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1. Introduction.

Suppose $D_{1}$ and $D_{2}$ are two bounded domains in the complex n-space $C^{n}$ ,
$n\geqq 2$ , with $C^{\infty}$ boundaries $\partial D_{1}$ and $\partial D_{2}$ , respectively. One of the fundamental
problems in several complex variables is to determine geometric conditions which
imply that $D_{1}$ and $D_{2}$ are biholomorphically equivalent. It has been known from
Bochner-Hartogs’ theorem (Bcchner [1]) that if $\partial D_{1}$ and $\partial D_{2}$ are connected
and CR-diffeomorphic, then $D_{1}$ and $D_{2}$ are biholomorphically equivalent; and
moreover by the second author [7] that the same is the case even for those
domains in Stein manifolds.

In this paper we are concerned with the problem for domains in complete
K\"ahler manifolds of nonpositive curvature. Our result is stated as follows.

THEOREM. Let $M$ and $N$ be compleie Kahler manifolds of complex dimension
$n\geqq 2$ . Let $D_{1}\subset M$ and $D_{2}\subset N$ be relatively compact subdomains in $M$ and $N$ with
$C^{\infty}$ boundanes $\partial D_{1}$ and $\partial D_{2}$ , respectively. SuPpose that (i) $N$ has adequate nega-
tive curvature in the sense of Siu [8], (ii) the boundary $\partial D_{1}$ is pseudOcOnvex, and
(iii) there exists a $CR$-diffeomorphism $f:\partial D_{1}arrow\partial D_{2}$ which extends to a homotopy
equivalence of $D_{1}$ to $D_{2}$ . Then $D_{1}$ and $D_{2}$ are biholomorphjcally equivalent. $In$

fact, $f$ extends to a biholomorphic diffeomorphism of $D_{1}$ to $D_{2}$ .
The adequate negativity of curvature, assumed in the hypothesis (i), is in

fact stronger than requiring nonpositive sectional curvature. It is, however,
known by Siu [8] that the classical bounded symmetric domains with their in-
variant metrics and their quotient K\"ahler manifolds have adequate negative cur-
vature. It should be remarked that the curvature hypothesis (i) is assumed only
on the target manifold $N$.

Some results related to ours can be seen in Wood [9]. We wish to thank
him for making his manuscript available during the preparation of this paper.

*Partially supported by Grant-in.Aid for Scientific Research No. 574018, Ministry of
Education.
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2. Preliminaries.

First we fix the terminology in the theorem. Let $D_{1}\subset M$ and $D_{2}\subset N$ be
relatively compact subdomains as in the theorem. The boundary $\partial D_{1}$ of $D_{1}$ is
called pseudoconvex if the Levi form of $\partial D_{1}$ is positive semidefinite everywhere.
Let $J$ denote the complex structure of $M$. A $C^{\infty}$ mapping $f:\partial D_{1}arrow\partial D_{2}$ is said
to be a $CR$-maPping if the differential $df$ of $f$ restricted to the maximal com-
plex subspace $H_{p}(\partial D_{1})=T_{p}(\partial D_{1})\cap JT_{p}(\partial D_{1})$ of the real tangent space $T_{p}(\partial D_{1})$ is
complex linear at each point $p\in\partial D_{1}$ . Note that $f:\partial D_{1}arrow\partial D_{2}$ is a CR-mapping
if and only if it satisfies the tangential Cauchy-Riemann equation $\partial_{b}f=0$ , where
$\partial_{b}f=\partial f\circ\pi,$ $\pi$ being the orthogonal projection $\pi;T_{p}(\partial D_{1})arrow H_{p}(\partial D_{1})$ for each $p\in$

$\partial D_{1}$ (cf. [2]). A diffeomorphism $f:\partial D_{1}arrow\partial D_{2}$ is called a CR-diffeomorphism if $f$

and $f^{-1}$ are CR-mappings.
We need the notion of adequate negativity, defined by Siu [8], of the cur-

vature of a K\"ahler manifold. The curvature tensor of a K\"ahler n-manifold $N$

is said to be adequately negative at $q\in N$ if the following hold: Let $h:Uarrow N$

be a $C^{\infty}$ mapping of an open neighborhood $U$ of $0\in C^{n}$ to $N$ with $h(O)=q$ . Let
$(z^{i})$ denote a local complex coordinates of $C^{n}$ around $0$ and $(w^{a})$ that of $N$ around
$q$ . Then the curvature tensor $(R_{\alpha\beta\gamma\overline{\delta}})$ of $N$ has the properties that (a)

$\Sigma$
$R_{\alpha\beta\gamma\overline{\delta}}\xi_{\overline{i}f}^{\alpha\beta}\xi_{\frac{\delta}{i}\frac{\gamma\overline}{f}}\geqq 0$ for all $1\leqq i,$ $j\leqq n$ , where $\xi_{ff}^{\alpha\beta}=(\partial_{\overline{i}}h^{a})(0)\overline{(\partial_{j}h^{\beta})(0)}-(\partial_{\overline{j}}h^{\alpha})(0)$

$\alpha,$ $\beta,\gamma,\delta$

. $\overline{(\partial_{i}h^{\beta})(0)},$ $\partial_{\overline{i}}h^{a}=\partial h^{\alpha}/\partial\overline{z^{i}}$ etc., and (b) if $h$ is a local diffeomorphism around $0$ and
$\sum_{\alpha.\beta.\gamma.\delta}$

$R_{a\beta\gamma\overline{\delta}}\xi_{f_{\overline{j}}}^{a\beta}\overline{\xi\frac{\delta}{i}\frac{\gamma\overline}{j}}=0$ at $q$ , then either $\partial h=0$ or $\partial h=0$ at $0$ . If the curvature ten-

sor of $N$ is adequately negative everywhere, we simply say that $N$ has adequate
negative curvature. Note that the property (a) of adequate negative curvature
implies nonpositivity of the sectional curvature. For examples of K\"ahler mani-
folds having adequate negative curvature, see Siu [8] and Mostow-Siu [4].

3. Proof of the theorem.

Let $D_{1}\subset M$ and $D_{2}\subset N$ be as in the theorem. By hypothesis (iii), we have a
CR-diffeomorphism $f:\partial D_{1}arrow\partial D_{2}$ which extends to a homotopy equivalence
$f;D_{1}arrow D_{2}$ . We may assume $\tilde{f}$ to be $C^{\infty}$ . Since the sectional curvature of $N$

is nonpositive everywhere by hypothesis (i), it then follows from a theorem of
Hamilton [3] and Schoen $[6, 2]$ that there exists a harmonic mapping $h:D_{1}arrow N$

which is homotopic to $f$ relative to $\partial D_{1}$ , so that $h=f$ on $\partial D_{1}$ . We refer to
Eells-Lemaire [2] for general background material on harmonic mappings. Note
that $h$ is $C^{\infty}$ up to the boundary.

In consequence, we may assume that there exists a harmonic homotopy
equivalence $h:D_{1}arrow N$ such that $h|\partial D_{1}$ : $\partial D_{1}arrow\partial D_{2}$ is a CR-diffeomorphism. We
are going to prove that $h$ is a desired biholomorphic equivalence of $D_{1}$ to $D_{2}$ .
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LEMMA 1. $h$ is holomorphic on $D_{1}$ .
PROOF. Let $g$ and $\omega$ denote the K\"ahler metric of $N$ and the K\"ahler form

of $M$, respectively. Let $(z^{l})$ and $(w^{\alpha})$ denote respectively the local complex co-
ordinates of $M$ and $N$, and let $(R_{a\beta\gamma\overline{\delta}})$ denote the curvature tensor of $N$. Denote
by $\langle, \rangle$ contraction of tensors and consider the $(1, 1)$-form $\langle g,\overline{\partial}h\wedge\partial\overline{h}\rangle$ on $D_{1}$

defined in terms of local coordinates by

$\langle g, \partial h\wedge\partial\overline{h}\rangle=\sum_{\alpha.\beta}g_{a\overline{\beta}}\partial h^{a}\wedge\partial\overline{h^{\beta}}$ .

It is then known in Siu [8] that by harmonicity of $h$ we have, at all points
$p\in D_{1}$ ,

(1) $\partial\partial\langle g, \partial h\wedge\partial\overline{h}\rangle\wedge\omega^{n-2}=\sigma\omega^{n}-x\omega^{n}$ ,

where, with respect to a local complex coordinates orthonormal at $p$ ,

(2) $\sigma=\frac{1}{n(n-1)}$
$\sum_{a.\beta,1\leq i<I\leq n\delta}.R_{\alpha\beta\gamma\overline{\delta}}\xi_{\overline{i}f}^{a\beta}\overline{\xi_{f}^{\overline{\gamma}}\frac{\delta}{i}}$

,

$\xi_{f}^{\overline{\beta}}\frac{a}{l}=\partial_{f}h^{\alpha}\cdot\overline{\partial_{j}h^{\beta}}-\partial_{f}h^{\alpha}\cdot\overline{\partial_{i}h^{\beta}}$, and $\chi$ is some nonpositive function on $D_{1}$ . Note that
the adequate negativity of the curvature of $N$ implies that $\sigma\geqq 0$ . Hence, inte-
grating (1) over $D_{1}$ , it follows from Stokes’ theorem that

(3) $\int_{\partial D_{1}}\partial\langle g, \partial h\wedge\partial\overline{h}\rangle$ A $\omega^{n-2}=\int_{D_{1}}(\sigma\omega^{n}-x\omega^{n})\geqq 0$ .

We now investigate the boundary integral in (3). Take a point $p\in\partial D_{1}$

and let $\psi$ be a defining function of $\partial D_{1}$ , that is, $\psi=\psi(z^{1}, \cdots , z^{n}, \overline{z^{1}}, \cdots , ")$ is a
real-valued $C^{\infty}$ function defined in a neighborhood $U$ of $P$ such that $D_{1}\cap U=$

$\{x\in U|\psi(x)<0\}$ and $d\psi\neq 0$ on $\partial D_{1}\cap U$ . Without loss of generality we may
assume that $dz^{1},$ $d\overline{z^{1}},$

$\cdots$ , $dz^{n-1},$ $d\overline{z^{n-1},}dz^{n}-d\overline{z^{n}}$ is a basis of $T_{p}^{*}(\partial D_{1})\otimes C$ and
$(\partial_{n}\psi)(p)=1$ . Then, on $\partial D_{1}\cap U$, the tangential Cauchy-Riemann operator $\partial_{b}f$ is
expressed, in terms of local coordinates and $\psi$, as

(4) $\partial_{b}f^{\alpha}=\sum_{i=1}^{n-1}(\partial_{f}f^{\alpha}-\partial_{\hslash}f^{\alpha}\cdot(\partial_{f}\psi/\partial_{\hslash}\psi))d_{Z^{i}}^{-}$ $1\leqq\alpha\leqq n$ .

Note that, since $h|\partial D_{1}$ is a CR-mapping, it follows from (4) that on $\partial D_{1}\cap U$

$\partial_{f}h^{a}=\partial_{\hslash}h^{\alpha}\cdot(\partial_{\overline{i}}\psi/\partial_{fi}\psi)$ , $1\leqq\alpha\leqq n$ .

Direct computation then yields that at $p\in\partial D_{1}$

(5) $\partial\langle g, \partial h\wedge\partial\overline{h}\rangle\wedge\omega^{n-2}$

$=-(n-2)!( \sqrt{-1})^{n-2}\sum_{1\leq i\leqq n-1}\partial_{\overline{n}}h^{\alpha}\cdot\partial_{\overline{i}}\partial_{i}\overline{h^{a}}d\overline{z^{n}}\wedge d\overline{z^{i}}\wedge dz^{i}\bigwedge_{r\neq i}(dz^{r}\wedge d\overline{z^{r}})1\leqq a\leqq n1\leqq r\leqq n-1$
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$=-( \sum_{i=1}^{n-1}\partial_{f}\partial_{i}\psi)(\sum_{\alpha=1}^{n}|\partial_{\hslash}h^{\alpha}|^{2})\cross positive(2n-1)$-form on $\partial D_{1}$ ,

where we choose a local complex coordinates $(w^{a})$ of $N$ such that $g_{\alpha\beta}=\delta_{a\beta}$ and
$dg_{\alpha}\beta=0$ at $h(p)$ . The pseudoconvexity of $\partial D_{1}$ , assumed in the hypothesis (ii),

now implies that

(6) $n-1 \sum\partial_{\overline{i}}\partial_{i}\psi=the$ trace of the Levi form of $\partial D_{1}\geqq 0$ .
$i=1$

Since $p\in\partial D_{1}$ is arbitrary, it follows from (5) and (6) that

(7) $\int_{\partial D_{1}}\partial\langle g, \partial h\wedge\partial\overline{h}\rangle\wedge\omega^{n-2}\leqq 0$ .

Consequently, we obtain from (3) and (7) that

$\int_{D1}(\sigma\omega^{n}-x\omega^{n})=0$ ,

from which we get $\sigma\equiv 0$ and $\chi\equiv 0_{r}$ for $\sigma\geqq 0$ and $\chi\leqq 0$ on $D_{1}$ . Hence it follows
from (2) that for all $1\leqq i,$ $j\leqq n$

$\Sigma$ $R_{a\beta\gamma\overline{\delta}}\xi_{l}^{\alpha_{J^{7}}\overline{\beta}}\neg\overline{\xi\frac{\delta}{i}\frac{\gamma\overline}{j}}=0$ on $D_{1}$ .
$\alpha,$ $\beta.\gamma,\delta$

Recall that $h$ is a local diffeomorphism near $\partial D_{1}$ . Then the adequate negativity
of the curvature of $N$ implies that $\partial h=0$ or $\partial h=0$ at each point near $\partial D_{1}$ . Since
$h$ is a harmonic mapping, it then follows as in Siu [8] from the unique con-
tinuation property that $\partial h\equiv 0$ on $D_{1}$ or $\partial h\equiv 0$ on $D_{1}$ . But $\partial_{b}h=0$ on $\partial D_{1}$ and the
rank of $dh|\partial D_{1}$ is $2n-1$ , so $\partial h\equiv 0$ is impossible. Hence we conclude that $\partial h\equiv 0$

on $D_{1}$ , that is, $h$ is holomorphic on $D_{1}$ .
LEMMA 2. $h$ maps $D_{1}$ onto $D_{2}$ .
PROOF. Since $h|\partial D_{1}$ : $\partial D_{1}arrow\partial D_{2}$ is a diffeomorphism, it suffices to prove that

$h$ maps $\overline{D}_{1}=D_{1}\cup\partial D_{1}$ onto $\overline{D}_{2}=D_{2}\cup\partial D_{2}$ . First we recall that $h$ , a holomorphic
mapping of $D_{1}$ into $N$, is homotopic to $\tilde{f}$, a $C^{\infty}$ homotopy equivalence of $D_{1}$ to
$D_{2}$ , relative to $\partial D_{1}$ . Then it follows by homotopy theoretic argument that
$h(\overline{D}_{1})\supset\overline{D}_{2}$ and $h(\overline{D}_{1})$ has the same $2n$ -dimensional Lebesgue measure, induced by
the metric of $N$, as that of $\overline{D}_{2}$ . Thus we are left to show that $h(\overline{D}_{1})-\overline{D}_{2}$ ,

which is a set of measure zero, is empty.
Assume the contrary, namely assume that $h(\overline{D}_{1})-\overline{D}_{2}\neq\emptyset$ . Then, for each

$q\in h(\overline{D}_{1})-\overline{D}_{2}$ , the inverse image $h^{-1}(q)$ is contained in the set $V$ of critical points
of $h$ . Note that $V$ is a compact complex-analytic subvariety in $D_{1}$ of pure com-
plex codimension 1, for locally $V$ is dePned by det $(\partial w^{\alpha}/\partial z^{i})$ and $h$ is locally
diffeomorphic near $\partial D_{1}$ . We now take points $q\in h(\overline{D}_{1})-\overline{D}_{2}$ and $p\in V$ such that
$h(p)=q$ , and let $U$ be a neighborhood of $P$ in $D_{1}$ . Then, by continuity of $h$ ,
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choosing $U$ sufficiently small, we see that $h(U)\cap\overline{D}_{2}=\emptyset$ or $h(U)\subset h(\overline{D}_{1})-\overline{D}_{2}$ .
Hence $U\subset V$ , which is a contradiction.

LEMMA 3. $h$ is a biholomorphic maPping of $D_{1}$ to $D_{2}$ .
PROOF. Let $V$ be as in the proof of Lemma 2, that is, $V$ is the set of

points of $D_{1}$ where $h$ is not locally diffeomorphic. Note that $h$ is of degree 1
and so maps $D_{1}-h^{-1}(h(V))$ bijectively onto $h(D_{1})-h(V)$ . Hence it suffices to
prove that $V$ is empty. Assume the contrary, namely assume that $V\neq\emptyset$ . Then
$V$, a compact complex-analytic subvariety in $D_{1}$ , defines a nonzero homology
class [V] in $H_{2n-2}(D_{1} ; R)$ . Since $h:D_{1}arrow D_{2}$ is a proper holomorphic mapping,
it follows from a theorem of Remmert [5] that $h(V)$ is a compact complex-
analytic subvariety in $D_{2}$ of complex codimension at least 2. Hence [V] is
mapped by $h$ to the zero element in $H_{2n-2}(D_{2} ; R)$ , that is, $h_{*}([V])=0$ in
$H_{2n-2}(D_{2} ; R)$ , contradicting the fact that $h$ is a homotopy equivalence of $D_{1}$ to
$D_{2}$ .

The proof of the theorem is now complete.
REMARK 1. In the course of the proof, we in fact prove that the theorem

holds under the hypotheses (i), (iii) and, instead of (ii), a somewhat weaker con-
vexity condition (6) in Lemma 1: The trace of the Levi form of the boundary
$\partial D_{1}$ is positive semidefinite everywhere. At present the authors do not know
whether the hypothesis (ii) can be further weakened, but the following remark
illustrates that a kind of convexity condition is necessary.

REMARK 2. Let $M$ be a compact quotient of the ball in $C^{n}$ , with its in-
variant metric. Let $p,$ $q\in M,$ $p\neq q$ , and $B_{p}$ and $B_{q}$ be balls with sufficiently
small radius centered at $p$ and $q$ , respectively. Let $f:B_{p}arrow B_{q}$ be a biholomor-
phic diffeomorphism defined via local complex coordinates in a natural way.
Then $f|\partial B_{p}$ : $\partial B_{p}arrow\partial B_{q}$ extends to a diffeomorphism of $M-B_{p}$ to $M-B_{q}$ , but,
for some $p,$ $q$ , it can not extend to a biholomorphic one. In fact, if this were
the case for arbitrary $p,$ $q$ , then it would follow that $M$ were homogeneous.
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