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Abstract. It is well-known that there exist no homogeneous ruled real hyper-
surfaces in a complex projective space. On the contrary there exists the unique
homogeneous ruled real hypersurface in a complex hyperbolic space. Moreover, it is
minimal. We characterize geometrically this minimal homogeneous real hypersurface
by properties of extrinsic shapes of some curves.

1. Introduction.

For a non-zero constant c we denote by Mn(c) a complex n-dimensional com-
plete and simply connected Kähler manifold of constant holomorphic sectional
curvature c. It is hence holomorphically isometric to a complex projective space
CPn(c) when c > 0, and is holomorphically isometric to a complex hyperbolic
space CHn(c) when c < 0. In the study of real hypersurfaces of M̃ = Mn(c) there
can be the following two problems.

(1) Classify homogeneous real hypersurfaces in Mn(c) (c 6= 0) and characterize
such examples in the class of all real hypersurfaces.

(2) Construct non-homogeneous nice real hypersurfaces in Mn(c) (c 6= 0) and
characterize such examples in the class of all real hypersurfaces.

A real hypersurface M is called homogeneous in M̃ = Mn(c) if it is given as
an orbit under some subgroup of the full isometry group I (Mn(c)) of the ambient
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space M̃ = Mn(c). In his paper, Takagi ([14]) classified all homogeneous real
hypersurfaces in CPn(c). After about 30 years Berndt and Tamaru ([4]) clas-
sified such hypersurfaces in CHn(c). Those hypersurfaces are treated as typical
examples in the theory of real hypersurfaces in Mn(c) (c 6= 0). There are many
characterizations of such real hypersurfaces (for instance, see [1], [3], [6], [7], [10],
[12], [13]).

In this paper, we treat ruled real hypersurfaces of M̃ = Mn(c) (c 6= 0) (for the
definition of ruled real hypersurfaces and other fundamental knowledge on such
hypersurfaces, see Section 2). It is well-known that every ruled real hypersurface in
CPn(c) is not homogeneous (see [14]). This fact implies that we study ruled real
hypersurfaces in CPn(c) only from the viewpoint of Problem (2). On the other
hand, there exists the unique homogeneous (minimal) ruled real hypersurface in
CHn(c) (see [4]). Needless to say, there exist also many non-homogeneous ruled
real hypersurfaces in CHn(c). Hence we can investigate ruled real hypersurfaces
in CHn(c) from both of the viewpoints of Problems (1) and (2), which enriches
the study of real hypersurfaces in CHn(c). The purpose of this paper is to give
a geometric characterization of the homogeneous minimal ruled real hypersurface
of CHn(c), which is based on the viewpoint of Problem (1).

2. Ruled real hypersurfaces in a complex space form.

For a real hypersurface M2n−1 with unit normal local vector field N in a
Kähler manifold (M̃, J, 〈 , 〉), we can naturally define an almost contact metric
structure (φ, ξ, η, 〈 , 〉) as η(v) = 〈ξ, v〉 and φ(v) = Jv − η(v)N with the charac-
teristic vector field ξ = −JN , where 〈 , 〉 is the Riemannian metric on M induced
from the metric 〈 , 〉 of the ambient Kähler manifold M̃ . The Riemannian con-
nections ∇̃ of M̃ and ∇ of M are related by the following formulas of Gauss and
Weingarten

{∇̃XY = ∇XY + 〈AX, Y 〉N ,

∇̃XN = −AX
(2.1)

for vector fields X and Y on M , where A is the shape operator of M in M̃ . Thus
we have

(∇Xφ)Y = η(Y )AX − 〈AX, Y 〉ξ, (2.2)

∇Xξ = φAX. (2.3)

In this paper we study ruled real hypersurfaces in M̃ = Mn(c). A real hy-
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persurface M in the ambient space M̃ = Mn(c) (n = 2, c 6= 0) is said to be a
ruled real hypersurface if the holomorphic distribution T 0M , which is a subbundle
of TM defined by T 0M =

⋃
x∈M{v ∈ TxM | v ⊥ ξx}, is integrable and each of

its maximal integral manifolds is locally congruent to a totally geodesic complex
hypersurface Mn−1(c) in the ambient space M̃ = Mn(c). It is known that every
ruled real hypersurface is constructed in the following manner. We take an arbi-
trary regular (real) curve γ : I → Mn(c) defined on some open interval I. At each
point γ(s) (s ∈ I) we attach a totally geodesic complex hypersurface Ms which
is locally congruent to Mn−1(c) of M̃ = Mn(c) and is orthogonal to the plane
spanned by {γ̇(s), Jγ̇(s)} at the point γ(s). We then get a ruled real hypersurface
M =

⋃
s∈I Ms in M̃ = Mn(c).

Ruled real hypersurfaces in M̃ = Mn(c) are characterized by properties of
their shape operators in the following manner (see [13] and Proposition 2 in [11]).

Lemma 1. For a real hypersurface M in M̃ = Mn(c) (n = 2, c 6= 0), the
following conditions are mutually equivalent.

(1) M is a ruled real hypersurface.
(2) The shape operator A of M satisfies 〈Av, w〉 = 0 for arbitrary tangent vec-

tors v, w ∈ TxM orthogonal to ξx at any point x ∈ M .
(3) If we define differentiable functions µ, ν on M by µ = 〈Aξ, ξ〉 and ν =

‖Aξ − µξ‖, then they satisfy the following two conditions.
i) The set M1 = {x ∈ M | ν(x) 6= 0} is an open dense subset of M .
ii) With a unit vector field U on M1 orthogonal to ξ the shape operator A

of M satisfies

Aξ = µξ + νU, AU = νξ, Av = 0 (2.4)

on M1 for an arbitrary tangent vector v ∈ TxM orthogonal to ξx and
Ux.

Remark 1.

(1) We treat a ruled real hypersurface locally, because generally this hyper-
surface has self-intersections and singularities. Moreover, we usually omit
points where ξ is principal. That is, when we study a ruled real hypersurface
M , we suppose that M1 (:= {x ∈ M | ν(x) 6= 0}) coincides with M .

(2) Every leaf Ms of a ruled real hypersurface M =
⋃

s∈I Ms in M̃ = Mn(c) is
a totally geodesic submanifold of M .

We say a real hypersurface M to be a Hopf hypersurface if ξ is a principal
curvature vector of M at its each point in the ambient space M̃ = Mn(c), namely
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for the shape operator A of M in M̃ = Mn(c), it satisfies Aξ = αξ with a function
α on M . It is well-known that this function α is automatically locally constant
on each Hopf hypersurface M and that tubes of sufficiently small constant radius
around Kähler submanifolds in M̃ = Mn(c) are Hopf hypersurfaces. The following
proposition characterizes geometrically all Hopf hypersurfaces of M̃ = Mn(c).

Proposition 1. For a real hypersurface M in M̃ = Mn(c) (n = 2, c 6= 0),
the following two conditions are mutually equivalent.

(1) M is a Hopf hypersurface in M̃ .
(2) At each point x ∈ M , if we take a totally geodesic holomorphic line M1(c)

in M̃ through x whose tangent space TxM1(c) is the complex one dimen-
sional linear subspace of TxM̃ spanned by ξx, then the normal section
Nx = M ∩ M1(c) given by M1(c) is the integral curve through the point
x for the characteristic vector field ξ of M .

Proof. It follows from the first equality in (2.1) and (2.3) that ∇̃ξξ =
φAξ + 〈Aξ, ξ〉N . This equation implies that the condition (1) in our proposition
is equivalent to saying that

∇̃ξξ = 〈Aξ, ξ〉N = 〈Aξ, ξ〉Jξ,

which is nothing but the condition (2). ¤

Ruled real hypersurfaces are typical examples of non-Hopf hypersurfaces in
Mn(c) (c 6= 0) (see Lemma 1). We compute the function ν for a ruled real hyper-
surface.

Lemma 2 (c.f. [8]). For a ruled real hypersurface M in M̃ = Mn(c), the
function ν is of the following form on each geodesic ρ with ρ̇(0) = φUρ(0), which
is the integral curve of φU through the point ρ(0). When c > 0,

ν
(
ρ(s)

)
=

(√
c

2

)
tan

(√
c(s + a)

2

)

with some constant a and when c < 0,

ν
(
ρ(s)

)
= −

(√
|c|
2

)
tanh

(√
|c|(s + a)

2

)
or ν

(
ρ(s)

)
=

√
|c|
2

with some constant a. In particular, every ruled real hypersurface in a complex
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projective space is not complete.

Proof. By use of the Codazzi equation for a hypersurface in M̃ = Mn(c)
which is written as

(∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2〈φX, Y 〉ξ}, (2.5)

we have (∇ξA)φU − (∇φUA)ξ = −(c/4)U . On the other hand, from (2.2), (2.3)
and (2.4) we find that

(∇ξA)φU − (∇φUA)ξ = ∇ξ(AφU)−A∇ξ(φU)−∇φU (Aξ) + A∇φUξ

= −A
(
(∇ξφ)U + φ∇ξU

)−∇φU (µξ + νU)

= −A
(
η(U)Aξ − 〈Aξ, U〉ξ + φ∇ξU

)− (φUµ)ξ

− µ∇φUξ − (φUν)U − ν∇φUU

= ν(µξ + νU)−Aφ∇ξU − (φUµ)ξ − (φUν)U − ν∇φUU,

so that

νµξ +
(

ν2 +
c

4

)
U −Aφ∇ξU − (φUµ)ξ − (φUν)U − ν∇φUU = 0. (2.6)

Taking the inner product of each side of (2.6) and U , we see by (2.4) that φUν =
ν2 + (c/4). Solving this differential equation, we find the form of the function ν

on each integral curve ρ of φU .
For each vector X which is orthogonal to both ξ and U , taking the inner

product of each side of the equation (2.6) and X, we see by (2.4) that 〈∇φUU,X〉 =
0. This, together with the fact that 〈∇φUU,U〉 = 〈∇φUU, ξ〉 = 0, implies ∇φUU =
0. Thus we find by (2.2) that ∇φU (φU) = 0, so that every integral curve ρ of φU

is a geodesic on our real hypersurface M . ¤

Since a complex hyperbolic space CHn is a Hadamard manifold, being differ-
ent from the case of a complex projective space CPn, we have complete ruled real
hypersurfaces in CHn. In this paper, we pay particular attention to the homoge-
neous minimal ruled real hypersurface in CHn(c). In order to explain our result,
we here recall such a hypersurface (cf. [9]). We take a circle γ in CHn(c) (with
Riemannian connection ∇̃), which lies on some totally real totally geodesic real
hyperbolic plane RH2(c/4) and whose curvature is

√
|c|/2. That is, the curve γ is

a smooth curve parameterized by its arclength which satisfies ∇̃γ̇ γ̇ = (
√
|c|/2)Y ,
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∇̃γ̇Y = −(
√
|c|/2)γ̇ with unit principal normal vector field Y along γ orthogonal

to complex lines spanned by γ̇. We should note this circle is an unbounded curve
and lies on a horosphere (see for example [2], [5]). It is known that the ruled real
hypersurface obtained by this circle is the unique minimal homogeneous ruled real
hypersurface in CHn(c). This hypersurface is characterized as follows.

Lemma 3 ([4], [9]). A ruled real hypersurface M in CHn(c) (n = 2) is the
homogeneous minimal hypersurface in CHn(c) if and only if the shape operator A

of M in CHn(c) satisfies

Aξ =
(√

|c|
2

)
U, AU =

(√
|c|
2

)
ξ, AX = 0. (2.7)

The following figure is a section of the homogeneous minimal ruled real hyper-
surface in the ball model of CHn(c). The figure shows its image cutted by totally
real totally geodesic RH2(c/4). In this figure, the solid line denotes a circle of
positive curvature

√
|c| /2 on RH2(c/4) and every dotted line denotes a geodesic

on RH2(c/4). We note that when a solid line crosses a dotted line at some point
these curves cross orthogonally at this point.

Figure 1. The image of the homogeneous minimal ruled real hypersurface in CHn.

The construction of the homogeneous minimal ruled real hypersurface M in
CHn(c) tells us that the isomery group I(M) of M is a direct product of the
isometry group I(CHn−1(c)) of totally geodesic CHn−1(c) and a one-parameter
subgroup {ϕs} (of the isometry group I(CH2(c)) of totally geodesic CH2(c))
whose orbit is a circle of curvature

√
|c| /2 on totally geodesic RH2(c/4). This

means that the totally geodesic embedding of every leaf Ms into our homogeneous
minimal ruled real hypersurface M is an equivariant mapping.
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3. Extrinsic shapes of some curves on the homogeneous minimal
ruled real hypersurface.

In this section we give a characterization of the homogeneous minimal ruled
real hypersurface in CHn from the viewpoint of extrinsic shapes of some geodesics
and all integral curves of the characteristic vector field ξ on this real hypersurface.

Theorem. A real hypersurface M in CHn(c) (n = 2) is the minimal ho-
mogeneous ruled real hypersurface if and only if it satisfies the following three
conditions.

i) At an arbitrary point x ∈ M , there exist such orthonormal vectors v1, . . . ,

v2n−2 (∈ TxM) orthogonal to the characteristic vector ξx that every geodesic
γij,x on M through the point γij,x(0) = x in the direction of vi + vj (1 5
i 5 j 5 2n − 2) is an extrinsic geodesic, namely γij,x is also a geodesic in
the ambient space CHn(c).

ii) At an arbitrary point x ∈ M , the integral curve γx of the characteristic
vector field ξ on M through γx(0) = x lies locally on a totally real totally
geodesic 2-dimensional real hyperbolic space RH2(c/4) of constant sectional
curvature c/4 in CHn(c).

iii) The curvature function κx = ‖∇̃γ̇x γ̇x‖ of the curve γx in ii) does not depend
on the choice of γx, where ∇̃ is the Riemannian connection of the ambient
space CHn(c). This means that for any curves γx, γy in ii) their curvature
functions κx(s) and κy(s) satisfy the following equality with some constant
s0 : κx(s) = κy(s + s0) for −∞ < ∀s < ∞.

In order to prove our Theorem we here recall some fundamental properties of
ruled real hypersurfaces in a nonflat complex space form.

From the viewpoint of extrinsic shapes of geodesics we have the following
results.

Proposition 2. On a ruled real hypersurface M in M̃ = Mn(c) (c 6= 0),
every geodesic ρ whose initial vector ρ̇(0) is orthogonal to the characteristic vector
ξρ(0) is an extrinsic geodesic.

Proof. Let M0 be the leaf through the point ρ(0) for the holomorphic dis-
tribution T 0M . We here take a geodesic ρ1 on M0 with the same initial condition
that ρ1(0) = ρ(0) and ρ̇1(0) = ρ̇(0). Since M0 is locally congruent to a totally
geodesic complex hypersurface Mn−1(c) of M̃ = Mn(c), we see that the curve ρ1

is also a geodesic in the ambient space M̃ = Mn(c), which implies that the curve
ρ1 is a geodesic on our ruled real hypersurface M . Hence the uniqueness theorem
on geodesics tells us that these two curves ρ and ρ1 are coincidental. Thus we get
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the desirable conclusion. ¤

We should note that the tangent vector ρ̇(s) of a geodesic ρ in this proposition
is orthogonal to ξρ(s) at each point ρ(s). Ruled real hypersurfaces are characterized
by such a property in Proposition 2.

Lemma 4. A real hypersurface M of M̃ = Mn(c) (c 6= 0) is a ruled real
hypersurface if and only if the following condition holds: At an arbitrary point
x ∈ M there exist such orthonormal vectors v1, . . . , v2n−2 ∈ TxM orthogonal to the
characteristic vector ξx that every geodesic γij,x on M through the point γij,x(0) =
x in the direction of vi + vj (1 5 i 5 j 5 2n− 2) is an extrinsic geodesic.

Proof. It suffices to show the “if ” part. We take a geodesic γii,x = γii,x(s)
(1 5 i 5 2n − 2) on M with initial condition that γii,x(0) = x and γ̇ii,x(0) = vi.
Then it follows from the first equality in (2.1) that 〈Aγ̇ii,x(s), γ̇ii,x(s)〉 = 0 for
every s. Hence, in particular at the point x(= γii,x(0)) ∈ M we have

〈Avi, vi〉 = 0 for 1 5 i 5 2n− 2. (3.1)

We next take a geodesic γij,x = γij,x(s) (1 5 i < j 5 2n − 1) on M with initial
condition that γij,x(0) = x and γ̇ij,x(0) = (vi +vj)/

√
2 . Then, applying the above

discussion to the curve γij,x, we get

〈
A(vi + vj)√

2
,
vi + vj√

2

〉
= 0 for 1 5 i < j 5 2n− 2. (3.2)

Thus, from (2) in Lemma 1, (3.1) and (3.2) we can see that M is a ruled real
hypersurface. ¤

We are now in a position to prove our Theorem. We are enough to show
that a real hypersurface satisfying these three conditions is ruled, minimal and
homogeneous in the ambient space CHn(c). We suppose that a real hypersurface
M satisfies the three conditions. By Lemma 4 the first condition guarantees that
M is a ruled real hypersurface in CHn(c). By use of the equalities in (2.1), (2.3)
and (2.4) we have

∇̃ξξ = ∇ξξ + 〈Aξ, ξ〉N = φAξ + µN = νφU + µN .

On the other hand, by the second condition we see that 〈∇̃ξξ,N 〉 = 〈∇̃ξξ, Jξ〉 = 0.
Hence we find µ vanishes identically on M , so that M is minimal and ∇̃ξξ =
ν(φU).
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We now compute the function ν. By the Gauss formula and the equalities
(2.2), (2.4) we have

∇̃ξ(φU) = ∇ξ(φU) + 〈Aξ, φU〉N = (∇ξφ)U + φ(∇ξU)

= η(U)Aξ − 〈Aξ,U〉ξ + φ(∇ξU) = −νξ + φ(∇ξU). (3.3)

We here check ∇ξU = 0. It is clear that 〈∇ξU, ξ〉 = 0 = 〈∇ξU,U〉 from (2.3), (2.4)
and the facts 〈ξ, U〉 = 0, 〈U,U〉 = 1. So we only need to verify that 〈∇ξU,X〉 = 0
for each X perpendicular to ξ and U . We take such a vector X. For any vector Y

orthogonal to ξ, the Codazzi equation (2.5) gives

(∇ξA)Y − (∇Y A)ξ = (c/4)φY. (3.4)

On the other hand, from (2.3) and (2.4) we have

(∇ξA)X − (∇XA)ξ = ∇ξ(AX)−A∇ξX −∇X(Aξ) + A∇Xξ

= −A∇ξX −∇X(νU) + AφAX

= −A∇ξX − (Xν)U − ν∇XU.

This, together with (3.4), yields

A∇ξX + (Xν)U + ν∇XU + (c/4)φX = 0. (3.5)

Taking the inner product of each side of this equality and ξ, we see from (2.4) and
the fact that ν 6= 0 that 〈∇ξX, U〉+ 〈∇XU, ξ〉 = 0. On the other hand, from (2.3)
and (2.4) we get

〈∇XU, ξ〉 = −〈U,∇Xξ〉 = −〈U, φAX〉 = 0.

Hence, from these equalities we have 〈∇ξX, U〉 = 0, so that 〈∇ξU,X〉 = 0. We
hence obtain ∇ξU = 0. Thus we find by (3.3) that ∇̃ξ(φU) = −νξ.

Next, we shall show that ξν = 0. It follows from (2.3), (2.4), (2.5) and
∇ξU = 0 that

(c/4)φU = (∇ξA)U − (∇UA)ξ

= ∇ξ(AU)−A∇ξU −∇U (Aξ) + A∇Uξ

= ∇ξ(νξ)−∇U (νU) + AφAU

= (ξν)ξ + ν(φAξ)− (Uν)U − ν∇UU.
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Taking the inner product of ξ and each side of this equality, we get ξν−ν〈∇UU, ξ〉 =
0, so that

ξν = ν〈∇UU, ξ〉 = −ν〈U,∇Uξ〉 = −ν〈U, φAU〉 = −ν2〈U, φξ〉 = 0.

As we see ∇̃ξξ = ν(φU), ∇̃ξ(φU) = −νξ and ξν = 0, we find every integral
curve of the characteristic vector field ξ is a circle of positive constant curvature
ν in the ambient space CHn(c). This, combined with the third condition in the
hypothesis, implies that ν is a constant function on M . So, setting X = φU in
(3.5), we get A∇ξ(φU) + ν∇φUU − (c/4)U = 0. Taking the inner product of each
side of this equality and U , we have from (2.2), (2.4) and ∇ξU = 0

c/4 = 〈A∇ξ(φU), U〉 = ν〈∇ξ(φU), ξ〉 = ν〈(∇ξφ)U + φ∇ξU, ξ〉
= ν〈−〈Aξ,U〉ξ, ξ〉 = −ν2,

so that ν =
√
|c| /2, since ν > 0. Then the shape operator of our real hypersurface

M satisfies (2.7). We can hence conclude that M is the homogeneous minimal
ruled real hypersurface. ¤

At the end of this paper we show the following congruency on some geodesics
of the homogeneous minimal ruled real hypersurface M in CHn(c).

Proposition 3. At each point x of the homogeneous minimal ruled real
hypersurface M in CHn(c), up to the action of isometries of M there exists just
one geodesic γx = γx(s) on M through the point x = γx(0) whose initial vector
γ̇x(0) is orthogonal to ξx.

Proof. We take the leaf Ms through the point x for the holomorphic distri-
bution T 0M on our ruled real hypersurface M . This leaf Ms is congruent to totally
geodesic CHn−1(c). If two geodesic γ1

x, γ2
x on M through the point x = γi

x(0) have
initial vectors γ̇1

x(0), γ̇2
x(0) orthogonal to the characteristic vector ξx, then they lie

on the same leaf Ms (see the proof of Proposition 2). As the leaf Ms is a Rieman-
nian symmetric space of rank one, these two geodesics are congruent to each other
with respect to the isometry group I(Ms) of Ms. On the other hand, the canonical
totally geodesic embedding of our leaf Ms into our ruled real hypersurface M is an
equivariant mapping (see the comment on the isometry group I(M) of M). Hence
these geodesics γ1

x, γ2
x are congruent to each other with respect to the isometry

group I(M) of M . ¤
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