Theorems of Bertini type for certain types of polarized manifolds

By Takao FuJita*

(Received July 11, 1981)

Introduction.

In this paper we will study sufficient conditions for a given linear system Λ of Cartier divisors on a manifold M to have a non-singular member. We consider the problem over the complex number field and thus the trouble comes from the base points of Λ. Indeed, the famous theorem of Bertini says that a general member of Λ is smooth outside $\mathrm{Bs} \Lambda$.

Our main goal is the theorem (4.1) below, which gives a satisfactory answer in the case $\Delta(M, \Lambda)=2$ and [1] is ample. This result was the starting point of the study of polarized manifolds of Δ-genus two in [F1], which will appear in a series of papers in English. Besides this, the author hopes that the technique will be useful in other contexts too. So, many lemmas are given in more general forms than necessary to prove (4.1). The most important tool for our method is the theory of intersection numbers of semipositive line bundles.

In §1 we review basic facts on semipositive line bundles and on Hironaka's elimination theory of base points of linear systems. In § 2 we study the case in which there are only finite base points. In §3 we give several technical lemmas. In $\S 4$ we consider the case $\Delta=2$. Thus, the main features of $[\mathbf{F} 1$; $\S 5-1]$ are retained in this paper, except a few generalizations given in $\S 3$.

Notation, convention and terminology.

Variety means an irreducible reduced projective scheme over the complex number field \boldsymbol{C}. Manifold is a non-singular variety. Tensor products of line bundles are denoted additively, while multiplicative notation is used for intersection products in Chow ring. Line bundles are confused with invertible sheaves. Thus, we employ the same notation as in [F2], [F3], which usually follows the standard one in algebraic geometry (see, e. g., [Ha 2]). We give here several samples.

[^0][1]: The line bundle associated with the linear system Λ.
$\mathrm{Bs} \Lambda$: The intersection of all the members of Λ.
$|L|$: The complete linear system associated with a line bundle L.
$\{Y\}$: The algebraic cycle (element in Chow ring) defined by a subspace Y. Important convention: A pull-back of a line bundle L by a morphism is often denoted just by L, especially during calculations of intersection numbers (to avoid awkward notation).

§ 1. Preliminaries.

(1.1) Definition. A line bundle L on a variety V is said to be (numerically) semipositive if $L C \geqq 0$ for any (integral) curve C in V. Obviously $f^{*} L$ is semipositive for any morphism $f: X \rightarrow V$ if L is so.
(1.2) Proposition. Let $F_{1}, \cdots, F_{n}, F, H$ be semipositive line bundles on a variety V of dimension n. Then

1) $F_{1} \cdots F_{n}\{V\} \geqq 0$.
2) $A+t F$ is ample for any ample line bundle A and for any $t \geqq 0$.
3) If $E=F-H$ is effective, then $F^{a} H^{n-a} \geqq F^{b} H^{n-b}$ for any $a \geqq b$.
4) $\left(F_{1} \cdots F_{n}\{V\}\right)^{2} \geqq\left(F_{1}^{2} F_{3} \cdots F_{n}\{V\}\right)\left(F_{2}^{2} F_{3} \cdots F_{n}\{V\}\right)$.

Proof. 1) was proved by Kleiman [K]. One can refer also [Ha 1; p. 34]. 2) follows from 1) and Nakai's criterion (cf. [N] or [Ha 1]). To show 3), we may assume $a=b+1$. Then we have $F^{a} H^{n-a}-F^{b} H^{n-b}=F^{b} E H^{n-a} \geqq 0$ by 1). To prove 4), replacing F_{i} 's by $t F_{i}+A$ and letting $t \rightarrow \infty$, we may assume that F_{i} 's are ample (even very ample, by taking positive multiples of them). Taking hyperplane sections in $\left|F_{i}\right|(i=3, \cdots, n)$, we reduce the problem to the case $n=2$. Then the index theorem implies our assertion.
(1.3) Remark. Employing the definition of semipositivity as in [F4; Appendix B], we can prove analogues of 1) and 3) in the analytic category too.
(1.4) Let Λ be a linear system (of Cartier divisors) on a manifold M. Then, thanks to Hironaka [Hi], we can find a sequence $M^{\prime}=M_{r} \rightarrow M_{r-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0}$ $=M$ of birational morphisms together with linear systems Λ_{i} on M_{i} such that:
0) $\Lambda_{0}=\Lambda$.

1) $\pi_{i}: M_{i} \rightarrow M_{i-1}$ is the blowing-up of a submanifold C_{i} of M_{i-1} contained in $\operatorname{Bs} \Lambda_{i-1}$.
2) $\pi_{i}^{*} \Lambda_{i-1}=m_{i} E_{i}+\Lambda_{i}$ for some positive integer m_{i}, where E_{i} is the exceptional divisor on M_{i} lying over C_{i}, and $\operatorname{Bs} \Lambda_{i} \perp E_{i}$.
3) $\operatorname{Bs} \Lambda_{r}=\emptyset$.

Such a pair $\left(M_{r}, \Lambda_{r}\right)=\left(M^{\prime}, \Lambda^{\prime}\right)$ will be called a Hironaka model of (M, Λ).
(1.5) A Hironaka model is unique up to birational equivalence in the following sense. Let $\left(M^{\prime \prime}, \Lambda^{\prime \prime}\right)$ be another Hironaka model of (M, Λ) and let $\pi^{\prime}: M^{\prime} \rightarrow M$ and $\pi^{\prime \prime}: M^{\prime \prime} \rightarrow M$ be natural morphisms respectively. Then there is
a third manifold M^{*} and birational morphisms $p^{\prime}: M^{*} \rightarrow M^{\prime}$ and $p^{\prime \prime}: M^{*} \rightarrow M^{\prime \prime}$ such that $\pi^{\prime} \circ p^{\prime}=\pi^{\prime \prime} \circ p^{\prime \prime}$ and $\left(p^{\prime}\right)^{*} \Lambda^{\prime}=\left(p^{\prime \prime}\right)^{*} \Lambda^{\prime \prime}$.

Let W be the image of the morphism $\rho: M^{\prime} \rightarrow \boldsymbol{P}^{N}(N=\operatorname{dim} \Lambda)$ defined by Λ^{\prime}. Let H be the hyperplane section bundle $\mathcal{O}_{W}(1)$. Then the polarized variety (W, H) is determined uniquely by (M, Λ). Indeed, we have $(W, H) \cong(\operatorname{Proj}(A)$, $O(1))$ where A is the graded subalgebra of $\oplus_{t z 0} H^{0}(M, t L)$ generated by the linear subspace of $H^{0}(M, L)$ with $L=[\Lambda]$ corresponding to Λ.
(1.6) In the situation as above, we employ the following notation.
X : A general fiber of $\rho: M^{\prime} \rightarrow W$.
$\gamma:=\operatorname{dim} X=n-\operatorname{dim} W$, where $n=\operatorname{dim} M$.
$\beta:=\operatorname{dim} \operatorname{Bs} \Lambda$.
$w:=\operatorname{deg} W$ (in \boldsymbol{P}^{N}).
π : The morphism $M^{\prime} \rightarrow M$.
$L_{i}:=\left[\Lambda_{i}\right]$ and $L:=[\Lambda]$.
E_{i}^{*} : The total transform of E_{i} on M^{\prime}.
E_{i}^{\prime} : The proper transform ($=$ the prime component of E_{i}^{*} mapped onto E_{i}) of E_{i} on M^{\prime}.
E : The fixed part of $\pi^{*} \Lambda$. So $\pi^{*} \Lambda=E+\Lambda^{\prime}$ and $E=\sum_{i \geq 1}^{r} m_{i} E_{i}^{*}$.
$Y_{i}:=\pi\left(E_{i}^{\prime}\right)=\pi\left(E_{i}^{*}\right)$. This is also the image of C_{i} in M.
$\nu_{i}:=L^{d}\left\{Y_{i}\right\}$, where $L=[\Lambda]$ and $d=\operatorname{dim} Y_{i}$.
$L^{s} H^{n-s}:=\left(\pi^{*} L\right)^{s}\left(\rho^{*} H\right)^{n-s}\left\{M^{\prime}\right\}$. By (1.5), this intersection number is independent of the choice of a Hironaka model. Note also that $L-H=E$ in $\operatorname{Pic}\left(M^{\prime}\right)$. Any prime component of E is one of the E_{i}^{\prime}.
(1.7) Lemma. $\quad \beta+1 \geqq \gamma$ unless $L^{n}=0$.

Proof. $L^{\beta+1} E=0$ in $\operatorname{Chow}\left(M^{\prime}\right)$, since $\operatorname{dim} Y_{i} \leqq \beta$ for any i. So $L^{\beta+1} H^{n-\beta-1}$ $=L^{\beta+2} H^{n-\beta-2}=\cdots=L^{n}$. On the other hand $L^{s} H^{n-s}=0$ for $s<\gamma$ since $\operatorname{dim} W=$ $n-\gamma$. Hence $L^{n}=0$ if $\beta+1<\gamma$.

§ 2. Isolated base points.

(2.1) Let Λ be a linear system on a variety V and set $L=[\Lambda]$. We define $d(V, \Lambda)=L^{n}\{V\}$ and $\Lambda(V, \Lambda)=n+d(V, \Lambda)-(1+\operatorname{dim} \Lambda)$. The latter will be called the total deficiency of Λ. Given a prepolarized variety (V, L), we define $d(V$, $L)=L^{n}\{V\}=d(V,|L|)$ and $\Delta(V, L)=\Delta(V,|L|)$. The latter will be called the Δ-genus of (V, L).
(2.2) Theorem. Let Λ be a linear system on a variety V consisting of ample divisors. Then $\operatorname{dim} \operatorname{Bs} \Lambda<\Delta(V, \Lambda)$. This means $\Lambda(V, \Lambda) \geqq 0$ if $\operatorname{Bs} \Lambda=\emptyset$.

For a proof, see [F2; Theorem 1.9].
(2.3) Corollary. $\Delta(V, L) \geqq 0$ for any polarized variety. Moreover, Bs $|L|$ $=\emptyset$ if $\Delta(V, L)=0$.
(2.4.) Corollary. Let things be as in (1.6) and suppose that L is ample.

Then $\Delta(M, \Lambda) \geqq \beta+1 \geqq \gamma$.
(2.5) From now on, in this section, we consider the case $\beta=\operatorname{dim} \operatorname{Bs} \Lambda \leqq 0$ in the situation (1.6).

Proposition. Suppose that $\beta \leqq 0$. Then a general member of Λ is nonsingular unless $d(M, L) \geqq 2^{n}$.

Proof. Thanks to Bertini's theorem, it suffices to show that, for any base point p of Λ, there exists a member D of Λ which is smooth at p. Changing the order of the blowing-ups if necessary, we may assume that p is the center of the first blowing-up $\pi_{1}: M_{1} \rightarrow M$. It is enough to show $m_{1}=1$. Assume that $m_{1} \geqq 2$. Then $L_{1}^{n}=L^{n}-m_{1}^{n} \geqq 0$ by (1.2), since $L_{1}=L-m_{1} E_{1}$ is semipositive on M_{1}. So $d(M, L) \geqq m_{1}^{n} \geqq 2^{n}$, as desired.
(2.6) Proposition. Let things be as above and suppose in addition that $\gamma=0$. Then a general member of Λ is non-singular unless $\Delta(M, \Lambda) \geqq 2^{n}$.

Proof. Similarly as above, it suffices to show $m_{1}=1$. If not, we have $L^{n}-L_{1}^{n}=m_{1}^{n} \geqq 2^{n} . \quad L_{1}^{n} \geqq H^{n}$ by (1.2). We have also $0 \leqq \Delta(W, H)=n+w-(1+N)$ $=\Delta(M, \Lambda)-L^{n}+w$. Hence $\Delta(M, \Lambda) \geqq L^{n}-w=L^{n}-H^{n} \geqq 2^{n}$, as required.
(2.7) Proposition. Let things be as in (2.5) and suppose this time that $\gamma>0$. Then a general member of Λ is non-singular if $d(M, \Lambda) \geqq 2 \Delta(M, \Lambda)-1$.

For a proof, see [F3; Proposition 3.5]. The hypothesis $\Lambda=|L|$ in [F3] can be removed easily.
(2.8) Proposition. Let things be as in (2.5). Then a general member of Λ is non-singular if $\Delta(M, \Lambda) \leqq 2^{n-1}$.

PROOF. If $\gamma=0$, (2.6) applies. If $\gamma>0$, combine (2.5) and (2.7).

§ 3. Base loci of higher dimension.

Throughout in this section we study the situation as in (1.6) and employ the notation there. We set $d=L^{n}=d(M, \Lambda)$ and $\Delta=\Delta(M, \Lambda)$. So $N=\operatorname{dim} \Lambda$ $=n+d-\Delta-1$. Furthermore we let j be the least integer such that $\operatorname{dim} Y_{j}=\beta$.
(3.1) Lemma. For any component Z of E, the class $L^{\beta} Z$ in the Chow ring of M^{\prime} is represented by a sum of subspaces on which the pull-backs of L_{j} are semipositive.

Proof. Let Y be the image of Z in M. We may assume $\operatorname{dim} Y=\beta$. If $Y \neq Y_{j}$, then $E_{j}^{*}=0$ on $L^{\beta} Z$ and the claim is obvious. If $Y=Y_{j}$, then $L^{\beta} Z$ is represented by several fibers of $Z \rightarrow Y$, each of which is mapped into a fiber P of $E_{j} \rightarrow C_{j}$ on M_{j}. $P \cong \boldsymbol{P}^{n-\beta-1}$ and the restriction of L_{j} to P is $\mathcal{O}\left(m_{j}\right)$. So our assertion is valid in this case too.
(3.2) LEMMA. $L^{\beta} E_{j}^{*} H^{n-\beta-1} \geqq m_{j}^{n-\beta-1} \nu_{j}=\left(L^{n}-L^{\beta} L_{j}^{n-\beta}\right) / m_{j} \geqq L^{\beta} E_{j}^{\prime} H^{n-\beta-1}$.

Proof. By (3.1) and (1.2) we get $L^{\beta} L_{j}^{n-\beta} \geqq L^{\beta} L_{j} H^{n-\beta-1}$ and $L^{\beta} L_{j}^{n-\beta-1} E_{j}^{\prime} \geqq$ $L^{\beta} H^{n-\beta-1} E_{j}^{\prime}$ because E_{i}^{\prime} is effective on E_{j}^{\prime} for any $i \neq j$. The first inequality yields $d-m_{j}^{n-\beta} \nu_{j} \geqq d-m_{j} L^{\beta} H^{n-\beta-1} E_{j}^{*}$, and hence $L^{\beta} E_{j}^{*} H^{n-\beta-1} \geqq m_{j}^{n-\beta-1} \nu_{j}$. We
have $L^{\beta} L_{j}^{n-\beta}=L^{\beta}\left(L-m_{j} E_{j}\right)^{n-\beta}\left\{M_{j}\right\}=L^{n}-m_{j}^{n-\beta} \nu_{j}$, since $C_{j} \rightarrow Y_{j}$ is birational by the choice of j. We have also $L^{n}-L^{\beta} L_{j}^{n-\beta}=L^{\beta+1} L_{j}^{n-\beta-1}-L^{\beta} L_{j}^{n-\beta}=$ $m_{j} L^{\beta} E_{j}^{*} L_{j}^{n-\beta-1}=m_{j} L^{\beta} E_{j}^{\prime} L_{j}^{n-\beta-1}$, since any component of $E_{j}^{*}-E_{j}^{\prime}$ is mapped onto a subspace of M_{j} of codimension $\geqq 2$. Combining them we get the desired inequalities.
(3.3) Corollary. If in addition L is ample, then $L^{\beta+1} H^{n-\beta-1}>L^{\beta} H^{n-\beta}$.
(3.4) Lemma. Suppose that $\Delta=\beta+1=\gamma, L^{\gamma} X>0$ and $\nu_{j}>0$. Then $d=w=1$.

Proof. $d=L^{n}=L^{\beta+1} H^{n-r}=w L^{r} X$. Hence $d \geqq w$, since $L^{r} X$ is a positive integer. On the other hand we have $0 \leqq \Delta(W, H)=n-\gamma+w-(n+d-\Delta)=w-d$ by assumption. Combining them we infer that we must have the equalities. So $d=w$ and $L^{r} X=1$.

By (3.2) we have $0<m_{j}^{n-\gamma_{\nu}} \leqq L^{\beta} E H^{n-\beta-1}=w L^{\beta} E X$. So $L^{\beta} E X \geqq 1$. Hence $w \leqq L^{\beta} E H^{n-\gamma}=L^{\gamma} H^{n-\gamma}-L^{\beta} H^{n-\beta}=d$. Again we must have the equality here, so $L^{\beta} E X=1$. On the other hand, we have $L^{\beta} E X \geqq m_{j} L^{\beta} E_{j}^{*} X$ by (1.2) and $L^{\beta} E_{j}^{*} X$ >0 by (3.2). Hence $m_{j}=1=L^{\beta} E_{j}^{*} X$. This implies $\nu_{j}=1$ too, because $L^{\beta} E_{j}^{*}$ is divisible by ν_{j} in the Chow ring of M_{j}. Moreover, $L^{\beta}\left(E-E_{j}^{*}\right) X=0$ implies $L^{\beta} E_{i}^{*} X=0$ for any $i \neq j$, and hence $L^{\beta} E_{j}^{\prime} H^{n-r}=L^{\beta} E_{j}^{*} H^{n-r}=w$. Now we get $w \leqq m_{j}^{n-r_{\nu}}=1$ from (3.2). So $d=w=1$.

Remark. As a matter of fact, if $\beta+1=\gamma, L^{\gamma} X=1$ and if $\nu_{j}>0$, then one can show $d=w=1$ by the same argument as above.
(3.5) Theorem. Let (M, L) be a polarized manifold. Then $\Delta(M, L)=$ $1+\operatorname{dim} \mathrm{Bs}|L|=\gamma$ if and only if $L^{n}=\operatorname{deg} W=1$, where W and γ are as in (1.6).

Proof. The "only if" part follows from (3.4). So we prove the "if" part. $d=w=1$ implies $h^{0}(M, L)=n+1-\Delta$ and $W \cong \boldsymbol{P}^{n-4}$. Hence we have the equalities in (2.4). QED.
(3.6) Now we return to the situation (1.6) and this time we assume $\beta=\gamma$ $=\Delta(M, \Lambda)-1$ until the end of this section.

Lemma. Suppose that $L^{\gamma} X>0$ and $\nu_{j}>0$. Then $d-w=L^{\beta} E H^{n-\beta-1}=1=L^{\beta} X$ and $\Delta(W, H)=0$.

Proof. We have $d=L^{n}=L^{\beta+1} H^{n-\beta-1}>L^{\beta} H^{n-\beta}=w L^{\beta} X$ and $L^{\beta} X \geqq 1$ by (3.2) and assumption. So $d>w$. On the other hand $0 \leqq \Delta(W, H) \leqq n-\gamma+w-$ $(n+d-\Delta)=w-d+1$, so $d \leqq w+1$. Therefore we must have the equalities and $d-w=1=L^{\beta} X=L^{\beta} E H^{n-\beta-1}$.
(3.7) Corollary. Let things be as in the above lemma. Then $L^{\beta} E_{j}^{*} H^{n-\beta-1}$ $=L^{\beta} E_{j}^{\prime} H^{n-\beta-1}=1=m_{j}=\nu_{j}$.

Proof. $L^{\beta} E_{j}^{*} H^{n-\beta-1}>0$ by (3.2). $L^{\beta}\left(E-m_{j} E_{j}^{*}\right) H^{n-\beta-1} \geqq 0$ by (1.2). Hence $L^{\beta} E H^{n-\beta-1}=1$ implies $L^{\beta} E_{j}^{*} H^{n-\beta-1}=m_{j}=1$. Moreover $L^{\beta} E_{i}^{*} H^{n-\beta-1}=0$ for any $i \neq j$. So $L^{\beta} E_{j}^{\prime} H^{n-\beta-1}=1=\nu_{j}$ by virtue of (3.2).
(3.8) Corollary. Let things be as in (3.7). If $\operatorname{dim} Y_{k}=\beta$ for some $k \neq j$, then $Y_{k} \neq Y_{j}$ and $L^{\beta}\left\{Y_{k}\right\}=0$.

Proof. Clearly $k>j$ by the choice of j. Let Z be the image of C_{k} on M_{j}. Set $\alpha=0$ if $Z \oplus E_{j}$, or $\alpha=\operatorname{dim} Z-\beta$ if $Z \subset E_{j}$. In the latter case α is the dimension of a general fiber of $Z \rightarrow C_{j}$. Now, by a similar argument as in (3.2) and (3.1), we infer $L^{\beta} L_{j}^{\alpha} L_{k}^{n-\beta-\alpha} \geqq L^{\beta} L_{j}^{\alpha} H^{n-\beta-\alpha}$. Since $L^{\beta} L_{j}^{n-\beta}=d-m_{j}^{n-\beta} \nu_{j}=$ $d-1=w=L^{\beta} H^{n-\beta}$ by (3.6) and (3.7), we have $L^{\beta} L_{j}^{\alpha} H^{n-\beta-\alpha}=w$ by virtue of (1.2). On the other hand, we have $L^{\beta} L_{j}^{\alpha} L_{k}^{n-\beta-\alpha}=L^{\beta} L_{j}^{n-\beta}-m_{k}^{n-\beta-\alpha} L^{\beta} L_{j}^{\alpha} Z$. Thus we obtain $L^{\beta} L_{j}^{\alpha} Z=0$. Our assertion follows from this equality.
(3.9) Corollary. Let things be as in (3.7) and suppose that L is ample. Then $\operatorname{Bs} \Lambda$ has only one irreducible component Y of dimension β. Moreover $L^{\beta} Y=1$ and a general member of Λ is smooth at a general point of Y.

Proof. The first assertion follows from (3.8). The smoothness is a consequence of $m_{j}=1$.
(3.10) Lemma. Let things be as in (3.9). Then $L^{\beta-1} E_{j}^{*} X=1$ and $L^{\beta-1} E_{i}^{*} X$ $=0$ for any $i \neq j$.

Proof. We have $L^{\beta-1} E X=L^{\beta-1}(L-H) X=L^{\beta} X=1$ by (3.6). Hence it suffices to show $L^{\beta-1} E_{i}^{*} X=0$ for $i \neq j$. Assume that $L^{\beta-1} E_{k}^{*} X>0$ for some $k \neq j$. Then, from $L^{\beta-1} E_{i}^{*} X \geqq 0$, we infer $m_{k}=L^{\beta-1} E_{k}^{*} X=1$ and $L^{\beta-1} E_{i}^{*} X=0$ for any $i \neq k$. Moreover, by (3.8), we infer that $\operatorname{dim} Y_{k}=\beta-1$ and $L^{\beta-1} Y_{k}=1$.

Now, changing the order of the blowing-ups to obtain a Hironaka model if necessary, we may assume that $k<j$. Moreover $Y_{i} \neq Y_{k}$ for any $i<k$. Indeed, if $Y_{i}=Y_{k}$, the image of C_{k} in M_{i} would be contained in E_{i}, and hence $E_{i}^{*}-E_{k}^{*}$ would be effective. This contradicts $L^{\beta-1}\left(E_{i}^{*}-E_{k}^{*}\right) X<0$. Thus we conclude that π_{k} is the first blowing-up whose center lies over Y_{k}.
L_{k} is semipositive on subspaces representing the cycle $L^{\beta-1} E_{k}^{\prime}$, and $L_{k}-H$ is effective there. Hence $L^{\beta-1} L_{k}^{n-\beta} E_{k}^{\prime} \geqq L^{\beta-1} H^{n-\beta} E_{k}^{\prime}$. The right side is equal to $w L^{\beta-1} E_{k}^{\prime} X=w$ and the left side is $m_{k}^{n-\beta} \nu_{k}=1$, where $\nu_{k}=L^{\beta-1} C_{k}=L^{\beta-1} Y_{k}$. So $w=1$, hence $d=2$ by (3.6). Thus $\operatorname{dim} \Lambda=\operatorname{dim} W=n+d-\Delta-1=n-\gamma$ and $W \cong \boldsymbol{P}^{n-\beta}$. Hence $\operatorname{Bs} \Lambda$ is the intersection of $n-\beta$ general members of it, and so any component of it is of dimension β. From this and (3.9) we get $\operatorname{Bs} \Lambda=Y_{j}$ and in particular $Y_{k} \subset Y_{j}$.

Now we infer that $\operatorname{Bs} \Lambda_{k}$ contains the proper transform of Y_{j}. So $E_{k} \cap \mathrm{Bs} \Lambda_{k}$ meets every general fiber P of $E_{k} \rightarrow C_{k}$. The proper transform P^{\prime} of $P \cong \boldsymbol{P}^{n-\beta}$ on M^{\prime} gives a Hironaka model with respect to the restriction of Λ_{k} to P. Therefore we infer that $H^{n-\beta}\left\{P^{\prime}\right\}=0$ since the above linear system consists of hyperplanes and has base points. This implies $L^{\beta-1} H^{n-\beta} E_{k}^{\prime}=0$, contradicting $L^{\beta-1} E_{k}^{\prime} X=L^{\beta-1} E_{k}^{*} X=1$. QED.

§4. The case $\Delta=2$.

The main purpose of this section is to prove the following
(4.1) Theorem. Let (M, L) be a polarized manifold such that $n=\operatorname{dim} M \geqq 3$,
$d=d(M, L) \geqq 2$ and $\Delta(M, L)=2$. Then a general member of $|L|$ is non-singular.
Actually, we can show the assertion for a non-complete linear system Λ with $\Delta(M, \Lambda)=2$ too. In the proof below, we employ the notation as in (1.6).
(4.2) $\beta \leqq 1$ by (2.2). If $\beta \leqq 0$, then (2.8) applies. So it suffices to consider the case $\beta=1$. Then $\gamma \leqq 2$ by (1.7). $\gamma \neq 2$ by (3.5) because $d \geqq 2$. So $\gamma=1$ or 0 . At first, until (4.7), we consider the case $\gamma=1$.
(4.3) Claim. Λ has no isolated base point.

Otherwise, we can change the order of blowing-ups so that there is an integer k such that $k>j, Y_{i} \subset Y_{j}$ for any $i<k, Y_{i} \cap Y_{j}=\emptyset$ for any $i \geqq k$ and Y_{k} is an isolated point of $\operatorname{Bs} \Lambda$. Then, by similar arguments as in (3.2), we get $L_{k} H^{n-1} \leqq L_{k}^{n}<L_{j}^{n} \leqq L L_{j}^{n-1}<L^{n}$, and $L_{k} H^{n-1}=L_{j} H^{n-1}=d-1$ by (3.10). This leads to a contradiction.
(4.4) Taking general members of Λ^{\prime} successively we get a sequence $M^{\prime}=$ $S_{n} \supset S_{n-1} \supset \cdots \supset S_{2}$ of submanifolds of M^{\prime} with $\operatorname{dim} S_{i}=i$. Let $D_{i}=\pi\left(S_{i}\right) \subset M$ for each i. Then D_{i} is a member of the restriction of Λ to D_{i+1}. D_{i} is non-singular outside $\operatorname{Bs} \Lambda$, which is the integral curve Y_{j} by (3.9) and (4.3). Moreover, by (3.7) and (3.8), we see that D_{i} is non-singular at a general point on Y_{j}. Thus, the singular locus of D_{i} is at most finite. Hence D_{i} is normal for every $i \geqq 2$ by Serre's criterion.

Let $\Sigma=\cup_{i \neq j} E_{i}^{\prime}$ and set $\Sigma_{k}=\Sigma \cap S_{k}$ for $k=n, \cdots, 2$. Note that $\pi(\Sigma)$ is a finite subset of M. From $m_{j}=1$, we infer that $S_{k}-\Sigma_{k}$ is mapped isomorphically onto D_{k} minus this subset for every $k \geqq 2$.
(4.5) Claim. $\quad Y_{j}=\mathrm{Bs} \Lambda$ is a rational normal curve.

Proof. Let W_{k} be the image of S_{k} via ρ. They are successive hyperplane sections of W. So $W_{2} \cong \boldsymbol{P}^{1}$ since $\Delta(W, H)=0$ (cf. [F2]). By (3.10) we have $H \Sigma_{2}=H^{n-1} \Sigma=0$. Hence any component of Σ_{2} is contained in a fiber of $\rho_{2}: S_{2} \rightarrow W_{2}$.

Let X_{1} and X_{2} be general fibers of ρ_{2}. By the above observation we see $X_{q} \cap \Sigma_{2}=\emptyset$ for $q=1,2$. So they are mapped isomorphically onto Cartier divisors F_{1}, F_{2} on D_{2}. Since D_{2} is normal and X_{q} 's are linearly equivalent, $F_{1}=F_{2}$ in $\operatorname{Pic}\left(D_{2}\right)$. Thus Bs $|F|=\emptyset$ where $F=\left[F_{q}\right]$. We obtain $F Y_{j}=E X=1$ by (3.10). Combining them we infer $Y_{j} \cong \boldsymbol{P}^{1}$.
(4.6) In order to finish the proof in case $\gamma=1$, it suffices to show that, for any point p on $\operatorname{Bs} \Lambda \cong \boldsymbol{P}^{1}$, there exists a member D of Λ which is smooth at p.

We change the order of the blowing-ups so that the first center $C_{1}=Y_{1}$ is the given point p. It is easy to see that ($\left.m_{1}-1\right) L+L_{1}=m_{1}\left(L-E_{1}\right)$ is semipositive. So $\left(\left(m_{1}-1\right) L+L_{1}\right)^{n} \geqq\left(\left(m_{1}-1\right) L+L_{1}\right)\left(\left(m_{1}-1\right) L+H\right)^{n-1}$ by (1.2). The left hand side is $\left(m_{1}\left(L-E_{1}\right)\right)^{n}=m_{1}^{n}(d-1)$. To calculate the right hand side R, we note $E_{1} L=0$ in the Chow ring. We have $E_{1} H^{n-1}=0$ by (3.10). So $R=$ $m_{1}\left(L-E_{1}\right)\left(\left(m_{1}-1\right) L+H\right)^{n-1}=m_{1} L\left(\left(m_{1}-1\right) L+H\right)^{n-1}=m_{1}^{n} d-m_{1}\left(L^{n}-L H^{n-1}\right)=$
$m_{1}^{n} d-m_{1}$ by (3.6). Thus the above inequality gives $m_{1}^{n} \leqq m_{1}$, hence $m_{1}=1$. This implies the smoothness of D at p.
(4.7) From now on, we consider the case $\gamma=0$. So $\operatorname{dim} W=n$.
$L^{n}=L^{2} H^{n-2}>L H^{n-1}$ by (3.3). Hence $L H^{n-1}>H^{n}$ by (1.2; 4). $H^{n}=w \operatorname{deg}(\rho)$ $\geqq w$. On the other hand we have $0 \leqq \Delta(W, H)=n+w-(n+d-2)=2+w-d$. Combining them we obtain $\Delta(W, H)=w+2-d=0, \operatorname{deg}(\rho)=1$ and $L^{n}-L H^{n-1}=$ $L H^{n-1}-H^{n}=1$. Hence $L E H^{n-2}=E H^{n-1}=1$.
(4.8) Let j be the least integer such that $\operatorname{dim} Y_{j}=1$. Similarly as in (3.7), we obtain $m_{j}=\nu_{j}=L E_{j}^{*} H^{n-2}=L E_{j}^{\prime} H^{n-2}=1$ from $L E H^{n-2}=1$. So $L E_{i}^{*} H^{n-2}=$ $L E_{i}^{\prime} H^{n-2}=0$ for any $i \neq j$. Using this similarly as in (3.8), we infer that Y_{i} is a point for $i \neq j$.
(4.9) Claim. Λ has no isolated base point.

Otherwise, we can take k as in (4.3) after changing the Hironaka model. Note that $\operatorname{Bs} \Lambda_{k-1}$ is a finite set and L_{k-1} is semipositive. One easily sees that L_{k} is semipositive too. By (3.3) we get $L^{n}=L^{2} L_{k-1}^{n-2}>L L_{j}^{n-1}=L L_{k-1}^{n-1}$. So $L L_{k-1}^{n-1}>L_{k-1}^{n}$ by (1.2; 4). We have $L_{k-1}^{n}>L_{k}^{n} \geqq H^{n}$ too. Combining them we obtain $L^{n}-H^{n} \geqq 3$, contradicting $d-w=2$ in (4.7).
(4.10) Claim. $E_{j}^{*} H^{n-1}=E_{j}^{\prime} H^{n-1}=1$ and $E_{i}^{*} H^{n-1}=E_{i}^{\prime} H^{n-1}=0$ for any $i \neq j$.

This is proved similarly as (3.10). Assume that $E_{k}^{*} H^{n-1}>0$ for some $k \neq j$. Then $E H^{n-1}=1$ implies that $m_{k}=1$ and $H^{n-1} E_{k}^{*}=1$. Moreover $E_{i}^{*} H^{n-1}=0$ for any $i \neq k$. So $H^{n-1} E_{k}^{\prime}=1$.
Y_{k} is a point by (4.8). Moreover $Y_{i} \not \supset Y_{k}$ for any $i<k$, because otherwise $E_{i}^{*}-E_{k}^{*}$ would be effective and $H^{n-1} E_{i}^{*} \geqq H^{n-1} E_{k}^{*}$. So, changing the order of blowing-ups if necessary, we may assume $k=1$. Then we have $1=H^{n-1} E_{k}^{\prime} \leqq$ $L_{k}^{n-1} E_{k}^{\prime}=1$, since $L_{k}-H$ is effective on E_{k}^{\prime}. On M_{k}, the restriction of Λ_{k} to $E_{k} \cong \boldsymbol{P}^{n-1}$ is a linear system consisting of hyperplanes. Therefore, $L_{k}^{n-1} E_{k}^{\prime}=$ $H^{n-1} E_{k}^{\prime}$ implies that $E_{k} \cap \mathrm{Bs} \Lambda_{k}=\emptyset$. On the other hand, Y_{k} is a point on Y_{j} by (4.9). So E_{k} meets the proper transform of Y_{j} on M_{k}, which is clearly a component of $\operatorname{Bs} \Lambda_{k}$. This contradiction proves our claim.
(4.11) Claim. $\operatorname{Bs} \Lambda=Y_{j}$ and this is a rational normal curve.

Proof. Take $S_{i}(i=n, n-1, \cdots, 2), D_{i}$ and Σ_{i} as in (4.4). Using (4.8), we infer that D_{i} 's are non-singular outside a finite set. So they are normal as in (4.4). Moreover, $S_{i}-\Sigma_{i}$ is mapped isomorphically onto an open subset of D_{i}.
$H^{n-1} \Sigma=0$ and $H^{n-1} E_{j}^{\prime}=1$ by (4.10). So the restrictions X_{1} and X_{2} of two general members of Λ^{\prime} to S_{2} satisfy $X_{q} \cap \Sigma_{2}=\emptyset$, and $X_{q} Y=1$ for $q=1,2$ where $Y=S_{2} \cap E_{j}^{\prime}$. Therefore they are mapped isomorphically onto Cartier divisors F_{1}, F_{2} on $D_{2} . \quad F_{1}=F_{2}$ in $\operatorname{Pic}\left(D_{2}\right)$ since D_{2} is normal. Thus, their restrictions to $Y_{j}=\pi(Y)$ give rise to a linear system Ξ with $\operatorname{deg} \Xi=1$ and $\mathrm{Bs} \Xi=\emptyset$. Hence $Y_{j} \cong \boldsymbol{P}^{1}$. By virtue of (4.8) and (4.9), Bs Λ has no other component than Y_{j}.
(4.12) Now, we finish the proof of (4.1) by the same argument in (4.6).

Here we use (4.10) and (4.7) instead of (3.10) and (3.6). QED.
(4.13) Remark. As a matter of fact, the case $\beta=1$ and $\gamma=0$ does not happen when $\Lambda=|L|$. We will show this by induction on $n=\operatorname{dim} M$.

Suppose that $n=2$. Write $|L|=F+\Lambda^{\prime}$ where F is the fixed part. From the preceding argument we infer that F consists of one prime component $Y \cong \boldsymbol{P}^{1}$ and $\operatorname{Bs} \Lambda^{\prime}=\emptyset$. Furthermore, Λ^{\prime} defines a birational morphism onto $W \subset \boldsymbol{P}^{N}$ where W is a subvariety with $\operatorname{deg} W=w$ and $\Delta(W, H)=0$. Using [F3; Theorem 4.1 ; c)], we infer that a general member X of Λ^{\prime} is a smooth rational curve. Moreover $X Y=1$ as in (4.12). Since $X^{2}>0, M$ is a rational surface by Noether's criterion. So, using the exact sequence $H^{1}(M, \mathcal{O}) \rightarrow H^{1}(M, H) \rightarrow H^{1}\left(X, H_{X}\right)$, we obtain $H^{1}(M, H)=0$. The exact sequence $0 \rightarrow \mathcal{O}_{M}[H] \rightarrow \mathcal{O}_{M}[L] \rightarrow \mathcal{O}_{Y}[L] \rightarrow 0$ yields $H^{0}(M, L) \rightarrow H^{0}(Y, L) \rightarrow H^{1}(M, H)=0$. Hence the restriction mapping $H^{0}(M, L) \rightarrow$ $H^{0}(Y, L)$ is surjective. However, this is a zero mapping because $Y=\mathrm{Bs}|L|$. So $H^{0}(Y, L)=0$, contradicting $Y \cong \boldsymbol{P}^{1}$ and $L Y>0$.

In case $n \geqq 3$, let D be a general member of $|L|$. This is smooth by (4.1). We have $\Delta\left(D, L_{D}\right) \leqq \Delta(M, L)$ by [F2; Proposition 1.5]. If $\Delta\left(D, L_{D}\right) \leqq 1$, then $h^{1}\left(D, \mathcal{O}_{D}\right)=0$ by [F2] and [F5]. So the inequality in the proposition cited above cannot be satisfied. Hence $\Delta\left(D, L_{D}\right)=2$ and $H^{0}(M, L) \rightarrow H^{0}\left(D, L_{D}\right)$ is surjective. Applying the induction hypothesis to (D, L_{D}) we prove the assertion for (M, L) too. QED.

More precise description of the structure of polarized manifolds with $\Delta=2$ and $\beta=1$ will be given in a future paper (or see [F1]).

References

[F1] T. Fujita, On the Δ-genera of polarized varieties (in Japanese), Master Thesis, Univ. of Tokyo, 1974.
[F2] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 103-115.
[F3] T. Fujita, Defining equations for certain types of polarized varieties, Complex analysis and algebraic geometry, 165-173, Iwanami, 1977.
[F4] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169.
[F5] T. Fujita, On the structure of polarized manifolds with total deficiency one, I, J. Math. Soc. Japan, 32 (1980), 709-725.
[Ha 1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 156, Springer, 1970.
[Ha 2] R. Hartshorne, Algebraic geometry, Grad. Text in Math., 52, Springer, 1977.
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I-II, Ann. of Math., 79 (1964), 109-326.
[K] S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math., 84 (1966), 293-344.
[N] Y. Nakai, A criterion of an ample sheaf on a projective scheme, Amer. J. Math., 85 (1963), 14-26.

Takao Fujita
Department of Mathematics College of General Education
University of Tokyo
Komaba, Meguro 153
Japan

[^0]: *) This article was completed while the author was a Miller Fellow at Berkeley, the University of California.

