V)} n_{j} W_{j}\right) \times R
$$

by, for $x \in S\left(U^{G}\right), w \in \bigoplus_{j \in J(G ; U)} m_{j} W_{j}$ and $t \in R$,

$$
H^{(3)}(x, w, t)=\left(H_{t}^{(2)}(x), H_{t}^{(1)}(x)(w), t\right) .
$$

Then $H^{(3)}$ is a smooth G-isotopy such that

$$
\begin{array}{lll}
H_{t}^{(3)}=\Psi^{V} \circ d f \circ\left(\Psi^{U}\right)^{-1} & \text { for } & t \leqq-1, \\
H_{t}^{(3)}=\Psi^{V} \circ d g^{\circ}\left(\Psi^{U}\right)^{-1} & \text { for } & t \geqq 1 .
\end{array}
$$

Let $\nu\left(S\left(U^{G}\right) \times R\right)$ and $\nu\left(V^{G} \times R\right)$ be the normal bundles of $S\left(U^{G}\right) \times R$ in $S(U) \times R$, and of $V^{G} \times R$ in $V \times R$, respectively. Let

$$
\zeta: \nu\left(S\left(U^{G}\right) \times R\right) \longrightarrow \nu\left(V^{G} \times R\right)
$$

be the smooth G-vector bundle embedding composed of the bundle embeddings in the diagram:

$$
\begin{gathered}
\nu\left(S\left(U^{G}\right) \times R\right) \cong \nu\left(S\left(U^{G}\right)\right) \times R \xrightarrow{\Psi^{U} \times \mathrm{id}}\left(S\left(U^{G}\right) \times \oplus_{j \in J(G ; U)} m_{j} W_{j}\right) \times R \\
\nu\left(V^{G} \times R\right) \cong \nu\left(V^{G}\right) \times R \xrightarrow{\Psi^{V} \times \mathrm{id}}\left(V^{G} \times H_{j \in J(G ; V)} n_{j} W_{j}\right) \times R .
\end{gathered}
$$

Give $\tau(S(U))$ and $\tau(V) G$-invariant smooth Riemannian metrics \langle,\rangle_{1} and \langle,\rangle_{2}, respectively. Let $\nu^{1}\left(S\left(U^{G}\right)\right)$ and $\nu^{2}\left(V^{G}\right)$ be the orthogonal complements of $\tau\left(S\left(U^{G}\right)\right)$ in $\tau(S(U)) \mid S\left(U^{G}\right)$, and of $\tau\left(V^{G}\right)$ in $\tau(V) \mid V^{G}$, respectively. For small $\varepsilon, \delta>0$, the exponential maps

$$
\begin{aligned}
& \exp : \nu_{\varepsilon}^{1}\left(S\left(U^{G}\right)\right)=\left\{v \in \nu^{1}\left(S\left(U^{G}\right)\right) \mid\langle v, v\rangle_{1} \leqq \varepsilon^{2}\right\} \longrightarrow S(U), \\
& \exp : \nu_{\delta}^{2}\left(V^{G}\right)=\left\{v \in \nu^{2}\left(V^{G}\right) \mid\langle v, v\rangle_{2} \leqq \delta^{2}\right\} \longrightarrow V
\end{aligned}
$$

are defined. Let

$$
\begin{aligned}
& T_{\varepsilon}\left(S\left(U^{G}\right)\right)=\exp \left(\nu_{\varepsilon}^{1}\left(S\left(U^{G}\right)\right)\right), \\
& T_{\delta}\left(V^{G}\right)=\exp \left(\nu_{\delta}^{2}\left(V^{G}\right)\right) .
\end{aligned}
$$

Applying the same method as in the proof of Lemma 6 to

$$
\zeta: \nu\left(S\left(U^{G}\right) \times R\right) \longrightarrow \nu\left(V^{G} \times R\right),
$$

we obtain a smooth G-isotopy, for appropriate $\varepsilon, \delta>0$,

$$
H^{(4)}: T_{\varepsilon}\left(S\left(U^{G}\right)\right) \times R \longrightarrow T_{\delta}\left(V^{G}\right) \times R \subset V \times R
$$

such that

$$
\begin{array}{lll}
H_{t}^{(4)}=f \mid T_{\varepsilon}\left(S\left(U^{G}\right)\right) & \text { for } & t \leqq-1, \\
H_{t}^{(4)}=g \mid T_{\varepsilon}\left(S\left(U^{G}\right)\right) & \text { for } & t \geqq 1 .
\end{array}
$$

For nonzero $v \in \nu^{1}\left(S\left(U^{G}\right)\right)$, let

$$
\theta_{v}=\exp \left(\{\lambda v \mid \lambda \in R, \lambda \geqq 0\} \cap \nu_{\varepsilon}^{1}\left(S\left(U^{G}\right)\right)\right) .
$$

Choose so small $\varepsilon>0$ that, for any nonzero $v \in \nu^{1}\left(S\left(U^{G}\right)\right)$, any γ with $0 \leqq \gamma \leqq \delta$, and any $t \in R$,
(1) $H_{t}^{(4)}\left(\theta_{v}\right) \cap S_{\gamma}\left(V^{G}\right)=\emptyset$, or
(2) $H_{t}^{(4)}\left(\theta_{v}\right)$ and $S_{\gamma}\left(V^{G}\right)$ intersect transversally,
where

$$
S_{\gamma}\left(V^{G}\right)=\exp \left(\left\{v \in \nu^{2}\left(V^{G}\right) \mid\langle v, v\rangle_{2}=\gamma^{2}\right\}\right) .
$$

Also choose γ with $0<\gamma \leqq \delta$ such that
(1) Int $T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right) \supset f^{-1}\left(T_{\gamma}\left(V^{G}\right)\right) \cup g^{-1}\left(T_{\gamma}\left(V^{G}\right)\right)$, and
(2) Int $T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right) \times R \supset\left(H^{(4)}\right)^{-1}\left(T_{\gamma}\left(V^{G}\right) \times R\right)$.

For such ε, γ, let

$$
\eta: S(U) \times R \longrightarrow S(U) \times R
$$

be a level preserving G-diffeomorphism such that
(1) $\eta\left(T_{\varepsilon}\left(S\left(U^{G}\right)\right) \times R\right)=T_{\varepsilon}\left(S\left(U^{G}\right)\right) \times R$, and
(2) $\eta\left(T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right) \times R\right)=\left(H^{(4)}\right)^{-1}\left(T_{\gamma}\left(V^{G}\right) \times R\right)$.

Such η is obtained by regulating lengths of normal vectors in $T_{\varepsilon}\left(S\left(U^{G}\right)\right)$.
Let

$$
\begin{aligned}
& M=S(U)-\operatorname{Int} T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right), \\
& N=V-\operatorname{Int} T_{\gamma}\left(V^{G}\right) .
\end{aligned}
$$

These are compact smooth free G-manifolds with boundary. Consider the G invariant subspace of $M \times[-2,2]$,

$$
A=\left(T_{\varepsilon}\left(S\left(U^{G}\right)\right)-\operatorname{Int} T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right)\right) \times[-2,2] \cup M \times[-2,-1] \cup M \times[1,2] .
$$

Define a G-map $k^{(1)}: A \rightarrow N$ by

$$
\begin{array}{ll}
k^{(1)}=f \circ \eta_{t} & \text { on } \\
k^{(1)}=g \circ \eta_{t} & \text { on } \\
k^{(1)}=\pi \circ{ }^{(1)} H^{(4)} \circ \eta & M \times\{t\}, 1 \leqq t \leqq 2, \\
\text { on } \quad\left(T_{\varepsilon}\left(S\left(U^{G}\right)\right)-\operatorname{Int} T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right)\right) \times[-2,2],
\end{array}
$$

where $\pi: V \times R \rightarrow V$ is the projection. The assumption

$$
\operatorname{dim} U+\operatorname{dim} V^{G}<\operatorname{dim} V
$$

implies that N is ($\operatorname{dim} M \times[-2,2]-1)$-connected. Thus, by Lemma 5, there is a G-map

$$
k^{(2)}: M \times[-2,2] \longrightarrow N
$$

such that
(1) $k^{(2)}=k^{(1)}$ on some neighborhood of $\partial(M \times[-2,2])$, and
(2) , $\left(k^{(2)}\right)^{-1}(\partial N)=(\partial M) \times[-2,2]$.

Define a level preserving G-map

$$
H^{(5)}: M \times R \longrightarrow N \times R
$$

by, for $x \in M$ and $t \in R$,

$$
\begin{aligned}
& H_{t}^{(5)}(x)=f \circ \eta_{t}(x) \quad \text { if } \quad t \leqq-2, \\
& H_{t}^{(5)}(x)=k^{(2)}(x, t) \quad \text { if } \quad-2 \leqq t \leqq 2, \\
& H_{t}^{(5)}(x)=g \circ \eta_{t}(x) \quad \text { if } t \geqq 2 .
\end{aligned}
$$

This is well-defined. The level preserving map

$$
H^{(5)} / G: M / G \times R \longrightarrow N / G \times R
$$

coincides with $H^{(4)} \circ \eta / G$ on some neighborhood of $\partial M / G \times R$ in $M / G \times R$, and we see

$$
\left(H^{(5)} / G\right)^{-1}(\partial N / G \times R)=\partial M / G \times R .
$$

The assumption $2 \operatorname{dim} U-1<\operatorname{dim} V$ implies

$$
2 \operatorname{dim} M / G+2 \leqq \operatorname{dim} N / G .
$$

Thus we can apply Lemma 4 to $H^{(5)} / G$, and obtain a smooth isotopy

$$
H^{(6)}: M / G \times R \longrightarrow N / G \times R .
$$

By the covering homotopy property and the unique lifting property for $M \rightarrow M / G$ and $N \rightarrow N / G, H^{(6)}$ induces a smooth G-isotopy

$$
H^{(7)}: M \times R \longrightarrow N \times R
$$

such that

$$
\begin{aligned}
& H_{t}^{(7)}=f \circ \eta_{t} \mid M \quad \text { for } t \leqq-3, \\
& H_{t}^{(7)}=g \circ \eta_{t} \mid M \quad \text { for } t \geqq 3, \\
& H^{(7)}=H^{(4)} \circ \eta \text { on a neighborhood of } \partial M \times R \text { in } M \times R .
\end{aligned}
$$

Define $H^{(8)}: S(U) \times R \rightarrow V \times R$ by

$$
\begin{array}{ll}
H^{(8)}=H^{(4)} \circ \eta & \text { on } \quad T_{\varepsilon / 2}\left(S\left(U^{G}\right)\right) \times R \\
H^{(8)}=H^{(7)} & \text { on } \quad M \times R .
\end{array}
$$

Then $H^{(9)}=H^{(8)} \circ \eta^{-1}$ is a smooth G-isotopy such that

$$
\begin{array}{ll}
H_{t}^{(9)}=f & \text { for } t \leqq-3 \\
H_{t}^{(9)}=g & \text { for } t \geqq 3
\end{array}
$$

Thus this is a smooth G-isotopy between f and g, and completes the proof of injectivity of $\tilde{\Phi}$ for Theorem 1.
[II] Proof of the injectivity of $\tilde{\Phi}$ for Theorem 2. Let G, U, V be as in Theorem 2, For

$$
[f],[g] \in \operatorname{Iso}^{G}(S(U), V),
$$

assume that

$$
\Phi(f), \Phi(g): S\left(U^{G}\right) \longrightarrow \operatorname{Mon}^{G}\left(\oplus_{j \in J(G ; U)} m_{j} W_{j}, \bigoplus_{j \in J(G ; V)} n_{j} W_{j}\right)
$$

are homotopic. Consider the following assertion $\mathcal{A}(s)$ for any s with $0 \leqq s \leqq r$:
$\mathcal{A}(s)$. There exist a G-invariant compact smooth submanifold M_{s} of $S(U)$ and a smooth G-isotopy

$$
K^{(s)}: M_{s} \times R \longrightarrow V \times R
$$

such that
(1) $\operatorname{dim} M_{s}=\operatorname{dim} S(U)$,
(2) Int $M_{s} \supset S\left(U^{H(s)}\right)$,
(3) $K_{t}^{(s)}=f \mid M_{s}$ for $t \leqq-(r-s+1)$, and
(4) $K_{t}^{(s)}=g \mid M_{s}$ for $t \geqq r-s+1$.

In the assertion $\mathcal{A}(0), M_{0}$ must be $S(U)$, and $K^{(0)}$ is a smooth G-isotopy between f and g. Thus $\mathcal{A}(0)$ implies the injectivity of $\tilde{\Phi}$. We can prove all $\mathcal{A}(s)$ by induction descending on s. Taking M_{r} as a G-invariant closed tubular neighborhood of $S\left(U^{G}\right)$ in $S(U), \mathcal{A}(r)$ is proved as in the proof of injectivity of $\widetilde{\Phi}$ for Theorem 1. Assuming $\mathcal{A}(s+1)$ for $0 \leqq s<r$, we will prove $\mathcal{A}(s)$.

Let $T\left(S\left(U^{H(s+1)}\right)\right.$) be a G-invariant closed tubular neighborhood of $S\left(U^{H(s+1)}\right)$ in $S(U)$ which is contained in Int M_{s+1}. Let $T\left(V^{H(s+1)}\right)$ be a G-invariant closed
tubular neighborhood of $V^{H(s+1)}$ in V such as

$$
\begin{aligned}
& \text { Int } T\left(S\left(U^{H(s+1)}\right)\right) \supset f^{-1}\left(T\left(V^{H(s+1)}\right)\right) \cup g^{-1}\left(T\left(V^{H(s+1)}\right)\right), \\
& \text { Int } T\left(S\left(U^{H(s+1)}\right)\right) \times R \supset\left(K^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right) \times R\right) .
\end{aligned}
$$

If the radius of $T\left(S\left(U^{H(s+1)}\right)\right)$ is appropriately small, as in the proof for Theorem 1 , we obtain a level preserving G-diffeomorphism

$$
\eta: S(U) \times R \longrightarrow S(U) \times R
$$

such that
(1) $\eta\left(M_{s+1} \times R\right)=M_{s+1} \times R$,
(2) $\eta\left(T\left(S\left(U^{H(s+1)}\right)\right) \times R\right)=\left(K^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right) \times R\right)$,
(3) $\eta_{t}=\eta_{-(r-s)}$ for $t \leqq-(r-s)$, and
(4) $\eta_{t}=\eta_{r-s}$ for $t \geqq r-s$.

Let

$$
\begin{aligned}
& L=S(U)-\operatorname{Int} T\left(S\left(U^{H(s+1)}\right)\right), \\
& N=V-\operatorname{Int} T\left(V^{H(s+1)}\right) .
\end{aligned}
$$

Define G-invariant subspaces A, B of $S(U) \times R$ by

$$
\begin{aligned}
& A=L \times\left[-\left(r-s+\frac{1}{3}\right), r-s+\frac{1}{3}\right] \\
& B=\left(\operatorname{Int} M_{s+1}-\operatorname{Int} T\left(S\left(U^{H(s+1)}\right)\right)\right) \times(-(r-s+1), r-s+1) \\
& \quad \cup L \times(-(r-s+1),-(r-s)) \cup L \times(r-s, r-s+1) .
\end{aligned}
$$

Define a smooth G-map $E^{(1)}: B \rightarrow N \times R$ by

$$
\begin{array}{ll}
E^{(1)}=K^{(s+1)} \circ \eta & \text { on } \quad\left(\text { Int } M_{s+1}-\operatorname{Int} T\left(S\left(U^{H(s+1)}\right)\right) \times(-(r-s+1), r-s+1),\right. \\
E^{(1)}=(f \times \mathrm{id}) \circ \eta & \text { on } \quad L \times(-(r-s+1),-(r-s)), \\
E^{(1)}=(g \times \mathrm{id}) \circ \eta & \text { on } \quad L \times(r-s, r-s+1) .
\end{array}
$$

This is well-defined.
We split U and V as representations of $H(s)$ into

$$
U=U^{H(s)} \oplus U_{1}, V=V^{H(s)} \oplus V_{1}
$$

where

$$
\begin{aligned}
& U_{1}=\bigoplus_{j \in J(H(s) ; U)} m_{j} W_{j}, \\
& V_{1}=\bigoplus_{j \in J(H(s) ; V)} n_{j} W_{j} .
\end{aligned}
$$

We may consider U_{1} and V_{1} as G-invariant subspaces of U and V, respectively.

Let $\nu\left(L^{H(s)} \times R\right)$ and $\nu\left(N^{H(s)} \times R\right)$ be the normal bundles of $L^{H(s)} \times R$ in $L \times R$, and of $N^{H(s)} \times R$ in $N \times R$, respectively.

$$
\tilde{d} E^{(1)}: \nu\left(L^{H(s)} \times R\right) \mid B^{H(s)} \longrightarrow \nu\left(N^{H(s)} \times R\right)
$$

is defined. There are smooth G-vector bundle isomorphisms

$$
\begin{aligned}
& \alpha: \nu\left(L^{H(s)} \times R\right) \cong\left(L^{H(s)} \times R\right) \times U_{1}, \\
& \beta: \nu\left(N^{H(s)} \times R\right) \cong\left(N^{H(s)} \times R\right) \times V_{1} .
\end{aligned}
$$

$\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)$ admits the smooth G-action such that $H(s)$ acts trivially. Define a smooth G-map

$$
h^{(1)}: B^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)
$$

by, for $x \in B^{H(s)}$ and $u \in U_{1}$,

$$
\beta \circ d E^{(1)} \circ \alpha^{-1}(x, u)=\left(E^{(1)}(x), h^{(1)}(x)(u)\right) .
$$

Since

$$
\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right) \approx \Pi_{j \in J(H(s) ; U)} V\left(m_{j}, n_{j} ; F_{j}\right),
$$

the assumption

$$
\operatorname{dim} U^{H(s)}<d_{j}\left(n_{j}-m_{j}+1\right)
$$

implies that $\operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)$ is ($\left.\operatorname{dim} A^{H(s)}-1\right)$-connected. Thus, by Lemma 5, we obtain a smooth G-map

$$
h^{(2)}: A^{H(s)} \longrightarrow \operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)
$$

which coincides with $h^{(1)}$ on a neighborhood of $\partial A^{H(s)}$. Consider the smooth G-embeddings

$$
(f \times \mathrm{id}) \circ \eta,(g \times \mathrm{id}) \circ \eta: L \times R \longrightarrow N \times R
$$

and the smooth G-vector bundle embeddings

$$
\tilde{d}((f \times \mathrm{id}) \circ \eta), \tilde{d}((g \times \mathrm{id}) \circ \eta): \nu\left(L^{H(s)} \times R\right) \longrightarrow \nu\left(N^{H(s)} \times R\right) .
$$

Smooth G-maps

$$
h^{(3)}, h^{(4)}: L^{H(s)} \times R \longrightarrow \operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)
$$

are defined by the relations, for $x \in L^{H(s)} \times R$ and $u \in U_{1}$,

$$
\begin{aligned}
& \beta \circ \tilde{d}((f \times \mathrm{id}) \circ \eta) \circ \alpha^{-1}(x, u)=\left((f \times \mathrm{id}) \circ \eta(x), h^{(3)}(x)(u)\right), \\
& \beta \circ \tilde{d}((g \times \mathrm{id}) \circ \eta) \circ \alpha^{-1}(x, u)=\left((g \times \mathrm{id}) \circ \eta(x), h^{(4)}(x)(u)\right) .
\end{aligned}
$$

Then define

$$
h^{(5)}: L^{H(s)} \times R \longrightarrow \operatorname{Mon}^{H(s)}\left(U_{1}, V_{1}\right)
$$

by

$$
h^{(5)}=h^{(3)} \quad \text { on } \quad L^{H(s)} \times\left(-\infty,-\left(r-s+\frac{1}{3}\right)\right],
$$

$$
\begin{aligned}
& h^{(5)}=h^{(2)} \quad \text { on } \quad A^{H(s)}=L^{H(s)} \times\left[-\left(r-s+\frac{1}{3}\right), r-s+\frac{1}{3}\right], \\
& h^{(5)}=h^{(4)} \quad \text { on } \quad L^{H(s)} \times\left[r-s+\frac{1}{3}, \infty\right) .
\end{aligned}
$$

This is a well-defined smooth G-map.
Consider the G-map $\pi \circ E^{(1)}: B^{H(s)} \rightarrow N^{H(s)}$, where $\pi: N \times R \rightarrow N$ is the projection. The assumption

$$
\operatorname{dim} U^{H(s)}+\operatorname{dim} V^{H(s+1)}<\operatorname{dim} V^{H(s)}
$$

implies that $N^{H(s)}$ is ($\operatorname{dim} A^{H(s)}-1$-connected. Thus, by Lemma 5, we obtain a G-map

$$
h^{(6)}: A^{H(s)} \longrightarrow N^{H(s)}
$$

such that
(1) $h^{(6)}=\pi \circ E^{(1)}$ on some neighborhood of $\partial A^{H(s)}$, and
(2) $\left(h^{(6)}\right)^{-1}\left(\partial N^{H(s)}\right)=\left(\partial L^{H(s)}\right) \times\left[-\left(r-s+\frac{1}{3}\right), r-s+\frac{1}{3}\right]$.

Define a level preserving G-map

$$
E^{(2)}: L^{H(s)} \times R \longrightarrow N^{H(s)} \times R
$$

by, for $x \in L^{H(s)}$ and $t \in R$,

$$
\begin{array}{ll}
E_{t}^{(2)}(x)=f \circ \eta_{t}(x) \quad \text { if } \quad t \leqq-\left(r-s+\frac{1}{3}\right) \\
E_{t}^{(2)}(x)=h^{(6)}(x, t) \quad \text { if } \quad-\left(r-s+\frac{1}{3}\right) \leqq t \leqq r-s+\frac{1}{3}, \\
E_{t}^{(2)}(x)=g \circ \eta_{t}(x) \quad \text { if } \quad t \geqq r-s+\frac{1}{3}
\end{array}
$$

The level preserving map

$$
E^{(2)} / G: L^{H(s)} / G \times R \longrightarrow N^{H(s)} / G \times R
$$

coincides with $\left(K^{(s+1)} \circ \eta\right) / G$ on some neighborhood of $\partial L^{H(s)} / G \times R$ in $L^{H(s)} / G$ $\times R$, and we see

$$
\left(E^{(2)} / G\right)^{-1}\left(\partial N^{H(s)} / G \times R\right)=\partial L^{H(s)} / G \times R
$$

The assumption $2 \operatorname{dim} U^{H(s)}-1<\operatorname{dim} V^{H(s)}$ implies

$$
2 \operatorname{dim} L^{H(s)} / G+2 \leqq \operatorname{dim} N^{H(s)} / G
$$

Thus we can apply Lemma 4 to $E^{(2)} / G$, and obtain a smooth isotopy

$$
E^{(3)}: L^{H(s)} / G \times R \longrightarrow N^{H(s)} / G \times R
$$

By the covering homotopy property and the unique lifting property for $L^{H(s)} \rightarrow$ $L^{H(s)} / G$ and $N^{H(s)} \rightarrow N^{H(s)} / G, E^{(3)}$ induces a smooth G-isotopy

$$
E^{(4)}: L^{H(s)} \times R \longrightarrow N^{H(s)} \times R
$$

such that
(1) $E_{t}^{(4)}=f \circ \eta_{t} \mid L^{H(s)} \quad$ for $t \leqq-\left(r-s+\frac{1}{2}\right)$,
(2) $E_{t}^{(4)}=g \circ \eta_{t} \mid L^{H(s)}$ for $t \geqq r-s+\frac{1}{2}$, and
(3) $E^{(4)}=K^{(s+1)} \eta$ on some neighborhood of $\partial L^{H(s)} \times R$ in $L^{H(s)} \times R$.

Define

$$
E^{(5)}:\left(L^{H(s)} \times R\right) \times U_{1} \longrightarrow\left(N^{H(s)} \times R\right) \times V_{1}
$$

by, for $x \in L^{H(s)}, t \in R$, and $u \in U_{1}$,

$$
E^{(5)}(x, t, u)=\left(E^{(4)}(x, t), h^{(5)}(x, t)(u)\right) .
$$

Consider the smooth G-vector bundle embedding

$$
\zeta=\beta^{-1} \circ E^{(5)} \circ \alpha: \nu\left(L^{H(s)} \times R\right) \longrightarrow \nu\left(N^{H(s)} \times R\right),
$$

and see that
(1) $\zeta=\tilde{d}((f \times \mathrm{id}) \cdot \eta) \quad$ on $\quad \nu\left(L^{H(s)} \times R\right) \left\lvert\, L^{H(s)} \times\left(-\infty,-\left(r-s+\frac{1}{2}\right)\right]\right.$,
(2) $\zeta=\tilde{d}((g \times \mathrm{id}) \cdot \eta) \quad$ on $\quad \nu\left(L^{H(s)} \times R\right) \left\lvert\, L^{H(s)} \times\left[r-s+\frac{1}{2}, \infty\right)\right.$, and
(3) $\zeta=\tilde{d}\left(K^{(s+1)} \circ \eta\right)$ on $\nu\left(L^{H(s)} \times R\right) \mid\left(\mathrm{nbd}\right.$ of $\partial L^{H(s)}$ in $\left.L^{H(s)}\right) \times R$.

Applying to ζ the same method as in the proof of Lemma 6, we obtain a G invariant tubular neighborhood $T\left(L^{H(s)}\right)$ of $L^{H(s)}$ in L, and obtain a smooth G isotopy

$$
E^{(6)}: T\left(L^{H(s)}\right) \times R \longrightarrow N \times R
$$

such that
(1) $E_{t}^{(6)}=f \circ \eta_{t} \mid T\left(L^{H(s)}\right) \quad$ for $t \leqq-(r-s+1)$,
(2) $E_{t}^{(6)}=g \circ \eta_{t} \mid T\left(L^{H(s)}\right)$ for $t \geqq r-s+1$, and
(3) $E^{(6)}=K^{(s+1)} \circ \eta$ on $T\left(L^{H(s)}\right) \cap C$, where C is some neighborhood of ∂L in L.
We can take M_{s} as a G-invariant closed tubular neighborhood of $S\left(U^{H(s)}\right)$ in $S(U)$ such that

$$
M_{s} \times R \subset\left(K^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right) \times R\right) \cup \eta\left(T\left(L^{H(s)}\right) \times R\right) .
$$

Define $K^{(s)}: M_{s} \times R \longrightarrow V \times R$ by

$$
\begin{array}{ll}
K^{(s)}=K^{(s+1)} & \text { on } \quad\left(M_{s} \times R\right) \cap\left(K^{(s+1)}\right)^{-1}\left(T\left(V^{H(s+1)}\right) \times R\right), \\
K^{(s)}=E^{(6)} \cdot \eta^{-1} & \text { on } \quad\left(M_{s} \times R\right) \cap \eta\left(T\left(L^{H(s)}\right) \times R\right) .
\end{array}
$$

This is a well-defined smooth G-isotopy such that

$$
\begin{array}{lll}
K_{t}^{(s)}=f \mid M_{s} & \text { for } & t \leqq-(r-s+1), \\
K_{t}^{(s)}=g \mid M_{s} & \text { for } & t \geqq r-s+1 .
\end{array}
$$

Thus the assertion $\mathcal{A}(s)$ is proved.

References

[1] K. Abe, On the equivariant isotopy classes of some equivariant imbeddings of spheres, Publ. RIMS, Kyoto Univ., 14 (1978), 655-672.
[2] A. Haefliger, Differentiable imbeddings, Bull. Amer. Math. Soc., 67 (1961), 109-112.
[3] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1961), 47-82.
[4] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, 1951.

Katsuhiro Komiya
Department of Mathematics
Faculty of Science
Yamaguchi University
Yoshida, Yamaguchi 753
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No, 474028), Ministry of Education.

