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Introduction.

In this paper we will study sufficient conditions for a given linear system
$\Lambda$ of Cartier divisors on a manifold $M$ to have a non-singular member. We
consider the problem over the complex number field and thus the trouble comes
from the base points of $\Lambda$ . Indeed, the famous theorem of Bertini says that a
general member of $\Lambda$ is smooth outside $Bs\Lambda$ .

Our main goal is the theorem (4.1) below, which gives a satisfactory answer
in the case $\Delta(M, \Lambda)=2$ and $[\Lambda]$ is ample. This result was the starting point
of the study of polarized manifolds of $\Delta$-genus two in [F1], which will appear
in a series of papers in English. Besides this, the author hopes that the tech-
nique will be useful in other contexts too. So, many lemmas are given in more
general forms than necessary to prove (4.1). The most important tool for our
method is the theory of intersection numbers of semipositive line bundles.

In \S 1 we review basic facts on semipositive line bundles and on Hironaka’s
elimination theory of base points of linear systems. In \S 2 we study the case
in which there are only finite base points. In \S 3 we give several technical
lemmas. In \S 4 we consider the case $\Delta=2$ . Thus, the main features of $\xi F1$ ;
\S 5-1] are retained in this paper, except a few generalizations given in \S 3.

Notation, convention and terminology.

Variety means an irreducible reduced projective scheme over the complex
number field C. Manifold is a non-singular variety. Tensor products of line
bundles are denoted additively, while multiplicative notation is used for inter-
section products in Chow ring. Line bundles are confused with invertible
sheaves. Thus, we employ the same notation as in [F2], [F3], which usually
follows the standard one in algebraic geometry (see, $e$ . $g.$ , [Ha 2]). We give
here several samples.

$*)$ This article was completed while the author was a Miller Fellow at Berkeley, the
University of California.
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$[\Lambda]$ : The line bundle associated with the linear system $\Lambda$ .
$Bs\Lambda$ : The intersection of all the members of $\Lambda$ .
$|L|$ : The complete linear system associated with a line bundle $L$ .
$\{Y\}$ : The algebraic cycle (element in Chow ring) defined by a subspace $Y$ .

Important convention: A pull-back of a line bundle $L$ by a morphism is often
denoted just by $L$ , especially during calculations of intersection numbers (to

avoid awkward notation).

\S 1. Preliminaries.

(1.1) DEFINITION. A line bundle $L$ on a variety $V$ is said to be (numerically)

semipositive if $LC\geqq 0$ for any (integral) curve $C$ in $V$ . Obviously $f^{*}L$ is semi-
positive for any morphism $f:X\rightarrow V$ if $L$ is so.

(1.2) PROPOSITION. Let $F_{1},$ $\cdots$ , $F_{n},$ $F,$ $H$ be semipositive line bundles on a
variety $V$ of dimension $n$ . Then

1) $F_{1}\cdots F_{n}\{V\}\geqq 0$ .
2) $A+tF$ is ample for any ample line bundle $A$ and for any $t\geqq 0$ .
3) If $E=F-H$ is effective, then $F^{a}H^{n-a}\geqq F^{b}H^{n-b}$ for any $a\geqq b$ .
4) $(F_{1}\cdots F_{n}\{V\})^{2}\geqq(F_{1}^{2}F_{3}\cdots F_{n}\{V\})(F_{2}^{2}F_{3}\cdots F_{n}\{V\})$ .
PROOF. 1) was proved by Kleiman [K]. One can refer also [Ha 1; p. 34].

2) follows from 1) and Nakai’s criterion (cf. [N] or [Ha 1]). To show 3), we
may assume $a=b+1$ . Then we have $F^{a}H^{n-a}-F^{b}H^{n-b}=F^{b}EH^{n-a}\geqq 0$ by 1). To
prove 4), replacing $F_{i}’ s$ by $tF_{i}+A$ and letting $ t\rightarrow\infty$ , we may assume that $F_{i}’ s$

are ample (even very ample, by taking positive multiples of them). Taking
hyperplane sections in $|F_{i}|$ $(i=3, \cdots , n)$ , we reduce the problem to the case
$n=2$ . Then the index theorem implies our assertion.

(1.3) REMARK. Employing the definition of semipositivity as in [F4; Ap-
pendix $B$], we can prove analogues of 1) and 3) in the analytic category too.

(1.4) Let $\Lambda$ be a linear system (of Cartier divisors) on a manifold $M$. Then,
thanks to Hironaka [Hi], we can find a sequence $M^{\prime}=M_{r}\rightarrow M_{r-1}\rightarrow\cdots\rightarrow M_{1}\rightarrow M_{0}$

$=M$ of birational morphisms together with linear systems $A_{i}$ on $M_{i}$ such that:
$0)$ $\Lambda_{0}=\Lambda$ .
1) $\pi_{i}$ ; $M_{i}\rightarrow M_{i-1}$ is the blowing-up of a submanifold $C_{i}$ of $M_{i-1}$ contained

in $Bs\Lambda_{i-1}$ .
2) $\pi_{i}^{*}\Lambda_{i-1}=m_{i}E_{i}+\Lambda_{i}$ for some positive integer $m_{i}$ , where $E_{i}$ is the excep-

tional divisor on $M_{i}$ lying over Ci, and Bs $\Lambda_{i}\mathfrak{D}E_{i}$ .
3) Bs $\Lambda_{r}=\emptyset$ .
Such a pair $(M_{r}, \Lambda_{r})=(M^{\prime}, \Lambda^{\prime})$ will be called a Hironaka model of $(M, \Lambda)$ .
(1.5) A Hironaka model is unique up to birational equivalence in the fol-

lowing sense. Let $(M‘‘, \Lambda^{\prime\prime})$ be another Hironaka model of $(M, \Lambda)$ and let
$\pi^{\prime}$ : $M^{\prime}\rightarrow M$ and $\pi^{\prime\prime}$ : $M^{\prime\prime}\rightarrow M$ be natural morphisms respectively. Then there is
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a third manifold $M^{*}$ and birational morphisms $p^{\prime}$ : $M^{*}\rightarrow M^{\prime}$ and $p^{\prime\prime}$ : $M^{*}\rightarrow M^{\prime\prime}$

such that $\pi^{\prime}\circ p^{\prime}=\pi^{\prime\prime}\circ P^{\prime\prime}$ and $(p^{\prime})^{*}\Lambda^{\prime}=(p^{\prime\prime})^{*}\Lambda^{\prime\prime}$ .
Let $W$ be the image of the morphism $\rho:M^{\prime}\rightarrow P^{N}(N=\dim\Lambda)$ defined by

$\Lambda^{\prime}$ . Let $H$ be the hyperplane section bundle $O_{W}(1)$ . Then the polarized variety
$(W, H)$ is determined uniquely by $(M, \Lambda)$ . Indeed, we have $(W, H)\cong(Proj(A)$ ,
$O(1))$ where $A$ is the graded subalgebra of $\oplus_{t}{}_{0}H^{0}(M, tL)$ generated by the
linear subspace of $H^{0}(M, L)$ with $L=[\Lambda]$ corresponding to $\Lambda$ .

(1.6) In the situation as above, we employ the following notation.
$X$ : A general fiber of $\rho:M^{\prime}\rightarrow W$.
$\gamma:=\dim X=n-\dim W$, where $n=\dim M$.
$\beta:=\dim$ Bs $\Lambda$ .
$w:=\deg W$ (in $P^{N}$ ).
$\pi$ ; The morphism $M^{\prime}\rightarrow M$.
$L_{i}:=[\Lambda_{i}]$ and $L:=[\Lambda]$ .
$E_{i}^{*}$ : The total transform of $E_{i}$ on $M^{\prime}$ .
$E_{i}^{\prime}$ : The proper transform ( $=the$ prime component of $E_{i}^{*}$ mapped onto $E_{i}$)

of $E_{i}$ on $M^{\prime}$ .
$E$ : The fixed part of $\pi^{*}\Lambda$ . So $\pi^{*}\Lambda=E+\Lambda^{\prime}$ and $E=\Sigma_{i\geq 1}^{r}m_{i}E_{i}^{*}$ .
$Y_{i}$ $:=\pi(E_{i}^{\prime})=\pi(E_{i}^{*})$ . This is also the image of $C_{i}$ in $M$.
$\nu_{i}$ $;=L^{a}\{Y_{i}\}$ , where $L=[\Lambda]$ and $d=\dim Y_{i}$ .
$L^{s}H^{n-S}$ $:=(\pi^{*}L)^{s}(\rho^{*}H)^{n-s}\{M^{\prime}\}$ . By (1.5), this intersection number is inde-

pendent of the choice of a Hironaka model. Note also that $L-H=E$ in $Pic(M^{\prime})$ .
Any prime component of $E$ is one of the $E_{i}^{\prime}$ .

(1.7) LEMMA. $\beta+1\geqq\gamma$ unless $L^{n}=0$ .
PROOF. $L^{\beta+1}E=0$ in Chow $(M^{\prime})$ , since dim $Y_{i}\leqq\beta$ for any $i$ . So $L^{\beta+1}H^{n-\beta-1}$

$=L^{\beta+2}H^{n-\beta-2}=\ldots=L^{n}$ . On the other hand $L^{s}H^{n-s}=0$ for $ s<\gamma$ since dim $W=$

$ n-\gamma$ . Hence $L^{n}=0$ if $\beta+1<\gamma$ .

\S 2. Isolated base points.

(2.1) Let $\Lambda$ be a linear system on a variety $V$ and set $L=[\Lambda]$ . We define
$d(V, \Lambda)=L^{n}\{V\}$ and $\Delta(V, \Lambda)=n+d(V, \Lambda)-(1+\dim\Lambda)$ . The latter will be called
the total deficiency of $\Lambda$ . Given a prepolarized variety (V, $L$ ), we define $d(V$ ,
$L)=L^{n}\{V\}=d(V, |L|)$ and $\Delta(V, L)=\Delta(V, |L|)$ . The latter will be called the
$\Delta$-genus of (V, $L$ ).

(2.2) THEOREM. Let $\Lambda$ be a linear system on a variety $V$ consisting of
ample divisors. Then dim $Bs\Lambda<\Delta(V, \Lambda)$ . This means $\Delta(V, \Lambda)\geqq 0$ if Bs $\Lambda=\emptyset$ .

For a proof, see [F2; Theorem 1.9].

(2.3) COROLLARY. $\Delta(V, L)\geqq 0$ for any pOlarjzed variety. Moreover, Bsl $L|$

$=\emptyset$ if $\Delta(V, L)=0$ .
(2.4.) COROLLARY. Let things be as in (1.6) and $suPPose$ that $L$ is ample.
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Then $\Delta(M, \Lambda)\geqq\beta+1\geqq\gamma$ .
(2.5) From now on, in this section, we consider the case $\beta=\dim$ Bs $\Lambda\leqq 0$ in

the situation (1.6).

PROPOSITION. SuppOse that $\beta\leqq 0$ . Then a general member of $\Lambda$ is non-
singular unless $d(M, L)\geqq 2^{n}$ .

PROOF. Thanks to Bertini’s theorem, it suffices to show that, for any base
point $p$ of $\Lambda$ , there exists a member $D$ of $\Lambda$ which is smooth at $p$ . Changing
the order of the blowing-ups if necessary, we may assume that $p$ is the center
of the first blowing-up $\pi_{1}$ ; $M_{1}\rightarrow M$. It is enough to show $m_{1}=1$ . Assume that
$m_{1}\geqq 2$ . Then $L_{1}^{n}=L^{n}-m_{1}^{n}\geqq 0$ by (1.2), since $L_{1}=L-m_{1}E_{1}$ is semipositive on
$M_{1}$ . So $d(M, L)\geqq m_{1}^{n}\geqq 2^{n}$ , as desired.

(2.6) PROPOSITION. Let things be as above and suPpose in addition that
$\gamma=0$ . Then a general member of $\Lambda$ is non-singular unless $\Delta(M, \Lambda)\geqq 2^{n}$ .

PROOF. Similarly as above, it suffices to show $m_{1}=1$ . If not, we have
$L^{n}-L_{1}^{n}=m_{1}^{n}\geqq 2^{n}$ . $L_{1}^{n}\geqq H^{n}$ by (1.2). We have also $0\leqq\Delta(W, H)=n+w-(1+N)$

$=\Delta(M, \Lambda)-L^{n}+w$ . Hence $\Delta(M, \Lambda)\geqq L^{n}-w=L^{n}-H^{n}\geqq 2^{n}$ , as required.
(2.7) PROPOSITION. Let things be as in (2.5) and suppose this time that $\gamma>0$ .

Then a general member of $\Lambda$ is non-singular if $d(M, \Lambda)\geqq 2\Delta(M, \Lambda)-1$ .
For a proof, see [F3; Proposition 3.5]. The hypothesis $\Lambda=|L|$ in [F3]

can be removed easily.
(2.8) PROPOSITION. Let things be as in (2.5). Then a general member of

$\Lambda$ is non-singular if $\Delta(M, \Lambda)\leqq 2^{n-1}$ .
PROOF. If $\gamma=0,$ $(2.6)$ applies. If $\gamma>0$ , combine (2.5) and (2.7).

\S 3. Base loci of higher dimension.

Throughout in this section we study the situation as in (1.6) and employ
the notation there. We set $d=L^{n}=d(M, \Lambda)$ and $\Delta=\Delta(M, \Lambda)$ . So $ N=\dim\Lambda$

$=n+d-\Delta-1$ . Furthermore we let $j$ be the least integer such that dim $ Y_{j}=\beta$ .
(3.1) LEMMA. For any component $Z$ of $E$ , the class $L^{\beta}Z$ in the Chow ring

of $M^{\prime}$ is represented by a sum of subspaces on which the pull-backs of $L_{j}$ are
semipositive.

PROOF. Let $Y$ be the image of $Z$ in $M$. We may assume dim $ Y=\beta$ . If
$Y\neq Y_{j}$, then $E_{j}^{*}=0$ on $L^{\beta}Z$ and the claim is obvious. If $Y=Y_{j}$ , then $L^{\beta}Z$ is
represented by several fibers of $Z\rightarrow Y$ , each of which is mapped into a fiber $P$

of $E_{j}\rightarrow C_{j}$ on $M_{j}$ . $P\cong P^{n-\beta-1}$ and the restriction of $L_{j}$ to $P$ is $\mathcal{O}(m_{j})$ . So our
assertion is valid in this case too.

(3.2) LEMMA. $L^{\beta}E_{j}^{*}H^{n-\beta-1}\geqq m_{j^{-}}^{n\beta-1}\nu_{j}=(L^{n}-L^{\beta}L_{j}^{n-\beta})/m_{j}\geqq L^{\beta}E_{j}^{\prime}H^{n-\beta-1}$ .
PROOF. By (3.1) and (1.2) we get $L^{\beta}L_{j}^{n-\beta}\geqq L^{\beta}L_{j}H^{n-\beta- 1}$ and $ L^{\beta}L_{j}^{n-\beta-1}E_{j}^{\prime}\geqq$

$L^{\beta}H^{n-\beta-1}E_{j}^{\prime}$ because $E_{i}^{\prime}$ is effective on $E_{j}^{\prime}$ for any $i\neq j$ . The first inequality
yields $d-m_{J^{-}}^{n\beta}\nu_{j}\geqq d-m_{j}L^{\beta}H^{n-\beta-1}E_{j}^{*}$ , and hence $L^{\beta}ElH^{n-\beta-1}\geqq m_{f}^{n-\beta-1}\nu_{j}$ . We
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have $L^{\beta}L_{j}^{n-\beta}=L^{\beta}(L-m_{j}E_{j})^{n-\beta}\{M_{j}\}=L^{n}-m_{j}^{n-\beta}\nu_{j}$ , since $C_{j}\rightarrow Y_{j}$ is birational
by the choice of $j$ . We have also $L^{n}-L^{\beta}L_{j}^{n-\beta}=L^{\beta+1}L_{j}^{n-\beta-1}-L^{\beta}L_{j}^{n-\beta}=$

$m_{j}L^{\beta}E_{j}^{*}L_{j}^{n-\beta-1}=m_{j}L^{\beta}E_{j}^{\prime}L_{j}^{n-\beta-1}$ , since any component of $E_{j}^{*}-E_{j}^{\prime}$ is mapped onto
a subspace of $M_{j}$ of codimension $\geqq 2$ . Combining them we get the desired
inequalities.

(3.3) COROLLARY. If in addition $L$ is ample, then $L^{\beta+1}H^{n-\beta-1}>L^{\beta}H^{n-\beta}$ .
(3.4) LEMMA. SuPpose that $\Delta=\beta+1=\gamma,$ $L^{\gamma}X>0$ and $\nu_{j}>0$ . Then $d=w=1$ .
PROOF. $d=L^{n}=L^{\beta+1}H^{n-\gamma}=wL^{\gamma}X$. Hence $d\geqq w$ , since $L^{\gamma}X$ is a positive

integer. On the other hand we have $0\leqq\Delta(W, H)=n-\gamma+w-(n+d-\Delta)=w-d$

by assumption. Combining them we infer that we must have the equalities.
So $d=w$ and $L^{\gamma}X=1$ .

By (3.2) we have $0<m_{j}^{n-\gamma}\nu_{j}\leqq L^{\beta}EH^{n-\beta-1}=wL^{\beta}EX$. So $L^{\beta}EX\geqq 1$ . Hence
$w\leqq L^{\beta}EH^{n-\gamma}=L^{\gamma}H^{n-\gamma}-L^{\beta}H^{n-\beta}=d$ . Again we must have the equality here, so
$L^{\beta}EX=1$ . On the other hand, we have $L^{\beta}EX\geqq m_{j}L^{\beta}E_{j}^{*}X$ by (1.2) and $L^{\beta}E_{j}^{*}X$

$>0$ by (3.2). Hence $m_{j}=1=L^{\beta}E_{j}^{*}X$. This implies $\nu_{j}=1$ too, because $L^{\beta}E_{j}^{*}$ is
divisible by $\nu_{j}$ in the Chow ring of $M_{j}$ . Moreover, $L^{\beta}(E-E_{j}^{*})X=0$ implies
$L^{\beta}E_{i}^{*}X=0$ for any $i\neq j$ , and hence $L^{\beta}E_{j}^{\prime}H^{n-\gamma}=L^{\beta}E_{j}^{*}H^{n-\gamma}=w$ . Now we get
$w\leqq m_{j}^{n-\gamma}\nu_{j}=1$ from (3.2). So $d=w=1$ .

REMARK. As a matter of fact, if $\beta+1=\gamma,$ $L^{\gamma}X=1$ and if $\nu_{j}>0$, then one
can show $d=w=1$ by the same argument as above.

(3.5) THEOREM. Let $(M, L)$ be a polarized manifold. Then $\Delta(M, L)=$

$ 1+\dim Bs|L|=\gamma$ if and only if $L^{n}=\deg W=1$ , where $W$ and $\gamma$ are as in (1.6).

PROOF. The “only if” part follows from (3.4). So we prove the “if” part.
$d=w=1$ implies $ h^{0}(M, L)=n+1-\Delta$ and $W\cong P^{n-\Delta}$ . Hence we have the equalities
in (2.4). QED.

(3.6) Now we return to the situation (1.6) and this time we assume $\beta=\gamma$

$=\Delta(M, \Lambda)-1$ until the end of this section.
LEMMA. Suppose that $L^{\gamma}X>0$ and $\nu_{j}>0$ . Then $d-w=L^{\beta}EH^{n-\beta-1}=1=L^{\beta}X$

and $\Delta(W, H)=0$ .
PROOF. We have $d=L^{n}=L^{\beta+1}H^{n-\beta-1}>L^{\beta}H^{n-\beta}=wL^{\beta}X$ and $L^{\beta}X\geqq 1$ by

(3.2) and assumption. So $d>w$ . On the other hand $0\leqq\Delta(W, H)\leqq n-\gamma+w-$

$(n+d-\Delta)=w-d+1$ , so $d\leqq w+1$ . Therefore we must have the equalities and
$d-w=1=L^{\beta}X=L^{\beta}EH^{n-\beta-1}$ .

(3.7) COROLLARY. Let things be as in the above lemma. Then $L^{\beta}EfH^{n-\beta-1}$

$=L^{\beta}E_{j}^{\prime}H^{n-\beta-1}=1=m_{j}=\nu_{j}$ .
PROOF. $L^{\beta}EfH^{n-\beta-1}>0$ by (3.2). $L^{\beta}(E-m_{j}E7)H^{n-\beta-1}\geqq 0$ by (1.2). Hence

$L^{\beta}EH^{n-\beta-1}=1$ implies $L^{\beta}EfH^{n-\beta-1}=m_{j}=1$ . Moreover $L^{\beta}E\beta H^{n-\beta-1}=0$ for any
$i\neq j$ . So $L^{\beta}E_{j}^{\prime}H^{n-\beta-1}=1=\nu_{j}$ by virtue of (3.2).

(3.8) COROLLARY. Let things be as in (3.7). If dim $ Y_{k}=\beta$ for some $k\neq j$ ,

then $Y_{k}\neq Y_{j}$ and $L^{\beta}\{Y_{k}\}=0$ .
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PROOF. Clearly $k>j$ by the choice of $j$ . Let $Z$ be the image of $C_{k}$ on
$M_{j}$ . Set $\alpha=0$ if $Z\not\subset E_{j}$ , or $\alpha=\dim Z-\beta$ if $Z\subset E_{j}$ . In the latter case $\alpha$ is the
dimension of a general fiber of $Z\rightarrow C_{j}$ . Now, by a similar argument as in (3.2)

and (3.1), we infer $L^{\beta}L_{j}^{a}L_{k}^{n-\beta-\alpha}\geqq L^{\beta}L_{j}^{a}H^{n-\beta-\alpha}$ . Since $L^{\beta}L_{j}^{n-\beta}=d-m_{j}^{n-\beta}\nu_{j}=$

$d-1=w=L^{\beta}H^{n-\beta}$ by (3.6) and (3.7), we have $L^{\beta}L_{j}^{a}H^{n-\beta-a}=w$ by virtue of
(1.2). On the other hand, we have $L^{\beta}L_{j}^{\alpha}L_{k}^{n-\beta-\alpha}=L^{\beta}L_{j}^{n-\beta}-m_{k}^{n-\beta-a}L^{\beta}L_{j}^{\alpha}Z$ .
Thus we obtain $L^{\beta}L_{j}^{\alpha}Z=0$ . Our assertion follows from this equality.

(3.9) COROLLARY. Let things be as in (3.7) and suppose that $L$ is ample.
Then Bs $\Lambda$ has only one irreducible compOneni $Y$ of dimension $\beta$ . Moreover
$L^{\beta}Y=1$ and a general member of $\Lambda$ is smooth at a general Point of $Y$.

PROOF. The first assertion follows from (3.8). The smoothness is a con-
sequence of $m_{j}=1$ .

(3.10) LEMMA. Let things be as in (3.9). Then $L^{\beta-1}E_{j}^{*}X=1$ and $L^{\beta-1}E\beta X$

$=0$ for any $i\neq j$.
PROOF. We have $L^{\beta-1}EX=L^{\beta- 1}(L-H)X=L^{\beta}X=1$ by (3.6). Hence it suf-

fices to show $L^{\beta-1}E\beta X=0$ for $i\neq j$ . Assume that $L^{\beta-1}E_{k}^{*}X>0$ for some $k\neq j$ .
Then, from $L^{\beta-1}E_{i}^{*}X\geqq 0$, we infer $m_{k}=L^{\beta-1}E_{k}^{*}X=1$ and $L^{\beta-1}E?X=0$ for any
$i\neq k$ . Moreover, by (3.8), we infer that dim $Y_{k}=\beta-1$ and $L^{\beta-1}Y_{k}=1$ .

Now, changing the order of the blowing-ups to obtain a Hironaka model if
necessary, we may assume that $k<j$ . Moreover $Y_{i}\neq Y_{k}$ for any $i<k$ . Indeed,
if $Y_{i}=Y_{k}$ , the image of $C_{k}$ in $M_{i}$ would be contained in $E_{i}$ , and hence $E_{i}^{*}-E_{k}^{*}$

would be effective. This contradicts $L^{\beta-1}(E_{i}^{*}-E_{k}^{*})X<0$ . Thus we conclude
that $\pi_{k}$ is the first blowing-up whose center lies over $Y_{k}$ .

$L_{k}$ is semipositive on subspaces representing the cycle $L^{\beta-1}E_{k}^{\prime}$ , and $L_{k}-H$

is effective there. Hence $L^{\beta-1}L_{k}^{n-\beta}E_{k}^{\prime}\geqq L^{\beta-1}H^{n-\beta}E_{k}^{\prime}$ . The right side is equal to
$wL^{\beta-1}E_{k}^{\prime}X=w$ and the left side is $m_{k}^{n-\beta}\nu_{k}=1$ , where $\nu_{k}=L^{\beta-1}C_{k}=L^{\beta-1}Y_{k}$ . So
$w=1$ , hence $d=2$ by (3.6). Thus dim $\Lambda=\dim W=n+d-\Delta-1=n-\gamma$ and $W\cong P^{n-\beta}$ .
Hence Bs $\Lambda$ is the intersection of $ n-\beta$ general members of it, and so any com-
ponent of it is of dimension $\beta$ . From this and (3.9) we get Bs $\Lambda=Y_{j}$ and in
particular $Y_{k}\subset Y_{j}$ .

Now we infer that Bs $\Lambda_{k}$ contains the proper transform of $Y_{j}$ . So $E_{k}\cap Bs\Lambda_{k}$

meets every general fiber $P$ of $E_{k}\rightarrow C_{k}$ . The proper transform $P^{\prime}$ of $P\cong P^{n-\beta}$

on $M^{\prime}$ gives a Hironaka model with respect to the restriction of $\Lambda_{k}$ to $P$.
Therefore we infer that $H^{n-\beta}\{P^{\prime}\}=0$ since the above linear system consists of
hyperplanes and has base points. This implies $L^{\beta-1}H^{n-\beta}E_{k}^{\prime}=0$, contradicting
$L^{\beta-1}E_{k}^{\prime}X=L^{\beta-1}E_{k}^{*}X=1$ . QED.

\S 4. The case $\Delta=2$ .
The main purpose of this section is to prove the following
(4.1) THEOREM. Let $(M, L)$ be a polarized manifold such that $n=\dim M\geqq 3$ ,
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$d=d(M, L)\geqq 2$ and $\Delta(M, L)=2$ . Then a general member of $|L|$ is non-singular.
Actually, we can show the assertion for a non-complete linear system $\Lambda$

with $\Delta(M, \Lambda)=2$ too. In the proof below, we employ the notation as in (1.6).

(4.2) $\beta\leqq 1$ by (2.2). If $\beta\leqq 0$ , then (2.8) applies. So it suffices to consider the
case $\beta=1$ . Then $\gamma\leqq 2$ by (1.7). $\gamma\neq 2$ by (3.5) because $d\geqq 2$ . So $\gamma=1$ or $0$ . At
first, until (4.7), we consider the case $\gamma=1$ .

(4.3) CLAIM. $\Lambda$ has no isolated base point.
Otherwise, we can change the order of blowing-ups so that there is an

integer $k$ such that $k>j,$ $Y_{i}\subset Y_{j}$ for any $i<k,$ $ Y_{i}\cap Y_{j}=\emptyset$ for any $i\geqq k$ and $Y_{k}$

is an isolated point of Bs $\Lambda$ . Then, by similar arguments as in (3.2), we get
$L{}_{k}H^{n- 1}\leqq L_{k}^{n}<L_{j}^{n}\leqq LL_{j}^{n-1}<L^{n}$ , and $L{}_{k}H^{n- 1}=L{}_{j}H^{n- 1}=d-1$ by (3.10). This leads
to a contradiction.

(4.4) Taking general members of $\Lambda^{\prime}$ successively we get a sequence $M^{\prime}=$

$S_{n}\supset S_{n-1}\supset\cdots\supset S_{2}$ of submanifolds of $M^{\prime}$ with dim $S_{i}=i$ . Let $D_{i}=\pi(S_{i})\subset M$ for
each $i$ . Then $D_{i}$ is a member of the restriction of $\Lambda$ to $D_{i+1}$ . $D_{i}$ is non-singular
outside $Bs\Lambda$ , which is the integral curve $Y_{j}$ by (3.9) and (4.3). Moreover, by
(3.7) and (3.8), we see that $D_{i}$ is non-singular at a general point on $Y_{j}$ . Thus,
the singular locus of $D_{i}$ is at most Pnite. Hence $D_{i}$ is normal for every $i\geqq 2$

by Serre’s criterion.
Let $\Sigma=U_{i\neq j}E_{i}^{\prime}$ and set $\Sigma_{k}=\Sigma\cap S_{k}$ for $k=n,$ $\cdots$ , 2. Note that $\pi(\Sigma)$ is a

finite subset of $M$. From $m_{j}=1$ , we infer that $S_{k}-\Sigma_{k}$ is mapped isomorphically
onto $D_{k}$ minus this subset for every $k\geqq 2$ .

(4.5) CLAIM. $ Y_{j}=Bs\Lambda$ is a rational normal curve.
PROOF. Let $W_{k}$ be the image of $S_{k}$ via $\rho$ . They are successive hyperplane

sections of $W$ . So $W_{2}\cong P^{1}$ since $\Delta(W, H)=0$ (cf. [F2]). By (3.10) we have
$H\Sigma_{2}=H^{n-1}\Sigma=0$ . Hence any component of $\Sigma_{2}$ is contained in a fiber of
$\rho_{2}$ : $S_{2}\rightarrow W_{2}$ .

Let $X_{1}$ and $X_{2}$ be general fibers of $\rho_{2}$ By the above observation we see
$ X_{q}\cap\Sigma_{2}=\emptyset$ for $q=1,2$ . So they are mapped isomorphically onto Cartier divisors
$F_{1},$ $F_{2}$ on $D_{2}$ . Since $D_{2}$ is normal and $X_{q}’ s$ are linearly equivalent, $F_{1}=F_{2}$ in
$Pic(D_{2})$ . Thus $Bs|F|=\emptyset$ where $F=[F_{q}]$ . We obtain $FY_{j}=EX=1$ by (3.10).

Combining them we infer $Y_{j}\cong P^{1}$ .
(4.6) In order to finish the proof in case $\gamma=1$ , it suffices to show that, for

any point $p$ on Bs $\Lambda\cong P^{1}$ , there exists a member $D$ of $\Lambda$ which is smooth at $p$ .
We change the order of the blowing-ups so that the first center $C_{1}=Y_{1}$ is

the given point $p$ . It is easy to see that $(m_{1}-1)L+L_{1}=m_{1}(L-E_{1})$ is semiposi-
tive. So $((m_{1}-1)L+L_{1})^{n}\geqq((m_{1}-1)L+L_{1})((m_{1}-1)L+H)^{n-1}$ by (1.2). The left
hand side is $(m_{1}(L-E_{1}))^{n}=m_{1}^{n}(d-1)$ . To calculate the right hand side $R$ , we
note $E_{1}L=0$ in the Chow ring. We have $E_{1}H^{n-1}=0$ by (3.10). So $R=$

$m_{1}(L-E_{1})((m_{1}-1)L+H)^{n-1}=m_{1}L((m_{1}-1)L+H)^{n-1}=m_{1}^{n}d-m_{1}(L^{n}-LH^{n-1})=$
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$m_{1}^{n}d-m_{1}$ by (3.6). Thus the above inequality gives $m_{1}^{n}\leqq m_{1}$ , hence $m_{1}=1$ . This
implies the smoothness of $D$ at $p$ .

(4.7) From now on, we consider the case $\gamma=0$ . So dim $W=n$ .
$L^{n}=L^{2}H^{n-2}>LH^{n-1}$ by (3.3). Hence $LH^{n-1}>H^{n}$ by (1.2; 4). $H^{n}=w\deg(\rho)$

$\geqq w$ . On the other hand we have $0\leqq\Delta(W, H)=n+w-(n+d-2)=2+w-d$ .
Combining them we obtain $\Delta(W, H)=w+2-d=0,$ $\deg(\rho)=1$ and $L^{n}-LH^{n-1}=$

$LH^{n-1}-H^{n}=1$ . Hence $LEH^{n- 2}=EH^{n-1}=1$ .
(4.8) Let $j$ be the least integer such that $\dim Y_{j}=1$ . Similarly as in (3.7),

we obtain $m_{j}=\nu_{j}=LE_{j}^{*}H^{n-2}=LE_{j}^{\prime}H^{n-2}=1$ from $LEH^{n-2}=1$ . So $LE_{i}^{*}H^{n-2}=$

$LE_{i}^{\prime}H^{n-2}=0$ for any $i\neq j$ . Using this similarly as in (3.8), we infer that $Y_{i}$ is
a point for $i\neq j$ .

(4.9) CLAIM. $\Lambda$ has no isolated base point.
Otherwise, we can take $k$ as in (4.3) after changing the Hironaka model.

Note that $Bs\Lambda_{k-1}$ is a Pnite set and $L_{k-1}$ is semipositive. One easily sees that
$L_{k}$ is semipositive too. By (3.3) we get $L^{n}=L^{2}L_{k-1}^{n-2}>LL_{j}^{n-1}=LL_{k-1}^{n-1}$ . So
$LL_{k-1}^{n-1}>L_{k-1}^{n}$ by (1.2; 4). We have $L_{k-1}^{n}>L_{k}^{n}\geqq H^{n}$ too. Combining them we
obtain $L^{n}-H^{n}\geqq 3$ , contradicting $d-w=2$ in (4.7).

(4.10) CLAIM. $E_{j}^{*}H^{n-1}=E_{j}^{\prime}H^{n-1}=1$ and EfH $=E_{i}^{\prime}H^{n- 1}=0$ for any $i\neq j$ .
This is proved similarly as (3.10). Assume that $E_{k}^{*}H^{n-1}>0$ for some $k\neq j$ .

Then $EH^{n-1}=1$ implies that $m_{k}=1$ and $H^{n-1}E_{k}^{*}=1$ . Moreover $E_{i}^{*}H^{n-1}=0$ for
any $i\neq k$ . So $H^{n-1}E_{k}^{\prime}=1$ .

$Y_{k}$ is a point by (4.8). Moreover $Y_{i}\iota\supset Y_{k}$ for any $i<k$ , because otherwise
$E_{i}^{*}-E_{k}^{*}$ would be effective and $H^{n-1}E_{i}^{*}\geqq H^{n-1}E_{k}^{*}$ . So, changing the order of
blowing-ups if necessary, we may assume $k=1$ . Then we have $ 1=H^{n-1}E_{k}^{\prime}\leqq$

$L_{k}^{n-1}E_{k}^{\prime}=1$ , since $L_{k}-H$ is effective on $E_{k}^{\prime}$ . On $M_{k}$ , the restriction of $\Lambda_{k}$ to
$E_{k}\cong P^{n-1}$ is a linear system consisting of hyperplanes. Therefore, $L_{k}^{n-1}E_{k}^{\prime}=$

$H^{n-1}E_{k}^{\prime}$ implies that $ E_{k}\cap Bs\Lambda_{k}=\emptyset$ . On the other hand, $Y_{k}$ is a point on $Y_{j}$ by
(4.9). So $E_{k}$ meets the proper transform of $Y_{j}$ on $M_{k}$ , which is clearly a com-
ponent of $Bs\Lambda_{k}$ . This contradiction proves our claim.

(4.11) CLAIM. $Bs\Lambda=Y_{j}$ and this is a rational normal curve.
PROOF. Take $S_{i}$ $(i=n, n-1, \cdots , 2)$ , $D_{i}$ and $\Sigma_{i}$ as in (4.4). Using (4.8), we

infer that $D_{i}’ s$ are non-singular outside a finite set. So they are normal as in
(4.4). Moreover, $S_{\ell}$ – $\Sigma_{i}$ is mapped isomorphically onto an open subset of $D_{i}$ .

$H^{n-1}\Sigma=0$ and $H^{n-1}E_{j}^{\prime}=1$ by (4.10). So the restrictions $X_{1}$ and $X_{2}$ of two
general members of $\Lambda^{\prime}$ to $S_{2}$ satisfy $ X_{q}\cap\Sigma_{2}=\emptyset$, and $X_{q}Y=1$ for $q=1,2$ where
$Y=S_{2}\cap E_{j}^{\prime}$ . Therefore they are mapped isomorphically onto Cartier divisors
$F_{1},$ $F_{2}$ on $D_{2}$ . $F_{1}=F_{2}$ in $Pic(D_{2})$ since $D_{2}$ is normal. Thus, their restrictions to
$Y_{j}=\pi(Y)$ give rise to a linear system $\Xi$ witb deg $\Xi=1$ and $Bs\Xi=\emptyset$ . Hence
$Y_{j}\cong P^{1}$ . By virtue of (4.8) and (4.9), Bs $\Lambda$ has no other component than $Y_{j}$ .

(4.12) Now, we finish the proof of (4.1) by the same argument in (4.6).
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Here we use (4.10) and (4.7) instead of (3.10) and (3.6). QED.
(4.13) REMARK. As a matter of fact, the case $\beta=1$ and $\gamma=0$ does not

happen when $\Lambda=|L|$ . We will show this by induction on $n=\dim M$.
Suppose that $n=2$ . Write $|L|=F+\Lambda^{\prime}$ where $F$ is the fixed part. From

the preceding argument we infer that $F$ consists of one prime component
$Y\cong P^{1}$ and Bs $\Lambda^{\prime}=\emptyset$ . Furthermore, $\Lambda^{\prime}$ dePnes a birational morphism onto $W\subset P^{N}$

where $W$ is a subvariety with deg $W=w$ and $\Delta(W, H)=0$ . Using [F3; Theorem
4.1; $c$)], we infer that a general member $X$ of $\Lambda^{\prime}$ is a smooth rational curve.
Moreover $XY=1$ as in (4.12). Since $X^{2}>0,$ $M$ is a rational surface by Noether’s
criterion. So, using the exact sequence $H^{1}(M, \mathcal{O})\rightarrow H^{1}(M, H)\rightarrow H^{1}(X, H_{X})$ , we
obtain $H^{1}(M, H)=0$ . The exact sequence $0\rightarrow O_{M}[H]\rightarrow O_{M}[L]\rightarrow O_{Y}[L]\rightarrow 0$ yields
$H^{0}(M, L)\rightarrow H^{0}(Y, L)\rightarrow H^{1}(M, H)=0$ . Hence the restriction mapping $ H^{0}(M, L)\rightarrow$

$H^{0}(Y, L)$ is surjective. However, this is a zero mapping because $Y=Bs|L|$ .
So $H^{0}(Y, L)=0$ , contradicting $Y\cong P^{1}$ and $LY>0$ .

In case $n\geqq 3$ , let $D$ be a general member of $|L|$ . This is smooth by (4.1).

We have $\Delta(D, L_{D})\leqq\Delta(M, L)$ by [F2; Proposition 1.5]. If $\Delta(D, L_{D})\leqq 1$ , then
$h^{1}(D, O_{D})=0$ by [F2] and [F5]. So the inequality in the proposition cited above
cannot be satisfied. Hence $\Delta(D, L_{D})=2$ and $H^{0}(M, L)\rightarrow H^{0}(D, L_{D})$ is surjective.
Applying the induction hypothesis to $(D, L_{D})$ we prove the assertion for $(M, L)$

too. QED.
More precise description of the structure of polarized manifolds with $\Delta=2$

and $\beta=1$ will be given in a future paper (or see [F1]).
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