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§1. Introduction.

Let 4 be a separable, complex Hilbert space and U a unitary operator on
g If

H=M(C)= - PU*CHCHRUCHUCS -+

for some closed subspace C of 4, then U is said to be a bilateral shift of
multiplicity n, where U* is the adjoint operator of U and n is the dimension of
C. When U is an isometry with 4=M (C)=CHUCPHUCSP ---, then U is
said to be a unilateral shift of multiplicity n. The study of invariant subspaces
of shifts was begun by Beurling [1]. He characterized all invariant subspaces
of unilateral shifts of multiplicity one. Lax extended Beurling’s result to
unilateral shifts of finite multiplicity. Helson-Lowdenslager and Halmos
characterized all invariant subspaces of bilateral shifts of arbitrary multiplicity.
We are going to study invariant subspaces of unitary operators in order to
generalize previous results concerning bilateral shifts.

A unitary operator U on 4 is said to be pure if every invariant subspace
for U is reducing. Every unitary operator U can be written as the direct sum
of a bilateral shift and a pure unitary operator [2; pp. 62-63]. Namely, there
exists a closed subspace C of 4 such that U"C, n=0, +1, £2, --- are mutually
orthogonal and the restriction of U to #&M(C) is pure. Setting X=HSM(C),
we get a decomposition

(*) H=MODX, U=SDV,

so that S=U|M(C) is a bilateral shift and V|x is pure. It is known that such
decomposition is not necessarily unique. In fact, any bilateral shift of infinite
multiplicity allows infinitely many non-isomorphic decompositions of the form ().
We call a decomposition #=M(Co)PK, of the form (¥) maximal if we have
M(C)=M(C,) for any decomposition H=M(C)PK" of the form (x¥) with
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M(ICHY2M(C,). In Section 3, we shall show that, for any unitary operators,
maximal decompositions exist and are mutually isomorphic.

In Section 4, we shall generalize the characterization of invariant subspaces
of bilateral shifts of arbitrary multiplicity. Fix a maximal decomposition 4=
MOPx for U. We set

£$ZM+(C0()@JCO< ’

where C, is a closed subspace of C and X, is an invariant subspace of X.

A closed subspace M of 4 is called invariant if Ufe# for every fe< M.
We say that an invariant subspace . is a Beurling-Wiener subspace if it has
the form

M=VIHIDV,PM(CC),

where P is a projection in the commutant {U}’ of U with PM(C)ES M(C), and
V and V, are partial isometries in {U}’ with initial spaces %% and PM(C), re-
spectively. We shall show that every invariant subspace # for U is a Beurl-
ing-Wiener subspace.

Let U be a unitary operator on 4 with spectral measure E(d). U is said to
be absolutely continuous (singular) if the measure pw(0)=(EW)f, f) for each fesx
is absolutely continuous (singular). In general, we have I =H P Hsing, Hap and
Il sing are reducing subspaces for U so that U|4(.p is absolutely continuous while
U|Hsing is singular (cf. [5)).

Let C, be a separable, complex Hilbert space, and d@ the Lebesgue measure
on the unit circle. Then L2 is the Hilbert space of all weakly measurable

functions f from the unit circle to C, for which g:z [f(e®?)|&,dd <oo. Suppose

e!? is the identity function on the unit circle so that the bilateral shift on Lg,
is given by S,: f—e*?f. A measurable range function /=J(¢*?) in C, is a func-
tion on the circle taking values in the family of closed subspaces of C, such
that the orthogonal projection P(e'?) on J(e*?) is weakly measurable in the
operator sense. For each measurable range function J, let .£; be the set of all
functions f in L3, such that f(e'?) lies in J(e'?) almost everywhere. It is known
(cf. [7, p. 59]) that every reducing subspace # of S, has the form £, for some
measurable range function /. It is known [3, pp. 55-56] that a unitary operator
is absolutely continuous if and only if it is a restriction to a reducing subspace
of a bilateral shift. Hence for a unitary operator U, its absolutely continuous
part U.p is unitary equivalent to an S,|.L; for some measurable range func-
tion J.
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§2. Measurable range functions.

Let J=J(¢*%) be a measurable range function taking values in the family of
closed subspaces of a separable Hilbert space C,. For each measurable set E
on the unit circle, Xz is the characteristic function of E. For each measurable
range function J, let dim J(e*?) be the dimension of closed subspace J(e*?). When
Ji and J, are measurable range functions in C,, we shall write J;2/, if J,(¢!?)2
J(et®) ace. If J,2], and J,S/,, we shall write /;=/,. When J is a measurable
range function with E={6; dim J(e??)=1}, we call @ a rigid function for J if
@ is a measurable function on the unit circle with values in C, @(e*?)e/(e!?)
a.e. and |@(e'?)|c,=1 a.e. on E. We say that J is generated by rigid func-
tions, if there exists a family of rigid functions {®@,} for J such that, for almost
every e?eFE, {@,(e??)} forms an orthonormal basis of J(e*?). In general, J is
not generated by rigid functions in J. In this section, we shall show that there
exists a measurable range function J,&J which is maximal among those range
functions generated by rigid functions for J, i.e. if J,, is a measurable range
function SJ which is generated by rigid functions and J;,2/,, then Jio=/,.

THEOREM 1. Let | be a measurable range function in C, and set F={8;
dim J(e*?)=1}. Then

1) JeH= kio @D Ju(e?) a.e., where ]y, J1, -+ are measurable range functions

having the following properties: Jo is a maximal measurable range function =]
which is generated by rigid functions, and J;, for each j=1, is a maximal measur-
able range function in J;_,,, which is generated by rigid functions, where J;-1,1(e*?)

=](ew)@§0@]k(ew) a.e. In this case, dim J,(e'?) is a constant n, a.e. on the
set Fr=1{e*?:dim J.(e!?)=1}.
@ dim J*)= 3 nite,c') a.c. If ny=co for some j, then dO(F;)=0

and so dim](e“’):kzj) niXr,(e'%) a.e.
=0

3 If J= ki}o@jlk s another decomposition satisfying the property stated in

(1), then dim J () =dim J(e*%) a.e. (k=0, 1, 2, ---).

The theorem above is an immediate consequence of the following lemmas.

LEMMA 1. Let J be a measurable range function with JSC, and set E={0;
dim J(e*?)=1}. Then, there exists @ in L3, such that |@('%)|c,=1 a.e. on E
and D(et?)e J(et?) a.e.

PROOF. Let ¢, ¢, --- be an orthonormal basis for C, and set k,(e!?)=P(¢*%)e,,
where P(e'?) is the othogonal projection on J(e*?); then J(¢*?) is the closed
linear span of {k,(e!D}5o. If 8 {8; |ko(e*®)]c,#0}, set
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¢0(€i0):ko(ew)/”ko(ew)"co

and, otherwise, set ¢o(¢??)=0. If 0 {0; [|ke?)—(R:y(e*?), do(e*?))c,Po(e*O)c,#0},
set

¢ (ew>: kl(?i0>_(k1(?io)y ¢o(e_w>)co¢o(ew>
' I R1(e??)—(R1(e®?), $o(e'D))c,po(e*)lc,
and, otherwise, set ¢.(¢’?)=0. In general, we can use the orthogonalization
procedure due to Schmidt. Hence J(e*%) is the closed linear span of {¢.(e*?)}5=0
such that ||@a(e*®)ll¢,=Xg,(¢'?) a.e. for some measurable set E, as n=0, 1, 2, ---

and (pn(e'?), ¢m(e“’))0020 a.e. as n#m. Moreover QOEngE and dﬁ(C_}oEn):
d@(E). A desired function @ can now be obtained by setting

O =gule )+ (A= g 5, (€ Dnrsle).

LEMMA 2. Let | be any measurable range function in C, and set E=1{0:
dim J(e*®)=1}. Suppose dO(E)>0 and define d=d;=ess.inf{dim J(e?): §<E}.
Then there exists a measurable range function [,S]J such that ], is generated by
d rigid functions for J and such that J(e*®)=]\(e'®) for almost every 6 with
dim J(e*?)=d.

Proor. We take a rigid function @, for J by using and set
J® (i) =J(e')O[D,(e??)], where [ ] denotes the closed subspace generated by
the vectors in the bracket. Then J® is a measurable range function and
ess. inf {dim J®(e?): 6= E} =d—1. If d—1=1, then we can take another rigid
function @, for J®. We then set J®(e!%)=JP(e!)O[Dy(e??)]=J(!*)O[D,(et?),
@,(e*?)]. A finite or countable induction will provide a sequence of d rigid
functions @,, @,, ---. We denote by Jy(e*?) the closed subspace generated by
those @,’s. Our construction shows that J, has the desired property.

The proof of is now obvious; for we have only to repeat the
same process for /O, and use the induction, if necessary.

§3. Maximal decompositions of unitary operators.

Let U be a unitary operator on a separable Hilbert space .#. In this sec-
tion, we show, by using [Theorem 1|, that maximal decompositions for I/ exist
and are mutually isometrically isomorphic.

THEOREM 2. Let U be a unitary operator on 9.

(1) There are closed subspaces C and KX of 9 such that

H=MCOCDK U=SDV)

is @ maximal decomposition for U and KD HKsing-
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(2) If dim C=co in (1), then KX =Hsing and s0 V=Using.
@) If H£=M(C)DHK, (U=S,DV,) is another maximal decomposition of U,
then we have
MCH)=WM(QC) and K,=W,X,

where W and W, are partial isometries in {U}’ with initial spaces M(C) and X,
respectively. Hence S, and V, are unitary equivalent to S and V, respectively.

PROOF. If H=SH.sPHsing, Where U|H 4y is absolutely continuous and U|H sing
is singular, then we can assume %.,=.C; for some measurable range function
J in some Hilbert space C,. Set F={6; dim J(¢!?)=1}. When dO(F)#2r, U|Ia»
is pure and so U is pure. For if U|4 . is not pure, then there exists @ in Hap
such that U"® is orthogonal to @ for all integers n. This implies that [|@(e*?)] ¢,
=1 a.e. and @(e*?)= J(e??) a.e. and so dO(F)=2x. This contradiction implies
that U|4p is pure and hence =K is the desired maximal decomposition.
When d@(F)=2r, there exists by (1) of a maximal measurable range
function J,SJ which is generated by rigid functions {@,} 7., such that [|®(e*?)]¢,
=1 a.e. for 1=j=<n. Suppose C is a closed subspace of 4., generated by
{P}3-1 and A=.L,07DHsing. Then H=M(C)DK is the desired maximal de-
composition and this implies (1).

If dim C=o0, (2) of implies L;0;,={0} and so K=Ylsne and
this implies (2).

By 3) of [Theorem 1|, if #£=M(C,)P X, (U=S,PV,) is another maximal de-
composition for U, then dim C;=dimC. It is well known that there exists a
partial isometry W in {U}’ with initial space M(C) such that M(C,)=WM(C).
We shall show that there exists a partial isometry W, in {U}’ with initial space
X such that K;=W,X. Since ANK12Hsing, We can assume H=Ip,=.L,; for
some measurable range function J in some Hilbert space C,. These two de-
compositions give two decompositions for the measurable range function J such
that

]:]0@11:]10@111 ,
where M(C)=Ly, K=Ls, MC)=Ly, and Ju=Ls,. Suppose Ji= 33D Js
and ju:jio@]n,j are the decompositions in [Theorem 1, then J=J,D i})@fu and
< e

J= ]lo@)f‘a@ Ju,; are the decompositions of J in too. For each j,
=

set Fy;={0; dim J,, (*%)=1} and Fy,;={0; dim Ji;, ;(e*?)=1}, then dim [, ;(e??)
=ny,Xr,, (¢*°) and dim Jiy, (e*%)=n11, Xp,, [ei%) a.e. Then,

JC:.fJ1=j§@XFI, AMCu.p)

and
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JCIZ.CJn:JZ(})@XFH,J-M(CH.J‘) ,

where C,,; and Cy;,; are closed subspaces of X and X, respectively and dim C,, ;
=n,,; and dim Cyy, ;=ny,, ;. Since dim Jy, ;(e*%)=dim Jj,, ;(e??) a.e. (j=0, 1,2, --),
dim C;,;=dim C,,,; and F, ;=Fy,; This implies that there exists a partial
isometry W, in {U}’ with initial space X such that X,=W,X.

COROLLARY 1. Let C’ be a closed subspace of K such that M(C)S 4 and
suppose H=M(CYDKX is a maximal decomposition. Then dim C'=dim C.

4. Invariant subspaces of unitary operators.

In this section, we shall generalize the characterization of invariant sub-
spaces of bilateral shifts of arbitrary multiplicity. Let U be a unitary operator
on a separable Hilbert space .%. Fix a maximal decomposition #=M(C)PKX
(U=SBYV) for U. As in Section 1, set

Hi=M(Ca)D K,

where C, is a closed subspace of C and X, is an invariant subspace of X.
THEOREM 3. Every invariant subspace M for U is a Beurling-Wiener sub-
space, that is, M has the form

M=VHIDV.PM(C),

where P is a projection in {U}’ with PM(C)SM(C), and V and V, are partial
isometries in {U}' with initial space M(C,)D K. and PM(C), respectively.

PRrROOF. We can write H=Mi(Cx)PDM-c, 6D M-, sing f0or some closed sub-
space Cy of M, where H-e=NU" M. By dim C4=dim C and then

it is well known that there exists a partial isometry V, in {U}’ with initial
space M(C,), where C, is a closed subspace of C with dim C,=dim Cy and
M (Ca)=V.M.(Co).

Case I. Suppose dim C=co. Then, by (2) of we have 4 =M(C)
PDHsing. SINCe HM-co,singE Hsing=K and M-o,a0S HKao=M(C), there exist projec-
tions P, and P in {U}’ with H_w,sing=PsK and H-«,an=PM(C). Set V=V +P,,
Vo=P and K,=P,X, then H=VHIDV ,PMC).

Case II. Suppose dim C<oco, Let HM_.=M(B,)PJ,; is a maximal decomposi-
tion for U| -, then we have

M=M (Cx)DM(BHDN, .

We may assume 4.,=.L; for some measurable range function J and so there
exists a measurable range function J; with JiSJ such that 9,= L, BT, «ng and

Mo, sing™= I, sing-
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Set M(By)=M(C4)DM(B,) and H=MC3)PH-w, then H=MB,)DPI, is a
maximal decomposition for U|. M. For if H=M(B)YDI, is a decomposition of
the form (x) for U|.H with M(B;)2M(B,), then there exists a closed subspace

2 in M such that M(B))=M(BY2OM(B,) because dim B,<oo and dim B;<oco.
Then 71,2 H(B%) and so M(B;)=M(B,) since M_.=M(B)PT, is a maximal de-
composition. Suppose H*=.0.H=M(B;)PJ, is a maximal decomposition for
U|H*t. Then 9=M(B)DM(B)PDIDI,. Suppose

321@322:M(B4)@m4

is a maximal decomposition for Ul|J1,ET,. Set M(C))=M(B,)HBM(B;)DM(B,)
and X,=91,, then

H=M(CHDK,

is a maximal decomposition for U. There exists a measurable range function
J.£J such that J,=.L;, DT, sing. If there exist measurable range functions Q,
and Q. with Q;&/; (i=1, 2) such that M(B,)=.Lg,DLe,, then

M=M(Ca)DM(BIDL ¢, DLs,69,D1.sing -

Moreover M, (Cx)PM(B)DLq,SM(Cy) and L;,00,DT1singE K;.  Since K=
M(C)® XK, is a maximal decomposition for U, (3) in implies that #
is a Beurling-Wiener subspace. We shall show that there exist measurable
range functions Q, and Q. with Q;E]; (¢=1, 2) such that M(B)=Lq,DLog,.
Set F;= {0 ; dim J(e!®)=1} (j=1, 2). If dO(F,\UF,)+2x, then M(B,)={0} and so

Qi(e')=Qy(e*)={0} a.e. If dO(F,\UF,=2x, suppose J;= g)o@]jk is the de-

composition in (1) of [Theorem 1. Set F;,={6; dim J;;(**)=1} (j=1, 2, and k=
0,1,2 ), then F;,2F;;+,. Let m be the largest number such that df(Fi\JFsn)
=2, then the m is a finite number because dim C<co. By (1) of [Theorem 1],

dim J;4(e")=n;ie,, (") a.e. (j=1, 2 and k=0, 1, 2, ). If ny= gnu, set Qu
=/, and QZOZ(IZ%:OGB]”)(I-—XFN), then dim Q,o(e*?)=n.Xr,(¢*%) a.e., dim Quo(e*?)
=n0(1—Xp,,('%)) a. e. and so dim (Q:e(¢*?)+Qso(e??))=ny a.e. If ny< kzz)onzk, then
there exists a measurable range function @, such that Q”C(é} ) jzk)(l—-xpm)
and dim Qyo(e*?)=n1o(1—Xr, (¢*?)) a.e. Set Qu=Jw, then dim (Qie(e*?)+Qy(e*?))
=Ny a. €. If ny,y> é)nzk, there exist measurable range functions Q;, and Q.

with Q:CJ10 and Q%c( éoea jZk)<1—me) such that dim Qu(e**)=( éongk)xplo(eif’)

a.e. and dim Qm(ew)=(§nzk)<l*xpm(e”)> a.e. Then dim (Qs(e*?)+Quu(ei®))=
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m
;Z_jonzk a.e. Suppose J® and J® are measurable range functions such that

J2 () =] (!?)OQ1e(e’?) and J§P(e'?)=]x(e'?)OQu(¢*’) a.e. Applying the same
reasoning to measurable range functions /{® and J{® in place of J; and J,, we
obtain measurable range functions Q,; and Q.; such that Q,,CJ{®, Q.. CJs® and
dim (Q.1(e*%)+Q,:(e??))=n, a.e. Iterating, we obtain measurable range functions
{Q;}i-0 (=1, 2) such that Q;:SJ; (j=1,2 and 0=k=s) and dim (Q,:(e*%)+

Q.:(*%)=n, a.e. The s is a finite number because dim C<oo. Set Q;= kioeBij,

then Q,;S/; (j=1, 2) and so M(B)=.L¢,D-Lq,.

If "=V X’ for some partial isometry V in {U}’ with initial space X’, where
X’ is an invariant subspace C X, then we say JI is a pure set. If J7 is a pure
set, then U|J is a pure unitary operator. The converse is not valid. If X,
gives a maximal decomposition H£=M(C))P K, for U, then K, is a pure set by
(3) of

COROLLARY 2. An invariant subspace for U has the form MU=VHE for some
partial isometry V in {U}’ with an initial space Hi=M(C)DK. if and only if
QU"(JM@?Z): {0} for some pure set I with TS M.

COROLLARY 3. If M is an invariant subspace in 9. for U, then M=VHS
for some partial isometry V in {U}’ with an initial space H5=M(C)DK .

COROLLARY 4. If M is a reducing subspace for U, then M=V K. PV, PM(C),
where P is a projection in {U}’ with PM(C)SM(C), and V and V, are partial
isometries in {U}’ with initial space KX, and PM(C), respectively.

The author wishes to express his thanks to Mr. Katutoshi Takahashi for
very helpful conversations. He is very grateful to the referee who gave a
simplification of the proof in [Theorem 1l
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