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§0. Introduction.

Let E(n) be the complex motion group acting on the n-dimensional complex
euclidean space X=C". We define a crystallographic group I"on X to be a
discrete subgroup of E(n) with compact quotient. The problem is to find crys-
tallographic groups and to investigate the structure of the quotient space M=
X/I' and the ramification of the natural map X—M.

For n=1, solution of the problem is well known. For n=2, several authors
studied fixed point free crystallographic groups and the quotient manifolds by
them ([14], [15], [17)). We are interested in the groups which admit fixed
points. For two dimensional crystallographic reflection groups, Shvartsman ([13J)
proved the rationality of the quotient spaces and determined all splittable groups
and the quotient spaces.

In this paper, we study geometric and topological properties of the quotient
varieties and prove the vanishing of the plurigenera under certain conditions
and obtain the characterization of crystallographic reflection groups. Two
dimensional groups whose point groups are generated by reflections are investi-
gated in detail: We prove that the quotient varieties are rational except for
the group I'yz(r) and the desingularization of the quotient variety by I'yz(z) is
an Enriques surface. All the two dimensional crystallographic reflection groups
and the quotient varieties by them are determined.

The authors would like to express their hearty thanks to Mr. J. Kaneko
for valuable discussions during the preparation of the present paper. The
authors would also like to thank the referee for helpful suggestions, which led
to the improvement of the original manuscript.

§1. Preliminaries and notations.

1.1. We shall use the following notations:

X=C": n-dimensional complex euclidean space
An)={(4, a)|AsGL(n, C), acC™ . affine transformation group on X
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U(n): unitary group of size n
En)={(A, a)esA(n)|A€U(n)} : complex motion group on X
T=C": tangent space of X.

We have the exact sequence

[44

0 T E(n) i U(n) 1

where a(a)=(I, a) and B(A4, a)=A; the linear part of (A4, a).
1.2. Let I be an n-dimensional crystallographic group, that is, /" is a discrete
subgroup of E(n) with compact quotient. Then we have the following exact

sequence (cf. [16])

a
0 L FﬁG 1.

We call L the lattice of " and G the point group of /° Remark that the lattice
L is invariant under G. For the details of crystallography, see, for example, [2].

1.3. DEFINITION. AU(n) is called a (unitary) reflection if A is of finite
order, A+1I, and has exactly n—1 eigenvalues equal to 1. The unique nontrivial
eigenvalue of A is denoted by p=pu(A).

Set

H=H(A): hyperplane of T fixed pointwise by A

r=r(A): a normalized base of the orthogonal complement of H

P(r, A), P(H, A): projection to Cr, H, respectively.

Then we have
(1.3.1) A=I+(p—1P(r, A).

DEFINITION. A reflection group GCU(n) is a finite group generated by
reflections.

For the naming and the matrix representations of the imprimitive group
G(m, p, n) and the primitive group, we follow Shephard-Todd ([12].

1.4. DEFINITION. An element g E(n) is called a reflection if g is of finite
order, g#identity, and keeps a hyperplane H(g)C X pointwise fixed.

REMARK. g=(A, a)=E(n) is a reflection if and only if A=U(n) is a reflec-
tion and a is parallel to r(A).

DeFINITION. I'CE(n) is called a (crystallographic) reflection group if I is
a crystallographic group generated by finitely many reflections in E(n). In
particular, ["is called a splittable group if the point group G of I'is generated
by n reflections.
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§2. G-invariant lattices.

2.1. ProproSITION 2.1.1. Let L be a lattice in T and AU(n) a reflection
of order 1. If L is A-invariant, then we have IP(r, A\LCLNCr and [P(H, A)L
CLNH.

PrROOF. Immediate from the representation [(1.3.I)

COROLLARY 2.1.2. Let L be a lattice in T and G an irreducible reflection
group. If L is G-invariant, then there exists a sublattice of L which is a direct
product of one dimensional lattices.

2.2. LEMMA 2.2. Let G=G(m, p, n) and m>1. Then there exists a G-
invariant lattice L if and only if m=2, 3, 4 or 6.

ProOoF. We can restrict ourselves to consider the group G(m, m, 2), which

is generated by A:(l 1) and B———(g_1 0), G=¢e%**/™ Let L be a G(m, m, 2)-
invariant lattice. Multiplying a suitable constant to L, we have that LN\Cr(A)=

(Z+Z )(_i) for some z. Since L is invariant under B and A, we have

1

Df=2Por 4 0_.(19 YeLNCr(A).

2P(r, H{B(_

This is equivalent to §+4-0-'<Z, which is possible only when m=2, 3, 4 and 6.
Conversely, if m=2, 3, 4 or 6, it is easy to show that the direct product of the
one dimensional lattices with the suitable moduli is invariant under the operation
of G(m, p, n).

2.3. We shall find every irreducible reflection group GCU(2) and a G-
invariant lattice L. Let (G, L) be a pair of an irreducible reflection group GC
U(2) and a G-invariant lattice L. Two pairs (G, L) and (G’, L’) are said to be
equivalent if and only if there exists a matrix A such that G'=AGA™* and L’
=AL. On account of the results in 2.1 and 2.2, we find a complete system of
representatives :

Table 1

G G-invariant lattices L

o, rerzi(l),

¢ 12 1/1 1/t
ra+2g(. )+ 29(;)

~ 2/ 2(, 1+Z 1
G4, 2,2 LG, L*O+Z— (1)

i} wn  Teny g il
G4 1,2 LG, LGO+Z—, (1)
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G6,2,2 L), LZ(C)+Z%1C— 1)

G®6,3,2 L), L2<c>+z%(é)+ Z%(%)

GG6,1,2) L*0)

L@)(_ i)+L(r)(§)
GG, 3,2 L(r>( i)+L<f>(§2)+Z%((_})_(g»
Le(_ i)+L<r>(§2)+L@%((_b‘(g))
Le(_ i>+L(T>(§> -
G, 6, 2)
Le(_ })+L<r)(€) z5((_ b"@)
LQu-+LOw, L(C)u+L(c)v+Z%(u+v),
LOu+LOv+LO (o)
o e ) oo
51 0l o) e )
Lo()+Lo ()

Here we used the following notations:

Lity=Z+<Z (Imz>0),
o=@ g J+L@(0),

i=+/—1, {=exp (2ni/6), e=exp (27i/8), and [4], [5], [8] are the Shephard-Todd’s
number of primitive groups (cf. Table I, II in [12]).
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§3. Algebro-geometric and topological properties of quotient varieties.

3.1. Consider a crystallographic group I" with the lattice L and the point
group G. Put I'=qa(L), and let A denote the quotient manifold of X by I'*.
Let M be the quotient variety of X by I" and Ma desingularization of M. For
the algebro-geometric terminology in this and the next section, we refer to [9].

LEMMA 3.1.1. Let Ky and Kg be the canonical line bundles of X and Z\7I,
respectively. Let H(X, OmKx))" be the linear space of I-invariant holomorphic
sections of the line bundle K§™.

Then (1) we have the natural inclusion:

¢: HY(M, 0mKg)) = H (X, OmKx)T,

(i) every element of HYX, OmKx))' is a constant multiple of (dxi/ -+ Ndxn)™,
where xi, -+, xn are the coordinates of X, and (iii) dimcH(X, omKx)I <1.

PrOOF. Obvious.

PROPOSITION 3.1.2. (i) If there exists a reflection in I, then the plurigenera
pm(JVI) of M vanishes for m=1, 2, ---. (ii) If the point group G of I' is irreduci-
ble, then the irregularity q(]\zf) of M vanishes.

ProOOF. (i) Let w be a holomorphic section of (Kz)®™. We shall denote by
¢ and 7= the natural mappings X—M and M-M, respectively. Suppose there
exists a reflection g1, of order /. Let the hyperplane H(g) be represented by
x,=0, and P=H(g) a point such that the variety consisting of every fixed point
of I' is nonsingular at P. Then we have the local representations at o(P)eM
and PeX:

(T 0=1(y1, X2, -+, X )@Y Adx N -+ ANdx)™,

(w=to)*w=f(x}, x5, -+, X)X} D™(dxs Ad22 N\ -+ Adx,)™

where f(yi, X5, --+, *z) is holomorphic at ¢(P). By the lemma above, f(x}, x.,
v, X)X must be constant. This implies f=0 and so w=0.

(i) Let v be a holomorphic 1-form on M. Then the form (m~te)*v is a
linear combination of dx;, ---, dx, with constant coefficients and is G-invariant.
Since an irreducible group has no invariant of degree 1, we have v=0. Q.E.D.

REMARK. J. Noguchi showed a similar result by making use of the Nevan-
linna theory at a seminar in Kyoto, June 1980.

CoOROLLARY 3.1.3. In addition to the assumption in Proposition 3.1.2, (i), (ii),
suppose n=2 and G is a reflection group. Then M is rational.

Proor. [Corollary 2.1.2| asserts that A is an abelian variety and so M is
algebraic. Thus the rationality is deduced from the Castelnuovo criterion (cf.
[9). Q.E.D.

CorOLLARY 3.1.4 ([13]). If I' is a two dimensional crystallographic reflection
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group, then M is rational.

3.2. We shall give a characterization of crystallographic reflection groups.
Let S denote the set of singular points of M.

THEOREM 3.2.1. Crystallographic group I' is generated by reflections if and
only if M—S is simply connected.

PrROOF. Put S={QeX|TI, o# Ro}, where [, is the isotropy subgroup of I" at
Q, and R, is a subgroup of I generated by every reflection of which fixed hyper-
plane passes through Q. It is easy to show that S is a complex subvariety of
X and codimeS=2. In particular, X—S is simply connected. On the other
hand, by Chevalley-Shephard-Todd theorem ([3], [12]), we conclude that gag =S.
It is known that the quotient of a simply connected manifold by a properly
discontinuous group [ is also simply connected if and only if I" is generated by
transformations with fixed points ([I]). Note that I operates on X—8 and
M—S=(X—8)/I Thus we conclude that if I" is generated by reflections then
the quotient space M—S is simply connected.

On the contrary, assume that M—S is simply connected. Then I is gener-
ated by transformations with fixed points in X—S8. By the definition of S, I' is
generated by reflections. Q.E.D.

COROLLARY 3.2.2. If the quotient space M is biholomorphic to the n-dimen-
sional projective space, then I is generated by reflections.

3.3. ProprosITION 3.3.1. Let I be a two dimensional crystallographic group,
and C a curve in M such that CN\S=0. Then the self-intersection number C-C
is non-negative.

ProorF. Let CCA be the preimage of C by the natural map A—AM. The
curve C has a small displacement C.=C+e (eeC? in A. Q.E.D.

PROPOSITION 3.3.2. Assumption as above. If the point group G of I is irre-
ducible, then C-C>0.

PrROOF. There exists an element g=G such that the curve g(~3e intersects
C. Q.E.D.

COROLLARY 3.3.3. Assumption as in Proposition 3.3.2. If M is a non-singular
rational surface, then M 1is biholomorphic to the two dimensional projective
space P>

§4. Non-rational quotients.

4.1. We define the two dimensional crystallographic group /'vz(z) to be the
subgroup of E(2) generated by

( 1 0) (—1 7.'/2)
’ ImT>O
1 1/2 1 z/2
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and (I, w), v L=L¥ 1)+ Z %( 1 ) The point group of I'ygr(z) is equal to
G2, 1, 2).

THEOREM 4.1.1. Let I' be a two dimensional crystallographic group whose
point group is an irreducible reflection group. If I is not conjugate, in A(2), to
Iyr(7) for any © (Im7>0), then the quotient variety M of X by I is rational.

Let Mygr(z) be the quotient variety of X by the group ['yz(7).

THEOREM 4.1.2. (i) The desingularization M ve(T) of Myr(t) is an Enriques
surface, i.e. g=p,=0 and p,=1.

(i) Set F*:{(I, w)bwe L)+ Z%(i )} " =((—1I, 0), ['*>, and

/ —1 /2 \
F/:<( ); F” ’
1 (1+7)/2 /

where {a, B, ---> denotes the group generated by a, B8, ---. Then we have the
inclusion relations all of which are of index 2:

I'<alI” <l <alyp).

(iti) The desingularization M of M'=X/I" is a K3-surface and the natural
map M —Myg(t) can be lifted to the two sheeted unramified covering : M —
MNR(T)-

4.2, The proof of Theorems d.1.1and 417 is divided into several steps. In
this subsection, we prepare some lemmas. Let I be a crystallographic group
with the point group G.

LEMMA 4.2.1. If there exists an element A€G such that (det A)™+1, then
Pm(J\Z):O.

ProoF. Direct consequence of [Lemma 3.1.1, (i) and (ii). Q.E.D.

COROLLARY 4.2.2. Let n=2. If the point group G is an irreducible reflec-
tion group containing a reflection of order >2. Then M is rational.

Let L be the lattice of . By 1.2 and 1.3 we obtain two lemmas:

LEMMA 4.2.3. Let A=G be a reflection of order | and (A, aysI. Then we
have P(H, A)as(1/)LNH.

LEMMA 4.24. Let A=G be a reflection of order | and (A, a)I. There
exists a reflection gl with the linear part B(g)=A* (k|l, k#1) if and only if
P(H, Ayas(1/kR)P(H, A)L.

REMARK. For a reflection A€G of order [, we have

LAHCP(H, ALC 4 P(H, ALCTLAH.
COROLLARY 4.25. If there exists a reflection A=G of order [ such that

P(H, a)L=(1/k"\LNH(A) for some k' (k’|l and k' #1), then M is rational.
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Proor. By [Lemma 4.2.3, Lemma 4.214 and Proposition 3.1.2 Q.E.D.

4.3. For each pair (G, L) in Table I, we shall examine every extension I’
of L by G. If the point group G of I’ is conjugate to G(4, 1, 2), G(3, 1, 2),
G, 2, 2), G6, 1, 2), [4], [5] or [8], then M is rational. Indeed, by definition,
every group above contains a reflection of order >2. Thus we can apply Corol-
lary 4.2.2.

Let G be conjugate to G(3, 3, 2), G(6, 6, 2), G(6, 3, 2), G2, 1, 2) or G4, 2, 2),
and L be any lattice invariant under G. By making use of Corollary 4.2.5, we
can check that for any extension I" of L by G, the quotient M is rational, ex-
cept possibly for the two groups I'vr(r) and I defined below:

ol L e

IS (O S 6]

where

L=1)+2 55 (1).

The point group of the group I is equal to G4, 2, 2).

4.4. Let Mz be the desingularization of Mr=X/Is We shall compute the
plurigenera p(Myz(z)) and pu(Mz).

LEMMA 4.4.1. The groups I'yg(z) and Iy have only discrete fixed points. (i)
For every fixed point P of I'yg(z), the isotropy subgroup I(P) is equal to

<(_1 _1)> or <(_1 1>> (ii) Ther.e exists a fixed point P of I'y such that the
isotropy subgroup I(P) is equal to <(Z z)> |

PrROOF. Recall that the group I'yz(z) and Iz contain no reflections. Thus

7 1
(i) is obvious. For (ii), we have only to note that the element ( ) b)(l a)
—1

1 \ . i
X c) has the linear part ( ) Q.E.D.
-1 i

Let Q be an isolated fixed point of /" in X, y a generator of the isotropy
subgroup of I"at @, and (U, x, y) a sufficiently small coordinate neighbourhood
of @ in X. Then ¢(U)CM is isomorphic to U/<{r). Let p: V-U/{r> be the
desingularization of the singularity of U/{y).

Lowwa 442, & If7=("" _)or (_, 1), then the form
(07 @*dxAdy°™ on V is holomorphic. (i) If 7=(" ), then the form
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(0°@)*(dxNdy)®™ has poles.

ProoF. Easy (cf. [8).

COROLLARY 4.4.3. (i) ¢: H(M, OnKg yz) = H(X, OmK )" ¥2® s isomor-
phic, (ii) ¢: H°(A7I, OmKgp) S HU(X, OmKx))'r is not surjective.

4.5. PROOF OF THEOREM 4.1.1. By (ii) and
(iii), we conclude that pz(MR)ZO. Since ¢=0, this proves the rationality of Mp.

4.6. PROOF OF THEOREM 4.1.2. The determinant of every element of the
point group of I'yg(z) is &=1. Thus we have

dim H°(X, 0(K )T ¥r®=()
and
dim HY(X, 0QK ) ve® =1,

These equalities with (i) proves (i). (ii) is easy. (iii) We have
only to repeat the similar arguments as above to show pg(ﬁ’):pz(l\?’):l. One
can show that the fixed points and the linear parts of the isotropy subgroup of
I coincide with those of I'yr(z). Thus the group I'yr(z)/I” acts freely on M.
This implies that the map M’—Myg(z) is unramified.

§5. Two dimensional crystallographic reflection groups.

In this section, we shall find every two dimensional crystallographic group
generated by reflections and study the quotient varieties by them.

5.1. The two dimensional weighted projective space of type (k, [, m) is, by
definition, the quotient variety of C®*— {0} by the equivalence relation ~: (x, y, 2)
~(Akx, Ay, A™z), A= C—{0}.

THEOREM 5.1. Every two dimensional crystallographic reflection group is
conjugate in A(2) to one of the twenty groups in Table II. The quotient spaces
by them are isomorphic to the weighted projective spaces, of which types are also
in the table. Each group, except (4, 2)s, 1S the semidivect product GX L of the
point group G and the lattice L.

Table II
Name r Type of M
@D 6@ L 2xLH) (11,1
1/1
@D 6L x{re+zy( ) 11,2
4.2 Gl 2, YXLY) (1,2

4,2, G@,2 2K {Lz(iH—Z%( i )}» 11,1
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4, 2, <<__ii 8) (1 : 8) (1 —1 (1421')/2)’ 14

(1, ), 0= L+2-5(71))

2 \1
@ 1 G@ 1, 2 L) 41, 1)
@D G, L 2x{Lm+zZ 1"2H (1)}» 11,2
G 1y GG 1 DL LD
G0 661 2x {025 (5)) 1,13
6,2, G 2 2xLQ) - 11,2
6,2, GG 2 2)x]{L 2(C)+Z~1—§5C(2)}» 1,23
6,3 G 3 2% L) 1,13
63 663 2x{L0+25(, )+ 25(})} 1,39
6,10 GG, 1, Dx L) 1,1,1)
33 66,3 9x{LE(_ i)+L(f)(€)} 1,1, 1)
6,6 G, 6, 2)N{L(T< })—I—L(r)@z)} 1,2
®6,6): GG, 86, 2>><{L(T)( })+L(z)(§2) a, 2, 3)

+25((_)-C)))

Lo, \/lmgcz)qt o, jz ) S
51 B, ) FEO(, Syt @23
) wix{za(g) Lo 5 () 129

REMARK. The point group and the lattice of the group (4, 2), are the same
to those of the groups (4, 2),.

REMARK. Shvartsman ([13]) found the splittable groups (2, 1),, (2, 1);, (4, 1),,
4, Dy, G, Do, 3, Dy, (6, 1o, (3, 3o, (6, 6o, (6, 1)1, [4]o, [5]0, [8]0 and determined
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the quotient spaces by them.

Proof of shall be given in 5.3.

5.2. In this subsection, we shall give every black and white groups (inclu-
sion relations of index 2) in the two dimensional crystallographic reflection
groups. For two crystallographic groups I" and I, we shall use the following
notations :

I"aI': I is a subgroup of I" of index 2

I AT'. There exists an element g= A(2) such that ["<1glg™".

PROPOSITION 5.2. The following is the complete list of black and white groups
in the two dimensional crystallographic reflection groups:

1) (@2, D<@, 1), 2) @, 1,22, 1), 3) (2, D24, 2),

4) (2, 1),<(4, 2), 5 (2, 1,2, 2), 6) (4, 2),<0(4, 1),

7 (4, 2),<(4, 2), 8 (¢, <4, 1), 9) ¢, 2),<(4, ),

100 ¢4, 2,94, 2), 1) 4, 2),J4,2), 12) (3, 1),<(6, 2),

13) (6, 2)o<1(6, 1),  14) (3, 1);<1(6, 2), 15) (3, 3)s<1(6, 6),

16) (6, 6);J(6, 3), 17) (6, 6),](6, 3),.
In the relations 3), 4) and 5), the lattices of the groups (2, 1), and (2, 1), are L*(z)
and Lz(z')+Z—21—( i) respectively.

Since the proof of the proposition is easy but tiresome, we omit it.

5.3. PROOF OF THEOREM 5.1. For each pair (G, L) of Table I, we consider
every extension of L by G, and pick up every group, up to conjugacy in A(2),
generated by reflections. If the point group G of I" is generated by two reflec-
tions, then I" is the semidirect product GX L of G and L. These are the split-
table groups, determined by Shvartsman.

Let G be one of the following three groups: G4, 2,2), G(, 2, 2) and
G(6, 3, 2). Recall that these groups are generated by three reflections. Set
0=exp 2ni/m), g=m/p and

() ol O ()

Then the group G(m, p, 2) is generated by P, Q and T with the generating
relations (cf. [11]):

(5.3.1) P*=Q*=Ti=1, TPQ=PQT, PT'PT=TPT 'P=(PQ)".

Suppose the group I" with the point group G=G(m, p, 2) is generated by reflec-
tions. Taking conjugate by a parallel displacement if necessary, we conclude
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that I” contains three reflections P,=(P, 0), Q,=(Q, 0) and T1:<T, (C)) for some
ceC. We shall seek for possible values of ¢. Let L be the lattice of I
. 0 e [—C
LEMMA 5.3.1. We have (i) ((G—I)C)EL and (i) ( C)E L.
Proor. By (5.3.1), the linear parts of T,P.Q, and P.Q.T; are the same.
. 0 c . 0

The respective vector parts are (c> and ( Oc)' Thus 1.2 gives ( ( 0_1)C>EL.
Calculate the vector parts of P,T7'P,T,, T.P,T7'P; and (P,Q,)* and note that
g» —c
( 1)eG(m, b, 2). Then we have ( C)eL. Q.E.D.

By making use of (i) and (ii), we shall determine ¢. (I) For L=L(0)((1))
+L(0)<(1)), we have, by (ii) above, ceL(f). () If m=6, i.e. §=C, then ce L.

Indeed (i) implies (c9c> e LO)( (1) )CL. () Let G=G(4,2,2) and L= L(i)(‘l))

+L(i)((l))+Z%i(i). () and (i) imply ((Z__ODC)EL(z’)((l)) and 2c e LG),
Thus we have ¢=0 or (1+7)/2 mod L({z).

c¢mod L(#) determines the group I, because we have I'=<{P;, Q;, Ty, ({|w);
weL> and ((1))L<0)cL. Remark that if ce L(@), then I is the semidirect prod-

uct GXx L. We omit the proof of the fact that the groups obtained above are
generated by reflections.

For the quotient spaces, we utilize the results of Shvartsman ([13]) and the
inclusion relations in [Proposition 5.2l Let I and I, be crystallographic reflec-
tion groups such that I} is a normal subgroup of I of index 2. Suppose that
X/I is a weighted projective space of type (k, /, m). Since [} is generated by
reflections, there exists a reflection 7y of order 2 such that I,=<{[3, v>. Thus
the set of fixed points of ymod[/; on X/I contains a divisor. This implies
that X/I, is isomorphic to the weighted projective space of type (2k, [, m),
(k, 21, m) or (k, [, 2m). Therefore, we have only to study the fixed points of I
and 7 to determine the type of the weighted projective space X/I.
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