Strongly regular mappings with ANR fibers and shape

By Hisao KATO

(Received May 26, 1981) (Revised Dec. 22, 1981)

1. Introduction.

In [7], we defined the fiber shape category FR_B which is shape theoretic category analogous to the fiber homotopy category and studied the category FR_B . In this paper, we study some properties of strongly regular mappings with ANR fibers in FR_B . We first prove the following.

(i) Let *E*, *B* be compacta and dim $B < \infty$. If $p: E \to B$ is a strongly regular mapping with ANR fibers, then for any map $q: Y \to B$ of compacta there is a natural bijection $\Phi: [Y, E]_{q,p} \to \langle Y, E \rangle_{q,p}$, where $[Y, E]_{q,p}$ denotes the set of fiber homotopy classes of fiber maps from *q* to *p* and $\langle Y, E \rangle_{q,p}$ the set of morphisms from *q* to *p* in *FR*_B.

In [5], S. Ferry proved that if $f: E \to B$ is a strongly regular mapping onto a complete finite dimensional space B and $f^{-1}(b)$ is an ANR for each $b \in B$, then f is a Hurewicz fibration. If $f: E \to B$ is a Hurewicz fibration between compact ANR, then f is a shape fibration. Note that there are Hurewicz fibrations between compacta which are not shape fibrations (e.g. [11, p. 641]). Next, we prove the following.

(ii) Let E, B be compacta and dim $B < \infty$. If $p: E \rightarrow B$ is a strongly regular mapping with ANR fibers, then p is a shape fibration.

As an application of (i) and (ii), we show the following.

(iii) Let E, E' and B be compacta and dim $B < \infty$. Suppose that $p: E \rightarrow B$ and $p': E' \rightarrow B$ are strongly regular mappings with ANR fibers. If a fiber map $f: E \rightarrow E'$ from p to p' induces a strong shape equivalence, then f is a fiber homotopy equivalence.

2. Definitions.

Throughout this paper, all spaces are metric spaces and maps are continuous functions. We mean by *I* the unit interval [0, 1] and by *Q* the Hilbert cube $\prod_{i=1}^{\infty} [-1, 1]$. A map $p: E \rightarrow B$ is a strongly regular mapping ([1], [5]) if it is a proper map and for each $b_0 \in B$ and $\varepsilon > 0$ there is a neighborhood *U* of b_0 in *B* such that if $b \in U$, then there exist maps $g: p^{-1}(b) \rightarrow p^{-1}(b_0)$ and $h: p^{-1}(b_0) \rightarrow p^{-1}(b)$

such that g and h move points no more than ε and gh, hg are homotopic to the identity maps on $p^{-1}(b_0)$, $p^{-1}(b)$ via homotopies which move points no more than ε , respectively.

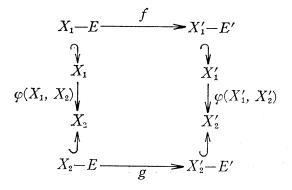
For a subset A of a space X, A is unstable in X if there is a homotopy $H: X \times I \to X$ such that H(x, 0) = x, $H(x, t) \in X - A$, for $x \in X$, $0 < t \le 1$. Let $p: E \to B$, $p': E' \to B$ be maps between compacta and let E and E' be subsets of compacta X and X', respectively. A map $f: X - E \to X' - E'$ is an F(p, p')-map [7] if for each $b \in B$ and each neighborhood W' of $p'^{-1}(b)$ in X' there is a neighborhood W of $p^{-1}(b)$ in X such that $f(W-E) \subset W' - E'$. F(p, p')-maps $f, g: X - E \to X' - E'$ are F(p, p')-homotopic $(f_{F(p,p')}g)$ if there is a homotopy $H: (X-E) \times I \to X' - E'$ such that H(x, 0) = f(x), H(x, 1) = g(x) for $x \in X - E$ and each neighborhood W' of $p'^{-1}(b)$ in X such that $H(W-E) \times I) \subset W' - E'$. Such a homotopy H is called an F(p, p')-homotopy. An F(p, p')-map $f: X - E \to X' - E'$ is an F(p, p')-homotopy equivalence if there is an F(p', p)-map $g: X' - E' \to X - E$ such that $gf_{\overline{F(p,p)}} 1_{X-E}$ and $fg_{\overline{F(p',p')}} 1_{X'-E'}$, where 1_{X-E} and $1_{X'-E'}$ denote the identity maps of X - E and X' - E', respectively.

LEMMA ([7, Lemma 2.1]). Let X and X' be compact ARs containing E as an unstable closed subset. Then there is a map $\varphi(X, X'): X \rightarrow X'$ such that

(*)
$$\varphi(X, X') | E = 1_E \text{ and } \varphi(X, X')(X - E) \subset X' - E.$$

If $\varphi_1, \varphi_2: X \to X'$ are maps satisfying condition (*), then there is a homotopy $H: X \times I \to X'$ such that $H(x, 0) = \varphi_1(x)$, $H(x, 1) = \varphi_2(x)$ for $x \in X$ and H(x, t) = x for $x \in E$, $t \in I$ and $H((X-E) \times I) \subset X' - E$. In particular, for any map $p: E \to B$ $\varphi(X, X') | X - E: X - E \to X' - E$ is an F(p, p)-map and $H|(X-E) \times I: (X-E) \times I \to X' - E$ is an F(p, p)-homotopy.

For any compactum B, we shall define the category FR_B as follows. By m(E), we mean the set of compact ARs containing E as an unstable subset. Let $X_1, X_2 \in m(E)$ and $X'_1, X'_2 \in m(E')$. An F(p, p')-map $f: X_1 - E \rightarrow X'_1 - E'$ is F(p, p')-equivalent to an F(p, p')-map $g: X_2 - E \rightarrow X'_2 - E'$ if the following diagram is commutative up to F(p, p')-homotopy,



where $\varphi(X_1, X_2)$, $\varphi(X'_1, X'_2)$ are maps satisfying condition (*) of the lemma. Objects of FR_B are all maps of compacta to B, and for maps $p: E \rightarrow B$ and $p': E' \rightarrow B$, morphisms from p to p' in FR_B are F(p, p')-equivalence classes of collections of F(p, p')-maps $f: X - E \rightarrow X' - E'$, $X \in m(E)$, $X' \in m(E')$. Clearly FR_B forms a category (see [7]).

3. Strongly regular mappings with ANR fibers in FR_B .

Let X_1 , X_2 be disjoint subsets of a space and $f_1: X_1 \to X_3$, $f_2: X_2 \to X_3$ be functions. We define a function $f_1 \cup f_2: X_1 \cup X_2 \to X_3$ by

$$f_1 \cup f_2(x) = \begin{cases} f_1(x), & x \in X_1, \\ f_2(x), & x \in X_2. \end{cases}$$

Let $p: E \to B$ and $q: Y \to B$ be maps between compacta. By $[Y, E]_{q,p}$ we mean the set of fiber homotopy classes of fiber maps from q to p, and $\langle Y, E \rangle_{q,p}$ the set of morphisms from q to p in FR_B . We shall define a natural transformation $\Phi: [Y, E]_{q, p} \to \langle Y, E \rangle_{q, p}$ as follows. Let $f: Y \to E$ be a fiber map from q to p and let $M \in m(Y)$, $N \in m(E)$. Since $N \in m(E)$, there is a homotopy $H: N \times I \rightarrow N$ such that H(x, 0) = x, $H(x, t) \in N - E$ for $x \in N$, $0 < t \leq 1$. Choose an extension $\tilde{f}': M \to N$ of f and a map $\alpha: M \to I$ such that $\alpha^{-1}(0) = Y$. Define a map $\tilde{f}: M \to N$ by $\tilde{f}(z) = H(\tilde{f}'(z), \alpha(z))$ for $z \in M$. Then \tilde{f} is an extension of f and $\tilde{f}(M-Y) \subset N-E$. Note that $\tilde{f}|M-Y: M-Y \rightarrow N-E$ is an F(q, p)-map. Similarly we see that if $f, g: Y \rightarrow E$ are fiber maps from q to p and f and g are fiber homotopic, then $\tilde{f} | M - Y \underset{F(q, p)}{\longrightarrow} \tilde{g} | M - Y$, where $\tilde{f}, \tilde{g} : M \to N$ are extensions of f, g respectively such that $\tilde{f}(M-Y) \subset N-E$, $\tilde{g}(M-Y) \subset N-E$. Hence we obtain the natural transformation $\Phi: [Y, E]_{q, p} \rightarrow \langle Y, E \rangle_{q, p}$ such that for a fiber homotopy class [f] of a fiber map $f: Y \to E$ from q to p, $\Phi([f])$ is the morphism from q to p induced by an F(q, p)-map $\tilde{f} \mid M - Y \colon M - Y \to N - E$, where $M \in m(Y)$, $N \in m(E)$ and $\tilde{f}: M \to N$ is an extension of f such that $\tilde{f}(M-Y) \subset N-E$.

Suppose that $p: E \to B$ is a strongly regular mapping with ANR fibers and dim $B < \infty$. Embed Y into the Hilbert cube Q and consider Y as the closed subset $Y \times \{1\}$ of $Q \times I$. Then $Q \times I \in m(Y)$. Also, embed E into Q as a Z-set $(Q \in m(E))$. Then we have the following lemma.

LEMMA 3.1. Let $f: Q \times I - Y \rightarrow Q - E$ be an F(q, p)-map and $f_A: A \rightarrow E$ be a map, where A is a closed subset of Y. If $f \cup f_A: (Q \times I - Y) \cup A \rightarrow Q$ is continuous, then there is a fiber map $f_Y: Y \rightarrow E$ from q to p such that $f_Y|A=f_A$ and $\tilde{f}|Q \times I - Y \xrightarrow{F(q,p)} f$, where $\tilde{f}: Q \times I \rightarrow Q$ is an extension of f_Y such that $\tilde{f}(Q \times I - Y) \cup C = Q - E$.

PROOF. First, note that if $f, g: Q \times I - Y \to Q - E$ are F(q, p)-maps such that $f|Y \times [0, 1)_{\overline{F(q, p)}} g|Y \times [0, 1)$ then $f_{\overline{F(q, p)}} g$.

Η. ΚΑΤΟ

Since the fiber $p^{-1}(b_0)$, $b_0 \in B$ is an ANR and Q is a convenient AR, there is a compact ANR neighborhood M_{b_0} of $p^{-1}(b_0)$ in Q which retracts to $p^{-1}(b_0)$. Choose a neighborhood W_{b_0} of b_0 in B such that $p^{-1}(W_{b_0}) \subset M_{b_0}$. Let $R(M_{b_0}, p^{-1}(W_{b_0}))$ be the space of retractions from M_{b_0} onto some $p^{-1}(b)$, $b \in W_{b_0}$, which has the metric

$$d(r_1, r_2) = \sup \{ d(r_1(x), r_2(x)) | x \in M_{b_0} \}, r_1, r_2 \in R(M_{b_0}, p^{-1}(W_{b_0})) .$$

By the proof of Ferry [5, Proposition 3.1], there is a closed neighborhood U_{b_0} of b_0 in W_{b_0} and a map $\varphi_{b_0}: U_{b_0} \to R(M_{b_0}, p^{-1}(W_{b_0}))$ such that $h \circ \varphi_{b_0} = 1$, where $h: R(M_{b_0}, p^{-1}(W_{b_0})) \to W_{b_0}$ is the map such that h(r) = b, where r retracts M_{b_0} onto $p^{-1}(b), b \in W_{b_0}$. Since B is compact, there is a finite closed cover $\{U_{b_1}, U_{b_2}, \cdots, U_{b_m}\}$ of B satisfying the conditions as before. Set $Y_i = q^{-1}(U_{b_i})$ for each $i=1, 2, \cdots, m$. Since f is an F(q, p)-map, there is a positive number $\varepsilon_1 < 1$ such that $f(Y_1 \times [\varepsilon_1, 1)) \subset M_{b_1} - E$. Choose a map $\alpha_1: Y \to [\varepsilon_1, 1]$ such that $\alpha^{-1}(1) = A$. Define a map $f_{A \cup Y_1}: A \cup Y_1 \to E$ by

(1)
$$f_{A\cup Y_{1}}(y) = \begin{cases} f_{A}(y), & y \in A, \\ \varphi_{b_{1}}(q(y))(f \cup f_{A}(y, \alpha(y))), & y \in Y_{1}. \end{cases}$$

Then $f_{A \cup Y_1}$ is well-defined, because for $y \in A \cap Y_1$, $\varphi_{b_1}(q(y))(f \cup f_A(y, \alpha(y))) = \varphi_{b_1}(q(y))(f \cup f_A(y, 1)) = \varphi_{b_1}(q(y))(f_A(y)) = f_A(y)$. Also, $p \circ f_{A \cup Y_1} = q | A \cup Y_1$. Choose a map $\beta \colon Y \times I \times I \to I$ such that $\beta^{-1}(0) = Y \times \{1\} \times I$. Since E is a Z-set in Q, there is a homotopy $K \colon Q \times I \to Q$ such that K(x, 0) = x, $K(x, t) \in Q - E$ for $x \in Q$, $0 < t \leq 1$. Define a homotopy $H_1 \colon (Y_1 \times [0, 1) \cup (A \cap Y_1)) \times I \to Q$ by

(2)
$$H_1(y, t, s) = K(\varphi_{b_1}(q(y))(f \cup f_A(y, (1-s) \cdot \alpha(y) + s \cdot t)), \beta(y, t, s)),$$

for $(y, t, s) \in (Y_1 \times [0, 1) \cup (A \cap Y_1)) \times I.$

Then

$$H_{1}(y, t, 0) = K(\varphi_{b_{1}}(q(y))(f \cup f_{A}(y, \alpha(y))), \beta(y, t, 0)),$$

$$H_{1}(y, t, 1) = K(\varphi_{b_{1}}(q(y))(f \cup f_{A}(y, t)), \beta(y, t, 1)),$$

for $(y, t) \in Y_1 \times [0, 1) \cup (A \cap Y_1)$ and $H_1(y, 1, s) = f_A(y)$, for $(y, 1) \in A \cap Y_1$, $s \in I$. Note that $H_1 | Y_1 \times [0, 1) \times \{0\} \cup (f_{A \cup Y_1} | Y_1)$ is continuous. Choose a map η : $Y \times I \times I \to I$ such that $\eta^{-1}(0) = Y \times I \times (\{0\} \cup \{1\}) \cup Y \times \{1\} \times I$. Define a homotopy $G_1: (Y_1 \times [0, 1) \cup (A \cap Y_1)) \times I \to Q$ by

(3)
$$G_{1}(y, t, s) = K((1-s) \cdot (K(\varphi_{b_{1}}(q(y))(f \cup f_{A}(y, t)), \beta(y, t, 1)) + s(f \cup f_{A}(y, t)), \eta(y, t, s)),$$

for
$$(y, t, s) \in (Y_1 \times [0, 1) \cup (A \cup Y_1)) \times I$$
.

Then $G_1(y, t, 0) = H_1(y, t, 1), G_1(y, t, 1) = f \cup f_A(y, t), \text{ for } (y, t) \in Y_1 \times [0, 1] \cup (A \cap Y_1)$

and $G_1(y, 1, s) = f_A(y)$, for $(y, 1) \in A \cap Y_1$, $s \in I$. It is easy to check that $H_1|$ $Y_1 \times [0, 1) \times I : Y_1 \times [0, 1) \times I \rightarrow Q - E$ and $G_1|Y_1 \times [0, 1) \times I : Y_1 \times [0, 1) \times I \rightarrow Q - E$ are $F(q|Y_1, p)$ -homotopies, respectively. By [7, Lemma 3.4], we obtain an F(q, p)-map $f_1: Y \times [0, 1) \rightarrow Q - E$ such that $f_1 \underbrace{\sim}_{F(q, p)} f|Y \times [0, 1)$ and $f_1 \cup f_{A \cup Y_1}: Y \times [0, 1)$ $\cup (A \cup Y_1) \rightarrow Q$ is continuous.

If we replace A by $A \cup Y_1$, then we obtain a map $f_{A \cup Y_1 \cup Y_2} : A \cup Y_1 \cup Y_2 \rightarrow E$ which is an extension of $f_{A \cup Y_1}$, and an F(q, p)-map $f_2 : Y \times [0, 1) \rightarrow Q - E$ such that $f_2 \xrightarrow{}_{F(q,p)} f_1$ and $f_2 \cup f_{A \cup Y_1 \cup Y_2} : Y \times [0, 1) \cup (A \cup Y_1 \cup Y_2) \rightarrow Q$ is continuous. If we continue this process, we obtain a map $f_Y : Y \rightarrow E$, which is an extension of f_A , and an F(q, p)-map $f_m : Y \times [0, 1) \rightarrow Q - E$ such that $f_m \xrightarrow{}_{F(q,p)} f | Y \times [0, 1)$ and $f_m \cup f_Y : Y \times I \rightarrow Q$ is continuous. Note that $f_Y : Y \rightarrow E$ is a fiber map over B. Clearly, f_Y satisfies our requirements. This completes the proof.

THEOREM 3.2. Let E, B be compacta and dim $B < \infty$. If $p: E \to B$ is a strongly regular mapping with ANR fibers, then for any map $q: Y \to B$ of compacta $\Phi: [Y, E]_{q,p} \to \langle Y, E \rangle_{q,p}$ is a bijection.

PROOF. If we apply Lemma 3.1 with A replaced by the empty set, we conclude that Φ is surjective. Also, if we apply Lemma 3.1 with Y replaced by $Y \times I$, A replaced by $Y \times \{0, 1\}$ and $q: Y \rightarrow B$ replaced by the composition $q \circ \text{proj}: Y \times I \rightarrow Y \rightarrow B$, we conclude that Φ is injective.

By using Theorem 3.2, we can easily prove the following.

THEOREM 3.3. Let E, E' and B be compacta and dim $B < \infty$. Suppose that $p: E \rightarrow B$ and $p': E' \rightarrow B$ are strongly regular mappings with ANR fibers. Then p is fiber homotopy equivalent to p' iff p is isomorphic to p' in FR_B . Moreover, if a fiber map $f: E \rightarrow E'$ from p to p' induces an isomorphism in FR_B , then it is a fiber homotopy equivalence.

REMARK 3.4. In the statements of Theorems 3.2 and 3.3, we can not omit the condition "strongly regular mapping". Define a map $p: E=[0, 3] \rightarrow B=[0, 2]$ by $p|[0, 1]=1_{[0,1]}, p([1, 2])=\{1\}$ and p(t)=t-1 for $t\in[2, 3]$. Clearly, the map $p: E \rightarrow B$ induces an isomorphism from p to the identity map 1_B of B in FR_B , but there is no fiber map from 1_B to p. Also, it is easily seen that we cannot omit the condition "ANR fibers".

THEOREM 3.5. Let E, B be compacta and dim $B < \infty$. If $p: E \rightarrow B$ is a strongly regular mapping with ANR fibers, then p is a shape fibration (see [9], [10] for the definition of shape fibration).

PROOF. Consider the composition $p \circ \text{proj}: E \times Q \to E \to B$. Then, by [2], $p \circ \text{proj}$ is a locally trivial fiber space with compact Q-manifold fibers. By [4], the homeomorphism group of a compact Q-manifold is an ANR. By Scharlemann [12, Theorem 2.1], we see that there are compact ANRs M, N and a locally trivial fiber space $\tilde{p}: M \to N$ such that $M \supseteq E \times Q$, $N \supseteq B$ and \tilde{p} is an extension of $p \circ \text{proj}$ with $\tilde{p}^{-1}(B) = E \times Q$. Since \tilde{p} is a shape fibration, the restriction

 $p \circ proj$ is also. Since p is fiber homotopy equivalent to $p \circ proj$, by [6] p is a shape fibration.

REMARK 3.6. In the statement of Theorem 3.5, we cannot omit the assumption about the fibers of p. In fact, there is a strongly regular mapping which is a locally trivial fiber space and not a shape fibration. Let E be the continuum which consists of all points in the plane having the polar coordinates (r, θ) for which r=1, r=2 or $r=(2+e^{\theta})/(1+e^{\theta})$ and B be the unit circle in the plane. Define a map $p: E \rightarrow B$ by $p(r, \theta)=(1, \theta)$. Clearly, p is a strongly regular mapping (locally trivial fiber space), but it is not a shape fibration (see [11, p. 641]).

THEOREM 3.7. Let E, E' and B be compacta and dim $B < \infty$. Suppose that $p: E \rightarrow B$ and $p': E' \rightarrow B$ are strongly regular mappings with ANR fibers. If a fiber map $f: E \rightarrow E'$ from p to p' induces a strong shape equivalence, then it is a fiber homotopy equivalence.

PROOF. By Theorem 3.5, p and p' are shape fibrations, respectively. By [7, Theorem 4.1], f induces an isomorphism in FR_B . Theorem 3.3 implies that f is a fiber homotopy equivalence.

COROLLARY 3.8. Let E, B be compacta and dim $B < \infty$. If $p: E \rightarrow B$ is a strongly regular mapping with AR fibers, then p is shrinkable, i.e., p is a fiber homotopy equivalence from p to 1_B .

PROOF. Since p is a cell-like map and dim $B < \infty$, by [8], p is a hereditary shape equivalence. In particular, it is a strong shape equivalence. By Theorem 3.7, p is shrinkable.

REMARK 3.9. In the statement of Theorem 3.7, the assumption about the fibers of p cannot be omitted. In the plane R^2 , put $a_0 = (0, 0)$, $b_0 = (1, 0)$, $a_n = (0, -1/n)$, $b_n = (1, 1/n)$, $n = 1, 2, 3, \cdots$. Let [p, q] be the line segment joining p and q in R^2 , p, $q \in R^2$. Set $E = \bigcup_{n=0}^{\infty} [a_0, b_n] \cup \bigcup_{n=0}^{\infty} [a_n, b_0]$ and $B = [a_0, b_0]$. Define a map $p: E \to B$ by p(x, y) = (x, 0), for $(x, y) \in E$. Then p is a strongly regular mapping. Also, define a map $f: E \to E$ by

$$f(x, y) = \begin{cases} (x, 0), & (x, y) \in \bigcup_{n=0}^{\infty} [a_0, b_n], \\ \\ (x, y), & (x, y) \in \bigcup_{n=0}^{\infty} [a_n, b_0]. \end{cases}$$

Then pf = p and f induces a strong shape equivalence, but f is not a fiber homotopy equivalence. In fact, f does not induce an isomorphism in FR_B .

REMARK 3.10. In the statements of Theorem 3.5, Theorem 3.7 and Corollary 3.8, we cannot omit the condition "dim $B < \infty$ ". By using Taylor's example and the result of G. Kozlowski, J.V. Mill and J. Walsh [AR-maps obtained from cell-like maps, Proc. Amer. Math. Soc., 82 (1981), 299-302], we obtain a strongly regular mapping $f: X \rightarrow Q$ with AR fibers which is not shape shrinkable, where

Q is the Hilbert cube. By taking the cones of X and Q, we have the map C(f): $C(X) \rightarrow C(Q) \cong Q$. Then C(f) is a strong shape equivalence and a strongly regular mapping with AR-fibers, but it is not shape shrinkable. By [7, Corollary 4.4], C(f) is not a shape fibration. Clearly, C(f) is not shrinkable. Hence we cannot omit the condition "dim $B < \infty$ ".

References

- [1] D.A. Addis, A strong regularity condition of mapping, General Topology and Appl., 2 (1972), 199-213.
- [2] T.A. Chapman and S. Ferry, Hurewicz fiber maps with ANR fibers, Topology, 16 (1977), 131-143.
- [3] J. Dydak and J. Segal, Strong shape theory, Dissertationes Math., 192 (1981), 1-42.
- [4] S. Ferry, The homeomorphism group of a Hilbert cube manifold is an ANR, Ann. of Math., 106 (1977), 101-120.
- [5] S. Ferry, Strongly regular mappings with compact ANR fibers are Hurewicz fiberings, Pacific J. Math., 75 (1978), 373-382.
- [6] H. Kato, Shape fibrations and fiber shape equivalences I, II, Tsukuba J. Math., 5 (1981), 223-235, 237-246.
- [7] H. Kato, Fiber shape categories, Tsukuba J. Math., 5 (1981), 247-265.
- [8] G. Kozlowski, Images of ANRs, Trans. Amer. Math. Soc., (to appear).
- [9] S. Mardešić and T.B. Rushing, Shape fibrations I, General Topology and Appl., 9 (1978), 193-215.
- [10] S. Mardešić and T.B. Rushing, Shape fibrations II, Rocky Mountain J. Math., 9 (1979), 283-298.
- [11] T.B. Rushing, Cell-like maps, approximate fibrations and shape fibrations, Geometric topology, Academic Press, 1979, 631-648.
- [12] M.G. Scharlemann, Fiber bundles over Sh_QY , Princeton Senior Thesis, 1969.

Hisao KATO Institute of Mathematics University of Tsukuba Ibaraki 305, Japan