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Sobolev inequalities for Riemannian submanifolds have applications to iso-
perimetric inequalities, estimates of the first eigenvalue, and the stability of
minimal submanifolds. Here we give an improvement of constant of the Sobolev
inequality by Hoffman-Spruck-Otsuki and apply it to the stability of minimal
submanifolds.

Since the estimates of stability using the Sobolev inequality require the con-
dition that the volume of a domain $D$ is very small, our improvement is now
effective. Especially, for the case where dim $D=2$, to get stability estimate one
needs additional estimates, $i$ . $e.$ , the estimation of the first eigenvalue. So Hof-
fman’s stability theorem (Theorem 5, (ii), [1]) contains much loss. In this article
we carry the volume estimation and we get a nice improvement as Theorem D.
As a corollary we obtain

COROLLARY. Let $M$ be a minimal surface of a unit sphere $S^{n}$ and $D$ be a
compact domain of M. If

$\int_{D}(4-2K)^{2}dM<1/2c_{3}(2, \alpha_{2})^{2}$ ,

then $D$ is stable in $S^{n}$ , where $K$ denotes the Gauss curvature of $M$ and

$\alpha_{2}=(9-\sqrt{57})/2$ ,

$\gamma^{-1}=\{Vol(D)/(1-\alpha_{2})\pi\}^{1/2}$ ,

$c_{3}(2, \alpha_{2})=\gamma\cdot\sin^{-1}(1/\gamma)\cdot 2(3-\alpha_{2})/\alpha_{2}(1-\alpha_{2})^{1/2}\pi^{1/2}$ .

\S 1. Sobolev inequality for submanifolds.

First we state a Sobolev inequality for submanifolds obtained by D. Hoffman-
J. Spruck [2] and T. Otsuki [4]. Let $Marrow\overline{M}$ be an isometric immersion of a
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Riemannian manifold $M$ of dimension $m$ into a Riemannian manifold $\overline{M}$ of dimen-
sion $n$ . We use the following quantities:

$\overline{K}=sectional$ curvature in $\overline{M}$,
$H=mean$ curvature vector field of the immersion,
$R(\overline{M}, M)=injectivity$ radius of $\overline{M}$ restricted to $M$,
$w_{m}=volume$ of the unit ball in Euclidean m-space,
$b=a$ positive real number or pure imaginary one.
Sobolev inequality. Assume that $\overline{K}\leqq b^{2}$ and let $h$ be a non-negative $C^{1}$-func-

tion on $M$ with compact support $D$ and $h|\partial M=0$ . Then

(1.1) $[ \int_{D}h^{m/(m- 1)}dM]^{(m-1)/m}\leqq c(m)\int_{D}(|\nabla h|+mh|H|)dM$

holds, provided

(1.2) $b\theta(\alpha)\leqq 1$ ,

(1.3) $2\rho_{0}\leqq R(\overline{M}, M)$ ,

where

(1.4) $\theta(\alpha)=\{Vol(D)/(1-\alpha)w_{m}\}^{1/m}$ ,

(1.5) $\rho_{0}=\rho_{0}(\alpha)=b^{-1}\sin^{-1}[b\theta(\alpha)]$ for $b$ : real

(1.6) $=\theta(\alpha)$ for $b$ : imaginary

and $\alpha$ is a parameter, $0<\alpha<1$ , and

(1.7) $c(m)=c_{1}(m, \alpha)=P2^{m}[1/\alpha(1-\alpha)^{1/m}](m/(m-1))w_{m}^{-1/m}$ ,

(1.8) $c(m)=c_{2}(m, \alpha)=P\frac{(m-\alpha)2^{m- 1}-(1-\alpha)}{(m-1)\alpha(1-\alpha)^{1/m}}(m/(m-1))w_{m}^{-1/m}$ ,

where $P=\pi/2$ if $b$ is real, and $P=1$ if $b$ is imaginary. (1.7) is obtained in [2],

and (1.8) is in [4]. (1.8) for the case ( $b$ : imaginary) was not explained in [4].

But it is easy to check it.
REMARK. (i) For the case where $b$ is a real number, (1.2) and (1.4) imply

that Vol $(D)<b^{-m}w_{m}$ .
(ii) $c_{2}(m, \alpha)<c_{1}(m, \alpha)$ holds, and the optimal choice of $\alpha$ to minimize $c_{1}(m, \alpha)$

is $\alpha_{1}=m/(m+1)$ and $\alpha$ to minimize $c_{2}(m, \alpha)$ is

(1.9) $\alpha_{2}=\{(m+1)(2^{m- 1}m-1)-[(m+1)^{2}(2^{m- 1}m-1)^{2}$

$-4m(2^{m- 1}m-1)(2^{m-1}-1)]^{1/2}\}/2(2^{m-1}-1)$ .
Therefore, the effective choice of $\alpha$ is as follows: if $b\theta(\alpha_{2})\leqq 1$ , then $\alpha=\alpha_{2}$ , and
if $b\theta(\alpha_{2})>1$ then $\alpha$ is determined by $b\theta(\alpha)=1$ .

As an improvement we obtain the following.
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THEOREM A. Assume that $\overline{K}\leqq b^{2}$ ( $b$ : real) and let $h$ be a non-negative $C^{1}-$

function on $M$ such that

(i) supp $h=D$ is compact and Vol $(D)<b^{-m}w_{m}$ ,
(ii) $h|\partial M=0$ .

Let $\alpha_{2}(0<\alpha_{2}<1)$ be the real number defined by (1.9) which minimizes $[(m-\alpha)2^{m-1}$

$-(1-\alpha)]/\alpha(1-\alpha)^{1/m}$ . Then

(1.10) $[ \int_{D}h^{m/(m- 1)}dM]^{(m- 1)/m}\leqq c_{3}(m, \alpha^{*})\int_{D}(|\nabla h|+mh|H|)dM$

holds, promded
$b\theta(\alpha^{*})=1/\gamma\leqq 1$ ,

$2\rho_{0}(\alpha^{*})\leqq R(\overline{M}, M)$ ,

where $0<\alpha^{*}\leqq\alpha_{2}<1$ , and

$\theta(\alpha^{*})=\{Vol(D)/(1-\alpha^{*})w_{m}\}^{1/m}$ ,

$\rho_{0}(\alpha^{*})=b^{-1}\sin^{-1}[b\theta(\alpha^{*})]$ ,

(1.11) $c_{3}(m, \alpha^{*})=\gamma\cdot\sin^{-1}(1/\gamma)\cdot\frac{(m-\alpha^{*})2^{m-1}-(1-\alpha^{*})}{(m-1)\alpha^{*}(1-\alpha^{*})^{1/m}}(m/(m-1))w_{m}^{-1/m}$

PROOF. Almost all parts of proof for Theorem A are the same as ones for
$\alpha=\alpha^{*}$ in [2] and [4]. Only one difference is the use of

$\sin^{-1}\theta\leqq[\gamma\cdot\sin^{-1}(1/\gamma)]\theta$ $(0\leqq\theta\leqq 1/\gamma\leqq 1)$

instead of $\sin^{-1}\theta\leqq\pi\theta/2$ in the part (p. $726,$ $\uparrow 2\sim p$ . $727,$ $\downarrow 4$) of [2]. Q. E. D.
REMARK. Effective choice of $\alpha^{*}$ minimizing $c_{3}(m, \alpha^{*})$ depends on Vol $(D)$ .

So, min $c_{3}(m, \alpha^{*})=c_{3}$ ($m$ , Vol $(D)$ ). If Vol $(D)$ is sufficiently small, then min $c_{3}(m, \alpha^{*})$

$=c_{3}(m, \alpha_{2})$ .
EXAMPLE. For $b=1$ and $m=7$ the most effective case for $c_{2}(7, \alpha)$ is as fol-

lows:
$w_{7}=16\pi^{3}/105\doteqdot 4.72477$

$\alpha_{2}\doteqdot 0.88892$

Vol $(D)=w_{7}(1-\alpha_{2})\doteqdot 0.5248$

$c_{2}(7, \alpha_{2})=$ 147.3

In this case, if we put $\alpha^{*}=0.7982$, then $\gamma\doteqdot 1.089$, and

$c_{3}(7, \alpha^{*})\doteqdot 123.3$

If Vol $(D)$ becomes smaller, then $c_{3}(7, \alpha^{*})$ gets smaller.
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\S 2. Lower bounds on $\lambda_{1}$ for submanifolds.

For a domain $D$ of a Riemannian manifold $M$, let $\lambda_{1}(D)$ denote the first
eigenvalue of the Laplacian acting on functions (with Dirichlet condition).

Theorem 3 in [1] is improved as follows:
THEOREM B. Let $M$ be a submanifold of $\overline{M}$ whose curvature is bounded above

by a positive constant $b^{2}$ . Let $D$ be a compact domain of M. Assume the following:

$m|H|\leqq\kappa$ , $\kappa^{m}$ Vol $(D)\leqq c_{3}(m, \alpha^{*})^{-m}$ ,

$b\theta(\alpha^{*})=1/\gamma\leqq 1$ ,

$\rho_{0}(\alpha^{*})=b^{-1}\sin^{-1}[b\theta(\alpha^{*})]\leqq R(\overline{M}, M)/2$ ,

$\theta(\alpha^{*})=\{Vol(D)/(1-\alpha^{*})w_{m}\}^{1/m}$ .
Then

\langle 2.1) $\lambda_{1}(D)\geqq[c_{3}(m, \alpha^{*})^{-1}(Vol(D))^{-1/m}-\kappa]^{2}/4$ .

Proof is similar to one in [1] and we use the Sobolev inequality stated in
Theorem A. If $M$ is minimal in $\overline{M}$, then we put $\kappa=0$ in (2.1).

\S 3. Stability of minimal submanifolds.

The second fundamental form of a submanifold $M$ of $\overline{M}$ is denoted by $B$

and its norm is denoted by $|B|$ .
PROPOSITION 3.1 ([1], [3]). Let $\overline{M}$ be a Riemannian manifold with the fol-

lowing properties:

(i) $\overline{K}\leqq b^{2}$ ( $b$ : real),

(ii) injectivity ra&us of $\overline{M}\geqq b^{-1}\pi$ .
Let $M(m\geqq 3)$ be a minimal submanifold of $\overline{M}$ and $D$ be a compact domain of M. If

(3.1) $[ \int_{D}(|B|^{2}+mb^{2})^{m/2}dM]^{1/m}<(m-2)/2(m-1)c_{2}(m, \alpha)$

then $D$ is stable in $\overline{M}$, where $c_{2}(m, \alpha)$ is given by (1.8).

REMARK. In the paper [3] one finds a mistake in the coefficient $c(m, \alpha)$ of
the Sobolev inequality at page 12 and hence $c_{2}(m)$ at the same page should be
multiplied by $1/\sqrt{2}$ .

Contrary to the starting assumption Vol $(D)\leqq(1-\alpha)b^{-m}w_{m}$ of the Sobolev in-
equality, (3.1) requires stronger restriction on Vol $(D)$ . In fact, by $mb^{2}\leqq|B|^{2}+$

$mb^{2}$ and
$c(m)>[(m-\alpha)2^{m-1}-(1-\alpha)]m/(m-1)^{2}\alpha(1-\alpha)^{1/m}w_{m}^{1/m}$

(where $c(m)$ is one of $c_{2}(m,$ $\alpha),$ $c_{3}(m,$ $\alpha)$ ), $(3.1)$ implies
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(3.2) $b[Vol(D)/(1-\alpha)w_{m}]^{1/m}<(m-1)(m-2)\alpha/2m^{3/2}[(m-\alpha)2^{m-1}-(1-\alpha)]$ ,

and hence,

(3.3) $b[Vol(D)/w_{m}]^{1/m}<(m-1)(m-2)/2m^{3/2}[(m-1)2^{m-1}-1]$ .

For example, if $b=1$ and $m=7,$ $(3.3)$ implies

Vol $(D)<8.94\cross 10^{-19}$ .

This shows that stability theorem (Proposition 3.1 above) works only for very
small domains of a minimal submanifold $M$ of $\overline{M}$.

If we apply Theorem A to stability of a minimal submanifold, we may put
$\alpha^{*}=\alpha_{2}$ , since the right hand side of (3.2) for $\alpha=\alpha_{2}$ is smaller than 1.

THEOREM C. Let $\overline{M}$ be a Riemannian manifold with the Properiies (i) and
(ii) of PropontjOn3.1. Let $M(m\geqq 3)$ be a minimal submanifold of $\overline{M}$ and $D$ be a
compact domain of M. If

(3.4) $[ \int_{D}(|B|^{2}+mb^{2})^{m/2}dM]^{1/m}<(m-2)/2(m-1)c_{3}(m, \alpha_{2})$ ,

then $D$ is stable in $\overline{M}$, where

$c_{3}(m, \alpha_{2})=\gamma\cdot\sin^{-1}(1/\gamma)\cdot\frac{(m-\alpha_{2})2^{m-1}-(1-\alpha_{2})}{(m-1)\alpha_{2}(1-\alpha)^{1/m}}(m/(m-1))w_{m}^{-1/m}$ .

$\gamma^{-1}=b\{Vol(D)/(1-\alpha_{2})w_{m}\}^{1/m}$ .

EXAMPLE. For $b=1,$ $m=7$ and Vol $(D)=8\cross 10^{-19}$, we get

$\gamma\doteqdot 350.974$

$\gamma\cdot\sin^{-1}(1/\gamma)\doteqdot 1.000001$

Then $c_{3}(7, \alpha_{2})\doteqdot 93.779$ and $1/c_{3}(7, \alpha_{2})\doteqdot 0.01066$ . On the other hand, we get
$1/c_{2}(7, \alpha_{2})\doteqdot 0.00679$ .

THEOREM D. For $m=2$, under the same assumptjOn as in Theorem $C$, if

(3.5) $\int_{D}(|B|^{2}+2b^{2})^{2}dM<\lambda_{1}(D)/4c_{3}(2, \alpha_{2})^{2}$ ,

$or$

(3.6) $\int_{D}(|B|^{2}+2b^{2})^{2}dM<b^{2}/2c_{3}(2, \alpha_{2})^{2}$ ,

then $D$ is stable in $\overline{M}$.
Proof for (3.5) is similar to one in page 69 of [1] where some misprints

should be corrected ( $\Vert\beta\Vert_{2}arrow\Vert\beta^{2}\Vert_{2}$ , etc.).

If one assumes (3.6) one gets
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(3.7) $b^{2}$ Vol $(D)<1/8c_{3}(2, \alpha_{2})^{2}$ .

By (3.6) and (3.7), we obtain

(3.8) $\int_{D}(|B|^{2}+2b^{2})^{2}dM<1/16c_{3}(2, \alpha_{2})^{4}$ Vol $(D)$ .

By (3.8) and Theorem $B$ we get (3.5). This completes the proof.
COROLLARY. In Theorem $D$, if $\overline{M}$ is a unit sphere $S^{n}$ and if

(3.9) $\int_{D}(4-2K)^{2}dM<1/2c_{3}(2, \alpha_{2})^{2}$ ,

then $D$ is stable in $S^{n}$ , where $K$ denotes the Gauss curvature of $M$.
PROOF. By Gauss equation we get $|B|^{2}+2=4-2K$.
REMARK. D. Hoffman’s estimate is as follows: If

(3.10) $\int_{D}(|B|^{2}+2b^{2})^{2}dM<(1-\alpha)\alpha^{4}b^{2}/(16\pi)^{3}$ ,

then $D$ is stable (p. $69,$ $\downarrow 6,$ $[1]$ ).

REMARK. Let $b=1$ . Since $c_{3}(2, \alpha_{2})>2(3-\alpha_{2})/\alpha_{2}(1-\alpha_{2})^{1/2}\pi^{1/2}\doteqdot 6.752(\alpha_{2}\doteqdot$

0.725), (3.6) or (3.7) implies Vol $(D)<0.002742$ . For example, consider the case
where Vol $(D)=0.0027$ . Then

$\theta(\alpha_{2})=\{Vol(D)/(1-\alpha_{2})\pi\}^{1/2}\doteqdot 0.0559$

Since $\gamma=1/\theta(\alpha_{2})\doteqdot 17.8879$ and $\gamma\cdot\sin^{-1}(1/\gamma)\doteqdot 1.00052$, we get

$c_{3}(2, \alpha_{2})\doteqdot 6.756$

Therefore $\int_{D}(|B|^{2}+2)^{2}dM<0.01095$ implies that $D$ is stable in $S^{n}$ .
On the other hand, Hoffman type estimate (3.10) requires

Vol $(D)<0.000000129$ $(\alpha=\alpha_{1}=2/3)$ .
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