J. Math. Soc. Japan Vol. 35, No. 2, 1983

Some statement which implies the existence of Ramsey ultrafilters on ω

By Shizuo KAMO

(Received March 1, 1982)

1. Introduction and results.

Throughout this paper, we work in Zelmero-Fraenkel set theory with choice (ZFC). Let \mathfrak{F} be a filter on A and let f be a function from A to B. $f(\mathfrak{F})$ denotes the filter $\{y \subset B; f^{-1}y \in \mathfrak{F}\}$. \mathfrak{F} is said to be *free* if $\emptyset \notin \mathfrak{F}$ and $\bigcap \mathfrak{F} = \emptyset$. \mathfrak{F} is said to be *ample* if there exists an infinite subset A_0 of A such that, for any $x \in \mathfrak{F}$, $A_0 - x$ is finite. \mathfrak{F} is said to be *weakly ample* if, for any free ultrafilter (uf) \mathfrak{U} on ω , there exists a function g from ω to A such that $g(\mathfrak{U}) \supset \mathfrak{F}$. It is trivial that any free, ample filter is weakly ample. For any infinite cardinal κ , we denote by $AN(\kappa)$ the statement: "any free, weakly ample filter on κ is ample". It is easy to see that, whenever $\kappa \leq \lambda$, $AN(\lambda)$ implies $AN(\kappa)$. Puritz proved the following Theorem 1.

THEOREM 1 (Puritz [5]).

- (a) The continuum hypothesis (CH) implies AN(c), where c denotes 2^{ω} .
- (b) AN(ω) implies that there are P-points on ω .
- (c) $AN(2^c)$ does not hold.

He asked whether the existence of *P*-points implies $AN(\omega)$. This question is answered negatively by Theorem 5 which appears below. By Theorem 1 (a), (c), under the assumption $CH+2^{\omega_1}=\omega_2$, $AN(\kappa)$ holds if and only if $\kappa=\omega$ or $\kappa=\omega_1$. Let P be the statement: "any free, κ -generated filter on ω is ample, for all $\kappa < c$ ". Then, the proof of Theorem 1 (a) (in [5; p. 222]) yields a proof of that P implies AN(c). Since Martin's Axiom (MA) implies P (cf. [4; Theorem 5]), it holds that MA implies AN(c). By this, Theorem 1 (b) and a result of Shelah that the existence of *P*-points is unprovable (in ZFC), the negation of CH implies neither AN(c) nor $\neg AN(c)$.

We shall consider what cardinals κ satisfy AN(κ) in the cases where CH $+2^{\omega_1}=\omega_2$ fails. Our results are the following Theorems which are proved in Sections $3\sim 6$.

This research was partially supported by Grant-in-Aids for Scientific Research (No. 56740101 and No. 56340009).

S. Kamo

THEOREM 2.

(a) $AN(\omega)$ implies AN(c).

(b) AN(ω) implies that there are c⁺ Ramsey ufs on ω .

THEOREM 3. Let κ be an infinite cardinal such that $2^{c} \leq \kappa^{\omega}$. Then, $AN(\kappa)$ does not hold.

THEOREM 5. The existence of c^+ Ramsey ufs on ω does not imply AN(ω). THEOREM 6.

(a) $CH+2^{\omega_1}=\omega_3$ does not imply $AN(\omega_2)$.

(b) CH+2 $^{\omega_1}=\omega_3$ does not imply $\neg AN(\omega_2)$.

2. Notations and definitions.

We adopt the notions and conventions of current set theory. In particular, an ordinal is the set of its predecessors and cardinals are initial ordinals. κ and λ are used to denote cardinals and other lower case Greek letters are used to denote ordinals. For any cardinals κ and λ , κ^{λ} is the cardinality of the set of all functions from λ to κ . ω is the first infinite cardinal and ω_{α} is the α -th infinite cardinal. For any set X, |X| denotes the cardinality of X, P(X) denotes the power set of X and $P_{\omega}(X)$ denotes the set $\{x \subset X; |x| = \omega\}$. $A \subset P_{\omega}(X)$ is said to be almost disjoint (mod. finite) if, for any distinct a, b in A, $a \cap b$ is finite. A is said to be a maximal almost disjoint subset of $P_{\omega}(X)$ if A is almost disjoint and, for any $B \subset P_{\omega}(X)$, whenever A is a proper subset of B, B is not almost disjoint. S is said to be a *partition* of X if $\bigcup S = X$ and, for any distinct s, t in S, $s \cap t = \emptyset$. For any function f and for any set a, $f^{-1}(a)$ (also $f^{-1}(a)$) denotes the set $\{x \in \text{dom}(f); f(x) \in a\}$. Let \mathfrak{F} be a filter on X and T a subset of P(X). \mathfrak{F} is said to be free if $\emptyset \in \mathfrak{F}$ and $\bigcap \mathfrak{F} = \emptyset$. T is a generator of \mathfrak{F} if \mathfrak{F} is the smallest filter on X which includes T. \mathfrak{F} is κ -generated if there exists a generator T of \mathfrak{F} such that $|T| \leq \kappa$. For any function f from X to Y, $f(\mathfrak{F})$ denotes the filter $\{y \subset Y; f^{-1}y \in \mathfrak{F}\}$ on Y. Let \mathfrak{U} be a free uf on ω . \mathfrak{U} is said to be a *Ramsey* uf (resp. a *P-point*) if, for any partition $\langle x_n | n < \omega \rangle$ of ω , whenever $x_n \in \mathfrak{U}$ for all $n < \omega$, there exists some $y \in \mathfrak{U}$ such that

$$|y \cap x_n| \leq 1$$
 (resp. $|y \cap x_n| < \omega$) for all $n < \omega$.

3. Proofs of Theorems 2 and 3.

LEMMA 1. There exists a free, not ample filter \mathfrak{F} on ω which satisfies the following (3.1).

(3.1) For any free uf \mathfrak{U} on ω , (a) and (b) are equivalent.

- (a) \mathfrak{U} is Ramsey.
- (b) $f(\mathfrak{U}) \not\supset \mathfrak{F}$, for all $f: \omega \rightarrow \omega$.

332

PROOF. Since there is a bijection from ω to $\omega \times \omega$, it suffices to show that there exists a free, not ample filter \mathfrak{F} on $\omega \times \omega$ which satisfies the following (3.2).

(3.2) For any free uf \mathfrak{l} on ω , (a) and (b)' are equivalent.

- (a) \mathfrak{l} is Ramsey.
- (b)' $g(\mathfrak{U}) \not\supset \mathfrak{F}$, for all $g: \omega \rightarrow \omega \times \omega$.

For any function f on ω , let a(f) be the set $\{(m, n) \in \omega \times \omega; f(m) \neq n\}$. For any $k < \omega$, let b(k) be the set $(\omega - k) \times \omega$ (= $\{(m, n) \in \omega \times \omega; k \le m\}$). Let \mathfrak{F} be the filter on $\omega \times \omega$ which is generated by $\{a(f); f \text{ is a function on } \omega\} \cup \{b(k); k < \omega\}$. It is easy to see that \mathfrak{F} is free and not ample. To show (3.2), let \mathfrak{U} be an arbitrary free uf on ω .

(a) \Rightarrow (b)'. Suppose that \mathfrak{l} is Ramsey. Let g be any function from ω to $\omega \times \omega$. For any $k < \omega$, set $x_k = g^{-1}(\{k\} \times \omega)$.

Case 1. $x_k \in \mathfrak{U}$, for some $k < \omega$.

Since $\{k\} \times \omega$ and b(k+1) are disjoint, we have that

$$b(k+1) \oplus g(\mathfrak{U})$$
.

Case 2. $x_k \in \mathfrak{U}$, for all $k < \omega$.

Since $\langle x_k | k < \omega \rangle$ be a partition of ω and \mathfrak{l} is Ramsey, there exists some $y \in \mathfrak{l}$ such that

$$|y \cap x_k| \leq 1$$
, for all $k < \omega$.

Since, for any $k < \omega$, $g'' y \cap (\{k\} \times \omega) = g''(x_k \cap y)$, g'' y is a (graph of) partial function on ω . So, we can choose a function f on ω such that

$$g'' y \subset \{(m, n) \in \omega \times \omega; f(m) = n\}$$
.

Since $a(f) \subset \omega \times \omega - g''y$, it holds that $\omega \times \omega - g''y \subset \mathfrak{F}$. So, $\omega \times \omega - g''y \in \mathfrak{F} - g(\mathfrak{U})$.

(b)' \Rightarrow (a). Suppose that \mathfrak{l} satisfies (b)'. Let *h* be any function on ω such that, for any $n < \omega$, $h^{-1}\{n\} \in \mathfrak{l}$. We need to show that *h* is one to one on some set in \mathfrak{l} . Define the function *g* from ω to $\omega \times \omega$ by

$$g(n) = (h(n), n)$$
 for all $n < \omega$.

Since $g(\mathfrak{U}) \not\supset \mathfrak{F}$, there are $k < \omega$ and functions f_0, \dots, f_{m-1} on ω such that

$$a(f_0) \cap \cdots \cap a(f_{m-1}) \cap b(k) \oplus g(\mathfrak{U}).$$

Since $h^{-1}\{n\} \in \mathfrak{U}$ for all $n < \omega$, it holds that $b(k) \in g(\mathfrak{U})$. From this, since $g(\mathfrak{U})$ is an uf on $\omega \times \omega$, there exists some i < m such that

$$\omega \times \omega - a(f_i) \in g(\mathfrak{U})$$
.

Set $y=g^{-1}(\omega \times \omega - a(f_i)) \in \mathbb{U}$. Since $\omega \times \omega - a(f_i)$ is a graph of function, h is one to one on y. \bot

LEMMA 2. Let κ be an infinite cardinal. Then, there exists a subset A of $P_{\omega}(\kappa)$ which satisfies

(i) $|A| = \kappa^{\omega}$,

(ii) A is almost disjoint (mod. finite).

PROOF. Set $X = \{x \subset \omega \times \kappa; x \text{ is finite}\}$. Since $|X| = \kappa$, it suffices to construct a subset A of $P_{\omega}(X)$ which satisfies (i) and (ii). For any function f from ω to κ , let $a_f = \{f \upharpoonright n; n < \omega\}$. Then, for any distinct functions $f, g: \omega \to \kappa, a_f \cap a_g$ is finite. So, $A = \{a_f; f \text{ is a function from } \omega \text{ to } \kappa\}$ is as required. \bot

LEMMA 3 Let κ be an infinite cardinal. Then, the following (a) and (b) are equivalent.

(a) $\neg AN(\kappa)$.

(b) There exists a partition $\langle X_{\alpha} | \alpha < \kappa^{\omega} \rangle$ of the set of all Ramsey ufs on ω such that, for any $\alpha < \kappa^{\omega}$,

$$X_{\alpha} = \emptyset$$
 or $\bigcap X_{\alpha}$ is not ample.

PROOF. (a) \Rightarrow (b). Suppose that $\neg AN(\kappa)$. Let \mathfrak{F} be a free, weakly ample, not ample filter on κ . Since \mathfrak{F} is weakly ample, for any free uf \mathfrak{U} on ω , there exists a function f from ω to κ such that $f(\mathfrak{U})\supset\mathfrak{F}$. Moreover, since \mathfrak{F} is free, if \mathfrak{U} is Ramsey, then f can be chosen to be one to one. So, for each Ramsey uf \mathfrak{U} on ω , let $f_{\mathfrak{U}}$ be a one to one function from ω to κ such that $f_{\mathfrak{U}}(\mathfrak{U})\supset\mathfrak{F}$. Let $\langle g_{\alpha} | \alpha < \kappa^{\omega} \rangle$ be an enumeration of the set of all functions from ω to κ . For each $\alpha < \kappa^{\omega}$, let

 $X_{\alpha} = \{\mathfrak{U}; \mathfrak{U} \text{ is a Ramsey uf on } \omega \& f_{\mathfrak{U}} = g_{\alpha}\}.$

Then, $\langle X_{\alpha} | \alpha < \kappa^{\omega} \rangle$ satisfies (b).

(b) \Rightarrow (a). Suppose that $\langle X_{\alpha} | \alpha < \kappa^{\omega} \rangle$ satisfies (b). Let \mathfrak{F} be a free, not ample filter on ω which satisfies the condition (3.1) in Lemma 1. Let A be a subset of $P_{\omega}(\kappa)$ which satisfies (i) and (ii) in Lemma 2. Let $\langle a_{\alpha} | \alpha < \kappa^{\omega} \rangle$ be a one to one enumeration of A. Define the κ^{ω} -sequence $\langle \mathfrak{F}_{\alpha} | \alpha < \kappa^{\omega} \rangle$ of filter on ω by

$$\mathfrak{F}_{\alpha+1} = \bigcap X_{\alpha}$$
, if $\alpha < \kappa^{\omega}$ and $X_{\alpha} \neq \emptyset$,
 $\mathfrak{F}_{\varepsilon} = \mathfrak{F}$, otherwise.

For any $\alpha < \kappa^{\omega}$, \mathfrak{F}_{α} is free and not ample. Let $\langle h_{\alpha} | \alpha < \kappa^{\omega} \rangle$ be such that, for any $\alpha < \kappa^{\omega}$, h_{α} is a bijection from ω to a_{α} . Define the κ^{ω} -sequence $\langle \mathfrak{G}_{\alpha} | \alpha < \kappa^{\omega} \rangle$ of filters on κ by

 $\mathfrak{G}_{\alpha} = h_{\alpha}(\mathfrak{F}_{\alpha})$ for each $\alpha < \kappa^{\omega}$.

For any $\alpha < \kappa^{\omega}$, since h_{α} is one to one, \mathfrak{G}_{α} is a free, not ample filter on κ . Define the filter \mathfrak{G} on κ by, for any $x \subset \kappa$,

$$x \in \mathfrak{G}$$
 if and only if, for all $\alpha < \kappa^{\omega}$, $x \cap a_{\alpha} \in \mathfrak{G}_{\alpha}$.

The following Claim completes the proof.

Claim. \bigotimes is a free, weakly ample, not ample filter on κ .

Proof of Claim. Since \mathfrak{G}_{α} is free, for all $\alpha < \kappa^{\omega}$, \mathfrak{G} is free. Since A is almost disjoint (mod. finite) and, for all $\alpha < \kappa^{\omega}$, \mathfrak{G}_{α} is not ample, \mathfrak{G} is not ample. To show that \mathfrak{G} is weakly ample, let \mathfrak{U} be any free uf on ω .

Case 1. \mathfrak{U} is Ramsey.

Let $\alpha < \kappa^{\omega}$ be such that $\mathfrak{U} \in X_{\alpha}$. Then, it holds that $\mathfrak{U} \supset \cap X_{\alpha} = \mathfrak{F}_{\alpha+1}$. So, $h_{\alpha+1}(\mathfrak{U}) \supset \mathfrak{G}_{\alpha+1} \supset \mathfrak{G}$.

Case 2. Il is not Ramsey.

Since \mathfrak{F} satisfies the condition (3.1) in Lemma 1, there exists a function g on ω such that $g(\mathfrak{U}) \supset \mathfrak{F}$. Set $f = h_0 \circ g$. Then, it holds that

$$f(\mathfrak{U}) = h_0(g(\mathfrak{U})) \supset h_0(\mathfrak{F}) = \mathfrak{G}_0 \supset \mathfrak{G}$$
. Q. E. D. of Claim. \perp

COROLLARY 1. For any infinite cardinal κ , AN(κ) holds if and only if AN(κ^{ω}) holds.

PROOF. This corollary follows immediately from Lemma 3. \perp Theorems 2 and 3 follow immediately from Lemma 3 and Corollary 1.

4. Theorem 4.

The purpose of this section is to state Theorem 4 which is used in the proof of Theorem 6 (a). First, we need some definitions.

DEFINITION. Let f and g be functions on ω_1 . f dominates g (denoted by $g \prec f$) if there is an ordinal $\alpha < \omega_1$ such that, whenever $\alpha \leq \xi < \omega_1$, $g(\xi) < f(\xi)$.

DEFINITION. Let $\langle f_{\delta} | \delta \langle \omega_2 \rangle$ be an ω_2 -sequence of functions on ω_1 . $\langle f_{\delta} | \delta \langle \omega_2 \rangle$ is said to be an ω_2 -scale on ω_1 if the following (i) and (ii) are satisfied.

(i) For any $\delta < \eta < \omega_2$, $f_{\delta} \prec f_{\eta}$.

(ii) For any function g on ω_1 , there is some $\delta < \omega_2$ such that $g \prec f_{\delta}$.

THEOREM 4. Assume that CH holds and that there exists an ω_2 -scale on ω_1 . Then, AN(ω_2) does not hold.

Throughout this section, we assume that CH holds. To show Theorem 4, we need some definitions and lemmas.

DEFINITION. For any $\alpha < \omega_1$, S_α denotes the set of all functions from α to ω_1 .

LEMMA 4. There exists an ω_1 -sequence $\langle\langle x_s | s \in S_{\alpha+1} \rangle | \alpha \langle \omega_1 \rangle$ such that, for any $\alpha \langle \omega_1$,

(i) $x_s \neq x_t$ for any distinct s, $t \in S_{\alpha+1}$,

(ii) $\{x_s; s \in S_{\alpha+1}\}$ is a maximal almost disjoint subset of $P_{\omega}(\omega)$,

(iii) for any $\xi < \alpha$, $s \in S_{\xi+1}$, $t \in S_{\alpha+1}$, if $s \subset t$, then $x_t - x_s$ is finite,

(iv) for any $y \subset \omega$, there exists some $\beta < \omega_1$ such that, for any $s \in S_{\beta+1}$, $y \cap x_s = \emptyset$ or $x_s \subset y$.

PROOF. Using CH, the lemma is proved by the induction on $\alpha < \omega_1$.

In the rest of this section, $\langle\langle x_s | s \in S_{\alpha+1} \rangle | \alpha \langle \omega_1 \rangle$ denotes some fixed ω_1 -sequence which satisfies (i) \sim (iv) in Lemma 4.

DEFINITION. For any function h on ω_1 , \mathfrak{U}_h denotes the filter on ω which is generated by $\{x_{h \upharpoonright (\alpha+1)}; \alpha < \omega_1\}$.

LEMMA 5. For any function h on ω_1 , \mathfrak{U}_h is a free uf on ω .

PROOF. This is easy.

 \bot

DEFINITION. W denotes the set of all functions on ω_1 .

DEFINITION. For any nonempty subset Y of W, $\mathfrak{F}(Y)$ denotes the filter $\bigcap \{\mathfrak{U}_h; h \in Y\}.$

It is easy to see that $\mathfrak{F}(Y)$ is free.

LEMMA 6. Let Y be a nonempty subset of W. Then, (a) and (b) are equivalent. (a) $\mathfrak{F}(Y)$ is not ample.

(b) For any $\alpha < \omega_1$, $s \in S_{\alpha+1}$, there exists $\beta < \omega_1$ and $t \in S_{\beta+1}$ such that

$$\alpha \leq \beta \quad \& \quad s \subset t \quad \& \quad \forall h \in Y \ (t \not\subset h) \,.$$

PROOF. (a) \Rightarrow (b). Suppose that $\mathfrak{F}(Y)$ is not ample. Let $\alpha < \omega_1$ and $s \in S_{\alpha+1}$ be any elements. Then, since x_s is an infinite subset of ω , there exists some $y \in \mathfrak{F}(Y)$ such that $x_s - y$ is infinite. Set $a = x_s - y$. Pick an ordinal $\beta < \omega_1$ such that $\alpha \leq \beta$ and, for any $t \in S_{\beta+1}$,

$$x_t \cap a$$
 is finite or $x_t - a$ is finite.

Since $\{x_t; t \in S_{\beta+1}\}$ is a maximal almost disjoint subset of $P_{\omega}(\omega)$, there is some $t \in S_{\beta+1}$ such that $x_t - a$ is finite. Then, since $x_t - x_s \subset x_t - a$, it holds that $s \subset t$. We claim that t is as required. Suppose not. There is a function $h \in Y$ such that $t \subset h$. Since $t = h \upharpoonright (\beta+1)$, it holds that $x_t \in \mathfrak{U}_h$. So, $\omega - x_t \in \mathfrak{U}_h$. Since $\mathfrak{F}(Y) \subset \mathfrak{U}_h$, we have that $\omega - x_t \notin \mathfrak{F}(Y)$. This contradicts the facts that $y \in \mathfrak{F}(Y)$ and that $y \subset \omega - x_t$.

(b) \Rightarrow (a). Suppose that Y satisfies (b). Let x be any infinite subset of ω . Pick $\alpha < \omega_1$ and $s \in S_{\alpha+1}$ such that $x_s - x$ is finite. By virtue of the fact that Y satisfies (b), there exist $\beta < \omega_1$ and $t \in S_{\beta+1}$ such that

$$\alpha \leq \beta \quad \& \quad s \subset t \quad \& \quad \forall h \in Y \ (t \not\subset h) \,.$$

Set $y=\omega-x_t$. Then, because x-y is infinite, the following Claim completes the proof.

Claim. $y \in \mathfrak{F}(Y)$.

Proof of Claim. By the definition of $\mathfrak{F}(Y)$, it suffices to show that, for any $h \in Y$, $y \in \mathfrak{U}_h$. Let h be any function in Y. Since $t \notin h$, it holds that $x_t \cap x_{h \land (\beta+1)}$ is finite. So,

$$x_{h \land (\beta+1)} - y$$
 is finite.

By this and the fact that $x_{h \in (\beta+1)} \in \mathfrak{U}_h$, we have that $y \in \mathfrak{U}_h$.

Q. E. D. of Claim. \perp DEFINITION. For any $\alpha < \omega_1$, \mathfrak{G}_{α} denotes the filter on ω which is generated

by $\{\omega - x_s; s \in S_{\alpha+1}\}$.

It is easy to see that \mathfrak{G}_{α} is free and not ample.

LEMMA 7. For any free uf \mathfrak{U} on ω , the following (a) or (b) holds.

(a) $\mathfrak{U}=\mathfrak{U}_h$ for some $h\in W$.

(b) $\mathfrak{G}_{\alpha} \subset \mathfrak{U}$ for some $\alpha < \omega_1$.

PROOF. Suppose that (b) fails.

Claim. For any $\alpha < \omega_1$, there exists the unique $s \in S_{\alpha+1}$ such that $x_s \in \mathfrak{U}$. Proof of Claim. Obvious. Q. E. D. of Claim.

For each $\alpha < \omega_1$, let $u(\alpha)$ be the unique $s \in S_{\alpha+1}$ such that $x_s \in \mathfrak{U}$. Then, for any $\alpha < \beta < \omega_1$, since $x_{u(\alpha)} \cap x_{u(\beta)} \in \mathfrak{U}$, it holds that $u(\alpha) \subset u(\beta)$. Set $h = \bigcup_{\alpha < \omega_1} u(\alpha)$.

Then, h is a function on ω_1 and $\mathfrak{U}_h \subset \mathfrak{U}$. But, since \mathfrak{U}_h is an uf on ω , we have that $\mathfrak{U}_h = \mathfrak{U}$.

LEMMA 8. Suppose that there exists an ω_2 -sequence $\langle Y_{\delta} | \delta < \omega_2 \rangle$ such that

- (i) $\bigcup_{\delta < \omega_2} Y_{\delta} = W$,
- (ii) for any $\delta < \omega_2$, $\mathfrak{F}(Y_{\delta})$ is not ample.

Then, $AN(\omega_2)$ does not hold.

PROOF. Let $\langle Y_{\delta} | \delta < \omega_2 \rangle$ be an ω_2 -sequence which satisfies (i) and (ii) in the Lemma. Define the filter \mathfrak{F} on $\omega \times (\omega_2 + \omega_1)$ by, for any $x \subset \omega \times (\omega_2 + \omega_1)$,

 $x \in \mathfrak{F}$ if and only if the following (a) and (b) hold.

- (a) $\{n < \omega; (n, \delta) \in x\} \in \mathfrak{F}(Y_{\delta})$ for all $\delta < \omega_2$.
- (b) $\{n < \omega; (n, \omega_2 + \alpha) \in x\} \in \mathfrak{G}_{\alpha}$ for all $\alpha < \omega_1$.

Then, using Lemma 7, it is easy to see that \Im is free, weakly ample and not ample. \bot

PROOF OF THEOREM 4. Let $\langle f_{\delta} | \delta < \omega_2 \rangle$ be an ω_2 -scale on ω_1 . For any $\delta < \omega_2$, $\alpha < \omega_1$, define the subset $Y_{\delta \alpha}$ of W by, for any $h \in W$,

 $h \in Y_{\delta \alpha}$ if and only if, whenever $\alpha \leq \xi < \omega_1, h(\xi) < f_{\hat{o}}(\xi)$.

Since $\langle f_{\delta} | \delta \langle \omega_2 \rangle$ is an ω_2 -scale on ω_1 , we have that

$$\bigcup \{Y_{\delta\alpha}; \delta < \omega_2 \& \alpha < \omega_1\} = W.$$

To complete the proof of Theorem 4, by Lemma 8, it suffices to show that, for any $\delta < \omega_2$, $\gamma < \omega_1$,

(4.1) $\mathfrak{F}(Y_{\delta \gamma})$ is not ample.

Let $\delta < \omega_2$ and $\gamma < \omega_1$ be any elements. To show (4.1), by Lemma 6, it suffices to show that

(4.2) for any $\alpha < \omega_1$, $s \in S_{\alpha+1}$, there exists $\beta < \omega_1$ and $t \in S_{\beta+1}$ such that

S. KAMO

$$\alpha \leq \beta$$
 & $s \subset t$ & $\forall h \in Y_{\delta \gamma} (t \not\subset h)$.

Let $\alpha < \omega_1$ and $s \in S_{\alpha+1}$ be any elements. Pick $\beta < \omega_1$ and $s_1 \in S_{\beta+1}$ such that

 $\alpha \leq \beta$ & $\gamma \leq \beta$ & $s \subset s_1$.

Define $t \in S_{\beta+2}$ by

$$t \upharpoonright (\beta+1) = s_1, \quad t(\beta+1) = f_{\delta}(\beta+1).$$

Then, it holds that $s \subset t$ and that, for any $h \in Y_{\delta \gamma}$,

$$h(\beta+1) < f_{\delta}(\beta+1) = t(\beta+1)$$
.

Thus, (4.2) holds.

5. Proofs of Theorems 5 and 6 (b).

In this section, we assume that the reader is familiar with forcing (see [1; Chapter 3], [3]). Throughout this section, M denotes a countable transitive model of ZFC+GCH. To prove Theorem 5 (resp. 6 (b)), it suffices to show that there is a generic extension M_1 (resp. M_2) of M which satisfies

(5.1) $M_1 \models \neg AN(\omega) + \text{"there are } (2^{\omega})^+$ Ramsey uts on ω "

(resp. (5.2) $M_2 \models CH + 2^{\omega_1} = \omega_3 + AN(\omega_2)$). We shall exhibit below such generic extensions which are both well known.

I. Model M_1 . Let M_1 be the generic extension of M adding ω_2^M Cohen generic reals. Then, M_1 satisfies (5.1). To show this, let P be the notion of forcing in M such that, in M,

 $P = \{p; p \text{ is a function } \& \operatorname{dom}(p) \text{ is a finite subset of } \omega \times \omega_2$

& rang $(p) \subset \{0, 1\}\}$.

Let G be an M-generic filter on P such that $M_1 = M[G]$. Then, the following facts seem to be folklores. We omit the proofs.

FACT 1. The following statement holds in M[G].

"Let A be a subset of $P_{\omega}(\omega)$ such that

(i) $|A| \leq \omega_1$,

(ii) $\forall x, y \in A \ (x \cap y \in A)$.

Let $\langle x_n | n < \omega \rangle$ be an ω -sequence of elements in A such that

(iii) $x_{n+1} \subset x_n$ for all $n < \omega$.

Then, there exist infinite subsets y and z of ω such that

(iv) $y \cap z = \emptyset$,

(v) both $A \cup \{y\}$ and $A \cup \{z\}$ have the finite intersection property,

(vi) $|y \cap (x_n - x_{n+1})| \leq 1$ and $|z \cap (x_n - x_{n+1})| \leq 1$, for all $n < \omega$."

FACT 2. Let x be an infinite subset of ω in M[G]. Then, there are y and

338

 \bot

z in M such that

(i) $y \cap z = \emptyset$,

(ii) $y \cap x$ and $z \cap x$ are infinite.

By Fact 1, it is easy to see that, in M[G], there exist $(2^{\omega})^+$ Ramsey ufs on ω .¹⁾ To show that AN(ω) does not hold in M[G], by Theorem 5, it suffices to show that AN(ω_2) does not hold in M[G]. From now on, we work in M[G]. Let Γ be the set of free, not ample, ω_1 -generated filters on ω . Since $2^{\omega_1}=\omega_2$, it holds that $|\Gamma| \leq \omega_2$. Let $\langle \mathfrak{G}_{\alpha} | \alpha < \omega_2 \rangle$ be an enumeration of Γ . Define the filter \mathfrak{F} on $\omega \times \omega_2$ by

 $x \in \mathfrak{F}$ if and only if $\{n < \omega; (n, \alpha) \in x\} \in \mathfrak{G}_{\alpha}$ for all $\alpha < \omega_2$.

It is easy to check that \mathfrak{F} is free and not ample. To show that \mathfrak{F} is weakly ample, let \mathfrak{U} be any free uf on ω . Set \mathfrak{V} be the filter on ω which is generated by $M \cap \mathfrak{U}$. By Fact 2, \mathfrak{V} is a free, not ample, ω_1 -generated filter. Let $\alpha < \omega_2$ be such that $\mathfrak{V} = \mathfrak{G}_{\alpha}$. Define the function h from ω to $\omega \times \omega_2$ by

$$h(n) = (n, \alpha)$$
 for all $n < \omega$.

Then, $h(\mathfrak{U}) \supset h(\mathfrak{V}) \supset \mathfrak{F}$.

II. Model M_2 . Let Q be the notion of forcing in M such that, in M,

 $Q = \{q; q \text{ is a function } \& \operatorname{dom}(q) \text{ is a countable subset of } \omega_1 \times \omega_3$

& rang $(q) \subset \{0, 1\}\}$.

Let *H* be an *M*-generic filter on *Q*. Then, $M_2 = M[H]$ satisfies (5.2). To show this, since it is clear that $M[H] \models CH + 2^{\omega_1} = \omega_3$, it suffices to show that

(5.3)
$$M[H] \models AN(\omega_2)$$
.

First, we shall state Lemma 9 which is used later. Let I be the ideal $\{x \subset \omega; |x| < \omega\}$ on ω , and B the quotient algebra $P(\omega)/I$.

LEMMA 9. Assume CH. Let C be the algebra of regular open sets in $\{q \in Q; \operatorname{dom}(q) \subset \omega_1 \times \{0\}\}$. Then, the completion of B is isomorphic to C.

PROOF. It suffices to show that there exist X and Y which satisfy

(5.4) X is a dense subset of B,

(5.5) Y is a dense subset of $\{q \in Q ; \operatorname{dom}(q) \subset \omega_1 \times \{0\}\},\$

(5.6) X and Y are order isomorphic.

Let $\langle\langle x_s | s \in S_{\alpha+1} \rangle | \alpha \langle \omega_1 \rangle$ be an ω_1 -sequence which satisfies (i) \sim (iv) in Lemma 4. Set

1) Kunen [2; p. 397] remarked that, in M[G], there are Ramsey ufs on ω .

S. KAMO

$$X = \{x_s/I; \exists \alpha < \omega_1(s \in S_{\alpha+1})\},$$
$$Y = \{q \in Q; \exists \alpha < \omega_1(\operatorname{dom}(q) = (\omega \alpha + \omega) \times \{0\})\}.$$

Then, it is easy to see that X and Y satisfy $(5.4)\sim(5.6)$.

Henceforth, ω_{α} denotes the α -th infinite cardinal in M. Since M and M[H] have the same cardinals, ω_{α} is the α -th infinite cardinal in M[H]. To show (5.3), let \mathfrak{F} be any free, not ample filter on ω_2 in M[H]. Set $\mathfrak{G} = \{\omega_2 - x; x \subset \omega_2 \& |x| \leq \omega\} \cap \mathfrak{F}$. Then, we have that, in M[H], \mathfrak{G} is a free, not ample filter with $|\mathfrak{G}| = \omega_2$. Since $|\mathfrak{G}| = \omega_2$, we can choose $\beta < \omega_3$ such that $\mathfrak{G} \in M[H] \cap \{q \in Q; \operatorname{dom}(q) \subset \omega_1 \times \beta\}$. Set

$$Q_{\beta} = \{q \in Q ; \operatorname{dom}(q) \subset \omega_{1} \times \beta\},$$

$$\overline{Q} = \{q \in Q ; \operatorname{dom}(q) \subset \omega_{1} \times \{\beta\}\},$$

$$H_{\beta} = H \cap Q_{\beta},$$

$$\overline{H} = H \cap \overline{Q},$$

$$N = M[H_{\beta}].$$

Then, it hold that \overline{H} is an N-generic filter on \overline{Q} and that M[H] is a generic extension of $N[\overline{H}]$. To show that \mathfrak{F} is not weakly ample in M[H], since Q is σ -closed, it suffices to prove the following Lemma 10.

LEMMA 10. In $N[\overline{H}]$, there exists a free uf \mathfrak{U} on ω such that, for any $f: \omega \rightarrow \omega_2$, $f(\mathfrak{U}) \not\supset \mathfrak{G}$.

PROOF. Since $N \models CH$, by Lemma 9, we identify \overline{H} with some N-generic set on $B (=P^N(\omega)/I)$. Define \mathfrak{U} by, in $N[\overline{H}]$,

$$\mathfrak{l} = \{ x \subset \omega ; x/I \in \overline{H} \}.$$

It is easy to see that \mathfrak{U} is a free uf on ω in $N[\overline{H}]$. We claim that \mathfrak{U} is as required. Let f be any function from ω to ω_2 in $N[\overline{H}]$. Then, f is in M. Define D by, in N,

$$D = \{x/I \in B; x/I > 0 \& \exists y \in \mathfrak{G}(y \cap f''x = \emptyset)\}.$$

Since \mathfrak{G} is free and not ample in N, it holds that, in N, D is a dense subset of B. So, there exists some x/I in $\overline{H} \cap D$. Then, x is in \mathfrak{U} and $y \cap f''x$ is finite, for some $y \in \mathfrak{G}$. Thus, $\omega_2 - f''x$ is in $\mathfrak{G} - f(\mathfrak{U})$.

REMARK 1. Let M' be a countable transitive model of ZFC+MA+2^{ω} = $\omega_2+2^{\omega_2}=\omega_3$, and let Q' be the notion of forcing in M' which is defined by, in M',

 $Q' = \{q; q \text{ is a function } \& \operatorname{dom}(q) \subset \omega_4 \& |q| \leq \omega_1 \& \operatorname{rang}(q) \subset \{0, 1\}\}.$

Let H' be an M'-generic filter on Q'. Then, by a similar argument in II, it

340

holds that

$$M'[H'] \models 2^{\omega} = \omega_2 + 2^{\omega_2} = \omega_4 + AN(\omega_3).$$

So, ZFC+2 $^{\omega}$ > ω_1 +2 c > c^+ + $\forall \kappa < 2^{c}$ AN(κ) is consistent.

6. Proof of Theorem 6 (a).

To show Theorem 6 (a), similarly to the proofs of Theorems 5 and 6 (b), it suffices to show that there exists a generic model N such that

(6.1) $N \models CH + 2^{\omega_1} = \omega_3 + \neg AN(\omega_2).$

By Theorem 4, if

(6.2)
$$N \models CH + 2^{\omega_1} = \omega_s + \text{"there is an } \omega_2 \text{-scale on } \omega_1$$
",

then N satisfies (6.1). Throughout this section, M denotes an arbitrary but fixed countable transitive model of $ZFC+CH+2^{\omega_1}=\omega_3$. We shall construct a generic extension N of M satisfying (6.2). Our method is so called countable support iterated forcing. We assume that the reader is familiar with this iterated forcing (see [3; Chapter 8, Section 7]). From now on, we work in M till after Corollary 2 except Lemma 11.

DEFINITION. S denotes the set of all functions from a countable ordinal to ω_1 .

DEFINITION. For any complete Boolean algebra B, define $Q = Q(B) \in V^B$ by

dom
$$(\mathbf{Q}) = \{(\check{s}, \mathbf{J})^B ; s \in S \& \mathbf{J} \in V^B \& \|\mathbf{J} \text{ is a set of functions on } \omega_1\}$$

with $|\boldsymbol{J}| \leq \omega \| = 1$ },

Q(x)=1 for all $x \in \text{dom}(Q)$.

And, we regard Q as the notion of forcing in V^B whose order is defined by, for any $(\check{s}, J)^B$, $(\check{t}, K)^B \in \text{dom}(Q)$,

$$\|(\check{s}, J)^{B} \leq (\check{t}, K)^{B}\|$$

= $\|\check{s} \supset \check{t} \& J \supset K \& \forall \alpha \in \operatorname{dom}(\check{s} - \check{t}) \forall f \in K(f(\alpha) < \check{s}(\alpha))\|.$

LEMMA 11. Suppose that, in M, B is an ω -distributive, ω_2 -saturated, complete Boolean algebra. Let G be an M-generic filter on B, $Q=i_G(Q(B)^M)$ and H an M[G]-generic filter on Q. Set $h=\bigcup\{s; \exists J((s, J)\in H)\}$. Then,

(a) in M[G],

- (i) $Q=S \times \{J; J \text{ is a set of functions on } \omega_1 \text{ with } |J| \leq \omega\},$
- (ii) Q is σ -closed and has the ω_2 -chain condition,
- (b) in M[G][H],
 - (i) h is a function on ω_1 ,
 - (ii) $f \prec h$ for any function f on ω_1 in M[G].

PROOF. This is well-known.

Define the sequence $\langle R_{\alpha} | \alpha \leq \omega_2 \rangle$ of partially ordered sets by the following induction on $\alpha (\leq \omega_2)$.

 \bot

For each $\alpha \leq \omega_2$, set

 B_{α} =the algebra of regular open sets in R_{α} .

Case 1. $\alpha = 0$.

$$R_0 = \{ \emptyset(=1) \}$$
.

Case 2. $\alpha = \gamma + 1$ for some γ . Set $Q_{\gamma} = Q(B_{\gamma}) \ (\in V^{B_{\gamma}})$. For any $p = \langle p_{\xi} | \xi < \alpha \rangle$,

 $p \in R_{\alpha}$ if and only if $p \upharpoonright \gamma \in R_{\gamma} \& p(\gamma) \in \operatorname{dom}(Q_{\gamma})$.

Define the order \leq on R_{α} by, for any $p, q \in R_{\alpha}$,

$$p \leq q$$
 if and only if $p \upharpoonright \gamma \leq q \upharpoonright \gamma \& p \upharpoonright \gamma \vdash p(\gamma) \leq q(\gamma)$.

(For any $p, q \in R_{\alpha}$, whenever $p \leq q$ and $q \leq p$, we identify p and q.) Define the function e from R_{γ} to R_{α} by, for any $p \in R_{\gamma}$,

$$e(p) \upharpoonright \gamma = p,$$

$$e(p)(\gamma) = (\check{\emptyset}, \check{\emptyset})^{B_{\gamma}}$$

And, for convention, we regard R_{γ} as the subset $e''R_{\gamma}$ of R_{α} .

Case 3. α is limit.

For any $p = \langle p_{\xi} | \xi < \alpha \rangle$,

 $p \in R_{\alpha}$ if and only if $\forall \xi < \alpha \ (p \upharpoonright \xi \in R_{\xi})$ and $\{\xi < \alpha; \| p(\xi) < 1(=(\emptyset, \emptyset)) \| > 0\}$ is at most countable.

Define the order \leq on R_{α} by, for any $p, q \in R_{\alpha}$,

 $p \leq q$ if and only if $\forall \xi < \alpha \ (p \upharpoonright \xi \leq q \upharpoonright \xi)$.

In the same way in Case 2, for each $\xi < \alpha$, we regard R_{ξ} as the subset of R_{α} .

REMARK 2. In Case 3, if $cof(\alpha) > \omega$, then R_{α} coincides with the direct limit of $\langle R_{\xi} | \xi < \alpha \rangle$.

The following Lemma 12 can be proved by the induction on $\alpha \ (\leq \omega_2)$ using standard arguments (see [3; Lemma 7.2 (p. 282) and Lemma 7.10 (p. 286)]). So, we omit the proof.

LEMMA 12. For any $\alpha \leq \omega_2$,

(a) $|R_{\alpha}| \leq \omega_3$,

- (b) R_{α} is σ -closed,
- (c) R_{α} has the ω_2 -chain condition.

Set $R = R_{\omega_2}$.

342

COROLLARY 2.

(a) $|R| = \omega_3$.

(b) R is σ -closed.

(c) R has the ω_2 -chain condition.

PROOF. This follows immediately from Lemma 12. \perp Let G be an M-generic filter on R. Set N=M[G]. For each $\alpha < \omega_2^M$, set

> $G_{\alpha} = G \cap R_{\alpha}$, $M_{\alpha} = M[G_{\alpha}]$.

Define $\langle h_{\alpha} | \alpha < \omega_2^M \rangle \in N$ by, for each $\alpha < \omega_2^M$,

$$h_{\alpha} = \bigcup \{s; \exists p \in G \exists J((\check{s}, J)^{B} \alpha = p(\alpha))\}$$
.

Then, by Corollary 2, the following $(6.3)\sim(6.6)$ hold.

- (6.3) $P^N(\omega) = P^M(\omega)$.
- (6.4) N and M have the same cardinals.
- (6.5) $2^{\omega_1} = \omega_3$ holds in N.

(6.6) For any function f on ω_1 in N, there is an $\alpha < \omega_2^M$ such that $f \in M_{\alpha}$.

Now, we shall show (6.2). Let f be any function on ω_1 in N. By (6.6), there is an $\alpha < \omega_2^M$ such that $f \in M_{\alpha}$. By Lemma 11, since $H = \{(s, i_G(J)); \exists p \in G((\check{s}, J)^{B_{\alpha}} = p(\alpha))\}$ is an $M[G_{\alpha}]$ -generic filter on $i_{G_{\alpha}}(Q_{\alpha})$, it holds that

 $M[G_{\alpha}][H] \models "f \prec h_{\alpha}"$.

Thus, in N, $\langle h_{\alpha} | \alpha < \omega_2 \rangle$ is an ω_2 -scale on ω_1 .

References

- [1] T. Jech, Set theory, Academic Press, New York, 1978.
- [2] K. Kunen, Some points in βN , Math. Proc. Cambridge Philos. Soc., 80 (1976), 385-398.
- [3] K. Kunen, Set theory, An introduction to independence proofs, North-Holland, Amsterdam, 1980.
- [4] K. Kunen and F.D. Tall, Between Martin's axiom and Souslin's hypothesis, Fund. Math., 102 (1979), 173-181.
- [5] C.W. Puritz, Skies, constellations and monads, in: Contributions to nonstandard analysis, ed. W.A. Luxemburg and A. Robinson, North-Holland, Amsterdam, 1972.

Shizuo KAMO Department of Mathematics University of Osaka Prefecture Sakai, Osaka 591 Japan