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Introduction. Let K be a field of characteristic p>0 and let L/K be a
finitely generated field extension. For a transcendence basis T of L/K, let Sy
denote the separable algebraic closure of K(T) in L. Consider the minimums of
the following degrees taken over all transcendence bases T of L/K: (1) [L: Sr],
(2) [Sr: K(T)], 3) [L: K(T)]. A transcendence basis T which yields the mini-
mum value in (1), (2), (3) is called an S-basis, [-basis and A-basis, respectively.
Considerable information is known concerning S-bases. For example, if T is
an S-basis of L/K, then log,[L: Sz] is Weil’s order of inseparability [19]. An
intermediate field D of L/K is called distinguished when D/K is separable and
LS K?™™(D) where n is the inseparability exponent of L/K [8]. In [1I] it is
shown that the distinguished subfields of L/K are those which are separable
over K and over which L is of minimal degree. Hence if T is an S-basis of
L/K, Sy is a distinguished subfield. Distinguished subfields have been studied
anew in [3], [4], [5], [6] [7], [14], and [16] It is shown in for
example that if F is an intermediate field of L/K and T, X are S-bases of L/F,
F/K respectively, then [L: S;]1=[F:Sx]. A recent paper gives a gener-
alization of Luroth’s theorem by showing that if K is infinite and F is an inter-
mediate field of transcendence degree one over K, then [L: K(T)]=[F: K(X)]
where T, X are A-basis of L/K, F/K respectively.

In this paper we show that if K is infinite and F is an intermediate field
of transcendence degree one over K, then [Sy: K(T)1=[Sx: K(X)] where T, X
are I-bases of L/K, F/K respectively. Along the way we determine properties
of S-bases, I-bases, and A-bases. We connect these results to the theory of
unirational varieties (one whose function field is a subfield of a pure transcen-
dental extension), the theory of generalized primitive elements [2] and purely
inseparable K-forms [10].

Transcendence Bases. 1f T is an S-basis of L/K, then log,[L: Sr] is called
the order of inseparability of L/K, inor(L/K) [11]. If T is an I-basis of L/K,
then [Sr: K(T)] is called the order of separability of L/K, os(L/K). If T is
an A-basis of L/K, then [L: K(T)] is called the irrationality of L/K, irr(L/K)
[12] We let tr.deg.(L/K) denote the transcendence degree of L/K.
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PROPOSITION 1. Let F be an intermediate field of L/K such that L/F is
purely inseparable. Then every I-basis of F/K is one of L/K and os(F/K)=
os(L/K).

Proor. If T is an I-basis of L/K, then os(L/K)=[L: K(T?™)],=0s(F/K)
where m is such that T?™<SF. Let X be an I-basis of F/K. Then os(F/K)=
[F: K(X)],=o0s(L/K) since L/F is purely inseparable. Hence [F: K(X)];=o0s(L/K)
so X is an [-basis of L/K.

This result corresponds to the fact that if L/F were separable, inor(L/K)
=inor(F/K) [4]. The effect on the order of separability under a separable alge-
braic extension is variable. It is clear that it can increase, and in view of the
existence of unirational varieties in characteristic 0 it can also decrease.

THEOREM 2. Let F be an intermediate field of L/K and suppose K is infinite.
If tr.deg.(F/K)<1, then os(F/K)<os(L/K).

Proor. If F/K 1is algebraic, then the result is immediate. Suppose
tr.deg.(F/K)=1. Let T be an I-basis of L/K. Then there exists ¢ large enough
so that K(F?)SS;. By [Proposition 1, os(L/K)=0s(Sr/K) and os(F/K)=
os(K(F?*)/K). On the other hand, 0s(Sy/K)=irr(Sy/K) by definitions and Prop-
osition 1 and irr(Sy/K)=irr(K(F?%)/K) by [13, Theorem 2]. Since we have
irr(K(F?°)/K)=o0s(K(F?%)/K), we get our assertion.

An S-basis which yields the minimum of [Sy: K(T)] over all S-bases T is
called an S*-basis of L/K and an I-basis which yields the minimum of [ L : Sy ]
over all [-bases T is called an [*-basis of L/K. If F is an intermediate field
of L/K, we let 9§(F/K), 9¥F/K), and 9 4F/K) denote the set of all S*-bases,
I*-bases, and A-bases of F/K respectively. We write 9§=9%L/K), 9¥=
T¥L/K), and 9,4=9(L/K).

ProOPOSITION 3. (1) FEither I$NT¥=0 or 9§=9F. (2) If 9§=9%, then
ﬂ'?:ﬂ’}k:ﬂ'&

PrOOF. (1) Suppose Teg5ng¥. Let T,€9% and T,=g9¥. Since T, T,
€a%, [Sr: K(T)]J=[Sr,: K(T')]. Since T, T.€9¥, [L:Sr]=[L:Sr,]. Thus
T,€9F since Te9¥ and T,=9% since Teg%.

(2) Let Teg$=g¥. Then [L:Sr] and [Sz: K(T)] are minimal. Hence
[L: K(T)] is minimal and so T€9,. Let Teg, For Xea¥(=9% [L: Sx]<
[L:Sr] and [Sx: K(X)]J=[Sr:(T)]. Since T &9, these inequalities must be
equalities. Thus Teg$Ng¥.

PROPOSITION 4. (1) os(L/K)=1 and I%§=9F% if and only if L/K has a pure
transcendental distinguished subfield.

(2) os(L/K)=1, inor(L/K)=0, and I5=9F if and only if L/K is pure
transcendental.

PrROOF. (1) Suppose os(L/K)=1 and I(=9% Let Tegt=g% Then
Sr=K(T) by the assumption that os(L/K)=1. Conversely, suppose D=K(T)
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where T is algebraically independent over K and D is distinguished. Then
os(D/K)=1 and so os(L/K)=1 by [Proposition 1. Since TeI¥NT¥, 95§=9F by
Proposition 2.

(2) The result here follows from (1) and the fact that L/K is separable if
and only if inor(L/K)=0.

If {x, y} is algebraically independent over K, then any surface whose func-
tion field L satisfies K(x?, y?)&LSK(x, y) is called a Zariski surface.

It follows from (2) of that if L/K is the function field of a
Zariski surface [1], then I%¥=9a7%F if and only if the surface is rational. We also
note that if L/K is separable and os(L/K)=1=tr.deg.(L/K), then an I-basis ¢
of L/K is a generalized primitive element of L/K [2]. This follows since if F
is an intermediate field of L/K such that L/F is separable algebraic, then L=
F(t) since L/F(¢) is purely inseparable.

Recall that L/K is called unirational if L is a subfield of a pure transcen-
dental extension of K.

PropoSITION 5. If L/K is unirational and K is infinite then there is a
separable algebraic extension L, of L such that os(L,/K)=1.

Proor. Let KCLCK(xy, xs, -+, x,) Where {x;, ---, x,} is algebraically
independent over K. By [17, Lemma 1, p. 209] we may assume L/K has trans-
cendence degree n. Let L, be the separable algebraic closure of L in K(xy, -+,
Xn). Since K(xy, -+, x,) is purely inseparable over L,, os(L,/K)=1.

PROPOSITION 6. I%¥=9F if and only if 9§ D/K)=9¥D/K) for some dis-
tinguished subfield D of L/K. In either case, T§=9F29¥D/K)=9F(D/K).

PROOF. Suppose 9¥=9g¥ and let Te ¥\ 9¥. Then D=Sy is a distinguished
subfield of L/K and Teg¥(D/K)Ng¥(D/K) since T g¥ and os(L/K)=o0s(D/K).
Hence 9¥(D/K)=9¥D/K) by Conversely, suppose 9% D/K)=
g¥(D/K) for some D. Let Teg¥D/K)=9¥D/K). Then T is an S-basis and
an [-basis of L/K by [Proposition 1. Thus T is in both g% and g%

PROPOSITION 7. If 9¥=a%, then THK(L?")/K)=aT¥K(L"")/K) for i=1,2,--.

Proor. We show I¥K(L?)/K)=g9FK(L?)/K). Let Te€g¥ and D=Sy.
Then Teg¥D/K)=a9¥D/K) as in the proof of Since D/K(T)
is separable algebraic, K(D?)/K(T?) is separable algebraic and so T? is an S-
basis of K(D?/K). Since [K(D?): K(T?)]=[D: K(T)]=o0s(D/K)=0s(K(D?)/K)
by T? is an Ibasis of K(D?)/K. Thus T?ea¥K(D?)/K)n
TFK(D?)/K). Hence IT§K(D?)/K)=g¥K(D?)/K). Thus I¥K(L?)/K)=
THK(L?)/K) by

PROPOSITION 8. There exists a subfield L, of L/K with L purely inseparable
over Ly and such that T§L,/K)=3FL,/K). In particular if trdeg.(L/K)=1,
there is a non-negative integer r such that THK(LP")/K)=a¥K(L")/K).

PrROOF. Let T be an I*-basis of L/K. Consider L,=Sr. Then T is an I*-
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basis of Sy and an S-basis, hence an S*-basis of Sy over K. If tr.deg.(L/K)=1,
then K(L?™)=K(L?") for some m and r for since L,/K is separably generated,
CK(L?*™": K(L?)]=p and the only chain of subfields between L, and K(L?)is
LD DK(L?™" for each e. Thus shows g¥(K(LP")/K)=
THK(LP)/K) for some r.

Thus, for any L/K there is always a subfield L, as in over
which L is purely inseparable of minimal degree. If L is the function field of
an-irrational Zariski surface, then in view of this minimal degree
is p. If the Zariski surface is also K3, then any subfield L, over which L is
purely inseparable and of dimension p has T¥(L,/K)=9¥(L,/K) [18, Theorem
5, p. 1216]. We conjecture that this is true for all irrational Zariski surfaces.

PROPOSITION 9. Suppose tr.deg.(L/K)=1. Then os(L/K)=1 if and only if
K(L?")/K is pure transcendental for some nonnegative integer s.

PROOF. Suppose os(L/K)=1. By there exists an r» such that
THK(L)/K)=THK(L")/K). By THK(LP)/K)=TFHK(L?")/K)
for s=r. For large s, K(L?*)/K is separable and os(K(L?*)/K)=1 by
1. Thus K(L?%) is pure transcendental over K by (2) of The
converse follows from [Proposition 1l

PROPOSITION 10. Let D be a distinguished subjield of L/K. Then D/K is a
purely inseparable K-form of K() where t is transcendental over K [10] if and
only if trdeg.(L/K)=1=o0s(L/K). If D is a purely inseparable K-form of K(t),
then u=s=vr where u is the height of D/K [10, p. 12], s is the smallest non-
negative integer such that K(DP®) is pure transcendental over K, and v is the
smallest non-negative integer such that 9¥(K(D?")/K)=9¥K(D?")/K).

PrROOF. Suppose D/K is a purely inseparable K-form of K(¢t). Then D is
K-isomorphic to distinguished subfield of K? ™“®xK(t). Hence os(D/K)=1 so
os(L/K)=1. Conversely, suppose tr.deg.(L/K)=1=0s(L/K). Then the same is
true for D/K and by K(D?")/K is pure transcendental for some
(smallest) s. Thus K(D?)=K(x) for some x transcendental over K and so
KP”QxD=K?"QK(x?™"). Hence D is a purely inseparable K-form of K(¢)
and u=<s. Now suppose D is a purely inseparable K-form of A(#). Since
K(D?")/K is pure transcendental, s<u. By (2) of K(DP)/K is
pure transcendental so s<». However if K(D?")/K is pure transcendental, then
clearly T¥K(D?")/K)=9¥K(D?*)/K), so r=<s.

In view of [Proposition 10, if D/K is a separable extension such that
tr.deg.(D/K)=1=o0s(D/K) and D=K(x, y) where x is an I-basis of D/K, then
results 1.5.1, 1.5.2, and 1.5.3 of hold with D/K replacing K/k there.

COROLLARY 11. Suppose K is infinite and let F be an intermediate field of
L/K. If trdeg.(L/K)=1=0s(L/K), then there exists r such that K(FP")/K is
pure transcendental or K(F?")=K.
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PrROOF. There exists » large enough such that I¥K(F?)/K)=9F K(F?)/K)
and K(F?")/K is separable. If tr.deg.(F/K)=1, then K(F?")/K is pure trans-
cendental since os(K(F?")/K)=1. If F/K is algebraic, then F/K is purely in-
separable since os(L/K)=1.
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