
c©2009 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 61, No. 1 (2009) pp. 65–106
doi: 10.2969/jmsj/06110065

Far from equilibrium steady states

of 1D-Schrödinger-Poisson systems with quantum wells II
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Abstract. This article continues the asymptotic analysis of a nonlinear
Schrödinger-Poisson system which models in a far from equilibrium regime the quan-
tum transport in electronic devices like resonant tunneling diodes. Within the re-
duction to an h-dependent linear problem with uniform regularity estimates for the
potential already established in the first part, explicit computations of the asymptotic
finite dimensional nonlinear system are derived. They rely on an accurate (phase-
space) analysis of the tunnel effect which relies on some kind of Breit-Wigner formula
and Fermi golden rule.

1. Introduction.

We complete the asymptotic analysis started in [BNP1] of some out-of-
equilibrium 1D Schrödinger-Poisson system arising from the modelling of resonant
tunelling diodes. This problem is a nonlinear problem whose functional framework
was considered in [BDM], [Ni3] within a Landauer-Büttiker approach accord-
ing to [BuLa], [ChVi], [Lan] (see also [NiPa], [Pat], [JLPS], [PrSj], [BNP],
[BNP1]). The final aim is to derive as generally as possible a finite dimensional
asymptotic model which allows to compute all the possible steady state solutions
of the nonlinear problem. It is known after the heuristic arguments developed
in [JLPS], [PrSj] that such nonlinear Schrödinger-Poisson systems can produce
hysterisis phenomena with respect to the variations of the applied bias, due to mul-
tiple solutions to the nonlinear problem. In [BNP] before the theoretical analysis
was finished, numerical applications of the asymptotic model were used in realistic
cases coming from semiconductor physics. Two facts were observed in [BNP]:
firstly, the numerical results showed a good agreement with other numerical simu-
lations in [LKF] for similar quantum systems; secondly, more complex bifurcation
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diagrams appeared by taking into account the possible interaction of resonant
states localized in two different wells. Although the problem is one-dimensional
several difficulties arise:

• The idea that only a finite number of resonant states govern the nonlinear
phenomena, leads naturally to the asymptotic regime of quantum wells in a
semiclassical island, detailled below. Hence it is not exactly a semiclassical
problem.

• The problem is initially nonlinear which means that the potentials involved
in the Schrödinger operators and their asymptotic spectral analysis have a
limited regularity.

• The problem models a far from equilibrium quantum system.

In [BNP1] the analysis has been reduced to an h-dependent linear problem after
providing uniform estimates for the initial semilinear problem. In this article
we shall consider this spectral linear problem while handling theses difficulties
and the constraints brought by the nonlinear initial problem. The asymptotic
regime of a few quantum wells in a semiclassical island which is detailed below
leads to a finite number of resonant states within a finite energy interval. The
final writing of the asymptotic nonlinear system is encoded with the values of
the asymptotic occupation numbers of these quantum resonant states. After a
rescaling they are parametrized by weights tλj ∈ [0, 1], j denotes the j-th well while
λ stands for the energy variable. Here comes the difficulty, arising from the far
from equilibrium modelling, which is analyzed in this article. Far from equilibrium
steady states which can be presented with the Landauer-Büttiker approach are
better understood within a general “phase space” picture presented in [Ni3]: they
can be pictured as steady flows prescribed in the incoming phase space region.
Hence the occupation number of resonant states can be determined after a good
phase space (or microlocal) analysis of the tunnel effect. For example in our 1D
problem with a single well, when the steady states describes a beam of particles
arriving from the left-hand side, the coefficient tλ1 is 0 when the quantum well
is on the right-hand side of the island because the escaping tunnel effect on the
right-hand side is easier than the incoming one from the left-hand side, and it
is 1 when the quantum well is on the left-hand side. Actually the situation is
even more complex when resonant states can interact, a case which cannot be
removed a priori in the nonlinear problem. A complete analysis of interacting
resonances is known to be difficult, due to the non self-adjoint framework and
the possibility of non trivial Jordan blocks. Nevertheless as it will appear, several
reasonable geometrical assumptions allow a complete analysis in numerous relevant
cases, with non trivial results. Hopefully, this accurate asymptotic linear spectral
analysis can be carried out completely with exactly the Lipschitz regularity of the
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semiclassical island potential a priori provided in [BNP1] by the study of the
nonlinear problem.

With the small parameter h > 0 going to zero and for some fixed interval
I = [a, b], consider the Schrödinger operator on the real line,

Ph := −h2 d2

dx2
+ Ṽ h −Wh, Ṽ h := B + (V0 + V h)1[a,b](x),

V h ∈ W 1,∞(a, b), (1.1)

where

B(x) = −B
x− a

b− a
1[a,b](x)−B · 1[b,+∞)(x) (1.2)

and V0 > 0 and B ≥ 0 are constant. The potential B simply models the applied
bias. The family of potentials (V h)h∈(0,h0) has uniformly bounded second deriva-
tives ∂2

xV h = ∂2
xṼ h in Mb([a, b]), the space of bounded measure on [a, b], which

converge weakly to some measure µ0 ∈ Mb([a, b])1, with the additional boundary
conditions

V h(a) = V h(b) = 0.

Recall that this makes a bounded family of functions Ṽ h in W 1,∞(a, b) and which
converges in C 0,α(I), α < 1, to a function Ṽ 0, ∂2

xṼ (0)
∣∣
(a,b)

= µ0
∣∣
(a,b)

. We assume
that

inf
h∈(0,h0),x∈I

Ṽ h(x) =: Λ0 > 0. (1.3)

Finally, the potential −Wh describes quantum wells according to

Wh(x) =
N∑

i=1

wi

(
x− ci

h

)
, (1.4)

where c1 < · · · < cN are N given points in (a, b) and the functions wi are

1Taking the closed interval [a, b] or open inteval (a, b) makes no difference while working with
V h or ∂xV h. Meanwhile our assumption written with [a, b] takes into account the possible
pointwise mass or asymptotic concentration at the boundaries a and b of the h-dependent second
derivative.
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continuous2 positive functions supported in [−κ, κ] for some fixed κ > 0. We shall
use the convention c0 = a and cN+1 = b. The Hamiltonian Hh is the self-adjoint
realization of Ph on the real line with domain H2(R)

∀u ∈ D(Hh) = H2(R), Hhu := Phu. (1.5)

Recall that the notation P is used for the differential operator while H is reserved
for some closed non necessary self-adjoint realization as an unbounded operator
on L2.

The potentials wi, i = 1, . . . , N , is chosen so that the spectrum σ(Hi) of the
Hamiltonians Hi = −∆− wi satisfies

Ṽ h(ci) + inf σ(Hi) ≥ κi > 0,

with κi independent of h. With such an assumption the operator Hh has a purely
continuous spectrum equal to [−B,∞).

Due to the applied bias B ≥ 0, the dispersion relation associated with the
Hamiltonian Hh reads

λk :=

{
k2 if k > 0,

k2 −B if k < 0.
(1.6)

For k ∈ R such that λk ∈ (−B, +∞) \ {0}, the incoming scattering state ψh
−(k, x)

is the solution of

Phψh
−(k, ·) = λkψh

−(k, ·), (1.7)

with the normalization

for k > 0 ψh
−(k, x) =





ei kx
h + rk e−i kx

h for x < a,

tk ei
(λk+B)1/2x

h for x > b,

for k < 0 ψh
−(k, x) =





tk e−i
(λk)1/2x

h for x < a,

ei kx
h + rk e−i kx

h for x > b.

2In [BNP1], the nonlinear analysis was carried out with only wi ∈ L∞(I).
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The square root z1/2 is chosen with the ramification along the half-line iR− in
order to ensure that e−i(λk)1/2x decays exponentially as x → −∞ when λk ∈
(−B, 0).

This can be reduced to k-dependent transparent boundary conditions

for k > 0





[
h∂x + iλ

1/2
k

]
ψh
−(k, a) = 2ikei ka

h ,
[
h∂x − i(λk + B)1/2

]
ψh
−(k, b) = 0,

(1.8)

for k < 0





[
h∂x + iλ

1/2
k

]
ψh
−(k, a) = 0,

[
h∂x − i(λk + B)1/2

]
ψh
−(k, b) = 2ikei kb

h .
(1.9)

The coefficients tk and rk are the transmission and reflexion coefficients and satisfy
for λk > 0

|rk|2 +
√

λk

λk + B
|tk|2 = 1. (1.10)

Denote, for i = 1, . . . , N by σi the set of negative eigenvalues of the Hamiltonian
Hi = −∆− wi with D(Hi) = H2(R)

σi := {ei
k}k∈Ki ⊂ (−∞; 0), Ki ⊂ N , i = 1, . . . , N. (1.11)

The set of asymptotic resonant energies is defined as

E0 :=
N⋃

i=1

Ei, Ei := σi + Ṽ 0(ci). (1.12)

Let us recall as well the notion of asymptotic resonant wells associated with λ ∈ E0:

Jλ := {i ∈ {1, . . . , N} s. t. λ ∈ Ei}.

The multiplicity mλ of the asymptotic resonant energy λ is given by

mλ := #Jλ.

Like in [BNP1], we focus on positive energies: We fix an energy domain (Λ∗,Λ∗) ⊂
(0,Λ0), and we consider the functions
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θ ∈ C 0
c ((Λ∗,Λ∗)), θ ≥ 0, (1.13)

and g(k) = θ(λk)1R+(k). (1.14)

The function of the asymptotic momentum is the operator with (continuous in
1D) kernel

g(Kh
−)[x, y] =

∫

k

g(k)ψh
−(k, x)ψh−(k, y)

dk

2πh
, (1.15)

and we are interested in the asymptotic of the particle density nh(x) defined by

∫ b

a

ϕ(x) dnh(x) = Tr
[
g(Kh

−)ϕ(x)
]
, ∀ϕ ∈ C 0

c ((a, b)),

or equivalently

dnh(x) =
∫

k

g(k)|ψh
−(k, x)|2 dk

2πh
.

The result of [BNP1, Theorem 1.6] states that, possibly after extracting a subse-
quence, the measure dnh converges weakly to dn0 in Mb((a, b)) with

dn0 =
∑

λ∈E0

∑

i∈Jλ

tλi θ(λ) δx=ci , tλi ∈ [0, 1]. (1.16)

Our aim here is the accurate determination of the coefficients tλi according to the
geometry of the potential.

Recall that this result, [BNP1, Theorem 1.6], is essentially obtained by check-
ing that the tλi ’s are equal to 1 when the function g(k) is replaced by θ(λk)
and g(Kh

−) by θ(Hh). In this article, we focus on the anisotropic case when
g(k) = θ(λk)1R+(k) cannot be written as a function of the energy. Note that due
to the decomposition

θ(Hh) = g−(Kh
−) + g+(Kh

−),

g−(k) = 1k<0 · θ(λk), g+(k) = 1k>0 · θ(λk), (1.17)

the result can be tranformed into a result for functions g− supported on negative
momentum and even carries over to more general combination.
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2. Assumptions and results.

Since (1.16) is a local result on the energy axis while the set of asymptotic
resonant energies E0 is finite, the analysis can be partly simplified after the next
assumption.

Assumption 1. Suppose that the support of function θ and therefore of
g(k) = 1k>0 · θ(λk), contains only one asymptotic resonant energy

supp θ ∩ E0 = {λ0}.

The next assumptions are technically more serious. Some specific configura-
tions allow to handle accurately and quite simply the discussion with respect to
the geometry in terms of the Agmon distance.

Definition 2.1. With an energy λ ∈ R and a potential V ∈ L∞(I), is
associated the Agmon (possibly degenerate) distance d(., .; V, λ) defined by:

∀x, y ∈ I, d(x, y; V, λ) =
∣∣∣∣
∫ y

x

√
(V (t)− λ)+ dt

∣∣∣∣. (2.1)

Notation 1. The Agmon distance associated with the asymptotic potential
Ṽ 0 and the asymptotic resonant energy λ0 is denoted by d0. It is defined by

d0(x, y) :=
∣∣∣∣
∫ y

x

√
Ṽ 0(τ)− λ0 dτ

∣∣∣∣,

With this distance, let

S0 := d0(∪i∈Jλ0
{ci}, ∂I), SU := max

i,j∈Jλ0

d0(ci, cj), SI := d0(a, b) (2.2)

be respectively the distance between the λ0-resonant wells and the boundary ∂I =
{a, b}, the diameter of the union of the resonant wells, and the diameter of the
island.

It is sometimes convenient to introduce the set

U = {c1, . . . , cN}.

Finally, introduce for η0 > 0 the quantity
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S̃U := max
τ∈[c1,cN ]

√
Ṽ 0(τ) + η0 − λ0 |cN − c1|,

which measures the diameter of the area which contains all the wells.

Notice that S̃U is written in terms of some L∞-norm of the potential instead
of an integral. The parameter η0 is introduced in order to ensure S̃U > SU . It can
be chosen arbitrarily small.

Definition 2.2. We say that the λ0-resonant wells are gathered (resp.
strongly gathered) if and only if

S0 + SU < SI/2 (resp. S0 + mλ0SU < SI/2). (2.3)

As S0 + SU is the greatest distance from the boundary of the island to the
resonant wells, the condition S0 +SU < SI/2 expresses that the resonant wells are
gathered in one of the halves of the island. This explains the terminology. Here
is an example: Assume SI = d0(a, b) = 1 with two wells such that d0(a, c1) = 1/4
and d0(a, c2) = 1/4 + 1/16. Then the quantities S0, SU and SI satisfy S0 = 1/4,
SU = 1/16 and S0 + 2SU = 1/4 + 1/8 < 1/2 = SI/2.

Definition 2.3. We say that the wells are isolated if and only if

S0 > 8S̃U and mλ0 = N. (2.4)

Inequality (2.4) means that the wells are confined in the central part of the
island.

Theorem 2.4. Make Assumption 1. Suppose that the λ0-resonant wells are
strongly gathered, or suppose that the wells are isolated (mλ0 = N) and gathered
with N = mλ0 . Then the two next statements hold :

i) The coefficients tλ0
i , i ∈ Jλ0 , are all equal to 1 if d0(a, ci) < d0(ci, b) for all

i ∈ Jλ0 .
ii) The coefficients tλ0

i , i ∈ Jλ0 , are all equal to 0 if d0(a, ci) > d0(ci, b) for all
i ∈ Jλ0 .

In the first case the wells are confined in the left-hand half of the island,
whereas in the second case the wells are confined in the right-hand side of the
island, this partition being done in terms of the Agmon distance d0. This result
can be interpreted in terms of tunneling effect: in case i) the tunneling effect is
easier from a to the wells than from the wells to b, the particles coming from −∞
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(remember g+(−|k|) = 0) are trapped by the wells; in case ii), the particle escape
more easily from the wells to b than they get into the wells from a.

Theorem 2.5. Assume that the wells are isolated according to Definition
2.3 (mλ0 = N). Let λh

1 < · · · < λh
mλ0

be the eigenvalues of the Dirichlet Hamilto-
nian Hh

I on I = [a, b] converging to λ0 as h → 0 with the normalized eigenvectors
φh

1 , . . . , φh
mλ0

. Fix ε ∈ (0, 1/2min0≤i 6=i′≤N+1 |ci−ci′ |) and let ψ̃h
−(k, ·) be the gener-

alized eigenfunctions of H̃h = Hh + Wh. Then the coefficient tλ0
i , i = 1, . . . ,mλ0 ,

is obtained as the limit of the quantity

mλ0∑

j=1

∫ ci+ε

ci−ε

∣∣φh
j (x)

∣∣2 dx

1 +
√

λh
j

∣∣〈φh
j , W hψ̃h

−
(
−
√

λh
j +B,·

)〉∣∣2
√

λh
j +B

∣∣〈φh
j , W hψ̃h

−
(
+
√

λh
j ,·

)〉∣∣2
, (2.5)

as h → 0 (after possibly extracting a subsequence).

From this result non trivial cases for which not all the tλi belong to {0, 1} will
be exhibited in Section 8, in particular in Proposition 8.5 and Proposition 8.6.

When N = 1, we will establish that, the coefficient tλ0
1 belongs to (0, 1) only

if d0(a, c1) = d0(c1, b).
In the case of two wells N = 2, the values of tλ0

1 and tλ0
2 have to fulfill the

next rules

1. tλ0
1 = 1 and tλ0

2 ∈ [0, 1] if d0(a, c1) < d0(c2, b);
2. tλ0

1 ∈ [0, 1] and tλ0
2 = 0 if d0(a, c1) > d0(c2, b);

3. 1 ≥ tλ0
1 ≥ tλ0

2 ≥ 0 if d0(a, c1) = d0(c2, b).

All these rules which were proved only for isolated wells and especially the general
condition tλ0

1 ≥ tλ0
2 have a very natural interpretation within the probabilistic

presentation of quantum mechanics. They are probably valid in all cases although
our proof requires some specific assumptions. They were taken as granted in
the numerical applications treated in [BNP]. Although there are some technical
difficulties, the completely general analysis of interacting resonances when mλ0 >

1 would definitely be valuable. Nevertheless, our results provide essentially a
complete understanding of what is going on when there is no interaction between
resonances, or when the interaction of resonant states involves only two wells. In
the final nonlinear problem presented in [BNP], [BNP1], the coefficients tλi play
the role of Lagrange multipliers which have an arbitrary value in [0, 1] when the
associated constraint for the asymptotic resonant energy or the Agmon distances
is saturated.
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Finally note that the assumption mλ0 = N in the second case of Theorem 2.4
(isolated and gathered wells) is not crucial. It is assumed here in order to avoid
some unessential technicalities which have already been considered in [BNP1] and
are treated in the slightly simpler first case.

3. Reduction of the relevant energy interval.

In [BNP1], a small h-dependent energy domain around λ0 has been intro-
duced. Let Hh

I denote the Dirichlet realization of Ph on the interval I = [a, b] and
let {λh

1 , . . . , λh
mλ0

} be the ordered eigenvalues converging to λ0 as h → 0. Set

Ωh := {z ∈ C s.t. Re (z) ∈ Kh, Im (z) ∈ [−4h, 4h]} (3.1)

with Kh := [λ0 − αh, λ0 + αh] (3.2)

and αh := 4 max
{
h, |λ0 − λh

j |, j = 1, . . . , mλ0

}
. (3.3)

The Proposition 6.4 of [BNP1] yields the next energy interval reduction.

Proposition 3.1. Under Assumption 1, the convergence

lim
h→0

Tr
[
g(Kh

−)ϕ(x)
]− g(

√
λ0)Tr

[
1Kh

(Hh)1(0,+∞)(Kh
−)ϕ(x)

]
= 0

holds for any ϕ ∈ C 0
c ((a, b)).

Hence we will mainly focus on the energies lying in Kh and on the spectral
parameters lying in Ωh in the sequel.

4. Lower bound for the imaginary parts of the resonances.

In this simple one-dimensional problem where the potential is piecewise con-
stant outside a compact interval, the resonances are easily introduced after an
explicit complex deformation of the transparent boundary conditions (1.8)–(1.9).
The operator Hh

ζ is defined for a complex ζ lying in a neighborhood of λ ∈ (−B, 0)
by

D(Hh
ζ ) =



u ∈ H2(I),

[
h∂x + iζ1/2

]
u(a) = 0,

[
h∂x − i(ζ + B)1/2

]
u(b) = 0



 , (4.1)

Hh
ζ u = Phu =

[− h2∆ + V h(x)
]
u, ∀u ∈ D(Hh

ζ ), (4.2)
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with V h(x) = Ṽ h(x)−Wh(x).

The resonances are then exactly the complex values z for which the operator
(Hh

z − z) is not injective (see [BNP1] for this specific case and [BaCo], [HeSj1],
[HiSi] for more general versions of the complex deformation).

It was proved in [BNP1] that the resonances converging to λ0 lie in a
Õ(e−2S0/h)-neighborhood of the Dirichlet eigenvalues (see [BNP1, Proposition
5.2]). Hence we get the usual result that the imaginary part of resonances con-
verging to λ0 are exponentially small

Im (zh) = Õ
(
e−

2S0
h

)
.

Remember that f(h) = Õ(g(h)) means that for any fixed but arbitrarily small
η > 0, f(h) = O(e

η
h g(h)) as h → 0.

Providing a lower bound for the imaginary part of resonances is a standard
result within the semiclassical analysis of resonances (see [HeSj1]). We check it
with a more pedestrian approach for our 1D problem where the potential does not
fit exactly with the semiclassical setting and has a limited regularity. Note that
the lower bound can be much smaller than the upper bound in the multiple well
case.

Proposition 4.1. For any η > 0, there exists a positive constant Cη > 0
such that for any resonance zh converging to λ0, one has

Cηe−
2S0−η

h ≥ −Im (zh) ≥ C−1
η e−

2(S0+SU )+η

h . (4.3)

Proof. Let zh be such a resonance and let uh be an associated normalized
resonant state, that is an element in the kernel of Hh

zh −zh with L2(I)-norm equal
to 1. It satisfies

−h2∆uh + V h(x)uh = zhuh, ‖uh‖L2(I) = 1,

with the boundary conditions provided by uh ∈ D(Hh
zh). By taking the imaginary

part of the identity (A.1) applied with V = V h, u2 = u1 = uh, z = zh and ϕ ≡ 0
one gets

−Im (zh) = hRe
(√

zh + B
)|uh(b)|2 + hRe

(√
zh

)|uh(a)|2. (4.4)

If the imaginary part of zh is too small, uh satisfies a Cauchy problem in x = a
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with small datas because of the resonant boundary conditions and limh→0 zh =
λ0 ∈ (Λ∗,Λ∗). We next check that such a smallness is limited by the normalization
assumption ‖uh‖L2 = 1. In order to get this, set

F (x) :=

(
uh(x)

ihduh

dx (x)

)
. (4.5)

F satisfies the ODE on I

ih
dF

dx
= Ah(x)F (x), Ah(x) :=

(
0 1

zh − V h 0

)
, V h = Ṽ h −Wh. (4.6)

Endow C2 with the standard hermitian norm. If ρh(x) denotes the spectral
radius of Ah(x)Ah(x)T , one gets the estimate

∣∣∣∣h
dF

dx

∣∣∣∣
2

≤ ρh(x)|F (x)|2. (4.7)

By Gronwall’s lemma this yields

|F (x)| ≤ min
(
|F (a)|e 1

h

R x
a
|zh−V h(τ)|1/2 dτ ; |F (b)|e 1

h

R b
x
|zh−V h|1/2 dτ

)
, (4.8)

for all x ∈ I. The transparent conditions given by uh ∈ D(Hh
zh) imply

|F (a)|2 = |uh(a)|2(1 + |zh|), |F (b)|2 = |uh(b)|2(1 + |zh + B|). (4.9)

Apply now the Agmon estimate technique like in [DiSj] in order to check that
the resonant wave function concentrates in the wells: Taking the real part of the
identity (A.1) with V = V h, z = zh, u1 = u2 = uh and ϕ(x) = d(x, supp Wh;
Ṽ h − ε0, Re zh) with ε0 > 0 leads to

0 =
∫ b

a

∣∣h∂x(e
ϕ
h uh)

∣∣2dx + ε0

∫

I\supp W h

∣∣eϕ
h uh

∣∣2dx

+
∫

supp W h

(
Ṽ h(x)−Wh(x)− Re zh

)|uh|2dx

+ h Im [(zh)1/2] e2
ϕ(a)

h |uh(a)|2 + h Im [(zh + B)1/2] e2
ϕ(b)

h |uh(b)|2.
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Since limh→0 zh = λ0 > 0 and Im (zh) = Õ(e−2S0/h) and from (4.4) we deduce the
estimate

∫

I\supp W h

∣∣h∂x(e
ϕ
h uh)

∣∣2 + ε0

∣∣eϕ
h uh

∣∣2dx

≤ Õ
(
e−4

S0
h

)
max

{
e

2ϕ(a)
h , e

2ϕ(b)
h

}
−

∫

supp W h

(
Ṽ h(x)−Wh(x)− Re zh

)|uh|2dx.

Owing to ϕ(a) ≤ d0(a, U) and ϕ(b) ≤ d0(b, U) for h > 0 small enough and to
‖uh‖L2 = 1 we get

∫

I\supp W h

∣∣h∂x(e
ϕ
h uh)

∣∣2 + ε0

∣∣eϕ
h uh

∣∣2dx ≤ C

for some constant independent of h > 0 (small enough). Let χ be a cut-off function
which cancels around the boundary of I. Then, χuh is close to an eigenfunction
for the Dirichlet operator Hh

I . Using [Hel, p. 30–31] (or [HeSj2]), we can prove
that uh has asymptotically no mass in the non-resonant wells.

From this we conclude that the constant κ1 > 0 can be chosen so that there
exists i ∈ Jλ0 such that the L2-norm of uh on [ci − κ1h, ci + κ1h] is greater than
1
2

1
mλ0

, for h > 0 small enough. Using (4.8) and integrating on [ci − κ1h, ci + κ1h],
one obtains from (4.8) and (4.9)

1
4m2

λ0

≤ min
(
|uh(a)|2(1 + |zh|)

∫ ci+κ1h

ci−κ1h

e
2
h

R x
a
|zh−V h(τ)|1/2 dτdx ;

|uh(b)|2(1 + |zh + B|)
∫ ci+κ1h

ci−κ1h

e
2
h

R b
x
|zh−V h(τ)|1/2 dτdx

)
. (4.10)

In the integral with respect to τ , one can replace V h by Ṽ h modulo O(h), since
each well is of diameter κh. Fix now ε1 > 0. For h > 0 small enough we can
assume

∣∣Ṽ h(x)− Ṽ 0(x)
∣∣ ≤ ε1

and
∣∣zh − λ0

∣∣ ≤ ε1.

This leads finally to
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1
4 m2

λ0

≤ eCκ1 min
(
2h|uh(a)|2(1 + |zh|)e 2d0(a,ci)+Cε1

h ;

2h|uh(b)|2(1 + |zh + B|)e 2d0(ci,b)+Cε1
h

)

≤ C ′|Im zh|e 2d0(ci,∂I)+C′ε1
h .

The lower bound of (4.3) appears as a necessary condition owing to d0(ci, ∂I) ≤
S0 + SU by taking C ′ε1 ≤ ε. ¤

Remark 4.2.

• Note that in the single well case N = 1, SU = 0, one recovers a logarithmic
equivalent to |Im zh|.

• Note that the lower bound of (4.3) can be improved slightly by noticing
d0(ci, ∂I) is less than min{S0 + SU , SI/2}.

5. Resolvent estimates around an asymptotic resonant energy.

In this section, we play with the explicit expression of the determinant and the
inverse of finite dimensional matrices after the Grushin reduction of the resonance
problem, in the spirit [TaZw].

The next expression of the resolvent was derived in [BNP1] after introducing
a Grushin problem:

1I(Hh − z)−11I = (Hh
z − z)−1 = F (z)− E+(z)(E−+(z))−1E−(z), (5.1)

for all z ∈ Ωh and where F is a holomorphic trace class operator-valued function.
For any compact set K ⊂ (a, b), there exists cK such that the estimate

∀ϕ ∈ C 0(K), |Tr (F (z)ϕ)| = Oϕ(e−cK/h), h → 0, (5.2)

holds uniformly for z ∈ Ωh and h ∈ (0, h0). The meromorphic part is of finite rank
with poles located exactly at the resonances zh

1 , . . . , zh
mλ0

of Ph.
The labelling of the resonances is done according to the labelling of the Dirich-

let eigenvalues λh
1 , . . . , λh

mλ0
with |zh

j − λh
j | = Õ(e−2S0/h).

Moreover, the approximated expansions

E−+(z) = diag
[
(z − λh

1 ), . . . ,
(
z − λh

mλ0

)]
+ Õ

(
e−

2S0
h

)
(5.3)

= diag
[
(z − zh

1 ), . . . ,
(
z − zh

mλ0

)]
+ Õ

(
e−

2S0
h

)
, (5.4)
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E−(z) = E−
0 ψ + Õ

(
e−

S0
2h

)
, (5.5)

E+(z) = χE+
0 + Õ

(
e−

S0
2h

)
. (5.6)

hold with ‖E+
0 ‖ and ‖E−

0 ‖ uniformly bounded and where ψ and χ are cut-off
functions (see [BNP1, Section 5 and Section 6.2]).

Proposition 5.1. The estimate

‖(E−+(λ))−1‖ = Õ

(
e

2(mλ0
−1)SU

h

[
min

j=1,...,mλ0

|λ− zh
j |

]−1
)

holds for any real λ ∈ Ωh ∩R, when ‖ ‖ denotes any fixed norm on Mmλ0
(C).

Proof. We start to prove that there exists a function fh such that

∀z ∈ Ωh, det E−+(z) =
mλ0∏

j=1

(z − zh
j )fh(z), inf

h>0
inf
Ωh

|fh(z)| ≥ c > 0. (5.7)

Fix any norm on Mmλ0
(C). The function fh : z 7→ det E−+(z)

∏mλ0
j=1 (z − zh

j )−1

is meromorphic on Ωh, does not cancel, and has removable singularities at z = zh
j .

We apply then the maximum modulus principle to the matrix elements. Because
of (5.4) and the location of the resonances we have

det E−+(z) =
mλ0∏

j=1

(
z − zh

j

)
+ Õ

(
e−

2S0
h

)
, (5.8)

and on the boundary of Ωh, |z− zh
j | ≥ Ch, C > 0. Consequently, f is bounded by

below by 1/2 for h sufficiently small. This proves (5.7).
In order to evaluate the norm of (E−+(z))−1, we use the representation

(E−+(z))−1 =
1

detE−+(z)
comE−+(z)T , (5.9)

where Γ(z) := com E−+(z)T denotes the transpose matrix of the cofactors. Let
us make more explicit the form of the general element Γij(z) in order to get the
estimate. In general, by denoting ε(z) the residual matrix in (5.4) the entry Γij(z)
is a sum of (mλ0 − 1)! homogeneous monomials of order mλ0 − 1 in the matrix
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elements of E−+(z), among which there are r diagonal elements (0 ≤ r ≤ mλ0−1).
Such a monomial writes

r∏

k=1

(
z − zh

jk
+ εik,ik

) mλ0−1∏

l/∈{1,...,r}
εσ(il),il

, σ ∈ Smλ0−1. (5.10)

The estimate of ‖(E−+(z))−1‖ is then derived from an upper bound of quantities
like

thr (z) =

r∏

k=1

(
z − zh

jk
+ εik,ik

) mλ0−1∏

k/∈{1,...,r}
εσ(ik),ik

mλ0∏

j=1

(
z − zh

j

)
, 0 ≤ r ≤ mλ0 − 1. (5.11)

For any fixed r ∈ {0, . . . ,mλ0 − 1} and λ ∈ R, the inequality

∣∣thr (λ)
∣∣ ≤ Cr max

0≤r1≤r

Õ
(
e−

2(mλ0
−r1−1)S0

h

)

mλ0−r1∏

k=1

∣∣zh
jk
− λ

∣∣
≤ Cr max

0≤r1≤r

Õ
(
e−

2(mλ0
−r1−1)S0

h

)

|zh
j1 − λ|

mλ0−r1∏

k=2

∣∣Im zjk

∣∣

combined with the lower bound (4.3) yields

∣∣thr (λ)
∣∣ ≤ Cr max

0≤r1≤r

Õ
(
e

2(mλ0
−r1−1)SU

h

)

min
j

∣∣λ− zh
j

∣∣ ≤ Cr

Õ
(
e

2(mλ0
−1)SU

h

)

min
j

∣∣λ− zh
j

∣∣ . ¤

6. Case of strong gatherness.

We prove Theorem 2.4 under the strong gatherness assumption (see Definition
2.2) that we recall here:

S0 + mλ0SU < SI/2. (6.1)

Actually the result will be proved under the simplifying assumption that all the
wells are λ0-resonant, mλ0 = N . The Lemma 6.1 given in the end of this Section
will make clear that this assumption is not restrictive.
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Proof of Theorem 2.4 under the strong gatherness assumption.

First note that the two statements i) and ii) can be deduced one from the other
with a complementary argument provided by the relation (1.17) with the functions
of the energy for which tλj = 1 was proved in [BNP1].

Hence we want to prove

lim
h→0

Tr
[
g(Kh

−)ϕ
]

= 0

in the case ii). According to Proposition 3.1, it is equivalent to

lim
h→0

Tr
[
gh(Kh

−)ϕ
]

= 0,

with gh(k) = 1(0,+∞)(k)1Kh
(λk).

Let ψh
−(k, x) (λk ∈ Kh) be the generalized eigenfunction defined by (1.8)–(1.9)

for the potential V h and ψ̃h
−(k, x) be the generalized eigenfunction associated with

the filled potential Ṽ h = V h + Wh. Set

uh(k, ·) := ψh
−(k, ·)− ψ̃h

−(k, ·) =
(
Hh

k2 − k2
)−1

Whψ̃h
−(k, ·). (6.2)

so that

∣∣ψh
−(k, x)

∣∣2 ≤ 2
∣∣ψ̃h
−(k, x)

∣∣2 + 2|uh(k, x)|2. (6.3)

If we denote by K̃h
− the asymptotical momentum for H̃h, we get for any ϕ ∈

C 0
c ((a, b); R+):

0 ≤ Tr
(
gh(Kh

−)ϕ
) ≤ Tr

(
gh(K̃h

−)ϕ
)

+ 2‖ϕ‖2∞
∫

k>0,λk∈Ih

∥∥uh(k, ·)
∥∥2

L2
x

dk

2πh
. (6.4)

If we come back to the expression (5.1) of the resolvent (Hh
k2 − k2)−1, we get

uh(k, ·) = F (k2)Whψ̃h
−(k, ·)− E+(k2)(E−+(k2))−1E−(k2)Whψ̃h

−(k, ·), (6.5)

and finally

∥∥uh(k, ·)
∥∥2

L2
x
≤ 2

∥∥F (k2)Whψ̃h
−(k, ·)

∥∥2 + 2
∥∥T (k2)Whψ̃h

−(k, ·)
∥∥2

, (6.6)

by setting
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T (k2) := E+(k2)(E−+(k2))−1E−(k2). (6.7)

The first term of (6.6) uniformly goes to 0 when h → 0, because F is bounded in

the operator-norm and Whψ̃h
−(k, ·) is Õ(e−

d0(a,Uh)
h ), according to the Proposition

6.2 in Section 6.1 of [BNP1]. By Proposition 5.1, it follows that the second term
is bounded by

∥∥T (k2)Whψ̃h
−(k, ·)∥∥2 = Õ


e−

2d(a,U)
h e

4(N−1)SU
h

min
j=1,...,N

|k2 − zh
j |2


 . (6.8)

But, for any resonance zh ∈ {zh
1 , . . . , zh

N}, writing zh = Eh − iΓh, Eh = Re (zh),
Γh = −Im (zh), gives

1
|k2 − zh|2 =

1
Γh

Γh

(k2 − Eh)2 + Γh2 . (6.9)

The latter factor is uniformly bounded in L1(Rk), while the first factor is estimated
owing to (4.3) by

1
Γh

= Õ
(
e

2(S0+SU )
h

)
.

By putting all the inequalities together, the integral in (6.4) is dominated by

Õ
(
e−

2d(a,U)
h e

4(N−1)SU
h

)
× Õ

(
e

2(S0+SU )
h

)
.

We conclude by recalling the assumptions

d(a, U) = SI − (S0 + SU )

−2SI + 4(S0 + NSU ) < 0. ¤

The next arguments show that the assumption mλ0 = N is easily removed.
Let H̃h

k2,nr be the operator with the same domain as Hh
k2 and associated with the

potential

Ṽ h
nr = V h +

∑

j∈Jλ0

wj

(
x− cj

h

)
,
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where all the resonant wells are filled. In [BNP1] such an Hamiltonian was de-
noted by H̃k2(λ0) and it was proved (see Proposition 4.3) that it satisfies the same
resolvent estimate as H̃k2 . Hence the previous proof carries over to the case when
mλ0 < N as soon as the generalized eigenfunctions ψ̃h

−,nr(k, x) corresponding to
the partially filled wells share the same properties as the ψ̃h

−(k, x). This is given
by the next Lemma.

Lemma 6.1. For k > 0 such that λk ∈ Kh, the pointwise estimate

ψ̃h
−,nr(k, x) = ψ̃h

−(k, x) + Õ
(
e−

d0(a,Uh
nr)+d0(Uh

nr,x)
h

)

holds for any x ∈ I = [a, b] with a uniform control of the constants with respect to
x ∈ I. The set Uh

nr is suppWh
nr with Wh

nr = Wh −∑
j∈Jλ0

wj

( ·−cj

h

)
.

Proof. The function ε(k, ·) := ψ̃h
−,nr(k, ·) − ψ̃h

−(k, ·) is in the domain of
Hh

k2,nr and, since P̃h −Wh
nr = Ph

nr, it follows that

ψ̃h
−,nr(k, ·) = ψ̃h

−(k, ·)− (
Hh

k2,nr − k2
)−1

Wh
nrψ̃

h
−(k, ·). (6.10)

It was shown that ψ̃h
−(k, x) = O(h−1)e−d0(a,x) uniformly w.r.t k, whereas the

kernel of (Hh
k2,nr − k2)−1 is Õ(e−d0(x,y)). ¤

7. Isolated wells.

We assume in this section mλ0 = N .

7.1. Preliminary results.
In the case of isolated wells, the geometric assumption ensures that the res-

onances are simple. More precisely, the gaps between the Dirichlet eigenvalues
converging to λ0 are much larger than the imaginary parts of all the correspond-
ing resonances. This does not correspond exactly to the case mλ0 = 1 because the
energy domain Kh = Ωh ∩ R has to be splitted into exponentially small energy
intervals with a refined analysis which was not really carried out in [BNP1]. This
will lead in particular in Section 7.2 to a refined version of the Breit-Wigner type
formula for the local density of states already considered in [BNP1] after [GeMa],
[GMR].

The first result which is an application of the universal lower bound of gaps
given in [KiSi], introduces the quantity S̃U .

Proposition 7.1. Let λh
1 < · · · < λh

mλ0
be the eigenvalues of Hh

I , the
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Dirichlet realization of Ph on I converging to λ0. There exists a constant CU > 0
such that for h > 0 sufficiently small

∀j 6= k,
∣∣λh

j − λh
k

∣∣ ≥ C−1
U e−

S̃U
h . (7.1)

When the wells are isolated, each disc centered on λh
j with radius (3CU )−1e−S̃U /h

contains therefore only one resonance of Ph for h > 0 small enough.

Proof. Consider the Hamiltonian Ĥh on the whole line R with domain
H2(R) and defined by

∀u ∈ H2(R), Ĥhu := P̂hu, P̂h := −h2d2/dx2 + V̂ h, (7.2)

V̂ h = 1(−∞,a) · V h(a) + 1I · V h + 1(b,∞) · V h(b). (7.3)

The potential V̂ h is a continuous function constant outside I and coinciding with
V h on I. By construction, one has

inf σess

(
Ĥh

) ≥ Λ0 > Λ∗. (7.4)

Besides, the number of eigenvalues of Ĥh is bounded w.r.t. h > 0. Apply then the
Theorem 2 from [KiSi] given in Appendix B with [aKS , bKS ] = [c1 − κh, cN + κh]
and α2

KS = Λ0 (the KS index refers to Kirsch and Simon’s notations). This
provides a lower bound for the splitting of the eigenvalues of Ĥh, lying around λ0,
namely

∣∣λ̂h
j − λ̂h

k

∣∣ ≥ Ce−
S̃U
h . (7.5)

Now, if λh is one of the eigenvalues of Hh
I in this interval with φh a corresponding

L2-normalized eigenfunction, one has with the exponential decay estimates (see
[BNP1, Proposition 3.3])

Ĥhχφh = λhχφh + [Ph, χ]φh,
∥∥[Ph, χ]φh

∥∥
L2 ≤ Cηe−

S0−cη
h , (7.6)

for a smooth cut-off function χ supported in (a, b) and equal to 1 outside an η-
neighborhood of its boundary ∂I = {a, b}. Since Hh

I is self-adjoint, an orthonormal
basis of mλ0 eigenvectors φh’s associated with eigenvalues λh converging to λ0

can be considered. The exponential decay of these eigenvectors (see [BNP1,
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Proposition 3.3]) ensures that the Gram matrix of the χφh’s is exponentially close
the unit matrix. According to [Hel], [HeSj2] (see also [BNP1, Appendix C]),
Ĥh has at least mλ0 eigenvalues converging to λ0.

Conversely, if λ̂h is an eigenvalue of Ĥh with eigenfunction φ̂h, one has in
L2(I)

Ĥhχφ̂h = λ̂hχφ̂h + [Ph, χ]φ̂h, (7.7)

with the same estimate of the remainder term [Ph, χ]φ̂h as in (7.6) owing to the
exponential decay of φ̂h (Use again the Agmon estimate). A first application of
the results of [Hel], [HeSj2] (see also [BNP1, Appendix C]) ensures that there
is a bijection between the eigenvalues of Hh

I and the eigenvalues of Ĥh converging
to λ0, with variations of order Õ(e−S0/h) which are much smaller than the gaps
(7.5). ¤

The previous localization of resonances can be combined with the Grushin
formulation (5.1). Unfortunately this does not produce an accurate enough infor-
mation. We now want to use the lower bound on the gaps in order to consider
separately every pair (λh

j , zh
j ) made of a Dirichlet eigenvalue with the associated

resonance, although this still allows interacting wells. Improved resolvent esti-
mates and a better description of the generalized wave function is needed. In
[BNP1] the kernel of the resolvent (Hh

• −z)−1 was studied when dist(z, σ(Hh
I )) is

larger than hC (or e−S1/h with the notations of [BNP1]). Here we have to work
with only dist(z, λh

j ) ≥ (C/100)e−S̃U /h, that is much closer to the Dirichlet eigen-
value λh

j (e−S̃U /h = o(e−SU /h) = o(e−S1/h)). Let us start with a lemma about the
Dirichlet realization which completes the results of [BNP1].

Lemma 7.2. Let Hh
I be the Dirichlet realization on the interval I of the

operator Ph. Let zh belong to Ωh with h ∈ (0, h0), h0 small enough. Set

r(h) = dist
(
zh, σ(Hh

I )
)
,

and assume r(h) > 0. The kernel of the resolvent (Hh
I − zh)−1 satisfies

(
Hh

I − zh
)−1[x, y] =

Õ
(
e−

d0(x,y)−SU
h

)

min(r(h), 1)

with uniform constants with respect to x, y ∈ I, when d0 denotes the Agmon dis-
tance d(·, ·; Ṽ 0, λ0).
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Proof. We already proved in [BNP1, Proposition 3.7 and Corollary 3.8]
the estimate

(
Hh

I − zh
)−1[x, y] = Õ

(
e−

d0(x,y)
h

)
, when r(h) ≥ hC ; (7.8)

and in [BNP1, Proposition 3.9] the estimate

∣∣φh
j (x)

∣∣ +
∣∣∂xφh

j (x)
∣∣ = Õ

(
e−

d0(x,U)
h

)
, (7.9)

which holds for any normalized eigenfunction φh
j associated with an eigenvalue λh

j ,
j ∈ {1, . . . , mλ0}, converging to λ0 as h → 0. Recall that U gathers all the wells

U = {c1, . . . , cN}.

Consider the spectral projector

Πh
I = Id− 1

2iπ

∫

∂Ωh

(
z −Hh

I

)−1
dz = Id−

mλ0∑

j=1

∣∣φh
j

〉〈
φh

j

∣∣.

Write for z ∈ Ωh \ σ(Hh
I )

(
Hh

I − z
)−1 =

(
Hh

I − z
)−1Πh

I +
(
Hh

I − z
)−1(Id−Πh

I

)

=
(
Hh

I − z
)−1Πh

I +
mλ0∑

j=1

1
λh

j − z

∣∣φh
j

〉〈
φh

j

∣∣,

where the first term is holomorphic with respect to z ∈ Ωh. In terms of Schwartz
kernels one gets

(
Hh

I − z
)−1Πh

I [x, y] =
(
Hh

I − z
)−1[x, y]−

mλ0∑

j=1

1
λh

j − z
φh

j (x)φh
j (y).

The maximum principle combined with the estimate (7.8) for z ∈ ∂Ωh and the
decay estimate (7.9) imply

∀z ∈ Ωh,
∣∣(Hh

I − z
)−1Πh

I [x, y]
∣∣ ≤ Õ

(
e−

d0(x,y)−SU
h

)
.
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An obvious estimate of the polar term derived again from (7.9) yields the result.
¤

Below are two results for the filled wells potential Ṽ h. The first Lemma is a
specific case of Proposition 4.3 in [BNP1]. The second one is a consequence of
Proposition 6.2 in [BNP1].

Lemma 7.3. For z ∈ Ωh the resolvent estimate

∣∣(H̃h
z − z

)−1[x, y]
∣∣ = Õ

(
e−

d0(x,y)
h

)

holds with uniform constant with respect to x, y ∈ I.

Lemma 7.4. For λ ∈ Kh = Ωh∩R, the generalized wave functions ψ̃h
−(
√

λ, .)
and ψ̃h

−(−√λ + B, .), which solve (1.7)–(1.8) with Wh ≡ 0, satisfy

ψ̃h
−(
√

λ, .) = Õ
(
e−

d0(a,x)
h

)
and ψ̃h

−(−
√

λ + B, x) = Õ
(
e−

d0(x,b)
h

)
,

with uniform constants with respect to x ∈ [a, b].

7.2. Breit-Wigner formulas.
We provide here an accurate information on the resolvent (Hh

λ − λ)−1 =
1I(Hh − λ)−11I , for λ ∈ Kh, in terms of resonances.

The domain

Kh ×
[
− (20CU )−1e−

S̃U
h , (20CU )−1e−

S̃U
h

]

=
{

z ∈ Ωh, |Im z| ≤ (20CU )−1e−
S̃U
h

}

will be covered by Nh = Õ(eS̃U /h)-open discs with radius (10CU )−1e−S̃U /h cen-
tered on the real axis. They are labelled so that the mλ0 first ones are centered
around the Dirichlet eigenvalues λh

j

ωh
j =

{
z ∈ C,

∣∣z − λh
j

∣∣ < (10CU )−1e−
S̃U
h

}
,

and the notation ωh
j with j > mλ0 is used for all the other ones.
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O(e−
S̃U
h )
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O(e−
S̃U
h )Ωh

Proposition 7.5. For j ∈ {1, . . . , mλ0}, let zh
j be the resonance of Hh

associated with the Dirichlet eigenvalue λh
j , |zh

j − λh
j | = Õ(e−2S0/h). For any

j ∈ {1, . . . , Nh} the resolvent (Hh
z − z)−1 is decomposed in ωh

j as

(
Hh

z − z
)−1 = gh

j (z) +
1[1,mλ0 ](j)

zh
j − z

Ah
j

where gh
j (z) is a holomorphic operator-valued function of z ∈ ωh

j with the next
properties:

1. For j ∈ {1, . . . , mλ0}, the operator Ah
j is close to the Dirichlet spectral

projector |φh
j 〉〈φh

j |:

∥∥Ah
j −

∣∣φh
j

〉〈
φh

j

∣∣ ∥∥ = Õ
(
e−

S0−6S̃U
2h

)
. (7.10)

2. If χ1 and χ1/2 are two C∞
0 ((a, b)) cut-off functions such that χ% ≡ 1 on U

and ∂xχ% is supported in {x ∈ (a, b), %S0 − η ≤ d0(x,U) ≤ %S0 + η} with
% ∈ {1/2, 1} and η > 0, then there is a constant Cη > 0 and a constant
c > 0 independent of η > 0, such that the difference

Dh
j (z) = gh

j (z)−
[(

H̃h
z − z

)−1(1− χ1/2)

+ χ1(Hh
I − z)−1χ1/2 −

1[1,mλ0 ](j)

zh
j − z

Ah
j

]
(7.11)

satisfies

∀z ∈ ∂ωh
j ,

∥∥Dh
j (z)

∥∥ ≤ Cη e−
S0−6S̃U−cη

2h . (7.12)
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Proof. The proof of this result relies on two leading ideas. One is the
Laurent expansion (with the exact poles zh

j ) of the meromorphic function (Hh
z −

z)−1 which is handled like in the proof of Lemma 7.2. The other one is the
approximation of the resolvent (Hh

z − z)−1 by

Rh =
(
H̃h

z − z
)−1(1− χ1/2) + χ1

(
Hh

I − z
)−1

χ1/2, (7.13)

already considered in [BNP1, Proposition 4.3].
We focus on the case j ∈ {1, . . . , mλ0}, since the other case j > mλ0 will be

deduced easily from this one by taking Ah
j = 0. The expression (7.13) leads to

∀z ∈ ωh
j \

{
λh

j

}
, (Hh

z − z)Rh = 1− ε = 1− ε0 − ε1

with ε0 = Wh
(
H̃h

z − z
)−1(1− χ1/2)

and ε1 = −[
Ph, χ1

]
(Hh

I − z)−1χ1/2.

Lemma 7.3 and Lemma 7.2 provide the estimates

‖ε0‖ ≤ Cη e−
S0−cη

2h ,

and ‖ε1‖ ≤ Cη
e−

S0−cη−2SU
2h

r(h)
≤ Cη (10CU ) e−

S0−cη−4S̃U
2h ,

for any z ∈ ∂ωh
j with r(h) =

∣∣z − λh
j

∣∣ = (10CU )−1e−S̃U /h. Hence the assumption
S̃U < S0/4 and taking η > 0 small enough ensure the convergence of the series

(
Hh

z − z
)−1 = Rh

∞∑

k=0

εk = Rh + Rh
∞∑

k=1

εk, for z ∈ ∂ωh
j . (7.14)

We now consider the Laurent expansion of (Hh
z − z)−1 in ωh

j

(
Hh

z − z
)−1 = gh

j (z) +
1

zh
j − z

Ah
j , (7.15)

where zh
j is the resonance of Hh lying in ωh

j according to Proposition 7.1. Com-
puting the residue of (Hh

z − z)−1, equal to (7.14) with Rh given by (7.13), along
the contour ∂ωh

j provide the estimates
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∥∥Ah
j −

∣∣φh
j

〉〈
φh

j

∣∣ ∥∥ ≤ e−
S0−cη

2h + sup
z∈∂ωh

j

∥∥∥∥Rh
∞∑

k=1

εk

∥∥∥∥ ≤ C ′ηe−
S0−cη−4S̃U

2h × e
S̃U
h ,

after using

‖Rh‖ ≤ C
∥∥(H̃z − z)−1

∥∥ + C
∥∥(HI − z)−1

∥∥ = O
(
e

S̃U
h

)
.

This yields (7.10).
For the second estimate, notice the identity

Dh
j (z) = gh

j (z)−Rh +
1

zh
j − z

Ah
j = Rh

∞∑

k=1

εk

and (7.12) is deduced from

∥∥∥∥Rh
∞∑

k=1

εk

∥∥∥∥ ≤ C ′ηe−
S0−cη−6S̃U

2h for z ∈ ∂ωh
j . ¤

Remark 7.6. The estimates of the error terms could be improved by study-
ing more carefully the first terms of the series

∑∞
k=1 εk in the spirit of [HeSj1] or

[BNP1, Proposition 4.3]. It is not an essential issue here.

Below is the Breit-Wigner formula which will be used.

Proposition 7.7. Assume that the wells are isolated and take the notations
λh

j , φh
j , zh

j and ωh
j introduced before for j ∈ {1, . . . , mλ0}. In ωh

j one has the next
equality of meromorphic functions

〈
φh

j , (Hh
z − z)−1φh

j

〉
=

1 + Õ
(
e−

S0−6S̃U
2h

)

zh
j − z

+ Õ
(
e−

S0−8S̃U
2h

)
,

and the uniform estimate

∥∥gh
j (z)

∥∥ = Õ
(
e−

S0−8S̃U
2h

)
.

Proof. Let us write
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〈
φh

j , (Hh
z − z)−1φh

j

〉
=

〈
φh

j , gh
j (z)φh

j

〉
+

1
zh
j − z

〈
φh

j , Ah
j φh

j

〉
.

According to (7.10) the second term has the form

1
zh
j − z

〈
φh

j , Ah
j φh

j

〉
=

1 + Õ
(
e−

S0−6S̃U
2h

)

zh
j − z

.

The first term is holomorphic in ωh
j and it suffices to find an estimate along ∂ωh

j .
We use the decompostion (7.11)

〈
φh

j , gh
j (z)φh

j

〉
=

〈
φh

j ,
[
Dh

j (z) + (H̃h
z − z)−1(1− χ1/2)

]
φh

j

〉

+
〈
φh

j , χ1(Hh
I − z)−1(χ1/2)φh

j

〉−
1 + Õ

(
e−

S0−6S̃U
2h

)

zh
j − z

.

This leads to

〈
φh

j , gh
j (z)φh

j

〉
= Õ

(
e−

S0−6S̃U
2h

)
+

zh
j − λh

j(
zh
j − z

)(
λh

j − z
) +

Õ
(
e−

S0
2h

)
∣∣λh

j − z
∣∣ +

Õ
(
e−

S0−6S̃U
2h

)
∣∣zh

j − z
∣∣ ,

for all z ∈ ∂ωh
j and the maximum principle yields the first result.

The estimate of
∥∥gh

j (z)
∥∥ follows essentially the same lines. ¤

We end this section with a reduction of the energy interval which is thiner
than the one of Proposition 3.1.

Proposition 7.8. With the previous notations, set for any j ∈ {1, . . . , mλ0}

Kj,h = ωh
j ∩R. (7.16)

For any ϕ ∈ C 0
c ((a, b)), the limit

lim
h→0

Tr
[
g(Kh

−)ϕ(x)
]−

mλ0∑

j=1

g(
√

λ0)Tr
[
1Kj,h

(Hh)1(0,+∞)(Kh
−)ϕ(x)

]
(7.17)

is 0.
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Proof. We know from (1.16) and [BNP1] that the support of ϕ can
be assumed to be around U = {c1, . . . , cN}, for instance included in {x ∈
(a, b), d0(x,U) ≤ S0/3}. By Proposition 3.1, the first term of (7.17) can be re-
placed with

g(
√

λ0)Tr
[
1Kh

(Hh)1(0,+∞)(Kh
−)ϕ

]
.

Moreover we have for ϕ ≥ 0,

Tr
[
1Kh\∪j≤mλ0

Kj,h
(Hh)1(0,+∞)(Kh

−)ϕ
] ≤ Tr

[
ϕ1/21Kh\(∪j≤mλ0

Kj,h)(Hh)ϕ1/2
]

≤
Nh∑

j=mλ0+1

Tr
[
ϕ1/21Kj,h

(Hh)ϕ1/2
]
,

by introducing Kj,h = ωh
j ∩ R for j ∈ {mλ0 + 1, . . . , Nh} and where we recall

Nh = Õ
(
eS̃U /h

)
. Proposition 7.5 and especially relation (7.11) give the identity

ϕ1/2(Hh − λ− i0)−1ϕ1/2

= ϕ1/2
(
Hh

λ − λ
)−1

ϕ1/2

= ϕ1/2
(
H̃h

λ − λ
)−1

ϕ1/2 + ϕ1/2
(
Hh

I − λ
)−1

ϕ1/2 + ϕ1/2Dh
j (λ)ϕ1/2,

valid for all λ ∈ Kj,h with j ∈ {mλ0+1, . . . , Nh}. Indeed, our choices of supports
imply (1− χ1/2)ϕ1/2 ≡ 0 and ϕ1/2χ1 ≡ ϕ1/2χ1/2 ≡ ϕ1/2.

This leads to

1
2iπ

ϕ1/2
[
(Hh − λ− i0)−1 − (Hh − λ + i0)

]
ϕ1/2

=
1

2iπ
ϕ1/2

[(
H̃h

λ − λ
)−1 + Dh

j (λ)− h.c.
]
ϕ1/2,

where “h.c.” stands for “hermitian conjugate”. The estimate (7.12) can easily be
transformed into a trace-class estimate because of the localization in x and λ. We
use Stone’s formula for 1Kj,h

(Hh). After integration w.r.t λ ∈ Kj,h, j > mλ0 , and
after summing over j ∈ {1, . . . , mλ0}, this leads to

Nh∑

j=mλ0+1

Tr
[
ϕ1/21Kj,h

(Hh)ϕ1/2
]

= O
(
e−

c
h

)
,
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when the wells are assumed isolated. ¤

7.3. A Fermi-Golden rule.
An accurate determination of the coefficients tλ0

i in the case of isolated wells
can be done by first elucidating via a Fermi-Golden rule the contribution of positive
and negative momenta in the size of the imaginary part of a resonance zh

j =
Eh

j − iΓh
j . We keep the same notations λh

j , φh
j , zh

j and ωh
j introduced before for

j ∈ {1, . . . , mλ0}. The real and imaginary parts of the resonances zh
j are written

according to

zh
j = Eh

j − iΓh
j , for j ∈ {1, . . . ,mλ0}.

Proposition 7.9. For any j ∈ {1, . . . ,mλ0} the idendity

Γh
j (1 + o(1)) =

∣∣〈Whψ̃h
−(
√

λ, ·), φh
j

〉∣∣2

4h
√

λ
+

∣∣〈Whψ̃h
−(−√λ + B, ·), φh

j

〉∣∣2

4h
√

λ + B
(7.18)

holds for any λ ∈ ωh
j .

Proof. Let dEh(λ) denote the infinitesimal spectral projection of the whole
line Hamiltonian Hh, given by Stone’s formula:

dEh(λ) =
1

2iπ

[
(H − λ− i0)−1 − (H − λ + i0)−1

]
.

We shall compute in two different ways and for a fixed j ∈ {1, . . . ,mλ0} the
spectral measure

〈
1Iφ

h
j , dEh(λ)1Iφ

h
j

〉
of 1I(x)φj .

First Stone’s formula and Proposition 7.7 lead to

〈
1Iφ

h
j , dEh(λ)1Iφ

h
j

〉

=
1

2iπ

〈
φh

j ,
[
(Hh

λ − λ)−1 − (Hh,?
λ − λ)−1

]
φh

j

〉

=
1

2iπ

(
1 + Õ

(
e−

S0−6S̃U
2h

))[
1

zh
j − λ

− 1

zh
j − λ

]
+ Õ

(
e−

S0−8S̃U
h

)

=
Γh

j

(
1 + Õ

(
e−

S0−6S̃U
2h

))

π
(∣∣λ− Eh

j

∣∣2 +
∣∣Γh

j

∣∣2) + Õ
(
e−

S0−8S̃U
h

)
, (7.19)

for all λ ∈ Kj,h.



94 V. Bonnaillie-Noël, F. Nier and Y. Patel

The second method uses the generalized wave functions:

〈
1Iφ

h
j , dEh(λ)1Iφ

h
j

〉
=

∣∣〈ψh
−(
√

λ, ·), φh
j

〉∣∣2

4πh
√

λ
+

∣∣〈ψh
−(−√λ + B, ·), φh

j

〉∣∣2

4πh
√

λ + B
.

The relation

ψh
−(k, ·) = ψ̃h

−(k, ·)− (
Hh

λk
− λk

)−1
Wψ̃h

−(k, ·), (7.20)

Proposition 7.5, the exponential decay of φh
j and ψ̃h

−(k, ·) in Lemma 7.4 and Propo-
sition 7.7 lead to

〈
φh

j , ψh
−(k, ·)〉 =

〈
φh

j , ψ̃h
−(k, ·)〉 +

〈
φh

j , gh
j (λk)Whψ̃h

−(k, ·)〉

+
1

zh
j − λ

〈
φh

j , Ah
j Whψ̃h

−(k, ·)〉

= Õ
(
e−

S0
h

)
+ Õ

(
e−

S0
h

)
Õ

(
e−

S0−8S̃U
2h

)

+
1

zh
j − λ

〈
φh

j , Whψ̃h
−(k, ·)〉 +

Õ
(
e−

S0
h

)
Õ

(
e−

S0−6S̃U
2h

)
∣∣zh

j − λ
∣∣ . (7.21)

Owing to Proposition 4.1 and the conditions S̃U > SU and S0 > 8S̃U , the last
term is estimated by

Õ
(
e−

S0
h

)
Õ

(
e−

S0−6S̃U
2h

)

Γh
j

= o

(
h1/2

√
Γh

j

)
.

The equality of the two expressions (7.19) and (7.21) for λ = Eh
j , and again the

assumption S0 > 8S̃U imply

1
Γh

j

(1 + o(1)) =
1

4h
√

Eh
j

∣∣∣∣
〈
φh

j , Whψ̃h
−(
√

Eh
j , ·)〉

Γh
j

+ o

(
h1/2

√
Γh

j

)∣∣∣∣
2

+
1

4h
√

Eh
j + B

∣∣∣∣
〈
φh

j , Whψ̃h
−(−

√
Eh

j + B, ·)〉

Γh
j

+ o

(
h1/2

√
Γh

j

)∣∣∣∣
2

.

This yields the result for λ = Eh
j . For λ ∈ ωh

j , one writes the equation for
u = ψ̃h

−(
√

λ, ·)− ψ̃h
−(
√

Eh
j , ·) in the form
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



(
P̃h − Eh

j

)
u = Õ

(
e−

S̃U
h

)
ψ̃h
−(
√

λ, ·),

h∂xu(a) + i
√

Eh
j u(a) = Õ

(
e−

S̃U
h

)
+ Õ

(
e−

S̃U
h

)
ψ̃h
−(
√

λ, a),

h∂xu(b)− i
√

Eh
j + Bu(b) = Õ

(
e−

S̃U
h

)
ψ̃h
−(
√

λ, b).

With the Agmon identity (A.1) with ϕ = (1− η)d0(a, x), η > 0, one gets

∣∣ψ̃h
−

(√
Eh

j , x
)− ψ̃h

−(
√

λ, x)
∣∣ = Õ

(
e−

d0(x,a)+S̃U
h

)
. (7.22)

Note that the right-hand side is o(
√

hΓh
j ) when x ∈ supp Wh owing to Proposition

4.1 and the assumption S̃U > SU . A similar estimate can be obtained for the
momentum −

√
Eh

j + λ with the distance d0(x, b) instead of d0(a, x). Hence the
result for λ = Eh

j implies

Γh
j (1 + o(1)) =

1 + o(1)
4h
√

λ

∣∣〈φh
j , Whψ̃h

−(
√

λ, ·)〉 + o
(√

hΓh
j

)∣∣2

+
1 + o(1)

4h
√

λ + B

∣∣〈φh
j , Whψ̃h

−(−
√

λ + B, ·)〉 + o
(√

hΓh
j

)∣∣2,

for all λ ∈ ωh
j , which yields the result. ¤

7.4. Values of the coefficients tλ0
i .

In this paragraph all the previous intermediate results are gathered in order to
check that the coeffcients tλ0

i are the limits of the quantities (2.5), when the wells
are isolated. We shall prove Theorem 2.5 and the second statement of Theorem
2.4 about isolated wells will come as a corollary.

Proof of Theorem 2.5. The formula (1.16) and the reduction of the en-
ergy interval stated in Proposition 7.8 imply that the coefficient tλi (= tλ0

i here) is
the limit of the quantity

mλ0∑

j=1

∫

k>0

∫ ci+ε

ci−ε

1Kj,h
(λk)

∣∣ψh
−(k, x)

∣∣2 dx
dk

2πh

=
mλ0∑

j=1

1
2πh

∥∥1Kj,h
(λk)ψh

−(k, x)
∥∥2

L2(R+×[ci−ε,ci+ε])
,
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for any fixed ε > 0.
We use again the relation (7.20) between ψh

− and ψ̃h
− and the decomposition

of (Hλk
− λk)−1 stated in Proposition 7.5 in order to write when λk ∈ Kj,h

ψh
−(k, ·) = ψ̃h

−(k, ·)− gh
j (λk)Whψ̃h

−(k, ·)

− 1
zh
j − λk

〈
φh

j , Whψ̃h
−(k, ·)〉φh

j −
Ah

j −
∣∣φh

j

〉〈
φh

j

∣∣
zh
j − λk

Whψ̃h
−(k, ·).

By referring to the decay of ψ̃h
− stated in Lemma 7.4 and the estimates for gh

j (λ)
and Ah

j − |φh
j 〉〈φh

j | derived from Propositions 7.5 and 7.7, this leads to

∥∥∥∥1Kj,h
(λk)

[
ψh
− +

1
zh
j − λk

〈
φh

j , Whψ̃h
−(k, ·)〉φh

j

]∥∥∥∥
L2(R+×[ci−ε,ci+ε])

= Õ
(
e−

d0(a,ci−ε)
h

)
+ Õ

(
e−

S0
h

)
Õ

(
e−

S0−8S̃U
2h

)
+

Õ
(
e−

S0
h

)
Õ

(
e−

S0−6S̃U
2h

)
√

Γh
j

.

The assumptions S̃U > SU and S0−8S̃U > 0 combined with the lower bound (4.3)
for Γh

j leads to

h−1/2

∥∥∥∥1Kj,h
(λk)

[
ψh
− +

1
zh
j − λk

〈
φh

j , Whψ̃h
−(k, ·)〉φh

j

]∥∥∥∥
L2(R+×[ci−ε,ci+ε])

= o(1).

The inequality (7.22) provides a comparison between ψ̃h
−(k, ·) and ψ̃h

−(
√

λh
j , ·)

which leads to

h−1/2

∥∥∥∥1Kj,h
(λk)

[
ψh
− +

1
zh
j − λk

〈
φh

j , Whψ̃h
−

(√
λh

j , ·)〉φh
j

]∥∥∥∥
L2(R+×[ci−ε,ci+ε])

= o(1) +
Õ

(
e−

S0
h

)
Õ

(
e−

S̃U
h

)
√

hΓh
j

= o(1).

Computing the integral
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∫

R+

∫ ci+ε

ci−ε

1Kj,h
(λk)

∣∣〈φh
j , Whψ̃h

−
(√

λh
j , ·)〉

∣∣2
∣∣λk − Eh

j

∣∣2 +
∣∣Γh

j

∣∣2
∣∣φh

j (x)
∣∣2 dx

dk

2πh

=

∣∣〈φh
j , Whψ̃h

−
(√

λh
j , ·)〉

∣∣2

4h
√

λh
j Γh

j

( ∫ ci+ε

ci−ε

∣∣φh
j (x)

∣∣2 dx

)
(1 + o(1)),

and the Fermi golden rule (7.18) with λ = λh
j yields the result. ¤

Proof of Theorem 2.4 for isolated wells. Assume d0(a, ck) >

d0(ck, b) for all k ∈ {1, . . . , mλ0 = N}. The coefficients tλ0
i are obtained as the

limits as h → 0 of

mλ0∑

j=1

∣∣〈φh
j , Whψ̃h

−
(√

λh
j , ·)〉∣∣2

4h
√

λh
j Γh

j

∫ ci+ε

ci−ε

∣∣φh
j (x)

∣∣2 dx.

But the assumption d0(a, ck) > d0(ck, b) for all k, implies

∣∣〈φh
j , Whψ̃h

−
(√

λh
j , ·)〉∣∣2 = Õ

(
e−

SI
h

)
,

while the lower bound (4.3) implies

1
hΓh

j

= Õ
(
e

2S0+2SU
h

)
.

The condition S0 + SU < SI/2 yields tλ0
i = 0, for all i ∈ {1, . . . ,mλ0}. ¤

8. Explicit asymptotic values.

In this section we derive from an accurate asymptotic analysis of the quantities
(2.5) some explicit rules for the coefficients tλi when the wells are not gathered like
in Theorem 2.4. In the two cases N = 1 or N = 2 with isolated wells, this provides
a complete description of all the possible limits dn0

∣∣
(a,b)

, which was summarized
in the end of Section 2.

We first need a simple description of the Dirichlet eigenfunctions φh
j .

Lemma 8.1. Assume N = mλ0 = 1 or N = mλ0 = 2. For i ∈ {1, 2}, let ui

denote a normalized eigenvector (u2 = 0 when N = 1) of −∆−wi associated with
the eigenvalue λ0 + Ṽ 0(ci). Then there exists αh ∈ R (αh = 0 if N = 1) such that
the Dirichlet eigenvectors φh

j satisfy



98 V. Bonnaillie-Noël, F. Nier and Y. Patel

(
φh

1

φh
2

)
=

( cosαh − sin αh

sin αh cos αh

)(
u1

( ·−c1
h

)

u2

( ·−c2
h

)
)

+ oL2(I)(1).

Proof. We know from Theorem 3.6 in [BNP1] that the eigenvector φh
j

can be written

φh
j =

∑

i

ph
jiψ

h
i + o(1),

where (ph
ij)1≤i,j≤mλ0

is a unitary matrix and where every ψh
i is a normalized

eigenvector for the one well problem around ci. By making use of the uniform
W 1,∞ estimate of Ṽ h in a small interval [ci − ε, ci + ε] with ε > 0 independent of
h > 0 but arbitrarily small like in Theorem 3.4 of [BNP1], the exponential decay
of Dirichlet eigenvectors in the classically forbidden region allows to replace ψh

i

with ui with an arbitrarily small error. ¤

Another ingredient of this asymptotic analysis is an accurate description of the
generalized eigenfunctions of H̃h in the interval I = [a, b]. Introduce the Agmon
distance associated with the potential Ṽ h at the energy λk:

d̃h(x, y) = d
(
x, y; Ṽ h, λk

)
=

∣∣∣∣
∫ y

x

√
Ṽ h(t)− λk dt

∣∣∣∣. (8.1)

The comparison with the first order WKB approximation has to be considered.
When Ṽ h is regular it is a classical result which has to be adapted in our case.
The first order approximation ψh

app(k, x) is defined according to

Case k > 0: ψh
app(k, x) =

(
Ṽ h(x)−λk

)−1/4[
C−(k)e−d̃h(a,x)/h +C+(k)ed̃h(a,x)/h

]
where (C−(k), C+(k)) solves the system





[− (
Ṽ h(a)− λk

)1/2 + i
√

λk

]
C−(k) = 2ikei ka

h

(
Ṽ h(a)− λk

)1/4
,

[− (
Ṽ h(b)− λk

)1/2 − i
√

λk + B
]
C−(k)

+
[(

Ṽ h(b)− λk

)1/2 − i
√

λk + B
](

C+(k)e2
d̃h(a,b)

h

)
= 0,

(8.2)

Case k < 0: ψh
app(k, x) =

(
Ṽ h(x)−λk

)−1/4[
C−(k)ed̃h(x,b)/h +C+(k)e−d̃h(x,b)/h

]
where (C−(k), C+(k)) solves the system
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



[− (
Ṽ h(a)− iλk

)1/2 + i
√

λk

](
C−(k)e2

d̃h(a,b)
h

)

+
[(

Ṽ h(a)− λk

)1/2 + i
√

λk

]
C+(k) = 0,

[(
Ṽ h(b)− λk

)1/2 − i
√

λk + B
]
C+(k) = 2ikei kb

h

(
Ṽ h(b)− λk

)1/4
.

(8.3)

In our case, its rather technical proof which requires all the regularity and
convergence assumptions on Ṽ h, namely ∂2

xṼ h = µ0 in Mb(I), has been done
separately in [Ni4].

Proposition 8.2. For any k ∈ R such that λk ∈ [Λ∗,Λ∗], consider the
generalized wave function ψ̃h(k, x) restricted to the interval I and given by (1.7)–
(1.8) with Wh ≡ 0. By introducing the Agmon distance d̃h associated with the
potential Ṽ h and the energy λk according to (8.1), take the function ψh

app defined
above. Then the difference converges to 0 with the weighted estimates

max
x∈[a,b]

∣∣∣e
d̃h(a,x)

h

(
ψ̃h(k, x)− ψh

app(k, x)
)∣∣∣ h→0→ 0 for k > 0,

max
x∈[a,b]

∣∣∣e
d̃h(x,b)

h

(
ψ̃h(k, x)− ψh

app(k, x)
)∣∣∣ h→0→ 0 for k < 0.

We shall make the next simplifying assumption, which ensures that some
factors do not vanish asymptotically.

Assumption 2. Assume that the well potentials wi, i = 1 or 2, are even
and that the eigenvector ui corresponds to the first or second eigenvalue.

Proposition 8.3. Take the same notations and conventions when N = 1
as before. Let d̃h denotes the Agmon distance for the h-dependent potential Ṽ h at
the energy λk ∈ Ωh and set for i = 1 or i = 2

γi,± =
C±(λ1/2

0 )(
Ṽ 0(ci

)− λ0)1/4

∫

R

wi (y)ui(y) dy

± C±(λ1/2
0 )

(
Ṽ 0(ci)− λ0

)1/4
∫

R

y wi(y)ui(y) dy. (8.4)

Then the equality

( 〈
φh

1 , Whψ̃h
−(k, ·)〉

〈
φh

2 , Whψ̃h
−(k, ·)〉

)
=

( cosαh − sin αh

sin αh cos αh

)(
γ1,−e−

d̃h(a,c1)
h

γ2,−e−
d̃h(a,c2)

h

)
+o

(
e
−d̃h(a,c1)

h

)
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holds for k > 0, while the symmetric relation for k < 0 writes

( 〈
φh

1 , Whψ̃h
−(k, ·)〉

〈
φh

2 , Whψ̃h
−(k, ·)〉

)
=

( cos αh − sin αh

sin αh cos αh

)(
γ1,+e−

d̃h(c1,b)
h

γ2,+e−
d̃h(c2,b)

h

)
+o

(
e−

d̃h(c2,b)
h

)
.

Proof. Let us focus on the case k > 0. First the localization of the poten-
tial Wh and Proposition 8.2 imply

∥∥Whψ̃h
−(k, ·)∥∥

L2 = O
(
e−

d̃h(a,c1)
h

)
.

Hence Lemma 8.1 reduces the problem to an accurate calculation of

〈
ui

( · − ci

h

)
, Whψ̃h

−(k, ·)
〉

=
∫

R

wi(y)ui(y)ψ̃h
−(k, ci + hy) dy + o

(
e−

d̃h(a,c1)
h

)

=
∫

R

wi(y)ui(y)
C−(k)

(
Ṽ h(ci + hy)− λk

)1/4
e−

d̃h(a,c1+hy)
h dy + o

(
e−

d̃h(a,c1)
h

)

= e−
d̃h(a,c1)

h

∫

R

wi(y)ui(y)
C−(k)

(
1− (

Ṽ h(ci)− λk

)1/2
y
)

(
Ṽ h(ci + hy)− λk

)1/4
dy + o

(
e−

d̃h(a,c1)
h

)

= e−
d̃h(a,c1)

h γi,− + o
(
e−

d̃h(a,c1)
h

)
.

We used the Taylor expansion of d̃h with the known uniform regularity of Ṽ h in
W 1,∞(I). ¤

Remark 8.4. The Assumption 2 is not necessary in the previous proof but
it ensures that the coefficients γi,± do not vanish.

Proposition 8.5. Make the technical additional Assumption 2 with N =
mλ0 = 1. The asymptotic of (2.5) can lead to values tλ0

1 ∈ (0, 1) when and only
when d0(a, c1) = d0(c1, b).

Proof. When N = mλ0 = 1, the single well is isolated and Theorem 2.5
and Proposition 8.3 can be used. This leads to the value tλ0

1 as the limit of
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1

1 +
√

λ0√
λ0 + B

∣∣∣∣∣∣∣

γ1,−e−
d̃h(a,c1)

h + o
(
e−

d̃h(a,c1)
h

)

γ1,+e−
d̃h(c1,b)

h + o
(
e−

d̃h(c1,b)
h

)

∣∣∣∣∣∣∣

2

=
(

1 +
√

λ0√
λ0 + B

∣∣∣∣
γ1,−
γ1,+

e−
d̃h(a,c1)−d̃h(c1,b)

h (1 + o(1))
∣∣∣∣
2)−1

,

where d̃h is the Agmon distance at the energy λh
j . Any value in [0, 1] can be

achieved depending on the convergence of d̃h(a, c1) and d̃h(c1, b) to their asymp-
totic values d0(a, c1) and d0(c1, b). The discussion of the comparison of the asymp-
totic distances yields the result. ¤

Proposition 8.6. Take N = mλ0 = 2 and assume that the two wells are
isolated with the technical additional condition 2. Assume also |λh

2 − λh
1 | = o(h).

Then the coefficients tλ0
i , i = 1, 2 have to fulfill the rules

• tλ0
1 = 1 and tλ0

2 ∈ [0, 1] if d0(a, c1) < d0(c2, b).
• tλ0

1 ∈ [0, 1] and tλ0
2 = 0 if d0(a, c1) > d0(c2, b).

• 1 ≥ tλ0
1 ≥ tλ0

2 ≥ 0 if d0(a, c1) = d0(c2, b).

Remark 8.7. When |λh
2 − λh

1 | ≥ h2, there is no interaction between the
wells and the results for the gathered wells with mλ0 = 1 can be adapted.

Proof. According to Theorem 2.5 and Proposition 8.3 we have to study
the limits of the two quantities

τh
1 =

cos2 αh

1 +

√
λ0(1 + o(1))√

λ0 + B

˛̨
˛̨
˛̨
˛

cos αhγ1,+e−
d̃h(c1,b)

h − sin αhγ2,+e−
d̃h(c2,b)

h + o
“
e−

d̃h(c2,b)
h

”

cos αhγ1,−e−
d̃h(a,c1)

h − sin αhγ2,−e−
d̃h(a,c2)

h + o
“
e−

d̃h(a,c1)
h

”

˛̨
˛̨
˛̨
˛

2

+
sin2 αh

1 +

√
λ0(1 + o(1))√

λ0 + B

˛̨
˛̨
˛̨
˛

sin αhγ1,+e−
d̃h(c1,b)

h + cos αhγ2,+e−
d̃h(c2,b)

h + o
“
e−

d̃h(c2,b)
h

”

sin αhγ1,−e−
d̃h(a,c1)

h + cos αhγ2,−e−
d̃h(a,c2)

h + o
“
e−

d̃h(a,c1)
h

”

˛̨
˛̨
˛̨
˛

2

and



102 V. Bonnaillie-Noël, F. Nier and Y. Patel

τh
2 =

sin2 αh

1 +

√
λ0(1 + o(1))√

λ0 + B

˛̨
˛̨
˛̨
˛

cos αhγ1,+e−
d̃h(c1,b)

h − sin αhγ2,+e−
d̃h(c2,b)

h + o
“
e−

d̃h(c2,b)
h

”

cos αhγ1,−e−
d̃h(a,c1)

h − sin αhγ2,−e−
d̃h(a,c2)

h + o
“
e−

d̃h(a,c1)
h

”

˛̨
˛̨
˛̨
˛

2

+
cos2 αh

1 +

√
λ0(1 + o(1))√

λ0 + B

˛̨
˛̨
˛̨
˛

sin αhγ1,+e−
d̃h(c1,b)

h + cos αhγ2,+e−
d̃h(c2,b)

h + o
“
e−

d̃h(c2,b)
h

”

sin αhγ1,−e−
d̃h(a,c1)

h + cos αhγ2,−e−
d̃h(a,c2)

h + o
“
e−

d̃h(a,c1)
h

”

˛̨
˛̨
˛̨
˛

2

The difference between this two numbers equals

τh
1 − τh

2 = (cos2 αh − sin2 αh)




1

1 +
√

λ0(1 + o(1))√
λ0 + B

%(cos αh,− sin αh)2

− 1

1 +
√

λ0(1 + o(1))√
λ0 + B

%(sinαh, cos αh)2


 ,

where the coefficient % is given by

%(β1, β2) =

∣∣∣∣∣∣∣

β1γ1,+e−
d̃h(c1,b)

h + β2γ2,+e−
d̃h(c2,b)

h + o
(
e−

d̃h(c2,b)
h

)

β1γ1,−e−
d̃h(a,c1)

h + β2γ2,−e−
d̃h(a,c2)

h + o
(
e−

d̃h(a,c1)
h

)

∣∣∣∣∣∣∣
.

An easy computation of the main term of the numerator shows that the difference

%(sinαh, cosαh)2 − %(cosαh,− sinαh)2

is a non negative number times

[|γ1,+|2|γ2,−|2 cos4 αh − |γ2,+|2|γ1,−|2 sin4 αh
]
e−

d̃h(a,c1)+d̃h(c2,b)
h

+ o
(
e−

d̃h(a,c1)+d̃h(c2,b)
h

)
.

The expression (8.4) shows that the two products γ2,−γ1,+ and γ1,−γ2,+ are equal.
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Hence the difference τh
1 − τh

2 is always non negative, which leads to

tλ0
1 ≥ tλ0

2 . (8.5)

in all cases.
It remains to check tλ0

1 = 1 when d0(a, c1) < d0(c2, b) because the second case
is obtained via a complement argument and the third one says nothing but (8.5).
Three possibilities have to be considered: cos αh → 0 as h → 0, sin αh → 0 as
h → 0 or | sin αh|| cos αh| ≥ δ > 0.

Assume limh→0 cos αh = 0. Then one has

τh
1 = o(1) +

1 + o(1)

1 + O
(
e−2

d̃h(c2,b)−d̃h(a,c1)
h

) h→0→ 1.

The case limh→0 sin αh = 0 is the same as the previous one after replacing αh with
π
2 − αh.

Assume cos αh ≥ δ > 0. This leads to

τh
1 =

cos2 αh

1 + O
(
e−2

d̃h(c2,b)−d̃h(a,c1)
h

) +
sin2 αh

1 + O
(
e−2

d̃h(c2,b)−d̃h(a,c1)
h

) h→0→ 1. ¤

A. Agmon energy identity.

Here we just give the basic energy identity.

Lemma A.1. Let Ω := (α, β) an open interval, V ∈ L∞(ω), z ∈ C and
ϕ a Lipschitz real function on Ω. Denote by P the Schrödinger operator P :=
−h2d2/dx2 +V . Then for any u1, u2 in H2(Ω), and setting vj := eϕ/huj one has:

∫ β

α

e2 ϕ
h (P − z)u1ū2dx =

∫ β

α

hv′1hv′2dx +
∫ β

α

(V − z − ϕ′2)v1v̄2dx

+
∫ β

α

hϕ′(v′1v̄2 − v1v̄
′
2)dx

+ h2
(
e2

ϕ(α)
h u′1ū2(α)− e2

ϕ(β)
h u′1ū2(β)

)
. (A.1)

This identity is obtained after conjugation of hd/dx by eϕ/h and integration
by parts.
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B. Universal lower bound for gaps.

Lemma B.1. Let (aKS , bKS) be an interval and let V be a real valued contin-
uous on R. Let En and En−1 be the (n+1)th and nth eigenvalues of −d2/dx2 +V

and let

λ = max
E∈[En−1,En], x∈(aKS ,bKS)

|E − V (x)|1/2.

If V (x) ≥ En + α2 on R \ [aKS , bKS ] for some α > 0, then

En − En−1 ≥ π

2

[
1

2λ2
+

λ

2
√
|En|(λ2 + |En|)

]−1

e−λ(bKS−aKS).

Remark B.2. Note that the formulation of this result due to Kirsch
and Simon in [KiSi], is the reason why the quantity S̃U is formulated with a
maxτ∈[c1,cN ] . . . instead of an integral, like the Agmon distance. There is a variant
of it in [Nak] in the semiclassical limit which can be formulated exactly with the
Agmon distance. Note that here we need the universal lower bound of Kirsch-
Simon because the total potential V̂ h(x) defined in (7.3) with which it is applied,
still contains the quantum wells. The semiclassical result of [Nak] cannot be
applied directly although adapting it to this case seems realistic.
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